ELE C

Citoriato 32.307

SELF-SCRUBBING COAL™: AN INTEGRATED APPROACH TO CLEAN AIR

Ŀ

Final Report Volume 1: Public Design

CUSTOM COALS LAUREL Agreement No. DE-FC22-93PC92643

JANUARY 6, 1997

DISCLAIMER

This report was prepared by Custom Coals Laurel pursuant to a cooperative agreement funded partially by the U.S. Department of Energy, and neither Custom Coals Laurel nor any of its subcontractors nor the U.S. Department of Energy, nor any person acting on behalf of either:

.||

- (a) Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- (b) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Department of Energy.

ABSTRACT

Custom Coals Laurel has built a commercial demonstration plant to demonstrate an innovative, low risk, cost effective coal cleaning technology for meeting the requirements of the 1990 Clean Air Act. Self-Scrubbing Coal[™] technology, segments of which have already been tested at commercial scale, offers many advantages. It can reduce total sulfur emissions 80-90 percent; it retains more than 90 percent of a coal's heating value; the coal is easy to handle; and the technology is capable of using any bituminous coal as a feed. Utilities can use their existing feedstock, averting potential boiler derating and economic dislocation caused by fuel switching. In brief, utilities using Self-Scrubbing Coal[™] can achieve compliance without major capital expenditures, and there are no environmentally harmful waste products.

11

The demonstration project involves building a novel, 500-ton-per hour coal cleaning plant near Central City, Pennsylvania to produce Self-Scrubbing CoalTM. First, run-of-mine coal is crushed, screened, and cleaned with innovative dense-media cyclones to remove non-combustible material, including 90 percent of the pyritic sulfur in the coal. Then limestone-based additives are mixed with the cleaned coal-additives that react during combustion to remove an additional 30-80 percent of the organic sulfur that remained with the clean coal. This achieves a total sulfur removal of 80-90 percent.

Two forms of coal produced during the demonstration will be field tested at commercial power plants: Self-Scrubbing Coal[™] that has been aggressively cleaned but without the limestone-based additive (in this form called Carefree Coal[™]), and Self-Scrubbing Coal[™] with the additive. Data collected during the field test burns will validate the performance and measure the emissions reduction of the innovative coal forms in utility boilers. Such data are critical to commercialization of Self-Scrubbing Coal[™], which can bring into compliance about 164 million tons annually of bituminous coal that can not meet emissions limits through conventional coal cleaning. This represents over 38 percent of the bituminous coal burned in 50 MW or larger generating stations across the U.S. Self-Scrubbing Coal[™] depends mainly on conventional, proven technology. Its breakthrough comes from three innovative aspects of the cleaning process: Its unique magnetite recovery process; a new heavy-media cyclone design and separation circuit; and sorbent addition and agglomerization. Because Self-Scrubbing Coal[™] is so firmly grounded in proven technology, it is an economical, low-risk, conservative approach to meeting emissions limits that should appeal to the utility industry.

.[1

1

1

Custom Coals is dedicated to providing Self-Scrubbing CoalTM as a pre-combustion alternative to U.S. utilities faced with emission reduction challenges. The full-scale demonstration will provide the opportunity to blend all of the innovative aspects of the technology and prove the effectiveness of Self-Scrubbing CoalTM, which integrates pre-combustion and combustion sulfur reductions, in reducing emissions. The demonstration will also prove the cost effectiveness of the technology, paving the way to full commercialization of the project technology.

POINT OF CONTACT

For additional information on Carefree and Self-Scrubbing Coal[™] technology please contact:

:

1 1

Mr. Kenneth E. Harrison Custom Coals Laurel 100 First Avenue, Suite 500 Pittsburgh, Pennsylvania 15222 Tel: (412) 642-2625 Fax: (412) 642-2643

.

TABLE OF CONTENTS

1.1

Section

li

.

1.0	Project Overview	l-1
	1.1 Purpose of the Design Report	1-1
	1.2 Project Description	1-1
	1.3 Project Objectives	1-5
	1.4 Project Significance	1-6
	1.5 DOE's Role	1-7
2.0	Technology Description	2-1
3.0	Process Design Criteria	3-1
4.0	Detailed Process Design	4-1
	4.1 Plot Plan and Layout Drawings	4-1
	4.2 Major Plant Process Areas	4-1
	4.3 Waste Streams	4-3
	4.4 Equipment List	4-5
5.0	Process Capital Cost	5-1
6.0	Estimated Operating Cost	6-1
7.0	Commercial Applications	7-1

Appendix

Α	Management Plan	A-1
В	Plot Plan and Plant Layout Drawings	B-1
С	Process and Instrumentation/Process Flow Diagrams	C-1
D	Equipment List	D-1

Figures

1.2-1	Schematic Flow Diagram	1-2
1.2-2	CCL Self-Scrubbing Coal [™] Project Location	1-4
2.0-1	Self-Scrubbing Coal [™] Block Diagram	2-2

Tables

4.2-1	Demonstration Plant Energy Balance	4.2
5.0-1	Process Capital Cost of Demonstration Plant	5-1
6.0-1	Annual Estimated Fixed Operating Cost	6-1
6.0-2	Annual Estimated Variable Operating Cost	6-2

LIST OF ABBREVIATIONS

.

DOE	-	Department of Energy
CCL	-	Custom Coals Laurel
RP&L	-	Richmond Power & Light
FGD	-	Flue Gas Desulfurization
CAAA	-	Clean Air Act Amendment
ТРО	-	Technical Project Officer
ESP	-	Electrostatic Precipitator
EPA	-	Environmental Protection Agency
SO ₂	-	Sulfur Dioxide
CCCC	-	Custom Coals Coal Cleaning

i i

.

LIST OF UNITS

. .

Acres

British Thermal Unit (Btu) Gallons per minute (GPM) Horsepower (hp) Inch (in.) Megawatt (MW) Mesh (M) Micron (um) Millimeter (mm) Percent (%) Pound sulfur dioxide per million British Thermal Unit (#SO₂/MBtu) Tons

1 .

.1

GLOSSARY OF TERMS

Carefree Coal[™] is Self-Scrubbing Coal[™] without sorbent additives.

Self-Scrubbing Coal[™] is a compliance (1.2 lbs SO₂/MBtu) coal produced by aggressive physical coal cleaning and in some cases with added SO₂ sorbents.

Dense-media and **heavy-media** are used interchangeably in the report to indicate a separating mixture of water and magnetite.

Demonstration plant is the Self-Scrubbing Coal[™] production plant that is constructed on the Central City, Pennsylvania, site.

Dolomite is crushed limestone containing calcium/magnesium carbonate that absorbs sulfur dioxide in flue gas.

Beneficiation, coal preparation, and coal cleaning refer to the physical processes of separating coal from ash-forming and sulfur-bearing mineral impurities.

Compliance coal is any coal that, when burned, will produce SO_2 emissions at or below 1.2 lbs $SO_2/MBtu$.

Sorbent, as used in this report, is a sulfur capture agent such as limestone or dolomite.

Mesh is a size designation based on the number of openings per unit area of sieve screen surface. Mesh can be converted to any linear measurement system (inches, millimeter, microns, etc.).

Refuse is the waste from a coal cleaning operation.

Product is the clean coal from a coal cleaning operation.

Media is the parting fluid or suspension in a density-based coal cleaning process.

. .

Froth flotation is a cleaning process in which fine coal in a slurry is caused to attach to an air bubble.

11

Run-of-Mine is the coal just as it is produced in the mine and, on which no additional processing has occurred.

EXECUTIVE SUMMARY

Custom Coals Laurel has built a commercial demonstration plant to demonstrate an innovative, energy efficient technology capable of reducing the emission of sulfur dioxide and providing for future energy needs in an environmentally acceptable manner.

11

This project will provide a commercial demonstration of the Custom Coal's Coal Cleaning (CCCC) process for producing Carefree Coal[™] and Self-Scrubbing Coal[™], as well as full-scale burns of the products in coal-fired utility boilers.

The Self-Scrubbing Coal[™] project involves the construction of a 500 tons/hr advanced coal cleaning plant that has been designed with a unique blend of existing and new process steps. In the cleaning plant, run-of-mine coal is crushed, screened, and cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur in the coal. The Carefree Coal[™] produced by this cleaning process will allow many utilities to achieve compliance with the Clean Air Act Amendments (CAAA) sulfur emissions requirements.

Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal[™] will be produced. Self-Scrubbing Coal[™] is produced in the same manner as Carefree Coal[™] except that the finest fraction from the cleaning circuit is mixed with limestone-based additives and agglomerated. These additives react during combustion to remove an additional 30-80% of the sulfur remaining with the clean coal, thus achieving a total sulfur removal of 80-90%. Three U.S. coal seams (Sewickley, Lower Freeport, and Illinois No. 5), representing a range of raw coal qualities, will be the source of the feedstock for the Self-Scrubbing Coal[™] demonstration.

The demonstration cleaning plant has been constructed at a site in Somerset County near Central City, Pennsylvania. The product from the demonstration plant will be test burned at three sites. Pennsylvania Power & Light's 150 MW Martins Creek Power Station near Allentown, Pennsylvania, will burn Carefree Coal[™] produced from Lower Kittanning Seam coal. Richmond

Power & Light's (RP&L) 60 MW Whitewater Valley Station, Unit No. 2, in Richmond, Indiana, will burn Self-Scrubbing Coal[™] produced from Illinois No. 5 coal, and Centerior Service Company's 200 MW Ashtabula C-Plant in Ashtabula, Ohio will burn Self-Scrubbing Coal[™] produced from Lower Freeport Seam coal. Data collected during these test burns will be critical to commercialization of Carefree Coal[™] and Self-Scrubbing Coal[™]. About 38% of the bituminous coal burned in 50-MW or lager generating stations in the U.S. cannot be sufficiently cleaned by conventional coal cleaning techniques to meet CAAA emissions limits, but this coal can be brought into compliance by the CCL technology.

11

This demonstration project will be performed over 56 months. Project activities include project definition, design and engineering, construction, start-up, operations, and test burns.

The total project cost if \$87,386,102. DOE's share is \$38,038,656. The co-funder is CCL, whose share is \$49,347,446. Operations began in the spring of 1996. The project is scheduled for completion in the second quarter of 1997.

This report provides the detailed design information and costs for the technology as a result of the completion of the project definition, design and engineering phases of the project.

1. **PROJECT OVERVIEW**

1.1 Purpose of the Public Design Report

The purpose of this report is to consolidate all design and cost information on Custom Coals Laurel's Self-Scrubbing Coal[™] Demonstration Project at the completion of construction. Operating and maintenance costs have been projected in this report. A Final Report will be prepared at the completion of the Demonstration phase and will contain operating and maintenance costs based on the experience gained.

H:

1.2 Project Description

CCL will demonstrate the production and utilization of Carefree Coal[™] and Self-Scrubbing Coal[™] by constructing a processing plant and having the product clean coal test burned in utility burners. Figure 1.2-1 presents the concept of the project. Three U.S. coal seams (Lower Kittanning, Somerset County, Pennsylvania, Lower Freeport Seam, Belmont County, Ohio, and Illinois No. 5 Seam, Wabash County, Illinois), representing a range of raw coal properties, will be the source of the feedstock. Carefree Coal[™] is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. The Carefree Coal[™] produced by this cleaning process will allow many utilities to achieve compliance with the CAAA sulfur emissions requirements without major power plant modifications or capital expenditures.

Figure 1.2-1

|

11

Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing CoalTM will be produced. Self-Scrubbing CoalTM is the same as Carefree CoalTM except that the finest fraction from the cleaning circuit is mixed with limestone-based additives and agglomerated. The reduced ash content of the Self-Scrubbing CoalTM will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO₂) during combustion of the coal to remove most of the remaining sulfur. Overall sulfur reductions in the range of 80-90% are achieved.

The CCL demonstration coal cleaning plant was constructed at a site near Central City, Pennsylvania. The general location is as shown in Figure 1.2-2. Affiliated Engineering Technologies, Inc. provided the construction design and engineering for the project. Test burns will be conducted by Pennsylvania Power & Light, RP&L, and Centerior Service Company. Pennsylvania Power & Light's 150 MW Martins Creek Power Station near Allentown will burn Carefree Coal[™] produced from Lower Kittanning Seam coal. RP&L's 60 MW Whitewater Valley Power Station in Richmond, Indiana, will burn Self-Scrubbing Coal[™] produced from Illinois No. 5 coal; and Centerior's 200 MW Ashtabula C-Plant in Ashtabula, Ohio, will burn Self-Scrubbing Coal[™] produced from Lower Freeport Seam coal.

FIGURE 1.2-2

| .

.|1

.

1.3 **Project Objectives**

The overall objectives of Custom Coals Laurel's Self-Scrubbing Coal[™] Demonstration Project are:

- To produce a low-ash coal known as Carefree CoalTM that can be used as a replacement fuel in coal-fired boilers which will allow numerous utilities to comply with the new sulfur dioxide compliance laws.
- To produce a compliance fuel known as Self-Scrubbing Coal[™] from coals that are relatively high in organic sulfur contents. This will be accomplished by deep cleaning the finest coal fractions to produce a low ash product which would then allow for varying amounts of sorbent additions to remove most of the remaining sulfur during combustion of the coal.
- To demonstrate, on a commercial scale, the production of the Carefree and Self-Scrubbing Coals[™].
- To determine plant operability, product quality, and process costs for the production of Carefree and Self-Scrubbing Coals[™].
- To test all aspects of the cleaning technology at commercial scale by burning the product in coal-fired utility boilers. Data from the test burn will include boiler efficiencies and SO₂ and particulate emission levels.

FIGURE

l i

1.2-1

. 1

1.4 **Project Significance**

The significance of this project is it provides many U.S. electric utilities which are coalfired with the most cost-effective strategy to meet the CAAA sulfur emission limitations. The project will demonstrate an ability to produce a low-sulfur, low-ash coal that can be used as a replacement fuel in existing coal-fired boilers. Because it uses gravimetric separation techniques, it has a number of advantages over froth flotation technologies such as the ability to remove pyrite efficiently and the flexibility to handle lower rank and oxidized coals. Compared to all other gravimetric coal cleaning processes, this technology has the significance of being able to clean finer size coal effectively, resulting in a higher recovery efficiency at equivalent clean coal qualities.

The product coal offers the potential for use in coal-fired boilers to achieve CAAA SO_2 emission standards without derating the unit or producing hard-to-dispose-of by-products. Furthermore, few, if any, modifications to the boiler are required.

Economic evaluations indicate that the cost of producing electricity may be 5-15% lower when using Carefree Coal[™] or Self-Scrubbing Coal[™] than when using conventionally cleaned coal together with FGD.

1.5 DOE's Role

DOE's Clean Coal Technology program provides significant funding to allow the Self Scrubbing Coal technology to be demonstrated at commercial levels. DOE is responsible for monitoring all aspects of the project and granting or denying approvals required by the Cooperative Agreement. The DOE Contracting Officer represents DOE on all matters related to the Cooperative Agreement.

The DOE Contracting Officer has appointed a TPO who will be the authorized representative for all technical matters and will have the authority to issue "Technical Advice" which may:

Suggest redirection of the Cooperative Agreement effort, recommend a shifting of work emphasis between work areas or tasks, or suggest pursuit of certain lines of inquiry which assist in accomplishing the Statement of Work.

1i

Approval all technical reports, plans, and items of technical information required to be delivered by the Participant to the DOE under the Cooperative Agreement.

Finally, DOE provides the conduit to flow all pertinent information about the technology to the public.

Figure A-2 (of Appendix A) provides an overall organization chart for the project team responsible for execution of the entire project. Appendix A also contains the overall Management Plan used by the project team.

2.0 TECHNOLOGY DESCRIPTION

Figure 2.0-1 presents a block flow diagram of the process. The raw coal is first sized into an intermediate size fraction (1.5 in x 1.0 mm), a fine size fraction (1.0 mm x 0.105 mm) and an ultrafine size fraction (0.105 mm x 15 microns) with each of the fractions being processed in separate heavy-media cyclone coal cleaning circuits. The intermediate cleaning circuit will be two-stage, with the capability of producing a low-gravity clean coal, a high-gravity refuse, and an intermediate-gravity middlings fraction. This middlings fraction contains coal particles with pyrite and other mineral matter locked in the coal matrix. The middlings fraction will be crushed to a finer size to liberate the sulfur-bearing mineral matter form the coal matrix. The crushed coal along with the natural fines will then be processed in either the fine or ultrafine coal cleaning circuits to separate clean coal from refuse.

The effect of the cleaning process is to maximize clean coal recovery while simultaneously maximizing pyritic sulfur and ash rejection. If the composite clean coal can meet overall SO_2 compliance levels, then the product is ready for shipment as Carefree CoalTM. If the sulfur content of the composite clean coal is too high (primarily due to the organic sulfur content), then before being blended with the other fractions, the ultrafine clean coal fraction is agglomerated with enough sorbent to enable the clean coal to meet compliance levels. If this option is taken, then the coal product is called Self-Scrubbing CoalTM. The reduced ash content of the clean coal allows the addition of relatively large amounts of sorbent without exceeding the ash specifications of the boiler or overloading the electrostatic precipitator (ESP).

FIGURE 2.0-1 - BLOCK DIAGRAM

| .

þ

.

3.0 PROCESS DESIGN CRITERIA

The following criteria was used to design CCL's Carefree/Self-Scrubbing Coal[™] processing plant:

• Plant capacity of 500 tons of raw coal per hour

- Plant clean coal yield of no less than 90% of the energy content of the ROM nor less than 75% of the weight of the ROM.
- A final plant clean coal product quality of:

Ash	< 10%
Sulfur Emissions Potential	< 1.2 # \$O ₂ /MBTU
Heat Content	> 12,000 BTU
Total Moisture	7%
Size	< 10% minus 100M

- Plant yearly operating hours of 5,100 minimum and 6,000 maximum
- Minimize downtime and start-up time
- Provide state-of-art control systems for monitoring and controlling process functions

In addition to the above design criteria the plant as constructed has the ability to:

- Recover an exceptionally low-ash, low-sulfur clean coal,
- Reject a high-ash, high-sulfur refuse,

- Crush or grind the middling material to smaller size fractions,
- Efficiently reject fine pyritic sulfur,

• Remove high ash fine clays which otherwise would retain moisture and cause handling problems,

Ь

• Incorporate a method of agglomerating the fine clean coal.

4.0 **DETAILED PROCESS DESIGN**

4.1 Plot Plan and Plant Layout Drawings

Contained in Appendix B is the plot plan, and plant layout drawings for Custom Coals Laurel's demonstration plant. The plant is located in Somerset County, Pennsylvania. This site previously was operated by Consolidation Coal for National Mines Corporation and was shut down in the early 1980's. The site was well designed, preserved, and protected since its shut down. CCL has used much of the existing coal storage and loadout facilities and on-site permitted refuse disposal area. The loadout is designed for high rate and a rail loop provides unit train loading on the Conrail System.

15

The 133 acre site provides sufficient space for truck deliveries of the raw coal and for additional truck loading of the clean coal for some local markets. The site also houses the 500 TPH demonstration plant. The refuse disposal area has 64 acres with the remaining capacity sufficient for 18 to 20 years of full commercial operation.

4.2 Major Plant Process Areas

Contained in Appendix C is the Process and Instrumentation Diagrams and the Process Flow Diagrams. The Process Flow Diagrams in conjunction with Table A, also contained in Appendix C, provide a complete material balance regarding the demonstration plant. Incorporated in the four Process Flow Diagrams are 193 different process streams. The stream numbers in Table A coincide with those in the Process Flow Diagrams. The following information is provided for each of the process streams:

- Tons Per Hour Coal
- Tons Per Hour Magnetite

- Tons Per Hour Water
- Tons Per Hour Total Slurry

1.1

- Gallons Per Minute Coal
- Gallons Per Minute Magnetite
- Gallons Per Minute Water
- Gallons Per Minute Total Slurry
- Percent Solids or Percent Surface Moisture

The plant flowsheet has been designed to maximize the recovery of energy from that brought in with the raw coal even while the sulfur and ash material is removed.

H

Table 4.2-1 below presents the energy balance for the demonstration plant.

	Source	Amount (MMBTU/HR)	% Energy
Energy Input	Raw Coal	12,313.8	100.0%
	Fuel Oil	29.2	
	Total	12,343.0	
Energy Output	Clean Coal	11,028.8	89.4%
	Total	11,028.8	
Energy Lost	Refuse	1,285.0	10.6%
	Evaporation	29.2	
	Total	1,314.2	

 Table 4.2-1: Demonstration Plant Energy Balance

4.3 Waste Streams

The Self-Scrubbing CoalTM project permits two waste stream avenues: one at the site of the demonstration plant and the other at the power plants burning the Carefree CoalTM and Self-Scrubbing CoalTM. The environmental impacts caused by operation of the demonstration plant fall into three categories: air emissions, water discharge, and solid waste disposal.

41

The demonstration plant will use indirect thermal dryers, which eliminate the direct burning of coal and minimize particulate or combustibles emissions. Water vapor and a very small quantity of coal dust is vented to the atmosphere from the process after the dryer exhaust gases are passed through the wet scrubber. Low-sulfur fuel oil will be burned to heat the thermal dryers; emissions from this source will meet regulations.

Briquetting of the dried, fine coal will prevent dusting during on-site storage activities and during transportation.

Process water from the plant will be clarified in thickeners and reused in the plant with no discharge of wastewater to the environment. The major environmental issue concerns solid waste disposal. Coal cleaning plant waste is classified nonhazardous by EPA. Plant solid waste will be trucked to a permitted disposal site. Disposed solids are compacted and covered by an inert material. Any leachate from the pile is treated before discharging to nearby Miller Run.

With regard to the power plant operations, due to the deep cleaning associated with Self-Scrubbing CoalTM and the minor addition of dolomite, SO₂ emissions are considerably reduced. No detrimental environmental impacts due to the use of Self-Scrubbing Coal TM are anticipated from coal handling, storage, or transport. Since the Self-Scrubbing CoalTM fines are agglomerated, less fugitive dust will be generated at the power plant. There will be no need to increase coal stockpile requirements at the power plants; therefore, there will be no increase in surface water runoff or treatment.

The ash from Carefree Coal[™] is very similar to the ash from the base coal, except for a reduced iron content due to pyrite removal. In addition to a lower iron content, the ash from Self-Scrubbing Coal[™] has higher calcium and magnesium contents, because of the added dolomite. These changes in ash composition should cause no significant change in handling or disposal practices. Most power plants will see a significant reduction in the quantity of ash which needs to be disposed of when burning Carefree Coal[™] and a small decrease when burning Self-Scrubbing Coal[™].

Advanced coal cleaning decreases the concentration of many trace elements of environmental concern, such as antimony, arsenic, chromium, lead, mercury, and nickel, resulting in reduced emissions of air toxics. The level of particulate emissions is not expected to change compared to burning the base coal, since there will be little impact on electrostatic precipitator performance. However, there is less ash overall in Carefree Coal than in a typical power plant coal feed.

4.4 Equipment List

Contained in Appendix D is the equipment list for CCL's demonstration plant. The list contains:

.1.

- The equipment's unit number
- A description of the equipment
- The vendor who supplied the equipment

• The number and horsepower of any motors associated with the equipment.

5.0 PROCESS CAPITAL COST

1 1

Table 5.0-1 below presents the process capital cost of CCL's demonstration plant.

Ц

Task	Cost (\$)	% of Total Cost
Site Acquisition	5,666,000	11.5
Engineering	1,762,206	3.6
Equipment & Materials	14,679,750	29.7
Construction & Start-Up	24,524,392	49.6
Project Management	2,172,710	4.4
Environmental Monitoring	667,948	1.2
Total	49,473,006	100.0

Table 5.0-1: Process Capital Cost of Demonstration Plant

6.0 ESTIMATED OPERATING COST

Tables 6.0-1 and 6.0-2 present the estimated annual fixed operating cost and the annual variable operating cost of CCL's demonstration plant. These estimated costs were based on the following assumptions:

-14

- Yearly Raw Ton Tonnage Production 2,600,000 tons
- Yearly Clean Coal Tonnage Production 1,950,000 tons
- Yearly Hours of Plant Operation 6,048
- Yearly Hours of Plant Maintenance 2,000
- A total of 11 hourly employees averaging between \$10.00 and \$11.75 per hour (does not include fringe benefits).
- A total of 9 management employees averaging between \$16.00 and \$42.31 per hour (does not include fringe benefits).

Table 6.0-1: Annual Estimated Fixed Operating Cost

Item	Cost/\$Yr.
Total Annual Operating Labor	1,731,474
Total Annual Maintenance Labor	250,030
Total Annual Maintenance Material	642,600
Total Annual Administrative and Support	500,400
GRAND TOTAL FIXED O&M COST	3,124,504

Item	Cost/\$Yr.
Mobil Equipment Costs	155,200
Laboratory Analysis	117,699
Electricity	1,536,000
Magnetite	365,911
Dryer Fuel	769,075
Chemicals & Flocculants	288,473
Operating Supplies	172,224
GRAND TOTAL VARIABLE OPERATING COST	3,404,582

Table 6.0-2: Annual Estimated Variable Operating Cost

. . .

.

7.0 COMMERCIAL APPLICATIONS

The demonstration project is crucial to achieving commercialization of the technology, as it will demonstrate, at full commercial scale, the integrated operating of the cleaning plant. This project will confirm plant operability, product quality, and process costs, providing information that is vital to the commercialization effort.

1.

The demonstration project will test all aspects of the cleaning technology at commercial scale, and the product will be test-burned in commercial, coal-fired units. Data collection, analysis, and reporting will be performed during the operations phase and will include on-stream reliability, coal recovery efficiencies, and equipment performance. Data from the test burns will include boiler efficiencies and SO₂ and particulate emission levels. The data that will be generated will be applicable directly to the design of other facilities and will provide valuable information which will facilitate the commercialization effort. Environmental Monitoring Data will be collected and reported for the cleaning plant and for the power plant unit tested.

The 1990 Clean Air Act Amendments (CAAA) require existing coal-burning power plants to reduce SO_2 emissions. Of the options that exist for accomplishing this, one of the most acceptable to power plant operators is switching to low-sulfur coal, providing that this can be done without unit derating. The advantage of fuel switching is that it avoids the capital investment required for FGD processes, as well as the operating and waste or by-product disposal problems inherent in FGD. Because Carefree CoalTM and Self-ScrubbingTM have high Btu contents and can be burned with little or no equipment modifications, they should be able to achieve significant penetration of the low-sulfur coal market.

Features of the CCL's technology that improve its potential for commercialization are its high energy recovery efficiency, its ability to reject pyritic sulfur, and its ability to handle lower ranked and oxidized coals. The technology's high efficiency and flexibility should give it wide appeal and applicability. Carefree Coal[™] and Self-Scrubbing Coal[™] should be well received in the marketplace because of favorable economics and high product quality.

E

1

APPENDIX A

L.

,

PROJECT MANAGEMENT PLAN

CUSTOM COALS LAUREL SELF-SCRUBBING COAL: An Integrated Approach to Clean Air PROJECT MANAGEMENT PLAN

Ь

INTRODUCTION

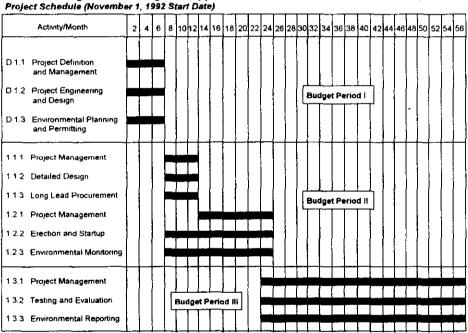
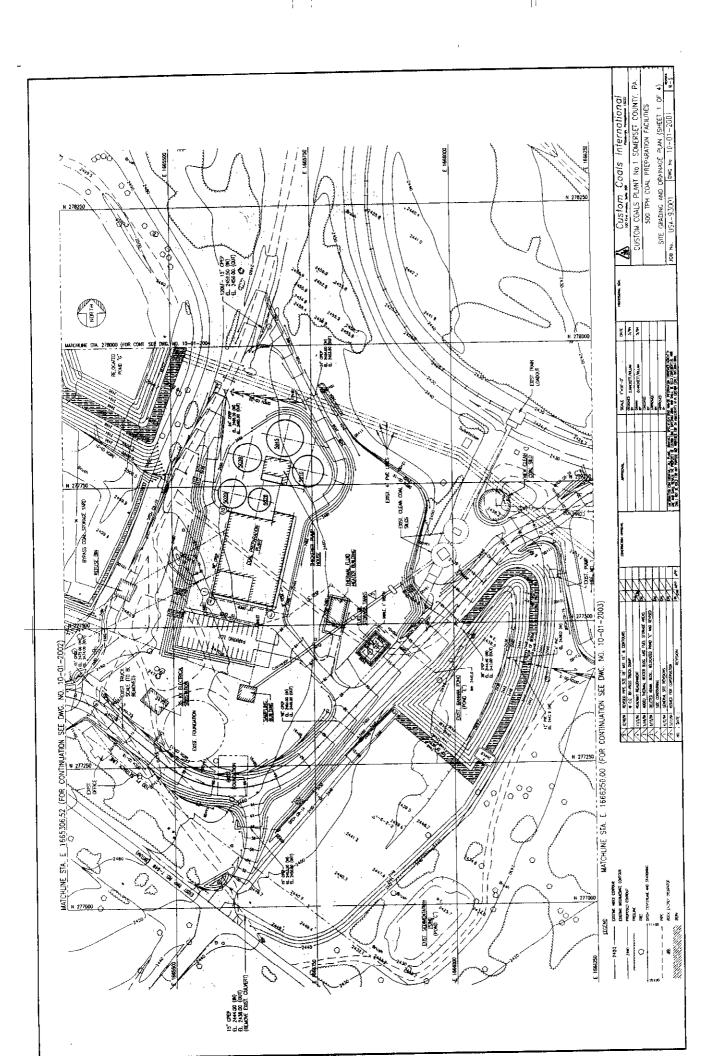
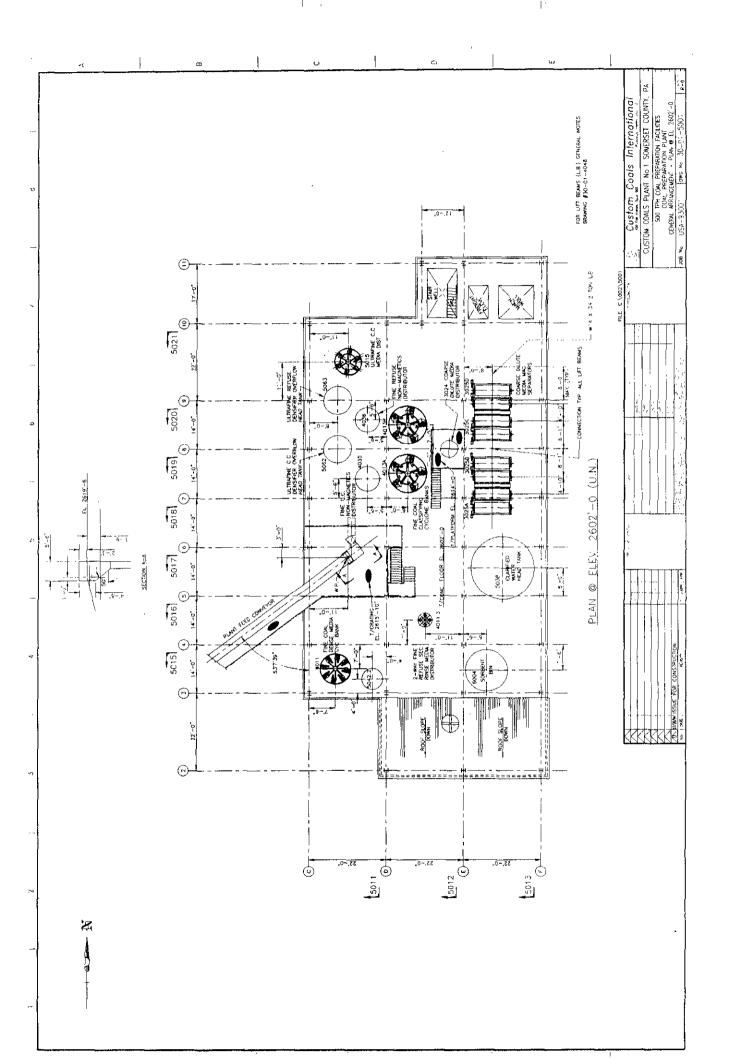

CCL has entered into a Cooperative Agreement with the DOE. CCL has also entered into three host site agreements. The first is with Pennsylvania Power & Light Company to provide facilities at its Martins Creek Power Station for full-scale combustion testing of Carefree Coal[™]. The second is with Richmond Power & Light for combustion testing of Self-Scrubbing Coal[™] at its Whitewater Valley No. 2. The third is with Centerior Energy for combustion testing of Self-Scrubbing of Self-Scrubbing Coal at its Ashtabula Plant. CCL will subcontract with Custom Coals Corporation to provide technical and management assistance in the conduct of the overall project.

FIGURE A-1 AND FIGURE A-2 BELONG HERE (SEE DRAFT)

CCL has organized a Project Management Committee to provide policy-level guidance and review throughout the life of the demonstration. This committee is comprised of senior management personnel from CCL as well as the subcontractor organizations. Mr. Sheldon Wool, CEO of CCL, will serve as Chairman of the Management Committee. Other members of the committee include Dr. Kelly Kindig, Mr. Ken Harrison and Ms. Robin Godfrey of CCC, Mr. Clark Harrison, President of CQ, Inc., and Mr. Sidney Riggs, President of Riggs Industries.

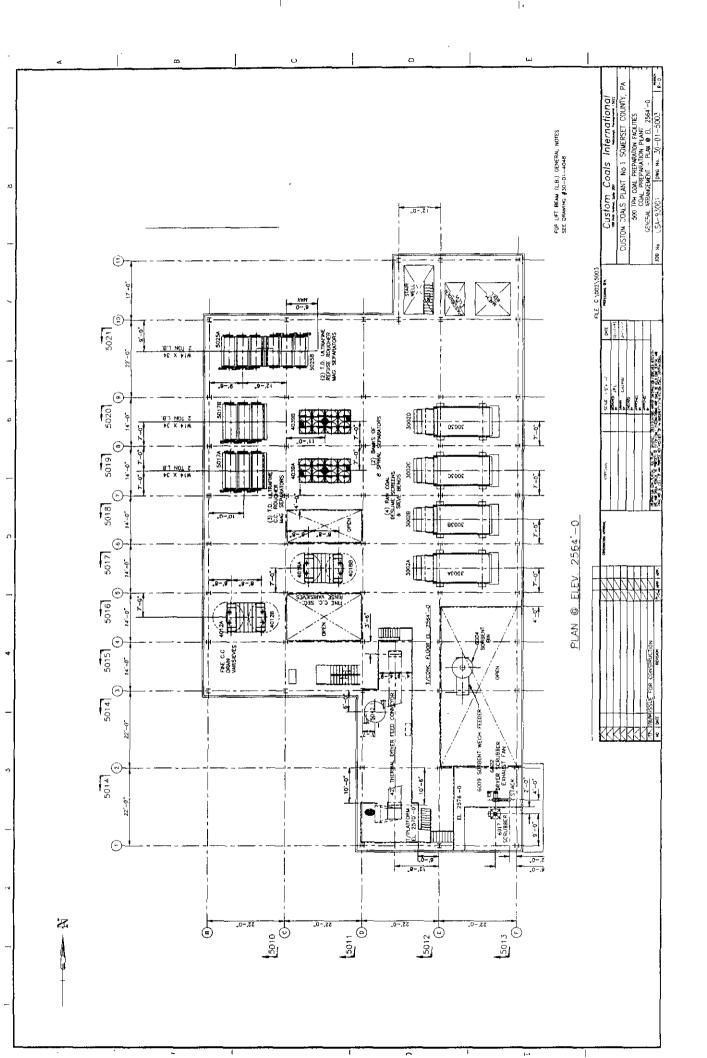
The Project Management Committee will establish the baseline scopes of work, baseline budgets and schedules for each of the team members that will best serve the overall needs of the Cooperative Agreement with DOE and the needs of CCL. The committee will continue to meet on a quarterly basis to review the progress (accomplishments, cost, schedule) of each team member and assess the overall progress of the demonstration project. The demonstration project encompasses four distinct phases of execution. These phases include project definition, design, construction and operations (including testing) with technical reporting throughout each phase. CCL will maintain overall responsibility for project control through its project manager, Mr. Ken Harrison. CCL will organize and execute the project phases according to the Project Organization Chart shown in Figure A-2. This chart identifies the technical responsibilities of each manager and the functions assigned to the participating organizations. Figure A-3 shows the breakdown of the 56 month project schedule.

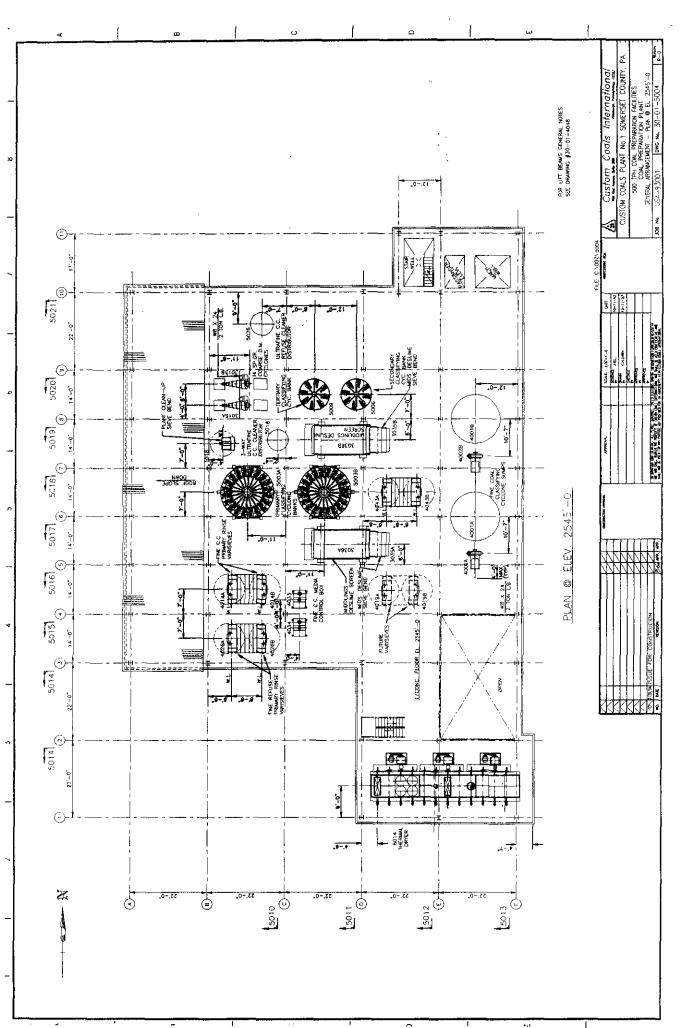

H.

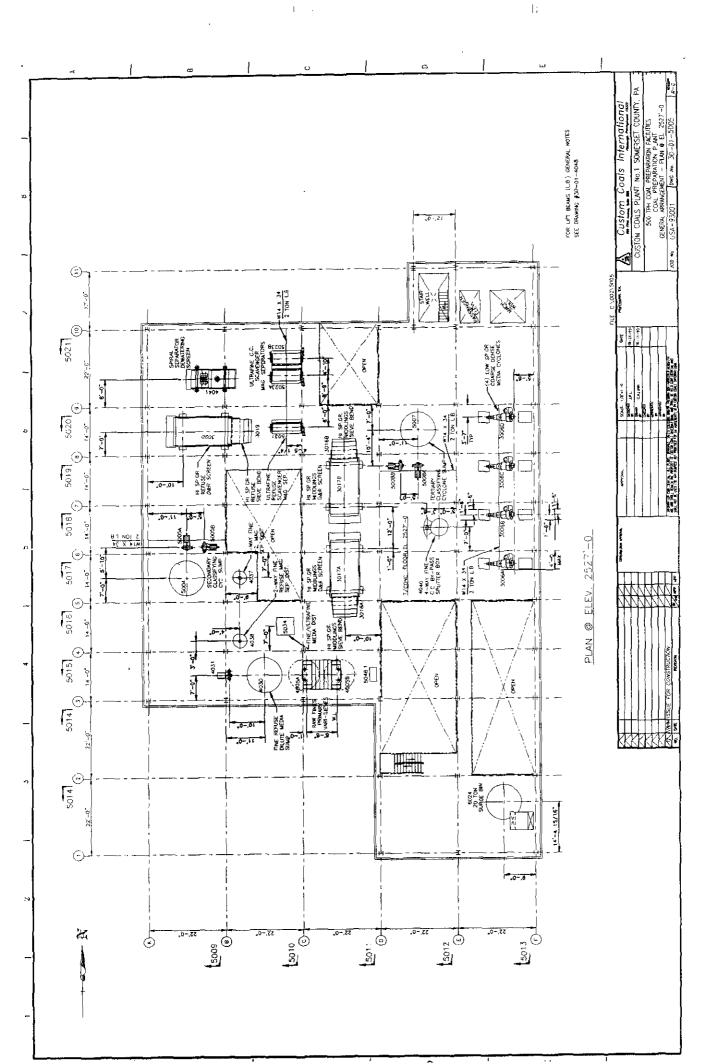


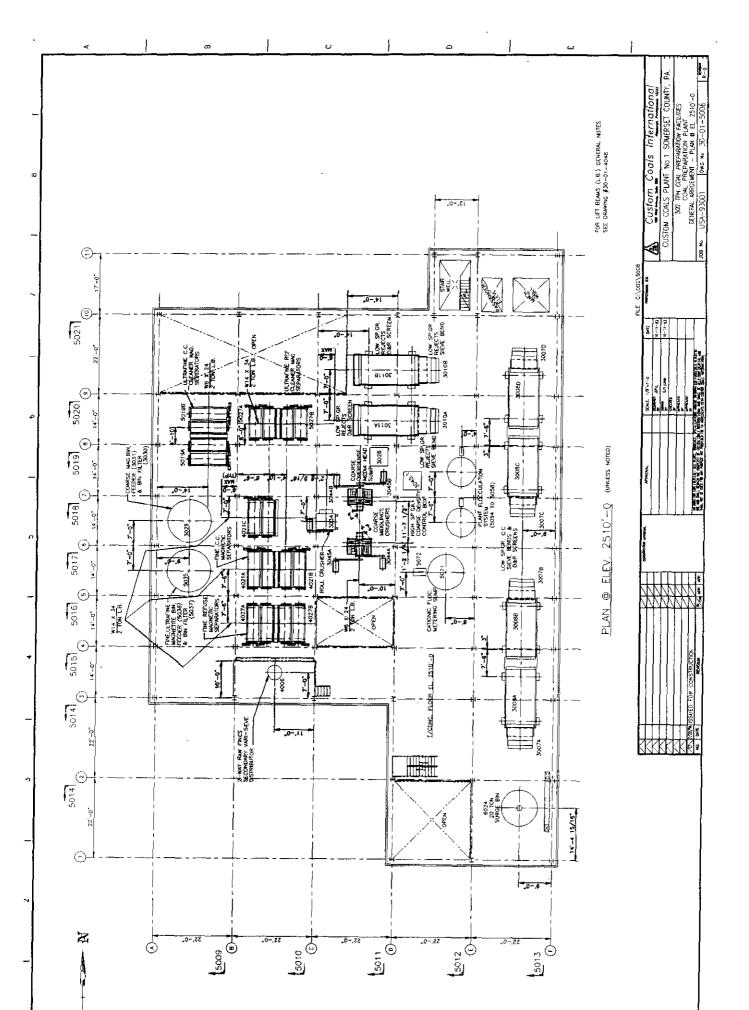

Self-Scrubbing Coal: An Integrated Approach to Clean Air Project Schedule (November 1, 1992 Start Date)

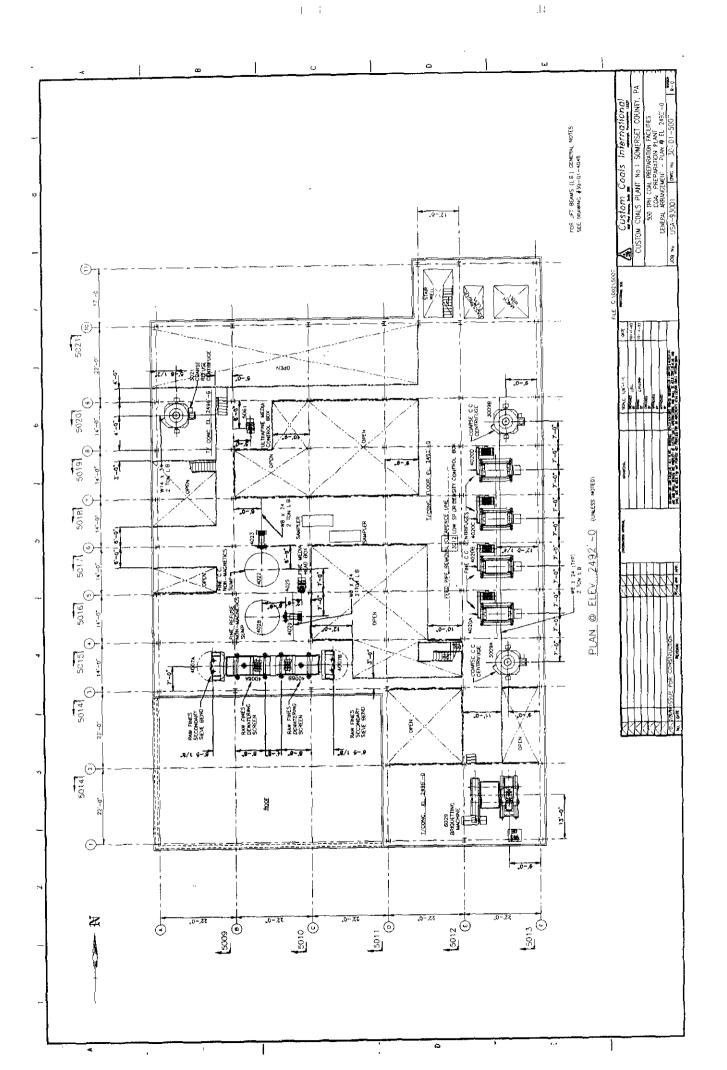
1 .

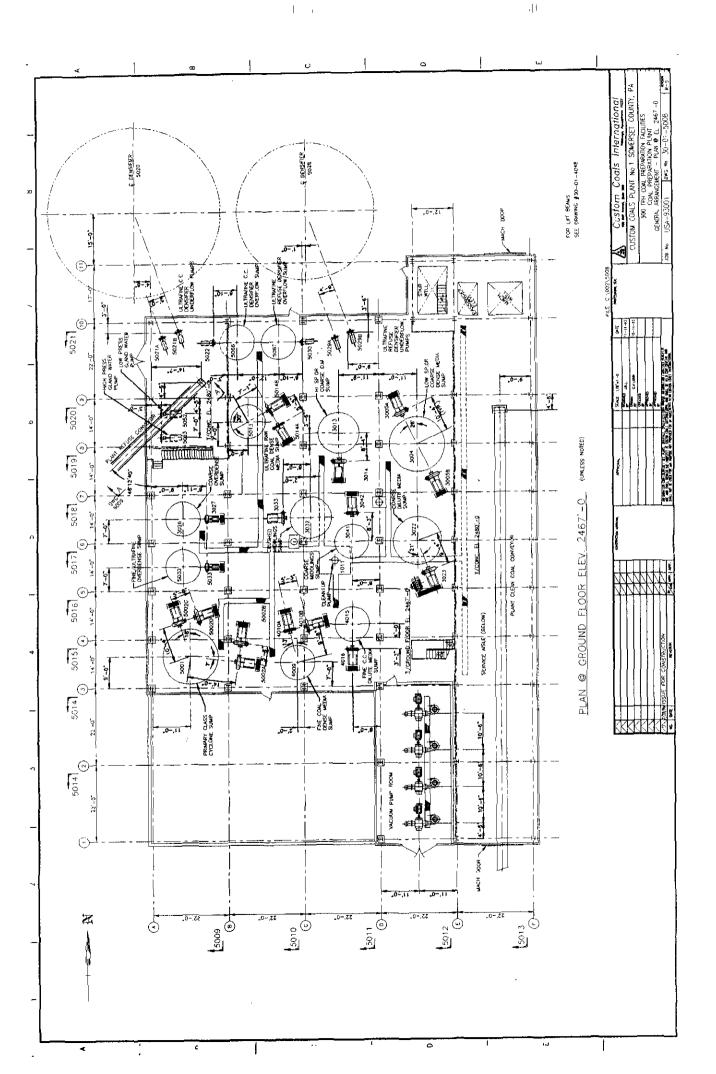

Figure A-3

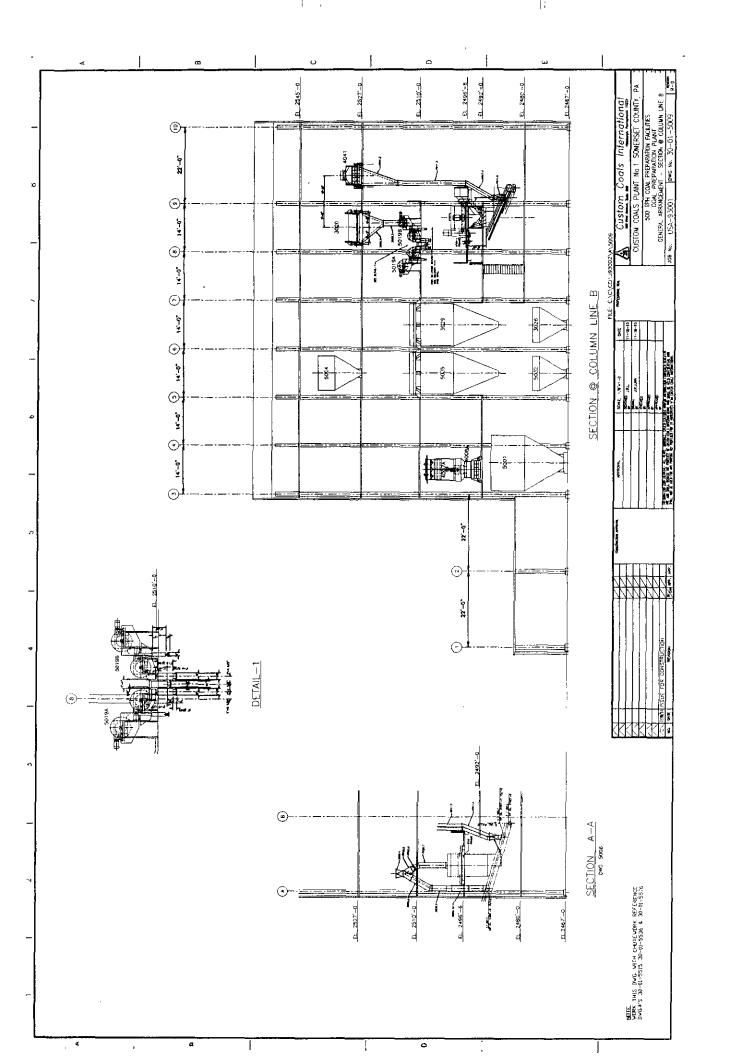


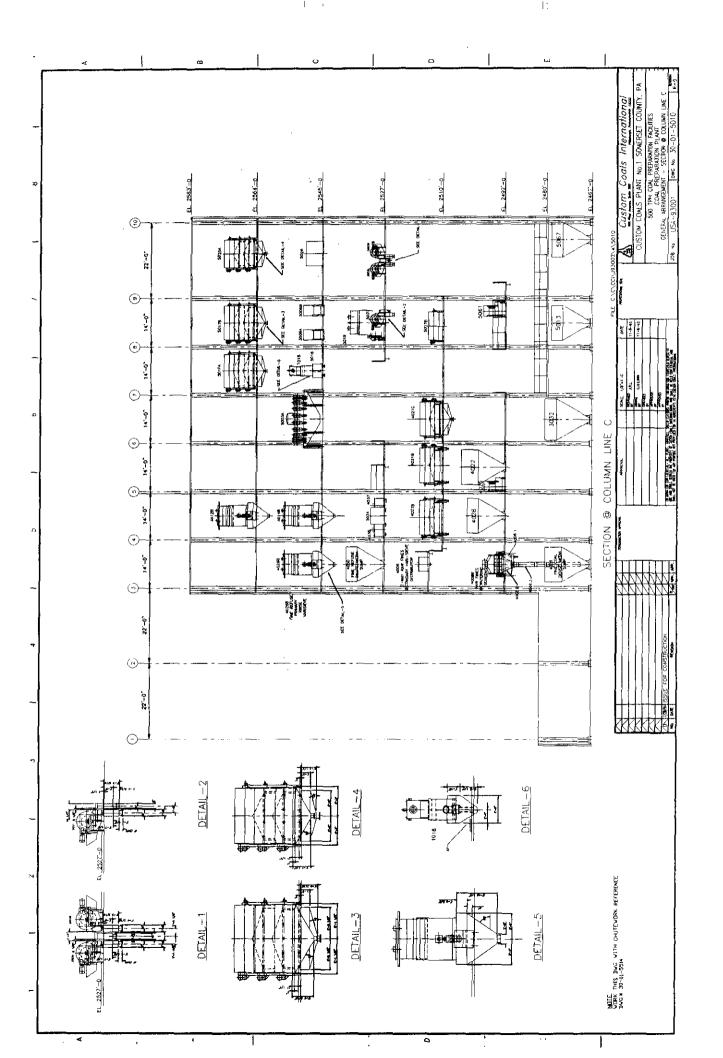


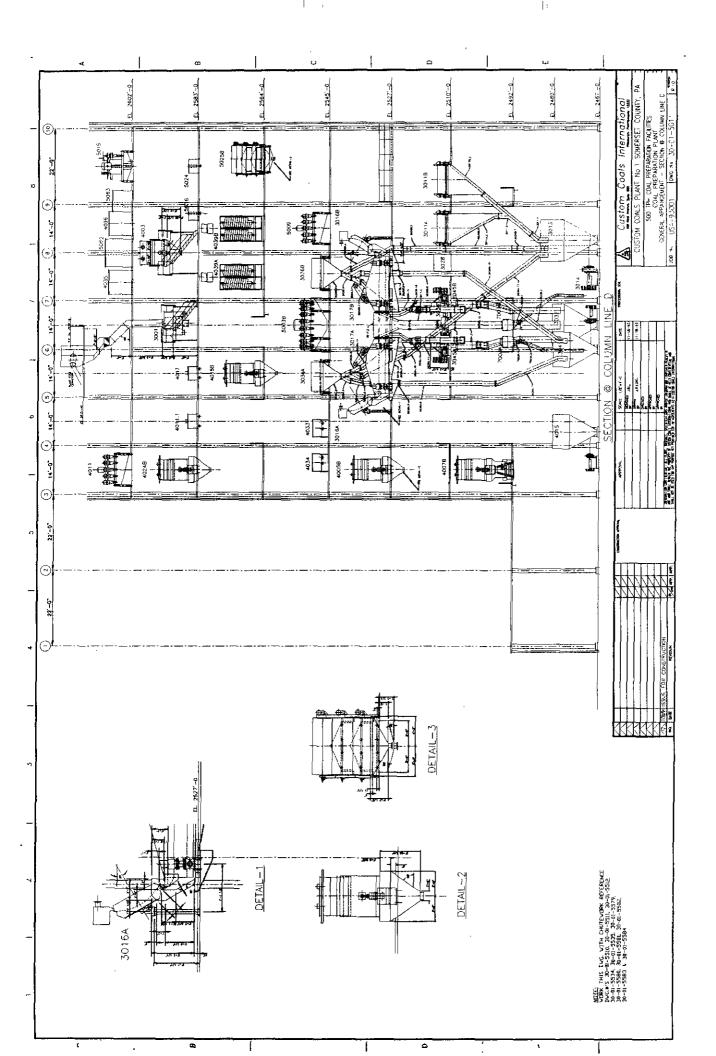

, |

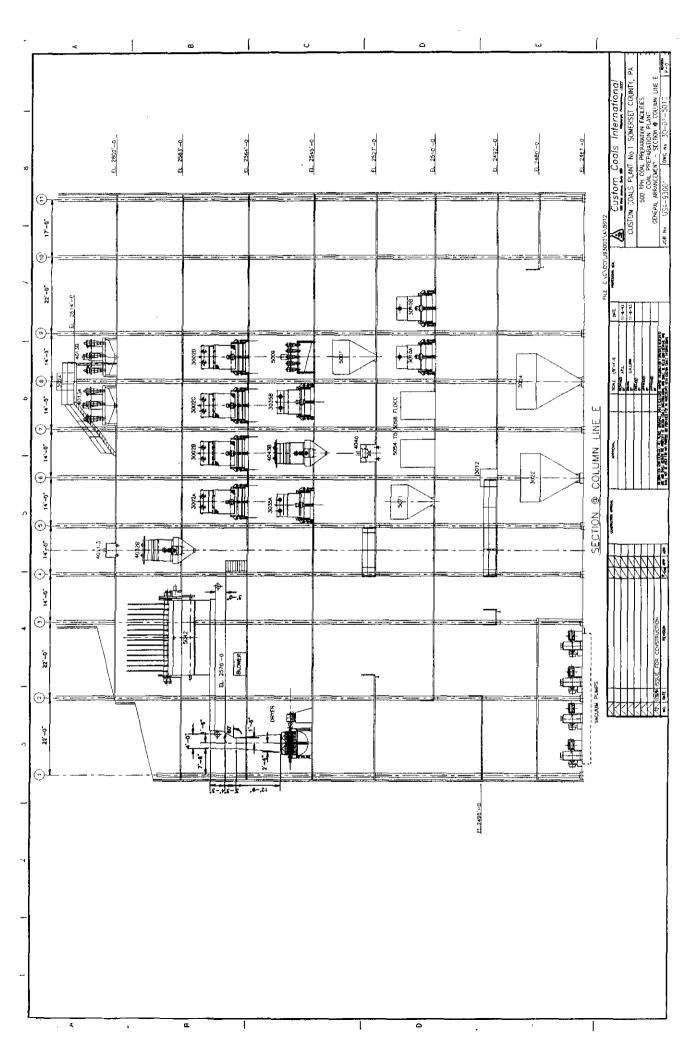


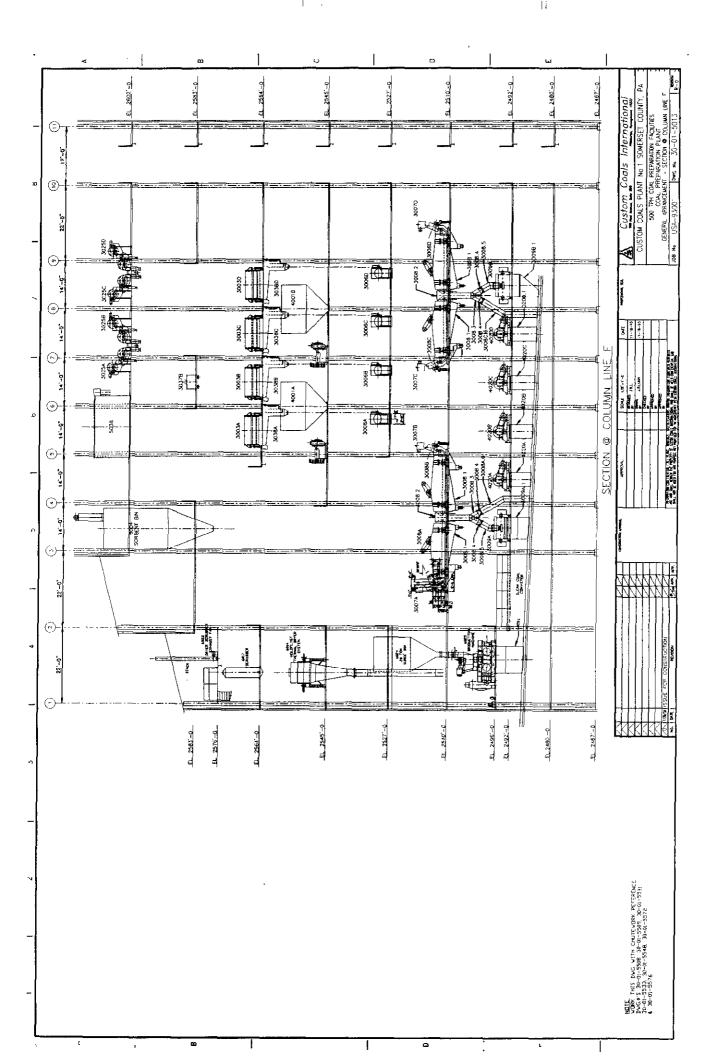


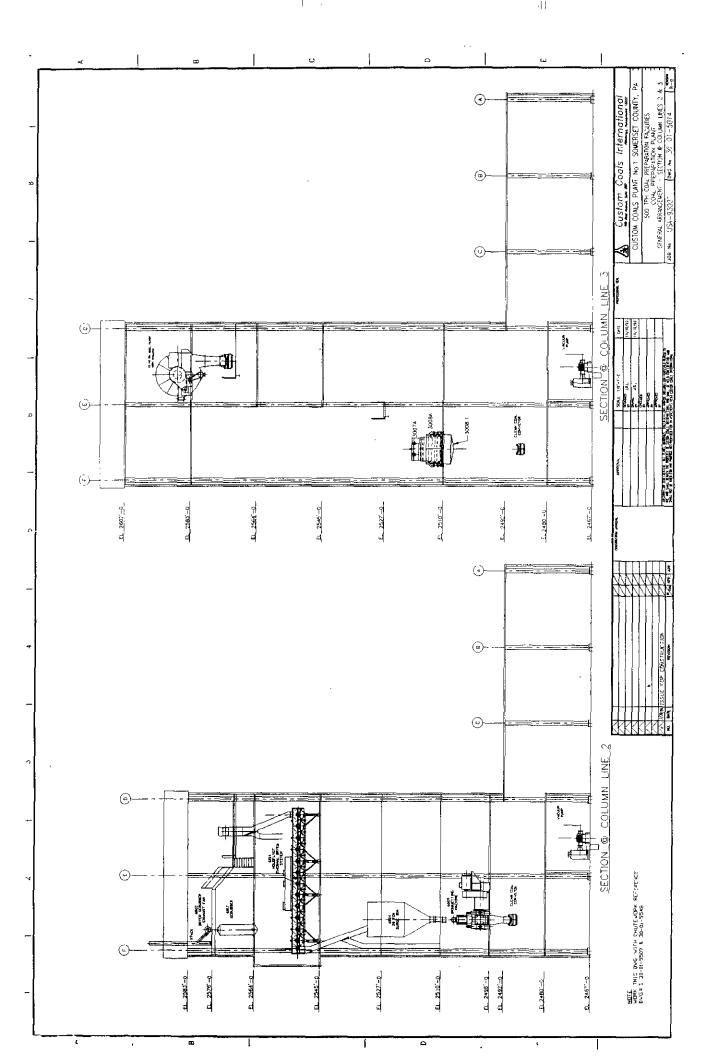

|;

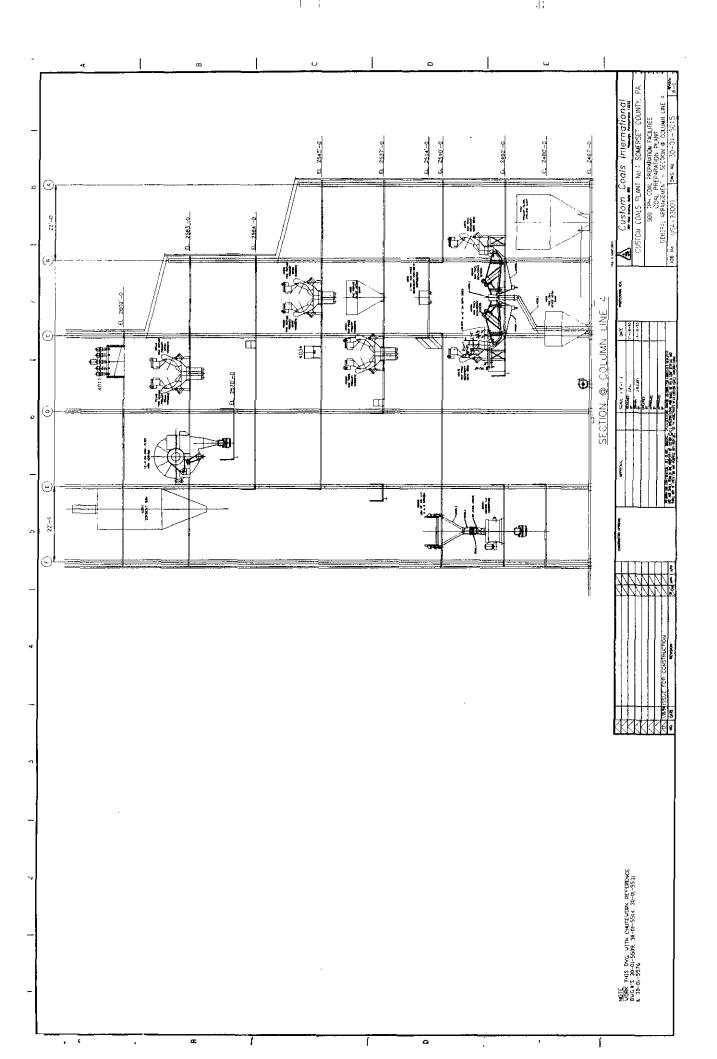


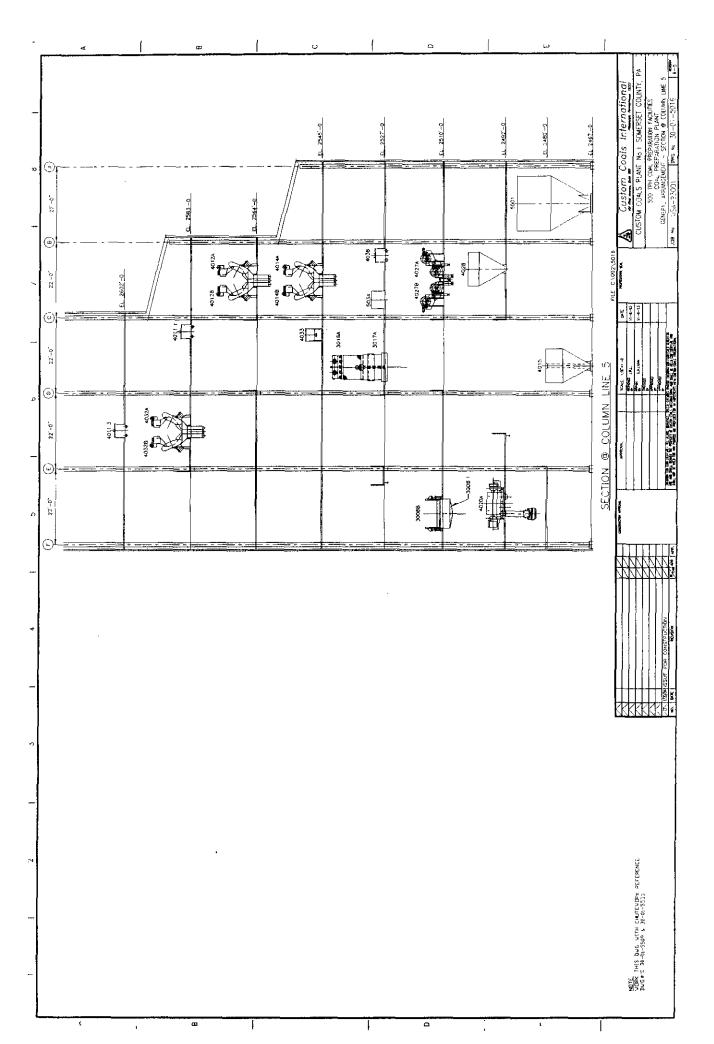


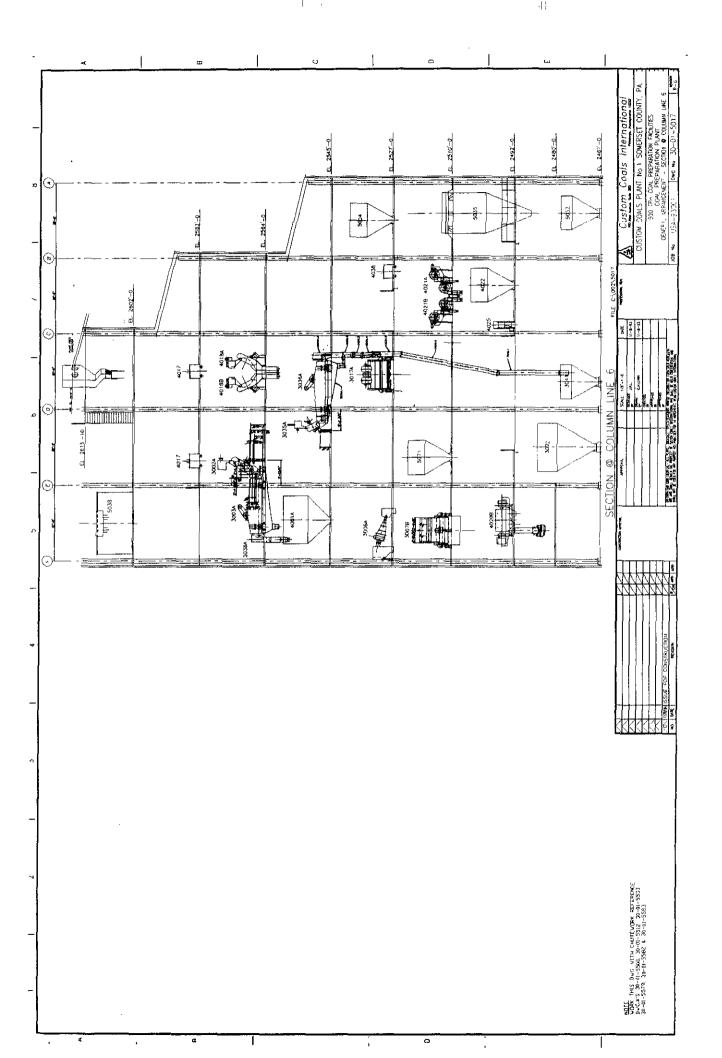


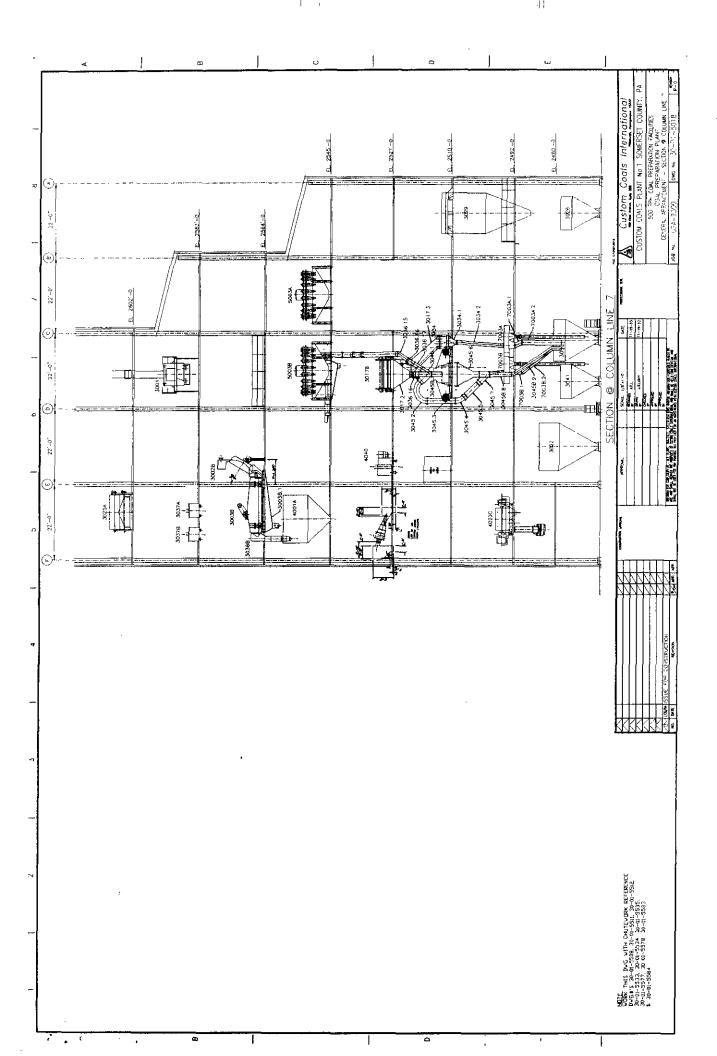

. i

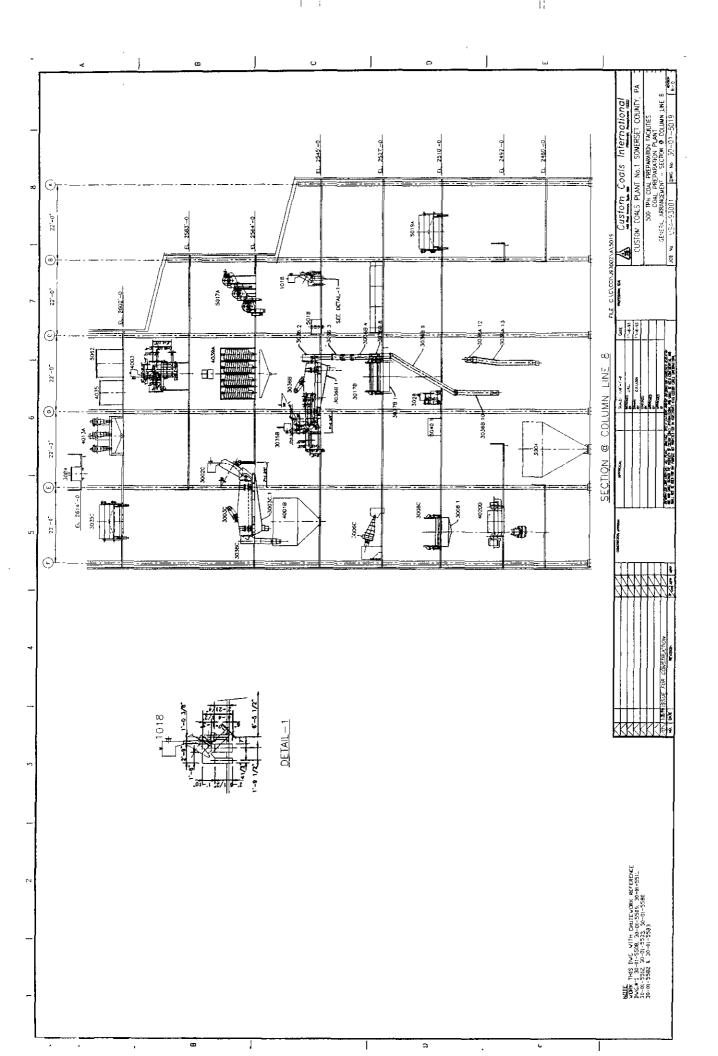


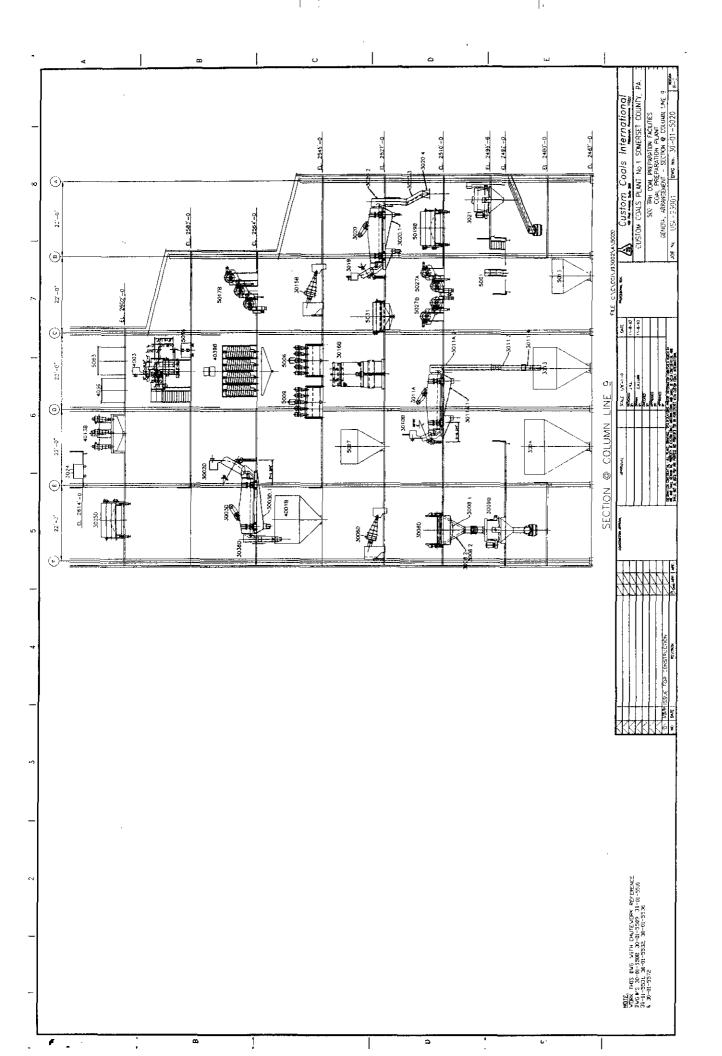


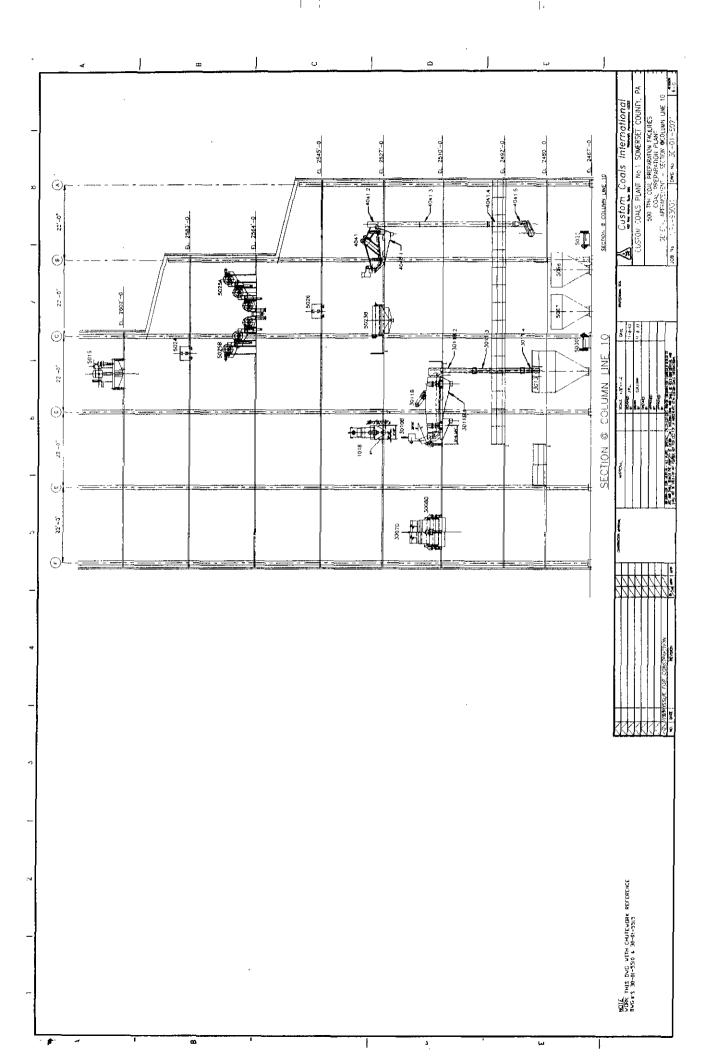


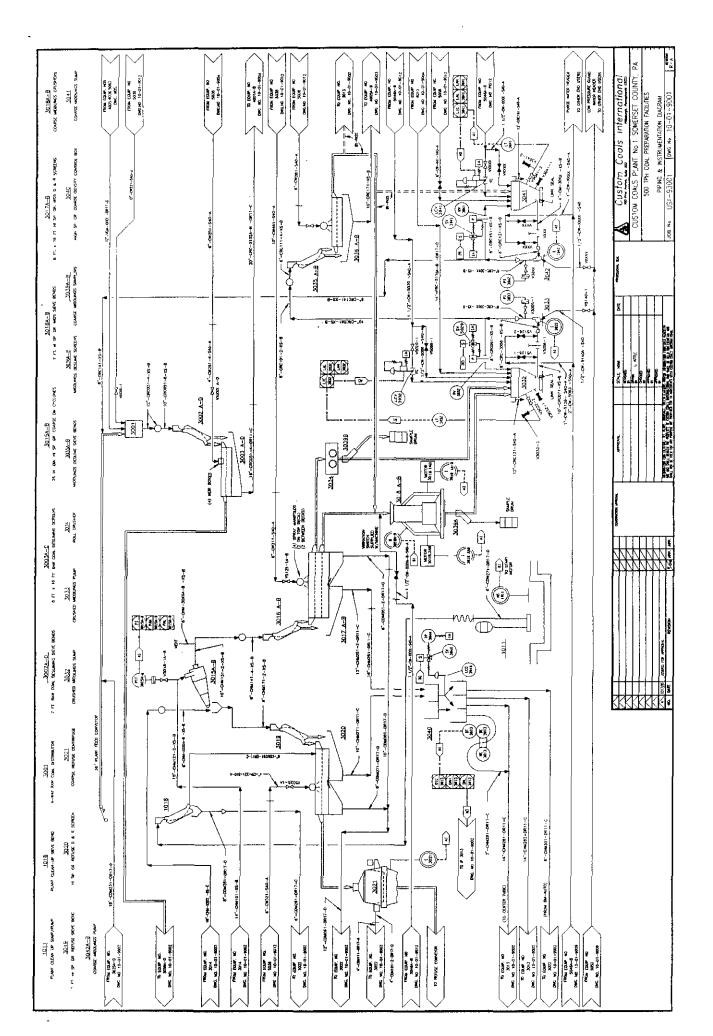


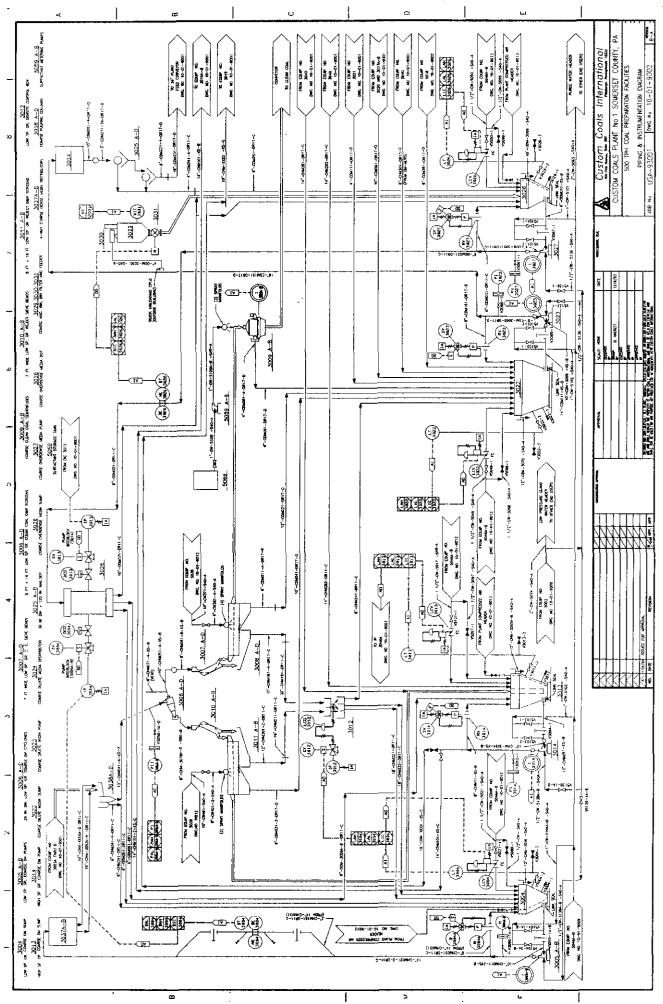




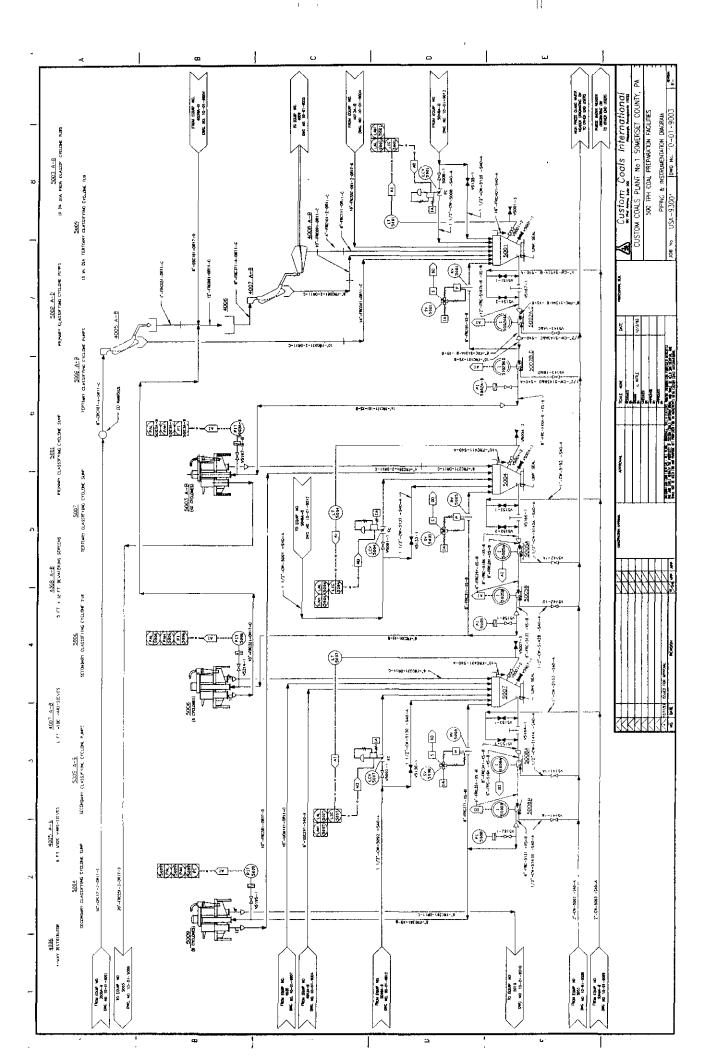

. .

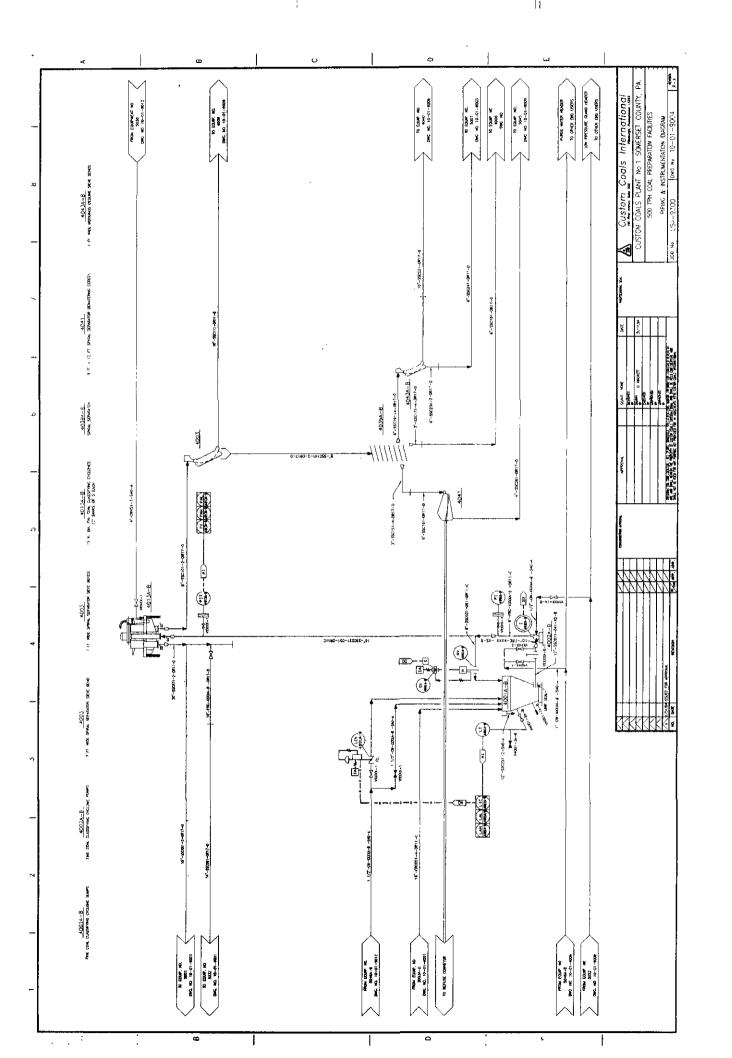

Þ

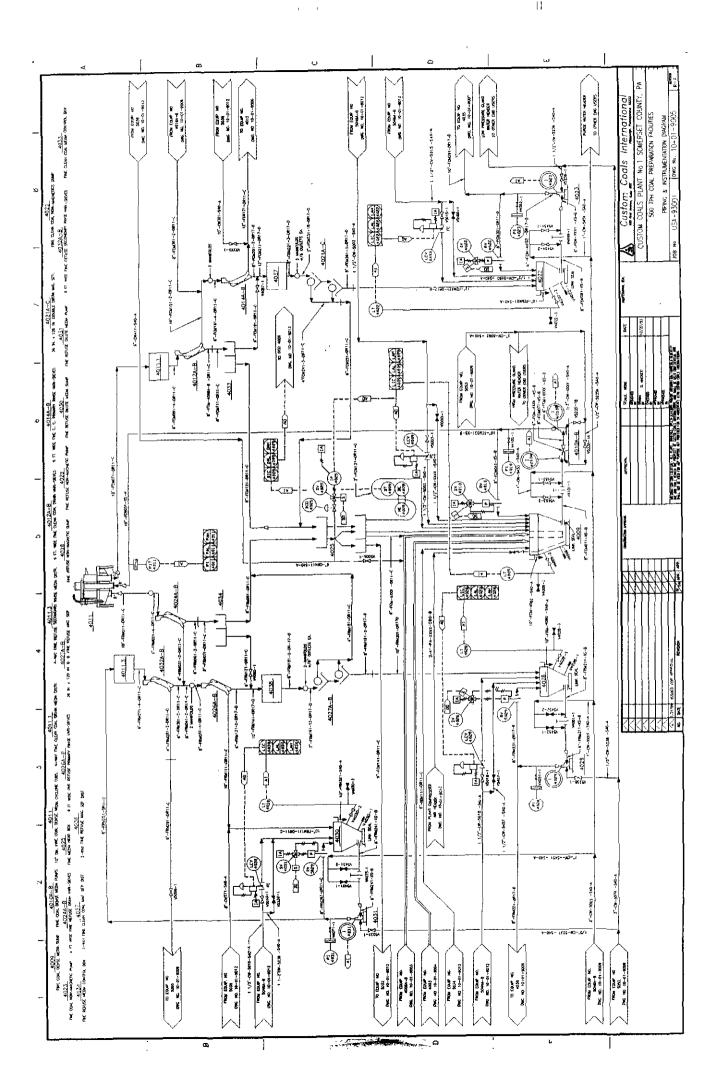




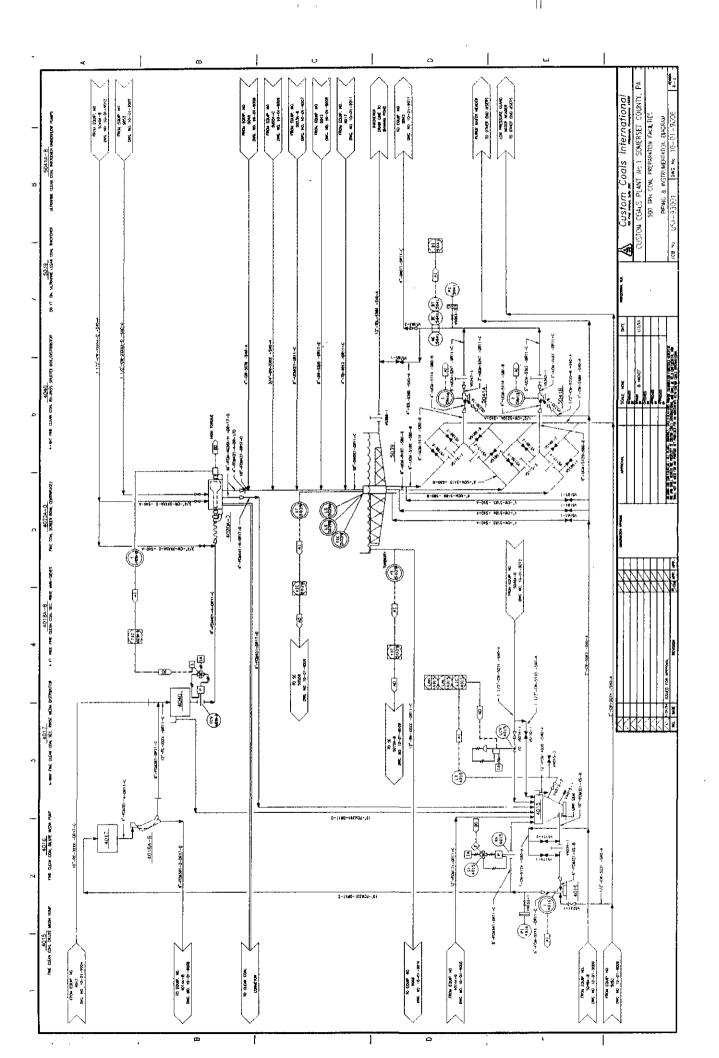
I.

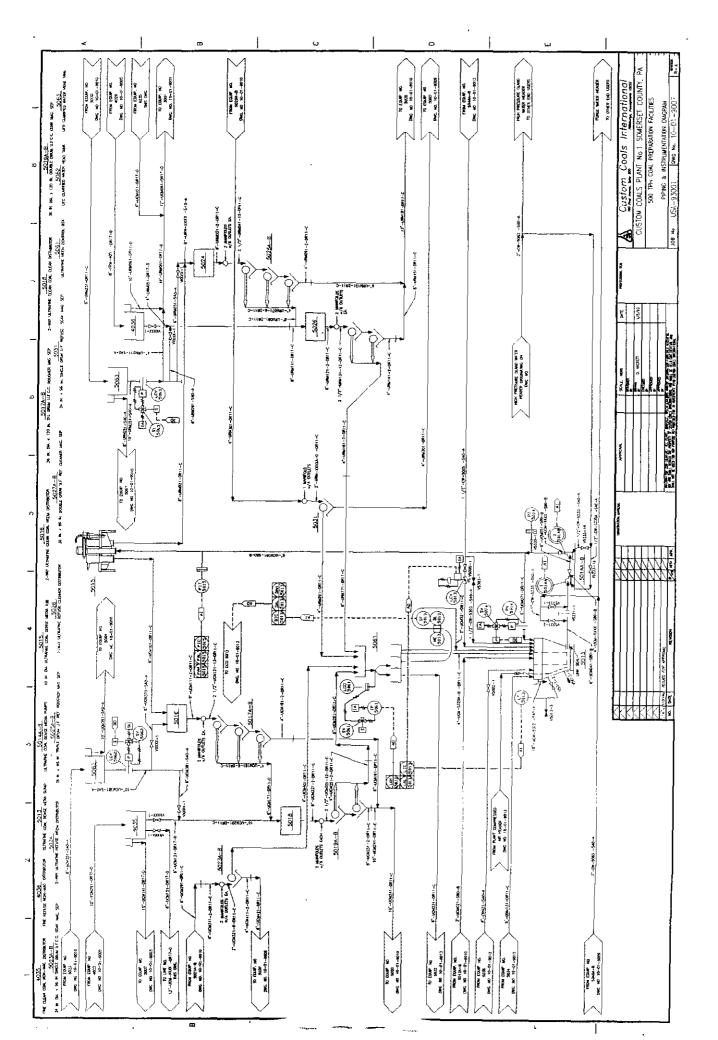

|1

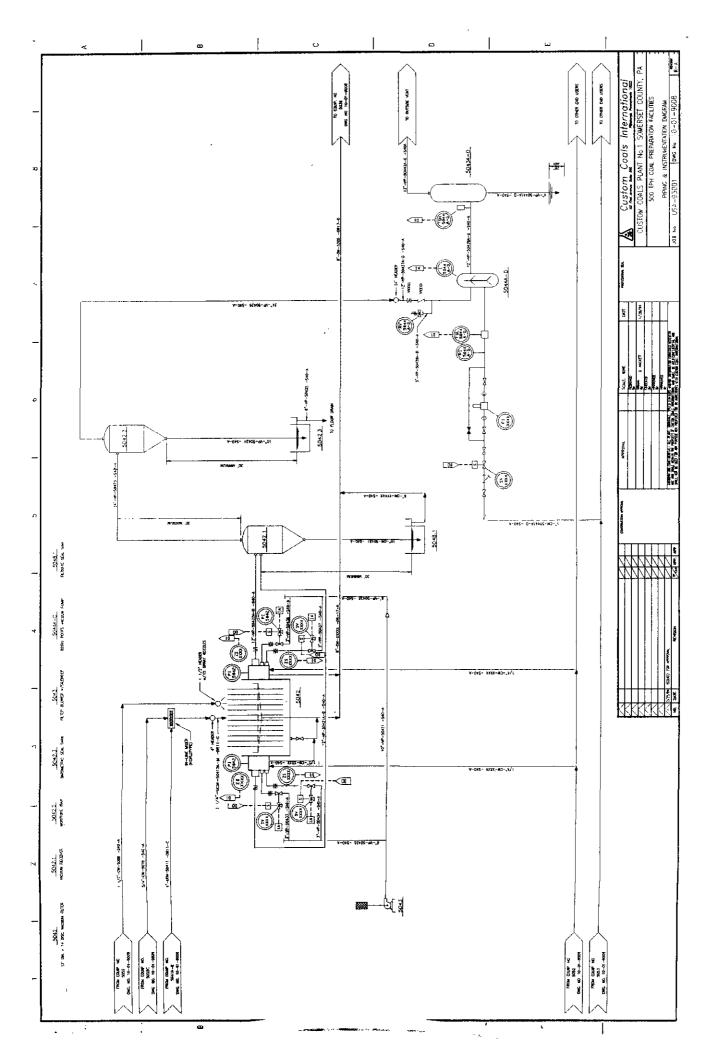


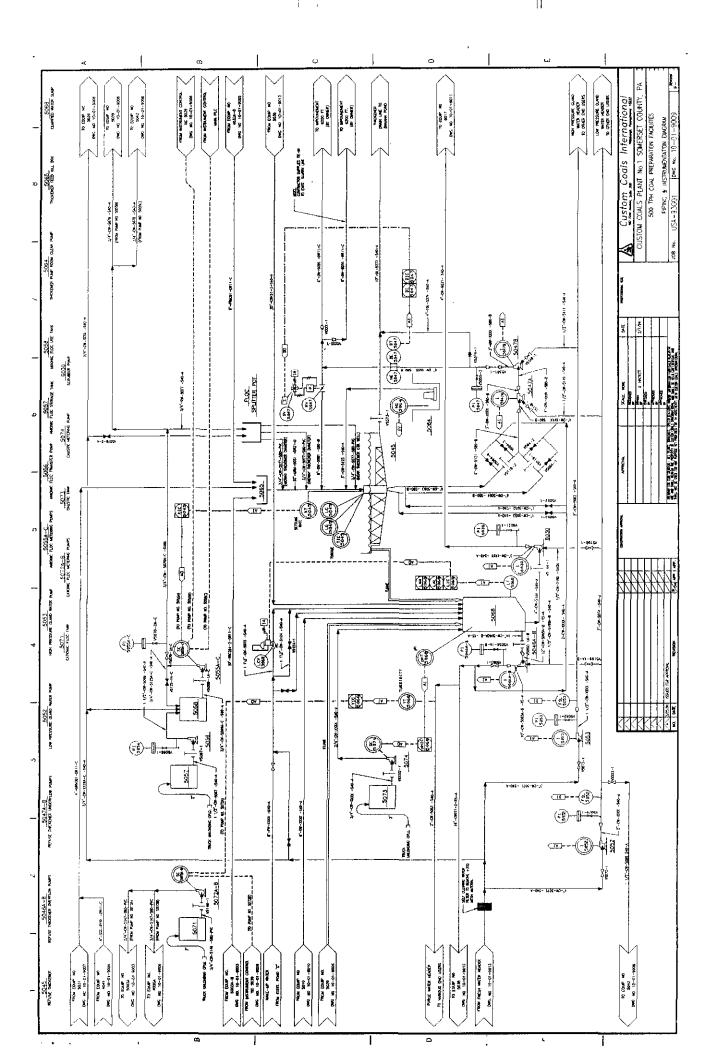

.

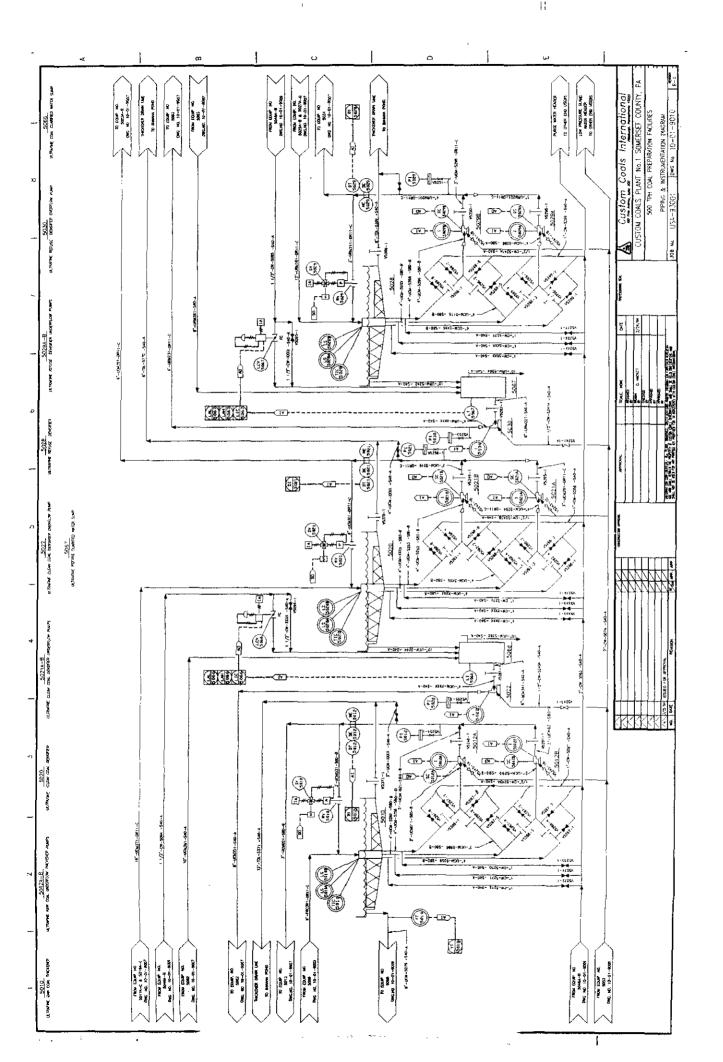
i

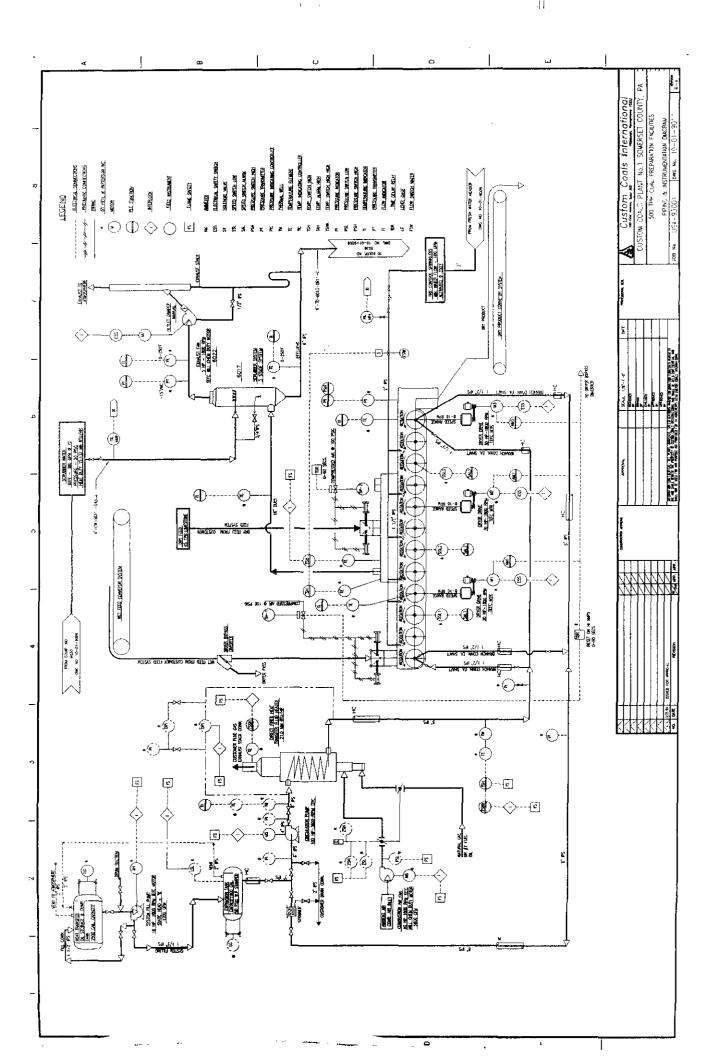

i.

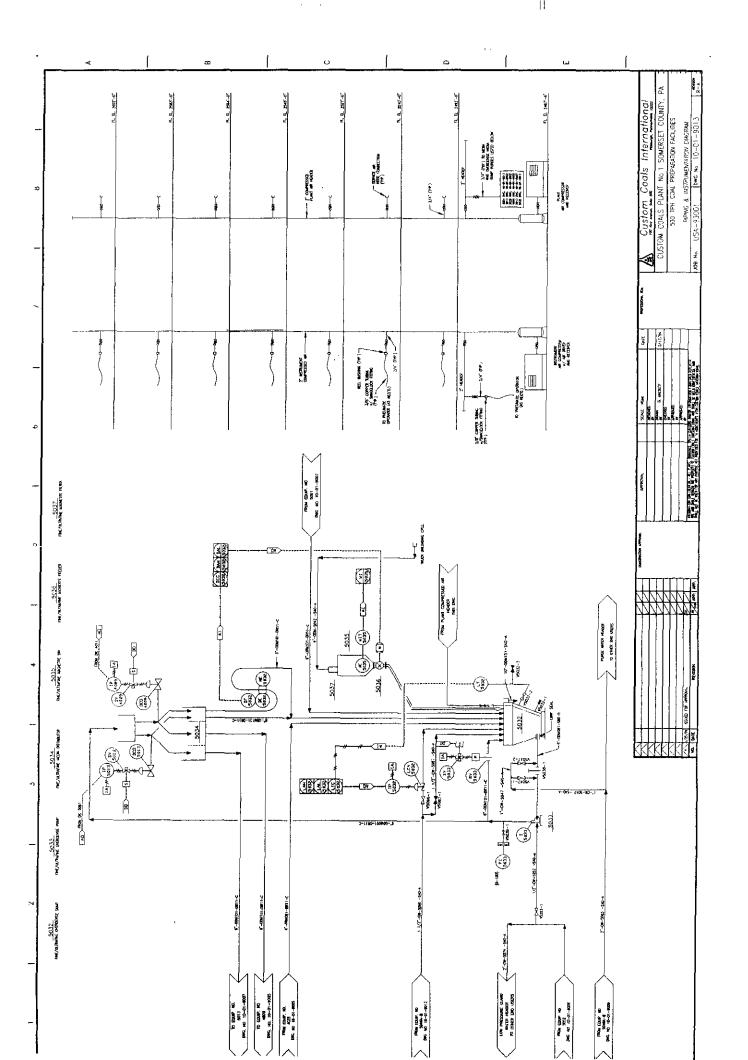


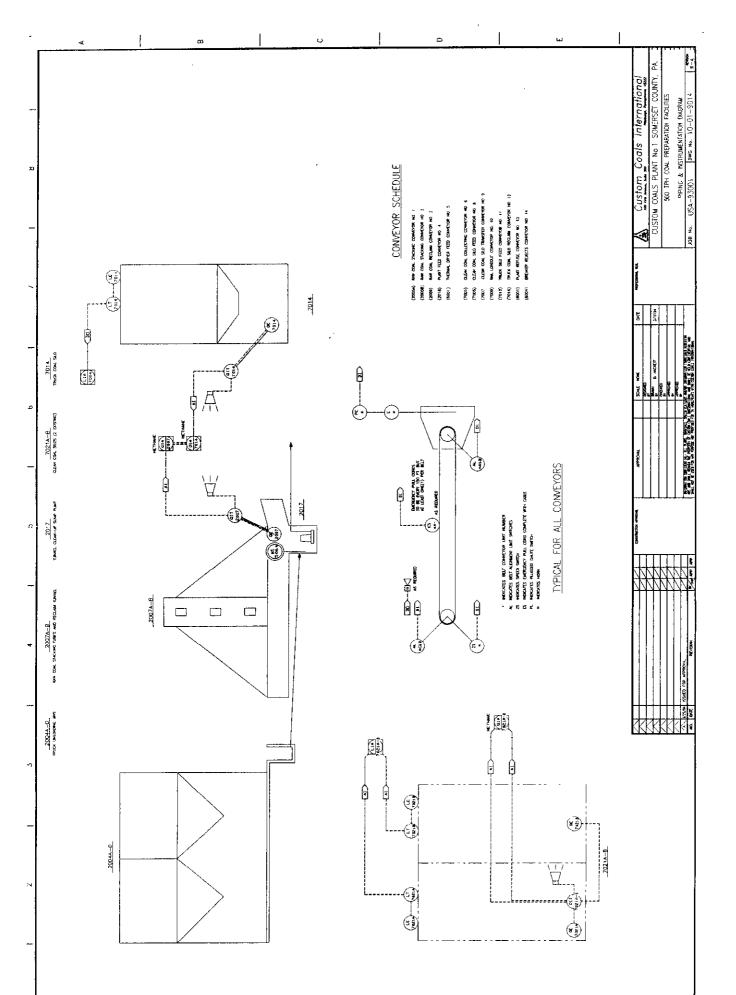






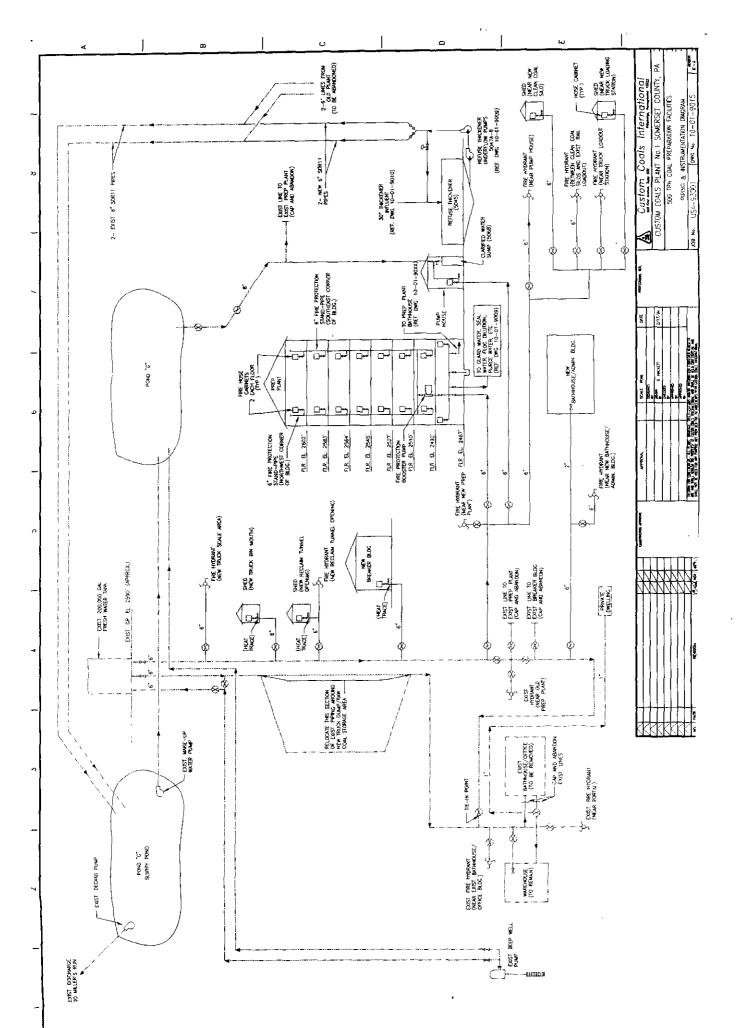






-		a addrese et al. addr	b tage to be tage to tage t		The form of the fo	CUSTOR Coals International CUSTOR COALS FLANT No.1 SOMERET COUNTY, PA Son THE CAL REPARTING FRAILINES FRAME & FUSTRAMENATION DAGRAU No. USA-93001 Dec. 40 10-01-9312 0.00
		A CLAR DA LAN GARAGE		ALL RUNDE COMPANY AND ANALLY A	I. M. C. BUT TON ALTO G. P. Denn C. C. Denn MC 2000 I. C. C. Denn MC 200 M. C. C. C. Denn	Dr. 170
	BR - - 5	1 1/2 do 1011 - 564 4 1 1/2 do 1011 - 564 4	1 1/2 - 49-301 - 50-4 1 1/2 - 49-300 - 50-4 1 1/2 - 49-300 - 50-4	1		
C 4 4	1 1/2 - 4 - 403 - 50-4 - 11/2 - 40-4 - 40/2	1.1/2-08-460-	1 (1/2 de suite de part		M Construction M Construction	
	Auff die ge		014 144 144	3	All and tables of the second se	
			MMM	Base for the set with the set of the set of the set the set of the set of th	R (Sar K. R (Sar K.	

i i


. | |

ı.

. | 1

H

LINE CODE	10"-C#-5029-540-A			_ L	COMPSE PRUTE MEDA	CILI CRUSSED WOOLMICS SPIC COMPCE Rive COM	Der Luderte Witht Die Deweitberg FE FRE COM	FLA FINE CON, MEDN FLA FINE MODUNCS	FR FIRE RELIGE FRC FIRE RANK COM	DOM OFFICIONS; MICHA TO INCOME. (2014)	- 1 1	SSC STREAL SEPARATION CAROLIT PCA PLANT COMPRESSID AR					VSIRUMENIS I		C CONTROL (LOCH) CONTROLLER CONTROLLER CONTROLLER CONTROLLER D DENERT (LOCH) CONTROLLER CONTROLLER CONTROLLER CONTROLLER	FLOW	GUUCE	MORVIOR	1 1.5.61 (1.0.101) 1.0.10 (1.0	FLOX SMICH OPENNOW	PRESSURE PRESSURE PRESSURE PRESSURE PRESSURE	RECORDER RECORDER RECORDER SAFETY SMICH SMICH TELESCATINE TRADEDATION	U MATTARABLE MATTARABLE WALTERARDE VALUE VALUE VALUE	F MEDAN Z STING RATE T RATING RATE	2 POSIDOR pH pH						CUSTOM Coals International CUSTOM COALS PLANT NO 1 SOMERSET COUNTY, PA
																										, ,									1004 10 10 10 10 10 10 10 10 10 10 10 10 10
INSTRUMENTS .	E Constanting		HE MEE) 🛉	FO FO ROW FORPLACENT		TO SOME ADD TRANSLATTER (DOPPLET OF TRANSLITTLE)		FICH STRAGATENER WAS			ELEGATION BELIEVE		A LEAR			A MIEROCX (SOFTIME OR DETERCU)			IRANGUADER FUNCTION I.M. RESSERVED (- CREARENT					COST DIGITA DUTRI	e Brenzen	de 1945-500 00-00								
INSTRUMENT SIGNALS	-x CAPILLARY TUBOUC	Classification of the second s			INSTRUMENTS	PANGE MOUNTED REFERENCENT	THAT ALL AND A		(2) NSTRIMENT FURNISKED	\ PT					<i>c</i> 0	(WITH SEAL)	0	(WITHOUT SEAL)	HOLLING GERMEN (3H)		(G) LEVEL SHEAT CHUCE		ONE INSTRUMENT)		The second secon		HE RESTRUTING DRATCE		(1) FLOW RONSWITTEP			HIC: JBE		
PIPING				(COLD CONSERVATION)	HEAT CONSERVINGN		WISINATED & RUCCIPAC	_				A FUER AND A SUPPLY A FUER/RESULTION FOI SIGHT CLARK		ARE ELIMINATOR		State Point					- [EDOCTOR		III ERANSION JOHN			1			TIK – N	VENT TO KINDSPHERE	T T STRAKE	`[ELMARE ARRESTOR	
MANUAL VALVES			-1-7-F CHECK MUSE			-1x1- NEEDLE VALVE -1x1- REEDLE VALVE					HOTE: VALVES SHOWN SOLD ARE GLOSED	CONTROL VALVES	G		The Duchester iciliator	-CAC- ELECTING MOTOR ACTUATOR	B -D-2- HIDRAUNC ACTIMITOR		-CX- PREAMIC CALINER ACTIMICR					-14-1 3-WWY SOLENOOD	-1465 4- MAY SOLEMOD	The predwatic kines cate	-LT- PREMARK PARCH WLVE	MOTE FC NONCATES THA CLOSED" FI NONCATES THA CLOSED"	FO NDICATES TAIL OPEN	VAFIEY RELIEFS	AD- PRESSURE SAFIEY WEVE (PSV)		AL- PRESSIME SUFTY WUNE (PSV)		

|;

• •

i

{

1

ł

• • • • • •

:

																			,	
-775 %	95.1*	0.6	0.0	0.0	0.0	0.0	0.0	22.6	14.7*	0.0	7.3	7.3	7.3	34.4	1.6	1.6	1.6	1.5	0.0	27.5
CP.U Shirty	1,437	3,802	3 8	452	996	1,516	1,523	8,278	1,227	480	7,531	7,531	7,531	1,203	6,329	6,329	4,748	1,581	343	1,546
CPM	105	3,786	98	452	996	1,516	1,523	6,930	257	480	7,153	7,153	7,153	891	6,262	6,262	4,697	1,565	343	1,234
GPM Mag	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coul Coul	1,332	16	0	0	0	0	0	1,348	970	0	378	378	378	312	67	67	51	16	0	312
Touris	526	953	25	113	242	379	381	2,240	428	120	1,932	1,932	1,932	340	1,592	1,592	1,194	398	86	426
Town Water	26	947	25	113	242	379	381	1,734	64	120	1,790	1,790	1,790	223	1,567	1,567	1,715	392	86	309
Town	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tourit Cool	500	9	0	0	0	0	0	506	364	0	142	142	142	117	25	25	19	9	0	117
Street	-	2	3	4	5	9	7	ω	თ	10	1	12	13	14	15	16	17	18	19	20

1 1

426 312 0 $1,234$ 16 13 0 45 36 32 0 96 373 264 0 $1,093$ 87 373 264 0 750 87 37 264 0 750 87 373 264 0 750 87 373 264 0 750 87 373 264 0 750 87 361 0 13 0 11 987 361 0 193 483 483 910 00 100 201 0 72 201 0 201 0 201 142 941 285 278 $1,945$ 291 $1,508$ 685 416 $2,918$ 420 200 0 0 0 $1,900$ $1,900$ $1,1,169$ 0 210 $1,264$ $1,801$ $2,$	A CARLES AND A CARLES	88	Toal H Nag	Tow/H Water	Bad	53	CCN CCN	CPW Water		73
5 0 11 16 13 0 45 12 0 24 36 32 0 96 100 -0 273 373 -266 0 1,093 99 0 188 287 264 0 750 91 0 86 87 3 0 750 5 0 188 287 264 0 750 6 120 361 13 0 143 143 0 241 120 361 0 78 78 0 241 120 361 0 72 72 0 71 36 107 0 72 72 107 364 941 285 278 1,42 72 357 521 730 1,508 694 72 73 357 521 743 970 694 <td></td> <td>117</td> <td>0</td> <td>309</td> <td>426</td> <td>312</td> <td>0</td> <td>1,234</td> <td>1,546</td> <td>27.5</td>		117	0	309	426	312	0	1,234	1,546	27.5
12 0 24 36 32 0 96 100 0 273 373 266 0 $1,093$ 99 0 188 287 264 0 750 1 0 887 287 264 0 750 5 0 381 287 264 0 713 0 241 120 361 0 193 483 0 241 120 361 0 193 483 0 71 361 107 0 72 72 0 71 361 07 07 291 72 364 868 $1,217$ $-2,449$ 970 694 72 364 868 $1,217$ $-2,449$ 970 694 72 357 521 720 72		ດ	0	11	16	13	0	45	58	31.3
100 \dots 0 273 373 \dots 266 0 1,093 1		12	0	24	36	32	0	96	128	33.3
99 0 188 287 264 0 750 1 0 86 87 3 0 343 5 0 36 87 3 0 11 0 241 120 361 0 193 483 0 71 36 107 361 0 72 483 0 71 36 107 0 79 72 72 0 71 36 107 0 70 72 483 364 868 1,217 -2,449 970 694 -4,863 7 364 868 1,517 -2,449 970 694 -4,863 7 364 868 1,517 -2,449 970 694 -4,863 7 357 521 730 1,508 685 416 2,948 7 357 521 722 330	[100		273	373		0	1,093	1,359	26.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(66	0	188	287	264	0	750	1,014	34.5
5 0 3 8 13 0 11 0 241 120 361 0 193 483 6 0 36 18 54 0 29 72 1 0 71 36 18 54 0 72 142 1 0 71 36 107 29 72 142 1 0 134 67 201 0 72 142 1 364 868 1,217 $-2,449$ 970 694 $-4,863$ 6,5 107 347 487 941 285 278 1,945 2,56 357 521 730 1,508 685 416 2,918 4,0 0 0 20 200 20 278 1,600 1,60 10 400 0 200 20 272 243 2,16 1	[-	0	86	87	3	0	343	346	1.1
0 241 120 361 0 193 483 6 0 36 18 54 0 29 72 11 0 71 36 107 0 57 142 11 0 71 36 67 201 0 57 142 11 0 134 67 201 0 57 142 112 0 134 67 201 0 07 694 $-4,863$ $6,55$ 364 868 $1,217$ $-2,449$ 970 694 $7,4863$ $6,55$ 107 347 941 285 $2,160$ $1,945$ $2,56$ $2,56$ $3,76$ $3,06$ $3,06$ $3,06$ $3,06$ $3,06$ $3,06$ $3,06$ $3,06$ $3,06$ $3,06$ $2,016$ $2,016$ $2,016$ $2,016$ $2,016$ $2,016$		S	0	3	8	13	0	11	24	62.5
		0	241	120	361	0	193	483	676	66.8
		0	36	18	54	0	29	72	101	66.7
0 134 67 201 0 107 268 7.268 364 868 1,217 -2,449 970 694 -4,863 107 347 487 941 285 278 1,945 357 521 730 1,508 685 416 2,918 0 0 200 200 0 0 800 800 0 1,508 685 416 2,918 1,945 7,945 0 0 0 200 200 0 0 800 1,945 0 0 0 200 200 0 0 800 0 430 61 104 0 0 1,600 1,600 0 433 61 1,04 0 1,600 1,600 1,600 0 330 462 792 0 264 1,848 2,712 0 1,789 <		0	71	36	107	0	57	142	199	66.4
364 868 1,217 2,449 970 694 4,863 107 347 487 941 285 278 1,945 357 521 730 1,508 685 416 2,918 36 0 0 200 200 0 800 800 0 0 200 200 0 0 885 416 2,918 0 0 400 200 0 0 800 800 0 43 61 104 0 0 1,600 1,600 0 330 462 792 0 355 2,43 2,43 0 336 1,189 0 396 2,772 2,772 0 17 206 223 0 1,4 8,71		0	134		201	0	107	268	375	66.7
347 487 941 285 278 1,945 521 730 1,508 685 416 2,918 0 200 200 0 0 800 0 400 400 0 0 800 43 61 104 0 35 243 330 462 792 0 35 243 495 694 1,189 0 366 2,772 17 206 223 0 366 2,772			868	1,217		970	694	4,863	6,527	50.3
521 730 1,508 685 416 2,918 0 200 200 0 0 800 0 400 400 0 0 800 43 61 104 0 35 243 330 462 792 0 35 243 495 694 1,189 0 366 1,848 17 206 223 0 366 2,772		107	347	487	941	285	278	1,945	2,508	50.3
		357	521	730	1,508	685	416	2,918	4,019	51.6
0 400 400 400 0 0 1,600 43 61 104 0 35 243 330 462 792 0 264 1,848 495 694 1,189 0 336 2,772 17 206 223 0 14 821		0	0	200	200	0	0	800	800	0.0
43 61 104 0 35 243 330 462 792 0 264 1,848 495 694 1,189 0 336 2,772 17 206 223 0 14 821		٥	0	6 4	400	0	0	1,600	1,600	0.0
330 462 792 0 264 1,848 495 694 1,189 0 396 2,772 17 206 223 0 14 821	1	0	43	61	104	0	35	243	278	41.3
495 694 1,189 0 396 2,772 17 206 223 0 14 821		0	330	462	792	0	264	1,848	2,112	41.7
17 206 223 0 14 821		0	495	694	1,189	0	396	2.772	3,168	41.6
	1	0	17	206	223	0	14	821	835	7.6

.|1

i

7013 7001 AN 0016

10 07 1000

I.

			•				T	-1	1		T	*		<u> </u>					+	
3 .3	6.2	41.6	14.9*	13.9	15.1	41.6	41.8	43.0	43.0	10.2	10.1	3.4*	66.5	10.1	53.3	59.3	50.7	0.0	15.1*	9.1
Neps Neps	1,586	5,279	866	- 158	361	5,101	178	5,859	560	2,757	1,345	708	300	4,102	3,259	948	2,311	400	247	44
Nato Mate	1,565	4,620	181	145	76	4,464	156	5,092	486	2,687	1,313	36	214	4,000	2,524	627	1,897	400	52	41
G rus Mag	21	659	0	0	0	637	22	767	74	57	29	-0	86	86	489	126	363	0	0	0
Coal Coal	0	0	685	13	285	0	0	0	0	13	3	672	0	16	246	195	51	0	195	3
Town	418	1,981	302	41	126	1,914	67	2,234	214	748	366	261	161	1,114	1,352	388	964	100	86	11
Tow/H Water	392	1,156	45	36	19	1,117	39	1,274	122	672	329	5	54	1,001	632	157	475	100	13	10
Town	26	825	0	0	0	797	28	096	92	17	36	0	107	107	613	158	455	0	0	0
Jag Ber	0	0	257	2	107	0	0	0	0	5	-	252	0	9	107	73	34	0	73	
	41	42	43	4	45	46	47	8 4 84	49	50	51	52%	53	54	55	56	57	58	59	60

44

ī

A * ALL

. .

Toulit Card	Ton/H Mag	ToalH	Hree Hree Frage	APA GPM	r s	83	CPM CPM	Set or Sat
72	0	З	75	192	0	11	203	4.0*
0	12	94	106	0	10	376	386	11.3
21	0	З	24	17	0	11	28	12.5*
0	31	32	63	0	25	127	152	49.2
0	145	150	295	0	116	599	715	49.2
0	437	451	888	0	348	1,799	2,147	49.2
0	582	601	1,183	0	464	2,398	2,862	49.2
0	0	200	200	0	0	800	800	0.0
0	18	219	237	0	15	874	889	7.6
0	577	595	1,172	0	460	2,376	2,836	49.2
0	5	9	11	0	4	22	26	45.5
یر ـ در از	0	40		0	0	.,™160	160	0.0
77	0	19	96	205	٥	11	282	19.8*
21	0	S	24	17	0	11	28	12.5*
13	0	3	16	35	0	13	48	18.8*
8	0	23	113	240	0	6	330	79.8
4	0	438	478	107	¢	1,749	1,856	8.4
111	0	25	136	296	0	101	397	18.4*
9	0	392	398	16	0	1,565	1,581	1.5
117	0	417	534	312	0	1,666	1,978	21.9

¶rj ₹

.

.

0770.00

i.

:

	Tow/H Cood	Trait	Towitt	Thurs Stury	Cont.	6 8	Neg	CER .	3. *
81	0	0	110	110	0	0	440	440	0.0
82	0	0	310	310	0	0	1,238	1,238	0.0
83	0	0	204	204	0	0	815	815	0.0
84	0	0	67	67	0	0	266	266	0.0
85	0	0	174	174	0	0	697	697	0.0
86	18	0	34	52	48	0	134	182	34.6
87	0	0	2;168	2,168	0	0	8,665	8,665	0.0
88	0	0	6	6	0	0	34	34	0.0
89	12	0	1,801	1,813	32	0	7,198	7,230	0.7
96	24	0	73	97	64	0	288	352	24.7
91	25	0	332	357	67	0	1,328	1,395	7.0
92	-24	0	72	96	. 64	0	288		25.0
93	25	0	332	357	67	0	1,328	1,395	7.0
94	-	0	260	261	e	0	1,040	1,043	0.4
95	24	0	72	3 6	64	0	288	352	25.0
96	-	0	260	261	3	0	1,040	1,043	0.4
97	24	0	20	44	8	0	78	142	54.5
98	0	0	53	53	0	0	210	210	0.0
99	36	0	1,873	1,909	96	0	7,486	7,582	1.9
100	37	0	329	366	66	0	1,314	1,413	10.1

1i

8

.

i.

3.33	0,03	3.9	34.8	0.0	65.8	34.6	4.0	10.9	27.3	11.4	0.0	0.0	61.2	39.4	26.9	27.3	31.9	48.4	51.6	8.6
GPW	500	1,614	242	815	160	182	793	975	274	1,067	966	966	101	375	548	274	708	789	179	1,426
GIN	385	1,571	178	815	107	134	788	922	255	1,043	966	996	77	332	510	255	617	636	120	1,367
GPM	115	D	0	0	Ъ.	0	ى ت	Ð	19	24	0	0	24	43	38	19	43	105	11	11
Cond.	0	43	64	0	48	48	0	48	0	0	0	€€° 0	0	0	0	0	48	48	48	48
Touli	240	409	69	191	38	52	177	229	88	264	242	242	49	137	175	88	226	308	62	374
Tourte	96	393	45	191	13	34	170	204	64	234	242	242	19	83	128	2	154	159	8	342
Tou H	144	0	0	0	7	0	7	7	24	30	0		30	54	47	24	54	131	14	14
Toult	0	16	24	0	18	18	0	18	0	0	0	0	0	0	0	0	18	18	18	18
Note:	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120

1.

i.

Stream	Towle	TontH	Toult	Towit	GPK Cont	GRMC Mag	6PW Water	CONK Suny	- WS -
121	0	59	65	124	0	47	258	305	47.6
122	0	14	309	322	0	11	1,233	1,244	4.3
123	0	72	373	446	0	58	1,491	1,549	16.1
124	0	59	65		0	47	258	305	48.0
125	0	59	35	93	0	47	138	185	63.4
126	0	118	66	217	0	94	396	490	54.4
127	0	185	179	365	0	148	717	865	50.7
128	0	118	129	247	0	94	516	610	47.8
129	18	0	237	255	48	0	949	266	7.6
130	36	185	314	535	96	148	1,253	1,497	41.3
131	0	0	341	341	0	0	1,364	1,364	0.0
132	18	0	ş	52	48	0	134	182	
133	0	0	312	312	0	0	1,247	1,247	0.0
134	30	0	368	398	80	0	1,470	1,550	7.5
135	90 S	0	56	86	8	0	223	303	34.9
136	117	0	12	129	312	0	46	358	9.3*
137	12	0	25	37	32	0	98	130	32.4
138	0	0	341	341	0	0	1,364	1,364	0.0
139	0	0	207	207	0	0	829	829	0.0
140	0	0	153	153	0	0	610	610	0.0

1.

I.

-

	6 2 2		
54		91 54	0 91 54
141		54	
348	ň	260 3	
116	-	101	
246	2	228 24	
5	257	155 26	
<u>е</u>	243	243 24	
8	118	86 11	
	21	6	
8	242	242 24	
9	166	.6516	
80	õ	80	
80	œ	80	
	97	6 09	
~	177	140 17	~
	291	147 29	
	125	82 12	
82	Ø	82 8	
2	207	164 20	-

.[]

00'1 700'DN 00'5

IE OF NUC

 $(1, \dots, n)$

.

- - -

.

7001

ALL AA. 6

ÿ

S.S.	Tealit	Town	Toert	Therit	GPV Cont	GPM Mag	C.P.M. Vaize	S C	* 25
161	4	2	104	110	11	2	414	427	5.5
162	ς,	4	121	128	8	3	485	496	5.5
163	0	30	19	8 4	0	24	74	8 6	62.5
164	2	68	32	102	С	54	128	187	68.6
165	2	83	38	123	2	66	153	224	69.1
166	7	6	98 39	52	19	5 2	156	180	25.0
167	0	Q	4	10	0	5	15	20	60.0
168	0	36	22	58	0	29	96	118	62.1
169	2	119	61	181	5 L	95	242	342	6.9
170	7	Ġ	225	238	19	5	868	923	5.5
171	0	0	186	186	0	0	743	743	0.0
172	7	0	35	tter 42	19	0	141	160	16.7
173	0	0	186	186	0	0	743	743	0.0
174	17	0	80	97	45	0	320	365	17.5
175	0	0	46	46	0	0	185	185	0.0
176	0	0	45	45	0	0	181	181	0.0
177	17	0	9	23	45	0	23	68	26.1*
178	17	0	52	69	45	0	208	253	24.6
179	17	0	379	396	45	0	1,515	1,560	4.3
180	0	0	46	46	0	0	185	185	0.0

~ - - ^

-

~ •

19

1

12 47 1004