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In this paper we conduct a specification analysis of structural credit risk models, using term

structure of credit default swap (CDS) spreads and equity volatility from high-frequency return

data. Our study provides consistent econometric estimation of the pricing model parameters and

specification tests based on the joint behavior of time-series asset dynamics and cross-sectional

pricing errors. Our empirical tests reject strongly the standard Merton (1974) model, the Black

and Cox (1976) barrier model, and the Longstaff and Schwartz (1995) model with stochastic interest

rates. The double exponential jump-diffusion barrier model (Huang and Huang, 2003) improves

significantly over the three models. The best model is the stationary leverage model of Collin-

Dufresne and Goldstein (2001), which we cannot reject in more than half of our sample firms.

However, our empirical results document the inability of the existing structural models to capture

the dynamic behavior of CDS spreads and equity volatility, especially for investment grade names.
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1 Introduction

Credit derivatives markets have been growing exponentially over the past several years.

According to the most recent biennial survey by the British Bankers’ Association, the global

credit derivatives market is expected to exceed $8 trillion in 2006. Credit default swaps

(CDS) are currently the most popular credit derivatives instrument and account for about

half of the credit derivatives market. Under a CDS contract the protection seller promises to

buy the reference bond at its par value when a pre-defined default event occurs. In return, the

protection buyer makes periodic payments to the seller until the maturity date of the contract

or until a credit event occurs. This periodic payment, usually expressed as a percentage of

the notional value underlying a CDS contract, is called the CDS spread. Compared with

corporate bond spreads, CDS spreads are a relatively pure pricing of default risk of the

underlying entity, abstracting from numerous bond characteristics, such as seniority, coupon

rates, embedded options, and guarantees. As a result, there is a growing literature on testing

credit risk models using the information from the CDS market.

A widely used approach to credit risk modeling in practice is the so-called structural

method, originated from Black and Scholes (1973) and Merton (1974). Whereas there have

been many empirical studies of structural models, especially recently, based on corporate

bond data, the empirical testing of these models using CDS spreads is quite limited. Such

a testing is desirable especially given the recent empirical evidence based on the corporate

bond market that existing structural models have difficulty either fitting corporate bond

spreads (e.g., Jones, Mason, and Rosenfeld (1984), Lyden and Saraniti (2000), Delianedis and

Geske (2001), Eom, Helwege, and Huang (2004), Arora, Bohn, and Zhu (2005) and Ericsson

and Reneby (2005)) or explaining both spreads and default frequencies simultaneously (the

so-called credit spread puzzle documented in Huang and Huang (2003)). If CDS spreads

are considered to be a purer measure of credit risk than corporate bond spreads, then the

existing structural models (purely default risk based) may perform better in capturing the

behavior of CDS spreads than they do for corporate bond spreads. In this article we test five

representative structural credit risk models using a sample of 93 single name CDS contracts

during the period January 2002 - December 2004. The models we consider are the standard

Merton (1974) model, the Black and Cox (1976) model with a flat barrier, the Longstaff

and Schwartz (1995) model with stochastic interest rates, the Collin-Dufresne and Goldstein

(2001) model with a stationary leverage, and the double exponential jump diffusion model
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used in Huang and Huang (2003).

More specifically, we formulate a specification test based on the pricing solutions of CDS

spreads and equity volatility implied by a particular structural model. By assuming that both

equity and credit markets are efficient and that the underlying structural model is correct, we

obtain the identifying moment restrictions on the model parameters, such as asset volatility,

the default barrier, and the speed of mean-reverting leverage. Such a GMM estimator

with an ensuring J-test is a consistent econometric method, for parameter estimation and

specification analysis of the structural credit risk models. One advantage of such a test

is that it provides us with a precise inference on whether a particular structural model is

rejected or not in the data, unlike the existing studies based on calibration, rolling estimation

or regression analysis. Furthermore, unlike the existing studies that focus on 5-year CDS

contracts, we use the entire term structure of CDS spreads. Such a method provides us a

tighter identification of structural model parameters and minimizes the effect of measurement

error from using bond characteristics, and thus attributes the test results mostly to the

specification error. More importantly, by focusing on the equity volatility measured with

high frequency data, instead of low frequency daily data, our approach speaks directly to

the recent finding that volatility dynamics has a strong potential in better explaining the

credit spreads.1

Our empirical tests reject strongly the following three standard models: the Merton

(1974) model, the Black and Cox (1976) model, the Longstaff and Schwartz (1995) model.

However, the double exponential jump-diffusion barrier model outperforms significantly these

three models. The stationary leverage model of Collin-Dufresne and Goldstein (2001) is the

best performing one among the five models examined in our analysis and more specifically,

is not rejected by the GMM test for more than half of the 93 companies in our sample. In

addition, the test results allow us to gain a better understanding of the structural models,

which otherwise does not obtain easily from ad hoc calibrations or rolling estimation analysis.

For example, when allowing the default barrier to be different from the total liabilities, we

discover a negative relationship between the observed debt/asset ratio and the implied default

1Campbell and Taksler (2003) find that idiosyncratic equity volatility can explain a significant part of
corporate bond yield spreads cross-sectionally. Huang and Huang (2003) conjecture that a structural credit
risk model with stochastic asset volatility may solve the credit spread puzzle. Huang (2005) considers an
affine class of structural models with both stochastic asset volatility and Lévy jumps. Based on regression
analysis, Zhang, Zhou, and Zhu (2006) provide empirical evidence that a stochastic asset volatility model
may improve the model performance.
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boundary trigger. Moreover, when a dynamic leverage or a jump component is allowed for,

the overall fitting of average CDS term structure is improved with a much smaller pricing

error. Further more, for the best performing dynamic leverage model, the individual firms

sensitivity to interest rate or varies dramatically from significant positive for investment

grade names to significant negative for speculative grade names, suggesting a great deal of

heterogeneity in each firm’s exposure to systematic risk.

Finally, our empirical analysis sheds some light on how to improve the existing structural

models in order to fit better CDS prices. One implication from our results is that a term

structure model more flexible than the one-factor Vasicek (1977) model – used in Longstaff

and Schwartz (1995) and Collin-Dufresne and Goldstein (2001) – may reduce the pricing

error. Also judging from several pricing error diagnostics, jump augmentation seems to im-

prove the investment grade names, while dynamic leverage seems to improve the speculative

grade names. We also find that for the junk rated names, the observed spot leverage is very

close to the long-run mean of the risk-neutral leverage implied by the Collin-Dufresne and

Goldstein (2001) model; while for investment grades the spot leverage is much lower than the

risk-neural leverages. This mirrors the recently documented low leverage puzzle for high rat-

ing firms (Strebulaev and Yang, 2006; Chen and Zhao, 2006). Our analysis also documents

the inability of the standard structural models in fitting time-series of both CDS spreads

and equity volatility. Given that equity volatility in structural models is time-varying, this

result provides a direct evidence that a structural model with stochastic asset volatility may

improve the model performance (Huang and Huang, 2003; Huang, 2005; Zhang, Zhou, and

Zhu, 2006).

There are several empirical studies of structural models based on CDS data that are

directly related to ours. For instance, Predescu (2005) examines the Merton (1974) model

and a Black and Cox (1976) type barrier model with a rolling estimation procedure com-

bined with the MLE approach proposed in Duan (1994). Hull, Nelken, and White (2004)

study the Merton model using a calibration approach. Chen, Fabozzi, Pan, and Sverdlove

(2006) investigate the Merton, Black-Cox, and Longstaff-Schwartz models (however, their

implementation of the latter model is based on an approximated solution). Examples of

studies that link CDS premiums with variables from structural credit risk models using a

regression analysis include Cossin and Hricko (2001); Ericsson, Jacobs, and Oviedo (2005);

Houweling and Vorst (2005). Our analysis differs from these studies in that we consider three

more recent models (Longstaff-Schwartz, CDG, and Huang-Huang) and conduct a rigorous
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GMM-based specification analysis.

Structural credit risk models have also been examined empirically using information from

the corporate bond market. Examples include Jones, Mason, and Rosenfeld (1984); Huang

and Huang (2003); Cremers, Driessen, Maenhout, and Weinbaum (2004); Eom, Helwege, and

Huang (2004); Schaefer and Strebulaev (2004). These studies have indicated that structural

models have difficulty predicting corporate bond yield spreads accurately. One line of reason-

ing is that structural models may be able to do a better job in fitting CDS prices, presumably

because CDS prices are a purer measure of default risk and corporate bond prices (Longstaff,

Mithal, and Neis, 2005; Ericsson, Reneby, and Wang, 2006). One implication of our analysis

is that structural models still have difficulty predicting credit spreads even if when a purer

measure of credit risk is used in the empirical analysis, although a better measure of credit

spread can help us rank order the extent structurally models more consistently.

Finally, notice that like many other studies such as Jones, Mason, and Rosenfeld (1984),

Lyden and Saraniti (2000), Delianedis and Geske (2001), Eom, Helwege, and Huang (2004),

and Ericsson and Reneby (2005), here we examine the implications of structural models for

pricing only (and ignore the implications for default probabilities under the real measure).

In another word, we do not examine the credit spread puzzle here.

The rest of the paper is organized as follows. Section 2 briefly outlines the class of

structural models examined in our empirical analysis. Section 3 presents our econometric

method of parameter estimation and specification tests. Section 4 describes the data used in

our analysis, and Section 5 reports and discusses our empirical findings. Finally, Section 6

concludes.

2 A Review of Structural Credit Risk Models

We consider five representative structural models in our empirical analysis. Specifically,

they include the Merton (1974) model, the Black and Cox (1976) model, the Longstaff and

Schwartz (1995) model, the Collin-Dufresne and Goldstein (2001) model, and the double

exponential jump diffusion model considered in Huang and Huang (2003).2 The Black and

Cox model with a flat barrier examined here can be also considered to be a special case of

either the exogenous-default version of Leland and Toft (1996) or the one-factor version of

2Examples of other structural models include Geske (1977), Anderson and Sundaresan (1996), Mella-
Barral and Perraudin (1997), Leland (1998), Duffie and Lando (2001), and Acharya and Carpenter (2002)
etc.
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Longstaff and Schwartz (1995). Except for the Merton model, all other ones are barrier-type

models. Among the five models, Longstaff and Schwartz (1995) and Collin-Dufresne and

Goldstein (2001) are two-factor models, and the remaining three are one-factor models. For

completeness, below we briefly review the five structural models to be tested in our empirical

study.

Although these five models differ in certain economic assumptions, they can be embedded

in the same underlying structure that includes specifications of the underlying firm’s asset

process, the default boundary, and the recovery rate etc. Let V be the firm’s asset process,

K the default boundary, and r the default-free interest rate process. Assume that, under a

risk-neutral measure,

dVt

Vt−

= (rt − δ)dt + σvdWQ
t + d




NQ
t∑

i=1

(
ZQ

i − 1
)

 − λQξQdt, (1)

d ln Kt = κℓ [−ν − φ(rt − θℓ) − ln(Kt/Vt)] dt (2)

drt = (α − β rt) dt + σr dZQ
t (3)

where δ, σv, κℓ, θℓ, ν, φ, α, β, and σr are constants, and WQ and ZQ are both one-

dimensional standard Brownian motion under the risk-neutral measure and are assumed to

have a constant correlation coefficient of ρ. In Eq. (1), the process NQ is a Poisson process

with a constant intensity λQ > 0, the ZQ
i ’s are i.i.d. random variables, and Y Q ≡ ln(ZQ

1 )

has a double-exponential distribution with a density given by

fY Q(y) = pQ
u ηQ

u e−ηQ
u y1{y≥0} + pQ

d ηQ
d eηQ

d
y1{y<0}. (4)

In equation (4), parameters ηQ
u , ηQ

d > 0 and pQ
u , pQ

d ≥ 0 are all constants, with pQ
u + pQ

d = 1.

The mean percentage jump size ξQ is given by

ξQ = EQ
[
eY Q − 1

]
=

pQ
u ηQ

u

ηQ
u − 1

+
pQ

d ηQ
d

ηQ
d + 1

− 1. (5)

All five models considered in this analysis are special cases of the general specification in

Eqs. (1) - (3). For instance, if the jump intensity is zero, then the asset process is a geometric

Brownian motion. This specification is used in the four diffusion models, namely, the models

of Merton, Black and Cox (BC), Longstaff and Schwartz (LS), and Collin-Dufresne and

Goldstein (CDG). Regarding the specification of the default boundary K, it is a point at

the bond maturity in the Merton model. If κℓ is set to be zero, then the default boundary
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is flat (a continuous barrier), an assumption made in Black and Cox (BC), Longstaff and

Schwartz (LS), and the jump diffusion (HH) models. The mean-reverting specification in

(2) is used in the Collin-Dufresne and Goldstein (CDG) model. The Vasicek model in (3)

is used to describe the dynamics of the risk-free rate in the two-factor models of Longstaff

and Schwartz (LS) and Collin-Dufresne and Goldstein (CDG) models. If both β and σr are

zero, then the interest rate is constant, an assumption made in the three one-factor models.

For simplicity and comparison with other studies, we assume a constant recovery rate.

Under each of the five structural models, we can calculate the corresponding risk-neutral

default probability and then the CDS spread. Let Q(t, τ) denote the unconditional de-

fault probability over (t, t + τ ] under the risk-neutral measure (or the forward measure with

stochastic interest rates). Then the spread of a τ -year CDS contract is given by (under a

one-factor model)

cds(t, τ) =
(1 − R)

∫ t+τ
t e−rsQ′(t, s)ds

∫ t+τ
t e−rs[1 − Q(t, s)]ds

(6)

=
r(1 − R)G(t, τ)

1 − e−rτ [1 − Q(t, τ)] − G(t, τ)
, (7)

where R is the recovery, r is the interest rate, and

G(t, τ) =
∫ t+τ

t
e−rsQ′(t, s)ds (8)

Eq. (7) holds for constant interest rate. As a result, the implementation of the structural

models amounts to the calculation of the default probability Q(·, ·) either analytically or

numerically. The default probability in the Merton (1974) and the Black and Cox (1976)

models is known to have closed form solutions. The default probability in the double expo-

nential jump diffusion model and the two-factor models do not have a known closed form

solution but can be calculated using a numerical method (see, e.g., Huang and Huang (2003)

for details).

3 A Specification Test of Structural Models

We use the fundamental pricing relationships implied by various credit risk models to identify

structural parameters like asset volatility, default barrier, jump intensity, or dynamic leverage

coefficient(s). The intuition is from Merton (1974) — the delta function and pricing equation

link equity volatility and credit spread directly to the structural variables and parameters.
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With these identifying restrictions, we can build an internally consistent GMM estimator

(Hansen, 1982), which minimizes the fitted errors of credit spreads and equity volatility, with

an appropriate weighting matrix determined by the pricing model and data sample. Along

with consistent parameter estimation, we obtain an omnibus specification test, to rank order

various credit risk models and to judge their pricing performance in a systematic framework.

In addition, we also use the term structure and time series of CDS spreads to evaluate

the economic pricing errors, which should by-and-large confirm our GMM specification test

results. A structural model would be rejected by the GMM criterion function test, if the

pricing errors are relatively large and exhibit systematic variations, assuming that the equity

and credit markets are efficient.

The implementation of our estimation strategy has several advantages. First, we use high

frequency equity returns to construct a more accurate estimate of the equity volatility, there-

fore minimizing the measurement error imputed into the asset volatility estimate (given any

structural model for the underlying asset process), while leaving the main suspect to possible

model misspecification which we really care about. Second, we use the CDS spreads as a

relative purer measure of the credit risk, therefore sanitizes our approach from the specific

pricing error problem associated with bond market iniquity or other non-default charac-

teristics (Longstaff, Mithal, and Neis, 2005). In addition, we use the term structure and

time series of CDS spreads in both estimation and pricing exercise, while holding constant

the model specification and parameter values, thus avoiding the rolling sample extraction

approach that is inconsistent with economic assumption underlying the structural models.

More importantly, by bringing in the consistency between observed equity and model im-

plied equity, our approach has the potential to speak directly to the recent finding that

time-varying equity volatility has a strong nonlinear forecasting power for credit spreads

(Zhang, Zhou, and Zhu, 2006).

3.1 GMM Estimation of Structural Credit Risk Models

As described in Section 2, the CDS spread at time t with maturity τ has a general pricing

formula for all the structural models under consideration,

cds(t, τ) =
(1 − R)

∫ t+τ
t e−rsQ′(t, s)ds

∫ t+τ
t e−rs[1 − Q(t, s)]ds

, (9)

where r is the risk free rate, R is the recovery rate, Q(t, s) is the model-dependent risk-neutral

default probability at time t for period s, and Q′(t, s) is the risk-neutral default intensity.
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As pointed out by Merton (1974), the delta function relating the equity volatility and asset

volatility is also model-dependent

σE(t) = σA
At

Et

∂Et

∂At

, (10)

where the equity volatility σE(t) is generally time-varying while the asset volatility σA may

be constant. For the jump-diffusion asset value process used by Huang and Huang (2003),

the equity volatility of the continuous diffusion component satisfy Eq. (10). With observed

CDS spread c̃ds(t, τ) and equity volatility σ̃E(t), we can specify the following overidentifying

restrictions

f(θ, t) =




c̃ds(t, τ1) − cds(t, τ1)

· · · · · · · · · · · · · · · · · ·
c̃ds(t, τj) − cds(t, τj)

σ̃E(t) − σE(t)




(11)

where θ is the structural parameter vector for various credit risk model under consideration,

e.g., asset volatility, default barrier, asset jump intensity, or dynamic leverage coefficient, etc..

The term structure of CDS spread is represented by four maturities τ = 1, 3, 5, and 10

years.

Under the null hypothesis that the model is correctly specified, we have

E[f(θ, t)] = 0. (12)

Note that both the CDS spread and the equity volatility are allowed to be observed with

measurement errors. However, under the appropriately defined GMM metric, these pricing

errors must be “small”; or the model specification will be rejected. The corresponding GMM

estimator is given by

θ̂ = arg min g(θ, T )′W (T )g(θ, T ), (13)

where g(θ, T ) refers to the sample mean of the moment conditions, g(θ, T ) ≡ 1/T
∑T

t f(θ, t),

and W (T ) denotes the asymptotic covariance matrix of g(θ, T ) (Hansen, 1982). With mild

regularity conditions, the estimator of structural parameter θ is
√

T -consistent and asymp-

totically normally distributed, under the null hypothesis. Moreover, the minimized value of

the objective function multiplied by the sample size

J = T min
θ

g(θ, T )′W (T )g(θ, T ) (14)

should be asymptotically distributed as a Chi-square distribution, with the degree of freedom

equal to the length of moments f(θ, t) minus the length of structural parameter θ. This allows
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for an omnibus test of the overidentifying restrictions. In addition, we use a heteroscedasticity

robust estimator for the variance-covariance matrix W (T ) (Newey and West, 1987).

For the more general models with stochastic interest rate (Longstaff and Schwartz, 1995)

or random jumps (Huang and Huang, 2003), one can expand moment restriction vector to

include the pricing restrictions of interest rates and/or other maturities of CDS spreads.

However, such a joint estimation scheme would be very computationally involved for a two-

factor model with stochastic interest rates such as Longstaff and Schwartz (1995) and Collin-

Dufresne and Goldstein (2001). This is because the default probability under the forward

probability measure, Q(t, ·), has to be calculated with discretized numerical approximation.

To make the estimation tractable, we separately estimate the dynamic interest rate model

and the firm-specific structural parameters. This is a reasonable strategy, since the interest

rate parameters are common inputs in those structural credit risk models and those firm-

specific parameters do not affect the interest rate process. We use the 3-month LIBOR as an

proxy for the short rate and estimate the interest rate volatility σ̂r = VAR(rt) accordingly.

Given that the one-factor Vasicek (1977) model is a very crude approximation to the observed

term structure dynamics, we opt to use a nonlinear least square procedure to estimate the

risk-neutral drift parameters α and β month-by-month,

{α̂t, β̂t} = arg min
τ6∑

τ=τ1

[ŷt,τ − yt,τ (α, β)]2

to best match the term structure of interest swap rates yt,τ with maturities of 1, 2, 3, 5, 7,

and 10 years.

4 Data Description

4.1 Credit Default Swap Spreads

We choose to use the credit default swap (CDS) premium as a direct measure of credit

spreads. CDS is the most popular instrument in the rapidly growing credit derivatives mar-

kets. Compared with corporate bond spreads, which were widely used in previous studies in

testing structural models, CDS spreads have two important advantages. First, a CDS spread

is a relatively pure pricing of default risk of the underlying entity, and the contract is typically

traded on standardized terms. By contrast, bond spreads are more likely to be affected by

differences in contractual arrangements, such as seniority, coupon rates, embedded options,
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and guarantees.3 Second, as shown by Blanco, Brennan, and March (2005) and Zhu (2006),

while CDS and bond spreads are quite in line with each other in the long run, in the short

run CDS spreads tend to respond more quickly to changes in credit conditions. This means

that CDS market may be more efficient than bond market, therefore more appropriate for

the specification tests of structural models.

Our CDS data are provided by Markit, a comprehensive data source that assembles a

network of industry-leading partners who contribute information across several thousand

credits on a daily basis. Based on the contributed quotes Markit creates the daily composite

quote for each CDS contract; which must past the stale data test, flat curve test, and outlying

data test. Together with the pricing information, the dataset also reports average recovery

rates used by data contributors in pricing each CDS contract. In addition, an average of

Moody’s and S&P ratings is also included. In this paper we include all CDS quotes written

on US entities (sovereign entities excluded) and denominated in US dollars. We eliminate

the subordinated class of contracts because of their small relevance in the database and

unappealing implication in credit risk pricing. We focus on CDS contracts with modified

restructuring (MR) clauses, as they are the most popularly traded in the US market. We

require that the CDS time series has at least 36 consecutive monthly observations to be

included in the final sample. Another filter is that CDS data have to match equity price

(CRSP), equity volatility (TAQ) and accounting variables (COMPUSTAT). We also exclude

financial and utility sectors, following previous empirical studies on structural models. After

applying these filters, we are left with 93 entities in our study. Our sample period covers

January 2002 to December 2004, with maturities of 1, 2, 3, 5, 7, and 10 years.4 For each

entity, we create the monthly CDS spread by selecting the latest composite quote in each

month, and, similarly, the monthly recovery rates linked to CDS spreads.

4.2 Equity Volatility from High Frequency Data

By the theory of quadratic variation, it is possible to construct increasingly accurate measure

for the model-free realized volatility or average volatility, during a fixed time interval, say

a day or a month, by summing increasingly finer sampled squared high-frequency returns

(Andersen, Bollerslev, Diebold, and Labys, 2001b; Barndorff-Nielsen and Shephard, 2002;

3For example, Longstaff, Mithal, and Neis (2005) find that a large proportion of bond spreads are deter-
mined by liquidity factors, which do not necessarily reflect the default risk of the underlying asset.

4Additional maturities of 0.5, 15, 20, and 30 years are also available for the CDS data set. Due to the
liquidity concern and missing value, we choose to focus on CDS with maturity between 1 and 10 years.
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Meddahi, 2002). The relative improvement of the high-frequency volatility estimate over the

low frequency one is clearly demonstrated by Andersen and Bollerslev (1998) and Andersen,

Bollerslev, Diebold, and Ebens (2001a), and its empirical applicability to equity return

volatility has been widely accepted (see, Andersen, Bollerslev, and Diebold, 2003, for a

survey). In testing structural models, the asset return volatility is unobserved and is usually

backed out from the observed equity return volatility (Eom, Helwege, and Huang, 2004),

therefore a more accurate measure of equity volatility from high-frequency data is critical in

correctly estimating the asset return volatility — the driving force behind behind the firm

default risk.

Let st ≡ log St denote the day t logarithmic price of the firm equity, and the intraday

returns are defined as follows:

rs
t,i ≡ st,i·∆ − st,(i−1)·∆, (15)

where rs
t,i refers to the ith within-day return on day t and ∆ is the sampling frequency and

chosen to be 5-minute. The realized equity volatility (squared) for period t is simply given

as

σ̃E(t)2 ≡
1/∆∑

i=1

(rs
t,i)

2 (16)

which converges to the integrated or average variance during period t. For the double-

exponential jump-diffusion model, the continuous component of equity volatility (squared)

can be estimated with the so-called “bi-power variation”

σ̃E(t)2 ≡ π

2

1/∆

1/∆ − 1

1/∆∑

i=2

|rs
t,i−1||rs

t,i| . (17)

As shown by Barndorff-Nielsen and Shephard (2004), such an estimator of realized equity

volatility is robust to the presence of rare and large jumps. The data are provided by the

NYSE TAQ (Trade and Quote) data base, which includes intra-day (tick-by-tick) transaction

data for all securities listed on NYSE, AMEX, and NASDAQ. The monthly realized variance

is the sum of daily realized variances, constructed from the squares of log intra-day 5-minute

returns. Then, monthly realized volatility is just the square-root of the annualized monthly

realized variance.
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4.3 Capital Structure and Asset Payout

Assets and liabilities are key variables in evaluating structural models of credit risk. The

accounting information is obtained from Compustat on a quarterly basis and assigned to

each month with the quarter. We calculate the firm asset as the sum of total liability plus

market equity, where the market equity is obtained from the monthly CRSP data on shares

outstanding and equity prices. Leverage ratio is estimated by the ratio of total liability to

the firm asset. The asset payout ratio is proxied by the weighted average of the interest

expense and dividend payout. Both ratios are reported as annualized percentages.

4.4 Risk-Free Interest Rates

To proxy the risk-free interest rates used as the benchmark in the calculation of CDS spreads,

we use the 3-month LIBOR and the interest rate swaps with maturities of 1, 2, 3, 5, 7, and

10 years. These data are available from the Federal Reserve H.15 Release.

5 Empirical Results

In this section we summarize our empirical findings on testing the structural credit risk mod-

els, based on the GMM estimator defined in Section 3 with the term structure of CDS spreads

and equity volatility. We also provide some diagnostics on various model specifications based

on the pricing errors, and discuss some implications for future research.

5.1 Summary Statistics

In this paper, we focus on the senior unsecured CDS contracts on U.S. corporations and

denominated in U.S. dollars. Subordinated class of contracts are not considered here for their

small representations in the fast growing CDS market and their complicated implications in

credit risk pricing. We use only the modified restructuring (MR) clauses, as they are the

most popularly traded in the U.S. market. After matching with the high frequency equity

volatility and firm accounting information, excluding financial and utility firms, we are left

with 93 entities spanning from January 2002 to December 2004.

Table 1 provides summary statistics on CDS spreads and firm characteristics across both

rating categories and sectors. As can be seen from panel A of Table 1, our sample is con-

centrated in the single-A and triple-B categories, which account for 75 percent of the total
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sample, reflecting the fact that contracts on investment-grade names dominate the CDS

market. In terms of the average over both the time-series and cross-section in our sample,

the 5-year CDS spread is 144 basis points, equity volatility is 38.40 percent (annualized),

the leverage ratio 48.34 percent, asset payout ratio 2.14 percent, and the quoted recovery

rate 40.30 percent. As expected, the CDS spread, equity volatility, and the leverage ratio

all increase as rating deteriorates. However, the recovery rate essentially decreases as rating

deteriorates but has low variations.

Figure 1 plots both the term structure (from 1 year to 10 years) and time evolution (over

the period from January 2002 to December 2004) of the average CDS spreads. As can be

seen from the figure, the average spreads show large variations and have a peak around late

2002. Figure 2 plots both the 5-year CDS spreads and equity volatility by ratings over the

entire sample period. The 5-year CDS spreads clearly have a peak in late 2002 across all

three rating groups although the high-yield group has another spike in late 2004. On the

other hand, equity volatility is much higher in 2002 than the later part of the sample period

and, in particular, has two huge spikes in 2002.

5.2 GMM Specification Test

Our econometric method is based on the model implied pricing relationship for CDS spread

and equity volatility. There is clear evidence that equity volatility and credit spread are

intimately related (Campbell and Taksler, 2003), and the linkage appears to be nonlinear in

nature (Zhang, Zhou, and Zhu, 2006). A casual inspection of Figure 2 indicates that CDS

spreads and equity volatilities appear to move together sometime during market turmoils but

are only loosely related during quiet periods. A structural model with richer time-varying

feature in the underlying asset may be called for to account for the observed nonlinear

relationship between equity volatility and credit spread.5

The GMM specification test results from each of five structural credit risk models are

given in Table 2. In particular, we report the percentage of firms where each of the five

models is not rejected, for the whole sample as well as across both ratings and sectors.

As can be seen from the table, none of the five models have a rejection rate of 100%. The

5In order to estimate the stochastic interest rate model of Longstaff and Schwartz (1995) and the dynamic
leverage model of Collin-Dufresne and Goldstein (2001), we need to first estimate the default-free term
structure model of Vasicek (1977) in Eq. (3). Parameter estimates are obtained monthly based on cross-
sectional data, and not reported here for brevity. The cross-sectional pricing errors that range from 12 to
112 basis points during the sample period.
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existing empirical studies of the standard structural models based on corporate bond spreads

have largely rejected these models as well. Our results indicates that the standard structural

models are still missing something even when CDS spreads, presumably a cleaner measure

of credit risk than corporate bonds spreads, are used in the empirical analysis.

Nonetheless, our empirical results provide new evidence on the relative performance of

the five structural models and potential guidance on how to extend the existing models.

For instance, notice that the GMM test statistics for the Merton (1974) specification are

significantly higher than those for the other four extended models. (Some of the models

are not nested so the J-test statistics are not always directly comparable.) Whereas it is

known that the Merton model underperforms the richer models, our results are the first in

the literature based on a consistent econometric test that takes into account the dynamic

behavior of both CDS spreads and equity volatility.

Judged by the results reported in the table on the percentage of firms where each of the

five models is not rejected, the ranking of the 5 models is as follows

Merton < Black-Cox < LS < HH < CDG

(This ranking is also consistent with results on the mean test statistic, although as cautioned

earlier, J-test statistics are not always directly comparable.) In particular, the double ex-

ponential jump-diffusion model considered in Huang and Huang (2003) and especially the

CDG stationary leverage model outperform significantly over the other three models, namely,

Merton (1974), Black and Cox (1976), and Longstaff and Schwartz (1995). These results

imply that both jumps and time varying leverage improve noticeably the model.

One finding in Eom, Helwege, and Huang (2004) is that the CDG model improves

marginally the fitting of bond spreads over the LS model. Our results here here indicate

that the CDG model’s improvement over LS and other models as well is much more sig-

nificant when CDS spreads are used in the analysis. Another possible reason is that the

risk-neutral leverage parameters are estimated directly here, whereas they are estimated in-

directly through their counter-parties in the physical measure in Eom, Helwege, and Huang

(2004). (It is actually mentioned that in EHH that direct estimating the risk-neutral leverage

parameters may improve the performance of CDG.)

Note that our empirical analysis is based on a consistent econometric method that takes

the pricing models to the entire term structure of CDS spreads and equity volatility estimated

using high frequency data. This is in contrast with the prevalent approach of rolling sample
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estimation and extraction. Of course we are aware that the GMM omnibus test may be

biased toward over-rejection of the true model specification (e.g., see, Tauchen, 1986).

5.3 Parameter Estimation

In this subsection we report estimates of model parameters. First, we want to mention

that we impose additional estimation restrictions to ensure proper identification of model

parameters in the Longstaff-Schwartz (1995), CDG, and the jump diffusion models. For the

Longstaff-Schwartz (1995) model, if the correlation coefficient ρ is allowed to be free, its

estimated value is around -1.2 for almost all firms in the sample. Therefore we restrict ρ to

be -1 in the estimation of this model. In the CDG model, the correlation coefficient ρ and

sensitivity coefficient φ seem difficult to be simultaneously identifiable and the correlation

coefficient is not bounded between -1 and +1. As a result, we impose the restriction that

ρ = 0. In the double-exponential jump-diffusion model, the parameters pQ
u , ηQ

u , and ηQ
d enter

the solution function multiplicatively with λQ and are very difficult to identify in our GMM

estimator. Currently we fix those jump parameters as follows: pQ
u = 0.5, ηQ

u = 5, and ηQ
d = 3,

which are similar to the calibration values adopted in Huang and Huang (2003).

Table 3 reports estimates of the remaining model parameters and their standard errors

across both ratings and sectors. Panel A shows the results for the asset volatility parameter

σv, which enters all five models. This parameter is the most accurately estimated one and

significant at all conventional statistical levels. The level of the estimates is reasonable in all

models.

Panel B of Table 3 reports the estimated default boundary/barrier, a parameter that

appears in the three models with a flat default boundary, namely, the Black and Cox (1976)

barrier model, the Longstaff-Schwartz (1995) model with stochastic interest rates, and the

jump model considered in Huang and Huang (2003). The default barrier scaled by the

total debt, Vb/F , estimated using the BC model ranges from 65% to 103%. The estimates

based on LS are much higher. Results based on the jump model are largely consistent with

calibration values used by Huang and Huang (2003) and the empirical estimates by Predescu

(2005). Figure 3 plots the relationship between the estimated default boundary Vb/F and

the observed leverage ratio F/V . As can be seen from the figure, the slope is significantly

negative, indicating that a higher default boundary is implied for lower rating names. This

finding is also consistent with EHH’s findings based on corporate bond data.
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Panel C of Table 3 reports the estimate of the jump intensity parameter in HH and

the three leverage parameters in CDG. Notice that the estimated jump intensity levels for

high-yield names are much higher than those for investment-grade names.

In the stationary leverage model (Collin-Dufresne and Goldstein, 2001), parameter κℓ

is the mean-reverting speed of the risk-neutral log leverage ratio log(Kt/Vt). The mean

estimated value κ̂ℓ ranges from 0.03 for the single CCC-rated name to 17.82 for AA-rated

names, and is much larger than the calibrated value of 0.18 adopted by CDG and also the

estimate based on regression in Frank and Goyal (2003). This is perhaps an indication that

the model is missing some factor.

Parameter ν in CDG is related to θℓ, the long-run mean of the risk-neutral leverage

ratio, as the following θℓ = −rt+δt+σ2
v/2

κℓ
− ν. Our choice of estimating a constant ν would

imply a time-varying but deterministic θℓ. The mean estimate ν̂ ranges from 0.11 for the

single AAA-rated name to 1.00 for the single CCC-rated name, which is rather close to the

calibration value of 0.60 used in CDG.

Finally the sensitivity of leverage ratio in interest rate φ in CDG seems to be critical for

the model to pass the GMM specification test. More specifically, φ measures the sensitivity

of the firm-specific leverage ratio dynamics to the risk-free interest rate process. This is

equivalent to the risk factor loading in standard asset pricing models. As can be seen in the

table, the estimate of φ varies from a large positive number of the investment grade names

to a large negative number of the speculative grade names. This suggests that firms with

different credit standing have very different leverage ratio dynamics as the macroeconomic

risk changes over time. Such a heterogeneity of dynamics leverage ratio is the key for CDG

model pass the GMM omnibus test with more than half of the sample.

5.4 Pricing Performance Evaluation

In the literature, the evaluation of structural credit risk models is generally based on compar-

ing their pricing error on corporate bonds, although the models are typically not consistently

estimated but rather judged based on ad hoc calibration or rolling sample extractions. Here

we connect with the existing literature by looking at the pricing errors of candidate models,

after the parameters are consistently estimated and model specification tests are conducted.

If our approach is valid, then the specification test result should be consistent with the pric-
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ing errors evaluations.6 To be more specific, for each month and each maturity, we use the

estimated structural parameters and pricing solutions to calculate the model implied CDS

spreads and equity volatility. Then we compute the simple difference, absolute difference,

and percentage difference between the model implied and observed ones. Finally the mean

of the pooled pricing errors is reported for each name.

Table 4 reports the pricing errors on both CDS spreads and equity volatility by each rating

group and sector. As can be seen from the table, in terms of average errors, the Merton

(1974) model seems to over-estimate the spreads, the barrier and LS models appear to

under-estimate the spreads, and the jump and leverage models are more even. The fact that

combining equity price and CDS spreads would make Merton (1974) overfit is similarly found

by Predescu (2005). In terms of absolute pricing performance, the barrier model (Black and

Cox, 1976) always outperforms the Merton (1974) model but underperforms the Longstaff-

Schwartz (1995) model. The jump model used in Huang and Huang (2003) outperforms all

these three models but is dominated by the dynamic leverage model of (Collin-Dufresne and

Goldstein, 2001). These results contrast the findings of (Eom, Helwege, and Huang, 2004)

based on corporate bond data that richer model specifications do not improve upon the

Merton (1974) in terms of pricing errors. It is interesting that, judging from the percentage

pricing errors, the jump model performs relatively better for the high rated firms, while the

CDG model does better for the low rated firms.

The results from equity volatility display similar patterns as those from the CDS spreads.

A noticeable difference is that the absolute pricing errors on equity volatility are generally

larger than those on CDS spreads, while the percentage pricing errors are about the same

order of the magnitude.

In order to pass the GMM J-test, a model must perform well on both CDS spreads and

equity volatility. Results based on pricing errors indicate that except for the CDG model,

the others fail in either one or both dimensions.

5.5 Further Diagnostics on Model Specifications

In this subsection, we try to gain further insights on model specification errors, by examining

the model-implied term structure and time series of CDS spreads, along with the model-

implied equity volatility. We also discuss some implications of this analysis for improving

6In estimation we use CDS with maturities of 1, 3, 5, 10 years and equity volatility; while 2 and 7 years
are too sparse to be included in estimation, they are still useful to be included in pricing error evaluation.
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the standard structural models.

Figure 4 plots the sample average of the CDS term structure from 1 year to 10 years

from both the observed data and the five candidate models. A few observations are worth

mentioning here: (1) the CDG model almost completely nails the average term structure,

especially for the lower rating group; (2) the Merton model clearly misses the CDS spreads,

but for high grade (AAA-A) misses mostly the long maturity and for low grade (BBB-

CCC) misses mostly the short maturity; (3) the Black-Cox (BC) and LS models seem to fit

reasonably the lower grades (BBB-CCC), but underfit the high grades (AAA-A) especially

in the short end; (4) the HH model with jumps improves upon the Merton model mostly

in the short end, as jumps are sensitive for short term derivatives, although its overall

performance is not very satisfying. Overall, the stationary leverage model seems to be the

only one to match the curve of average term structure of CDS spread, especially for lower

rated names; while the jump model seems to have potential in improving the short end of

the term structure, especially for higher rated names.

Figure 5 plots the observed 5-year CDS spread against the five model implied ones. For

lower ratings BB-CCC, all models seem to match the time-variations of the 5-year CDS

spread well, although the CDG model is the best one. For higher ratings AAA-BBB, most

models completely miss the CDS dynamics, especially for the first third of the sample, when

the risk-free rate remains as low as 1%. Even CDG model can only get the average level

right, but not be able to imitate the evolutions. This suggests that for higher rating firms,

a time-varying factor in addition to interest rate and leverage ratio — like stochastic asset

volatility — may be needed to fully capture the temporal changes in CDS spreads.

Figure 6 reports the model implied and fitted equity volatilities. Again, for lower ratings

BB-CCC, the CDG model can reasonable capture the time series feature of equity volatility;

while other models miss the volatility level, yet produce certain time-variations imitating the

volatility dynamics. In contrast, for higher ratings AAA-BBB, all models miss completely

the volatility spikes during the early sample period. The picture for AAA-A is rather bleak —

every model generates a nearly constant equity volatility but the observed one is dramatically

changing over time. This evidence indicate that without time varying asset volatility, no

existing model can replicate the observed equity volatility dynamics, for top investment

grade names.

Figure 7 plots the initial spot log leverage ratio log(Kt/Vt) and the long-run mean of

risk-neutral log leverage ratio. It is clear that for the speculative grade (CCC-BB) these two
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leverages are very closer to each other. While for low investment grade names (BBB), the

observed leverage is significantly lower than the risk-neutral counterpart; and the difference

becomes more dramatic for the top investment grade (AAA-A). Such a finding mirrors the

recently documented evidence that highly profitable firms may opt to borrow little or no

debt (Strebulaev and Yang, 2006; Chen and Zhao, 2006). Such a puzzle is worth further

investigation.

In summary, dynamic leverage ratio together with stochastic interest rate seem to be

crucial for a structural credit risk model to better match the CDS spread and equity volatility.

In addition, incorporating jumps may help to improve the fit of the short end of CDS

term structure, especially for the high investment grade names. However, something else

needs to be incorporate into the existing models as they all fail to adequately capture the

dynamics behavior of CDS spreads and equity volatility, especially for the high investment

grade names. This suggests that incorporating a stochastic asset volatility may improve the

existing structural models.

6 Conclusions

This article provides a consistent econometric specification test of five structural credit risk

models using information from both the credit default swap (CDS) market and equity mar-

ket. In particular, we consider the standard Merton (1974) model, the Black and Cox (1976)

barrier model, the Longstaff and Schwartz (1995) model with stochastic interest rates, the

stationary leverage model of Collin-Dufresne and Goldstein (2001), and the double expo-

nential jump-diffusion barrier model studied in Huang and Huang (2003). We examine the

performance of each model in capturing the behavior of CDS spreads and equity volatility

both cross-sectionally and time series wise.

Existing empirical studies of structural models mainly based on corporate bond spreads

and equity volatility from low frequency daily data. To our best knowledge, this study is

the first direct econometric estimation and specification test of structural models using data

on the term structure of CDS and equity volatility estimated with high frequency intraday

data. This allows us to minimize the effects of measurement error and pricing error, and

thus attribute the test results mostly to the specification error.

We find that the Merton (1974), Black and Cox (1976), and the Longstaff and Schwartz

(1995) models are strongly rejected by our specification test. The jump diffusion model
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considered in Huang and Huang (2003) improves the performance significantly for the top

investment grade names but helps the fit mainly in the short end of the CDS term structure

and not much in the long end. Still, the model is rejected for more than half of our sample

firms. The best of the five models is the Collin-Dufresne and Goldstein model, that cannot

be rejected in more than half of our sample firms.

Nonetheless, we show that these structural models still have difficulty predicting credit

spreads accurately even when CDS spreads (a purer measure of credit risk than bond spreads)

are used in the analysis.

Finally, we document that the five structural models cannot capture the time-series

behavior of both CDS spreads and equity volatility. Given that equity volatility in structural

models is time-varying, this finding provides a direct evidence that a structural model with

stochastic asset volatility (see Huang and Huang, 2003; Huang, 2005; Zhang, Zhou, and Zhu,

2006) may significantly improve the model performance, especially for the investment grade

names.
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Table 1: Summary Statistics on CDS Spreads and the Underlying Names
This table reports summary statistics on the 93 firms, by ratings (Panel A) and sectors (Panel
B), that underly the CDS contracts in the entire sample. Rating is the average of Moody’s
and Standard & Poor’s ratings. Equity volatility is estimated using 5-minute intraday returns.
Leverage ratio is the total liability divided by the total asset which is equal to total liability
plus market equity. Asset payout ratio is the weighted average of dividend payout and interest
expense over the total asset. Recovery rate is the quoted recovery rate accompanied with the CDS
premium from the dealer-market. CDS spreads have 1-, 2-, 3-, 5-, 7-, and 10-year maturities over
the period from January 2002 to December 2004.

Panel A: By Ratings

Rating Firms % of Equity Leverage Asset Recovery

Sample Volatility (%) Ratio (%) Payout (%) Rate (%)

AAA 1 1.08% 36.36 63.71 2.22 40.88

AA 6 6.45% 31.50 20.92 1.53 40.92

A 25 26.88% 32.51 38.15 2.02 40.57

BBB 45 48.39% 35.54 51.84 2.26 40.73

BB 11 11.83% 47.19 57.76 2.15 39.51

B 4 4.30% 83.23 72.61 2.28 38.23

CCC 1 1.08% 81.94 93.93 2.89 26.57

Overall 93 100.00% 38.40 48.34 2.14 40.30

Maturity of CDS

Rating 1-year 2-year 3-year 5-year 7-year 10-year

CDS Spreads Mean (%)

AAA 0.23 0.28 0.32 0.43 0.45 0.49

AA 0.12 0.13 0.15 0.20 0.23 0.28

A 0.25 0.29 0.32 0.39 0.43 0.49

BBB 0.74 0.79 0.86 0.94 0.98 1.05

BB 2.62 2.74 2.84 2.90 2.92 2.92

B 7.52 7.20 7.51 7.25 7.01 6.79

CCC 25.26 22.99 20.91 18.81 18.03 17.31

Overall 1.34 1.36 1.40 1.44 1.45 1.49

CDS Spreads Std. Dev. (%)

AAA 0.17 0.19 0.21 0.25 0.23 0.24

AA 0.07 0.07 0.07 0.09 0.09 0.10

A 0.23 0.27 0.24 0.25 0.24 0.26

BBB 0.96 0.96 0.96 0.91 0.89 0.84

BB 2.72 2.75 2.59 2.35 2.28 2.14

B 8.67 6.19 7.61 6.12 5.90 5.25

CCC 24.96 19.40 16.48 13.65 12.68 11.81

Overall 4.434 3.775 3.615 3.177 3.036 2.854
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Table 1: Summary Statistics on CDS Spreads and the Underlying Names

Panel B: By Industry

Sector Firms % of Equity Leverage Asset Recovery

Sample Volatility (%) Ratio (%) Payout (%) Rate (%)

Communications 6 6.45% 48.72 42.93 1.99 40.14

Consumer Cyclical 32 34.41% 38.95 48.56 2.01 40.45

Consumer Staple 14 15.05% 33.77 41.68 2.24 40.87

Energy 8 8.60% 39.93 53.89 2.47 40.05

Industrial 18 19.35% 40.24 53.90 2.01 39.90

Materials 11 11.83% 32.85 49.34 2.73 41.35

Technology 4 4.30% 45.22 40.20 1.29 38.95

Overall 93 100.00% 38.68 48.39 2.14 40.39

Maturity of CDS

Sector 1-year 2-year 3-year 5-year 7-year 10-year

CDS Spreads Mean (%)

Communications 2.04 1.99 2.09 2.23 2.16 2.10

Consumer Cyclical 1.57 1.58 1.58 1.61 1.62 1.66

Consumer Staple 0.74 0.81 0.86 0.92 0.94 0.98

Energy 1.58 1.38 1.53 1.43 1.47 1.48

Industrial 1.29 1.38 1.41 1.46 1.48 1.53

Materials 0.92 0.96 1.03 1.10 1.14 1.20

Technology 1.38 1.43 1.48 1.48 1.51 1.52

Overall 1.34 1.36 1.40 1.44 1.45 1.49

CDS Spreads Std. Dev. (%)

Communications 4.82 4.13 4.58 4.74 4.33 3.80

Consumer Cyclical 6.19 5.25 4.65 4.06 3.85 3.65

Consumer Staple 2.08 2.21 2.18 2.10 2.02 1.92

Energy 5.60 3.66 4.80 3.32 3.45 3.14

Industrial 2.36 2.54 2.34 2.16 2.09 2.07

Materials 1.46 1.42 1.43 1.39 1.38 1.34

Technology 2.20 2.17 2.12 1.82 1.74 1.59

Overall 4.43 3.78 3.62 3.18 3.04 2.85
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Table 2: Specification Test of Structural Credit Risk Models
This table reports the omnibus GMM test results of overidentifying restrictions under each of 5 structural models. The five moment
conditions used in the test are constructed based on the pricing relationship for 1-, 3-, 5- and 10-year CDS spreads and for the equity
volatility estimated based on 5-minute intraday data. The five model specifications considered include Merton (1974), Black and Cox
(1976), Longstaff and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and the double exponential jump diffusion model (Huang
and Huang, 2003). Data used in the test are monthly CDS spreads and equity volatility from January 2002 to December 2004.

Merton Model BC Model LS Model HH Model CDG Model

Chi-Square d.o.f = 4 d.o.f = 3 d.o.f = 3 d.o.f = 2 d.o.f = 1

Mean 16.70 15.26 14.65 9.95 4.18

Nth 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th

Percentile 12.84 17.28 18.04 10.74 15.58 17.69 7.27 15.60 17.79 3.65 10.11 15.66 0.01 2.29 16.52

Sig. level 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

Proportion

Not Rejected 5/93 2/93 0/93 6/93 1/93 0/93 12/93 6/93 3/93 40/93 15/93 11/93 70/93 63/93 51/93

By Ratings

AAA 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/1 1/1 1/1 0/1 0/1 0/1

AA 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 3/6 1/6 1/6 5/6 5/6 5/6

A 0/25 0/25 0/25 0/25 0/25 0/25 0/25 0/25 0/25 15/25 9/25 8/25 22/25 21/25 19/25

BBB 2/45 0/45 0/45 2/45 0/45 0/45 6/45 2/45 2/45 17/45 3/45 1/45 36/45 31/45 23/45

BB 3/11 2/11 0/11 2/11 1/11 0/11 4/11 2/11 1/11 2/11 0/11 0/11 2/11 2/11 2/11

B 0/4 0/4 0/4 2/4 0/4 0/4 1/4 1/4 0/4 1/4 1/4 0/4 4/4 4/4 2/4

CCC 0/1 0/1 0/1 0/1 0/1 0/1 1/1 1/1 0/1 1/1 0/1 0/1 1/1 0/1 0/1

By Sector

Communications 1/6 0/6 0/6 2/6 0/6 0/6 1/6 0/6 0/6 4/6 0/6 0/6 5/6 5/6 4/6

Consumer Cyclical 1/32 0/32 0/32 0/32 0/32 0/32 3/32 1/32 0/32 10/32 2/32 2/32 24/32 22/32 18/32

Consumer Staple 0/14 0/14 0/14 0/14 0/14 0/14 0/14 0/14 0/14 9/14 3/14 2/14 11/14 9/14 8/14

Energy 0/8 0/8 0/8 1/8 0/8 0/8 1/8 1/8 0/8 3/8 1/8 0/8 4/8 3/8 2/8

Industrial 1/18 1/18 0/18 2/18 1/18 0/18 4/18 2/18 2/18 9/18 4/18 2/18 15/18 14/18 9/18

Materials 1/11 0/11 0/11 0/11 0/11 0/11 2/11 1/11 0/11 5/11 5/11 5/11 9/11 8/11 8/11

Technology 1/4 1/4 0/4 1/4 0/4 0/4 1/4 1/4 1/4 0/4 0/4 0/4 2/4 2/4 2/4
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Table 3: Parameter Estimation of Structural Credit Risk Models
This table reports the GMM estimation results of the model parameters in each of five structural models. The five moment conditions
used in the test are constructed based on the pricing relationship for 1-, 2-, 5- and 10-year CDS spreads and for the equity volatility
estimated based on 5-minute intraday data. The five model specifications include Merton (1974), Black and Cox (1976), Longstaff and
Schwartz (1995), Collin-Dufresne and Goldstein (2001), and the double exponential jump diffusion model (Huang and Huang, 2003).
Panel A reports the asset volatility parameter estimate σv in all five models, Panel B reports the default boundary estimate K in
three barrier type models, and Panel C reports jump intensity estimate λQ in Huang and Huang (2003) model and dynamic leverage
parameters κℓ, ν, φ in Collin-Dufresne and Goldstein (2001) model.

Panel A: Estimate of the Asset Volatility

Asset Volatility Merton Model BC Model LS Model HH Model CDG Model

Whole Sample N Mean Median Mean Median Mean Median Mean Median Mean Median

93 0.141 0.123 0.178 0.171 0.163 0.151 0.158 0.153 0.186 0.166

(0.007) (0.006) (0.008) (0.007) (0.009) (0.008) (0.006) (0.005) (0.012) (0.011)

Percentile N 5th 95th 5th 95th 5th 95th 5th 95th 5th 95th

0.055 0.348 0.087 0.308 0.077 0.299 0.093 0.273 0.081 0.331

(0.002) (0.016) (0.003) (0.016) (0.003) (0.017) (0.003) (0.012) (0.004) (0.027)

Ratings N Mean Median Mean Median Mean Median Mean Median Mean Median

AAA 1 0.143 0.143 0.087 0.087 0.074 0.074 0.129 0.129 0.108 0.108

(0.004) (0.004) (0.003) (0.003) (0.005) (0.005) (0.007) (0.007) (0.014) (0.014)

AA 6 0.054 0.051 0.288 0.302 0.235 0.250 0.180 0.182 0.253 0.249

(0.014) (0.014) (0.015) (0.015) (0.015) (0.015) (0.007) (0.006) (0.020) (0.020)

A 25 0.096 0.089 0.176 0.179 0.157 0.160 0.162 0.163 0.198 0.190

(0.009) (0.009) (0.007) (0.007) (0.009) (0.009) (0.005) (0.005) (0.012) (0.011)

BBB 45 0.136 0.126 0.151 0.141 0.138 0.132 0.148 0.150 0.167 0.157

(0.005) (0.004) (0.007) (0.006) (0.007) (0.007) (0.006) (0.005) (0.011) (0.010)

BB 11 0.210 0.212 0.220 0.211 0.221 0.195 0.183 0.141 0.212 0.165

(0.006) (0.005) (0.008) (0.006) (0.011) (0.008) (0.008) (0.008) (0.013) (0.009)

B 4 0.363 0.378 0.245 0.250 0.252 0.246 0.179 0.183 0.200 0.180

(0.010) (0.010) (0.009) (0.009) (0.010) (0.011) (0.010) (0.009) (0.011) (0.010)

CCC 1 0.381 0.381 0.178 0.178 0.054 0.054 0.038 0.038 0.046 0.046

(0.011) (0.011) (0.010) (0.010) (0.002) (0.002) (0.004) (0.004) (0.002) (0.002)
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Table 3: Parameter Estimation of Structural Credit Risk Models

Panel A (count.): Estimate of the Asset Volatility

Asset Volatility Merton Model BC Model LS Model HH Model CDG Model

Whole Sample N Mean Median Mean Median Mean Median Mean Median Mean Median

93 0.141 0.123 0.178 0.171 0.163 0.151 0.158 0.153 0.186 0.166

(0.007) (0.006) (0.008) (0.007) (0.009) (0.008) (0.006) (0.005) (0.012) (0.011)

Percentile N 5th 95th 5th 95th 5th 95th 5th 95th 5th 95th

0.055 0.348 0.087 0.308 0.077 0.299 0.093 0.273 0.081 0.331

(0.002) (0.016) (0.003) (0.016) (0.003) (0.017) (0.003) (0.012) (0.004) (0.027)

Sector N Mean Median Mean Median Mean Median Mean Median Mean Median

Communications 6 0.199 0.176 0.183 0.168 0.164 0.140 0.187 0.173 0.239 0.269

(0.006) (0.004) (0.007) (0.007) (0.010) (0.011) (0.007) (0.006) (0.020) (0.021)

Consumer Cyclical 32 0.145 0.133 0.179 0.183 0.151 0.152 0.158 0.151 0.186 0.167

(0.007) (0.005) (0.008) (0.007) (0.008) (0.007) (0.006) (0.005) (0.012) (0.011)

Consumer Staple 14 0.103 0.079 0.193 0.188 0.178 0.165 0.148 0.148 0.175 0.161

(0.008) (0.008) (0.009) (0.008) (0.010) (0.009) (0.005) (0.005) (0.012) (0.011)

Energy 8 0.150 0.113 0.160 0.147 0.151 0.145 0.144 0.134 0.163 0.139

(0.006) (0.004) (0.007) (0.006) (0.007) (0.006) (0.006) (0.005) (0.008) (0.007)

Industrial 18 0.151 0.124 0.164 0.140 0.163 0.130 0.160 0.151 0.175 0.159

(0.007) (0.006) (0.006) (0.006) (0.008) (0.007) (0.006) (0.005) (0.010) (0.009)

Materials 11 0.119 0.112 0.163 0.159 0.144 0.120 0.144 0.145 0.167 0.185

(0.007) (0.004) (0.007) (0.006) (0.008) (0.009) (0.005) (0.005) (0.010) (0.010)

Technology 4 0.164 0.148 0.256 0.250 0.268 0.249 0.208 0.183 0.280 0.243

(0.007) (0.008) (0.009) (0.009) (0.017) (0.017) (0.009) (0.008) (0.024) (0.017)
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Table 3: Parameter Estimation of Structural Credit Risk Models

Panel B: Estimate of the Default Boundary

Default Barrier BC Model LS Model HH Model

Whole Sample N Mean Median Mean Median Mean Median

93 0.911 0.827 1.163 1.093 0.824 0.761

(0.039) (0.033) (0.050) (0.039) (0.087) (0.064)

Percentile N 5th 95th 5th 95th 5th 95th

0.606 1.444 0.660 1.881 0.492 1.505

(0.009) (0.086) (0.007) (0.117) (0.018) (0.259)

Ratings N Mean Median Mean Median Mean Median

AAA 1 0.959 0.959 1.115 1.115 0.759 0.759

(0.018) (0.018) (0.022) (0.022) (0.034) (0.034)

AA 6 0.760 0.738 1.217 1.052 1.279 1.378

(0.081) (0.080) (0.115) (0.110) (0.166) (0.152)

A 25 1.028 0.958 1.319 1.206 0.901 0.869

(0.050) (0.046) (0.064) (0.060) (0.094) (0.067)

BBB 45 0.911 0.866 1.130 1.091 0.758 0.752

(0.035) (0.030) (0.041) (0.033) (0.085) (0.060)

BB 11 0.834 0.751 1.041 1.019 0.821 0.711

(0.025) (0.022) (0.031) (0.036) (0.043) (0.032)

B 4 0.655 0.630 0.857 0.864 0.480 0.504

(0.017) (0.016) (0.046) (0.029) (0.074) (0.079)

CCC 1 0.736 0.736 1.011 1.011 0.603 0.603

(0.011) (0.011) (0.001) (0.001) (0.105) (0.105)

Sector N Mean Median Mean Median Mean Median

Communications 6 1.059 1.114 1.351 1.497 0.764 0.729

(0.037) (0.039) (0.072) (0.070) (0.128) (0.115)

Consumer Cyclical 32 0.924 0.826 1.208 1.145 0.843 0.773

(0.043) (0.037) (0.050) (0.038) (0.099) (0.061)

Consumer Staple 14 0.888 0.766 1.123 0.950 0.959 0.839

(0.053) (0.051) (0.064) (0.058) (0.078) (0.057)

Energy 8 0.870 0.777 1.055 0.962 0.756 0.702

(0.031) (0.024) (0.042) (0.035) (0.062) (0.065)

Industrial 18 0.902 0.904 1.136 1.129 0.743 0.744

(0.030) (0.026) (0.033) (0.030) (0.070) (0.047)

Materials 11 0.904 0.855 1.137 1.197 0.760 0.792

(0.038) (0.028) (0.053) (0.043) (0.097) (0.066)

Technology 4 0.815 0.640 1.067 0.935 0.965 0.734

(0.027) (0.027) (0.054) (0.048) (0.062) (0.057)
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Table 3: Parameter Estimation of Structural Credit Risk Models

Panel C: Estimates of Other Parameters in HH and CDG

Model HH Model CDG Model

Parameter λQ κℓ ν φ

Whole Sample N Mean Median Mean Median Mean Median Mean Median

93 0.224 0.130 13.215 14.784 0.304 0.169 2.254 1.817

(0.061) (0.037) (0.095) (0.048) (0.085) (0.011) (0.418) (0.145)

Percentile N 5th 95th 5th 95th 5th 95th 5th 95th

0.042 0.878 0.289 20.273 0.093 1.139 -2.609 5.008

(0.009) (0.176) (0.008) (0.463) (0.005) (0.198) (0.057) (1.130)

Ratings N Mean Median Mean Median Mean Median Mean Median

AAA 1 0.051 0.051 15.044 15.044 0.106 0.106 1.183 1.183

(0.011) (0.011) (0.023) (0.023) (0.012) (0.012) (0.151) (0.151)

AA 6 0.095 0.091 17.818 19.147 0.855 0.349 13.383 3.304

(0.029) (0.024) (0.056) (0.036) (0.118) (0.022) (2.598) (0.506)

A 25 0.125 0.129 16.471 16.015 0.185 0.173 2.225 1.981

(0.038) (0.027) (0.043) (0.026) (0.013) (0.011) (0.203) (0.157)

BBB 45 0.173 0.134 14.407 14.816 0.218 0.148 1.491 1.724

(0.056) (0.037) (0.087) (0.045) (0.125) (0.009) (0.248) (0.121)

BB 11 0.329 0.191 4.057 1.456 0.508 0.320 1.977 1.385

(0.072) (0.059) (0.157) (0.100) (0.045) (0.024) (0.475) (0.312)

B 4 0.986 0.954 0.568 0.511 0.500 0.377 -3.438 -4.038

(0.248) (0.237) (0.436) (0.354) (0.111) (0.119) (0.417) (0.235)

CCC 1 1.788 1.788 0.026 0.026 1.001 1.001 -2.609 -2.609

(0.286) (0.286) (0.007) (0.007) (0.252) (0.252) (0.065) (0.065)

Sector N Mean Median Mean Median Mean Median Mean Median

Communications 6 0.285 0.164 11.802 13.594 0.278 0.239 0.333 2.377

(0.121) (0.080) (0.205) (0.162) (0.052) (0.028) (0.518) (0.253)

Consumer Cyclical 32 0.230 0.146 13.502 15.280 0.341 0.173 2.483 1.871

(0.064) (0.039) (0.098) (0.042) (0.176) (0.011) (0.336) (0.145)

Consumer Staple 14 0.222 0.115 15.230 15.416 0.307 0.158 3.820 1.859

(0.033) (0.022) (0.052) (0.028) (0.052) (0.009) (1.128) (0.135)

Energy 8 0.265 0.136 9.848 13.758 0.256 0.206 0.667 1.338

(0.051) (0.049) (0.185) (0.072) (0.046) (0.011) (0.303) (0.164)

Industrial 18 0.201 0.117 14.145 15.175 0.251 0.145 0.478 1.613

(0.065) (0.031) (0.054) (0.042) (0.025) (0.008) (0.117) (0.101)

Materials 11 0.228 0.115 13.105 14.125 0.245 0.168 4.473 1.899

(0.062) (0.039) (0.048) (0.052) (0.020) (0.011) (0.179) (0.182)

Technology 4 0.119 0.138 8.836 8.960 0.523 0.380 2.871 2.564

(0.056) (0.047) (0.188) (0.087) (0.044) (0.023) (0.694) (0.618)
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Table 4: Pricing Errors of CDS Spreads and Equity Volatility
This table reports the pricing errors CDS Spreads and Equity Volatility under each of five
structural models. The pricing errors of the CDS spreads are calculated as the average, absolute,
average percentage, and absolute percentage differences between the model implied and observed
spreads, across six maturities, 1, 2, 3, 5, 7, and 10 years, and monthly observations from January
2002 to December 2004. The fitted errors of equity volatility are calculated in a similar fashion.
The five model specifications include Merton (1974), Black and Cox (1976), Longstaff and Schwartz
(1995), Collin-Dufresne and Goldstein (2001), and the double exponential jump diffusion model
(Huang and Huang, 2003).

Panel A: By Ratings

CDS Spreads Average Pricing Error Absolute Pricing Error

Rating N Merton BC LS HH CDG Merton BC LS HH CDG

Overall 93 0.35 -0.96 -0.52 -0.40 -0.06 1.58 1.01 1.06 0.70 0.67

AAA 1 0.23 -0.32 -0.25 -0.01 -0.11 0.39 0.32 0.26 0.19 0.20

AA 6 -0.19 -0.11 -0.16 -0.05 -0.06 0.19 0.13 0.16 0.09 0.12

A 25 -0.30 -0.24 -0.23 -0.07 -0.03 0.37 0.29 0.28 0.15 0.18

BBB 45 0.13 -0.70 -0.57 -0.27 -0.05 1.29 0.73 0.70 0.42 0.51

BB 11 -0.14 -1.43 -0.56 -0.20 -0.21 2.59 1.68 2.46 1.38 1.70

B 4 6.08 -5.18 -4.21 -3.57 -0.22 7.94 5.21 4.77 4.15 2.32

CCC 1 12.10 -13.81 7.07 -6.84 1.10 17.47 13.81 12.25 9.37 6.27

Equity Volatility Average Pricing Error Absolute Pricing Error

Rating N Merton BC LS HH CDG Merton BC LS HH CDG

Overall 93 -0.13 -3.26 -0.42 1.33 1.02 26.53 13.36 15.05 10.89 11.37

AAA 1 -3.02 -13.89 -16.65 0.40 -7.19 12.19 14.94 16.82 11.27 11.87

AA 6 -25.15 4.22 -2.38 -6.14 0.11 25.15 11.47 11.08 8.00 8.84

A 25 -17.60 -4.58 -7.17 -2.95 -0.58 18.17 10.07 10.53 7.49 8.45

BBB 45 -3.16 -3.81 -3.90 1.69 0.22 19.08 10.85 11.98 9.53 9.82

BB 11 3.66 4.16 13.11 10.78 8.55 22.18 20.24 22.69 19.59 19.60

B 4 63.02 -10.88 41.06 6.12 -2.33 79.04 39.07 54.34 22.63 21.98

CCC 1 431.35 -31.04 38.30 14.73 21.56 431.35 39.42 47.10 31.12 36.28

CDS Spreads Average Percentage Pricing Error Absolute Percentage Pricing Error

Rating N Merton BC LS HH CDG Merton BC LS HH CDG

Overall 93 24.36 -66.72 -36.36 -27.99 -4.11 109.94 70.70 73.77 48.50 46.91

AAA 1 62.12 -85.15 -67.79 -2.04 -30.18 106.02 85.15 70.98 50.94 53.87

AA 6 -99.91 -58.88 -84.84 -28.49 -32.19 99.91 71.03 84.89 45.87 64.31

A 25 -80.22 -65.34 -62.02 -18.14 -7.04 99.23 77.23 75.92 39.66 48.14

BBB 45 14.45 -76.20 -61.68 -28.90 -5.43 140.22 79.11 76.44 46.12 55.23

BB 11 -4.93 -49.71 -19.38 -6.96 -7.28 89.64 58.31 85.19 47.82 58.93

B 4 83.20 -70.83 -57.68 -48.80 -3.07 108.73 71.25 65.26 56.75 31.73

CCC 1 60.29 -68.80 35.22 -34.08 5.50 87.03 68.80 61.03 46.68 31.22

Equity Volatility Average Percentage Pricing Error Absolute Percentage Pricing Error

Rating N Merton BC LS HH CDG Merton BC LS HH CDG

Overall 93 -0.34 -8.43 -1.08 3.44 2.65 68.59 34.53 38.91 28.15 29.40

AAA 1 -8.17 -37.58 -45.04 1.07 -19.46 32.98 40.42 45.50 30.50 32.13

AA 6 -79.35 13.31 -7.51 -19.39 0.36 79.35 36.20 34.96 25.24 27.89

A 25 -53.53 -13.94 -21.81 -8.96 -1.76 55.26 30.62 32.01 22.78 25.70

BBB 45 -8.84 -10.66 -10.91 4.74 0.61 53.43 30.38 33.55 26.69 27.48

BB 11 7.66 8.70 27.45 22.58 17.90 46.45 42.38 47.50 41.02 41.04

B 4 75.25 -13.00 49.04 7.31 -2.78 94.38 46.66 64.89 27.02 26.24

CCC 1 533.76 -38.41 47.40 18.22 26.68 533.76 48.78 58.28 38.51 44.89
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Table 4: Pricing Errors of CDS Spreads and Equity Volatility

Panel B: By Sectors

CDS Spreads Average Pricing Error Absolute Pricing Error

Sector N Merton BC LS HH CDG Merton BC LS HH CDG

Overall 93 0.35 -0.96 -0.52 -0.40 -0.06 1.58 1.01 1.06 0.70 0.67

Communications 6 -0.57 -1.59 -1.76 -1.49 -0.14 1.28 1.60 1.77 1.52 0.91

Consumer Cyclical 32 1.07 -1.13 -0.48 -0.46 -0.04 2.34 1.20 1.14 0.71 0.76

Consumer Staple 14 0.47 -0.68 -0.73 -0.11 -0.01 1.09 0.70 0.78 0.30 0.30

Energy 8 1.45 -1.14 -0.68 -0.68 -0.33 2.34 1.14 0.76 0.84 0.62

Industrial 18 -0.45 -0.78 -0.06 -0.34 -0.08 0.89 0.89 1.32 0.60 0.65

Materials 11 -0.34 -0.77 -0.42 -0.37 0.25 0.84 0.77 0.65 0.44 0.73

Technology 4 -1.19 -0.52 -0.34 0.92 -0.49 1.19 0.71 0.78 1.52 1.01

Equity Volatility Average Pricing Error Absolute Pricing Error

Sector N Merton BC LS HH CDG Merton BC LS HH CDG

Overall 93 -0.13 -3.26 -0.42 1.33 1.02 26.53 13.36 15.05 10.89 11.37

Communications 6 -12.65 -15.45 -14.26 -5.74 -2.34 19.25 17.48 18.38 13.12 16.17

Consumer Cyclical 32 13.24 -2.01 -0.71 3.59 2.40 40.10 13.64 15.97 13.11 12.17

Consumer Staple 14 -5.31 2.67 6.87 -0.97 -0.60 26.05 13.03 18.68 8.39 9.16

Energy 8 6.94 -6.12 2.81 3.46 0.21 28.17 16.13 14.34 11.74 10.19

Industrial 18 -8.76 -5.81 -1.84 1.29 -0.47 13.68 11.60 12.86 9.09 9.53

Materials 11 -9.67 -1.34 -1.82 1.58 2.60 13.52 10.04 10.03 7.18 9.72

Technology 4 -19.27 -3.84 0.98 -2.76 4.72 21.01 17.53 15.12 15.12 20.73

CDS Spreads Average Percentage Pricing Error Absolute Percentage Pricing Error

Sector N Merton BC LS HH CDG Merton BC LS HH CDG

Overall 93 24.36 -66.72 -36.36 -27.99 -4.11 109.94 70.70 73.77 48.50 46.91

Communications 6 -26.37 -74.30 -81.99 -69.65 -6.53 59.83 74.65 82.81 71.09 42.34

Consumer Cyclical 32 66.34 -69.96 -29.66 -28.68 -2.55 144.94 74.16 70.80 44.26 46.95

Consumer Staple 14 52.73 -76.98 -82.34 -12.78 -1.04 122.89 78.94 87.97 34.36 33.93

Energy 8 96.35 -75.45 -45.42 -45.09 -21.70 155.62 75.97 50.58 55.90 40.96

Industrial 18 -30.75 -53.32 -3.78 -23.40 -5.19 60.41 60.82 90.31 40.75 44.15

Materials 11 -30.80 -70.36 -38.20 -33.74 22.90 77.16 70.67 59.74 40.31 66.60

Technology 4 -80.20 -35.09 -22.83 62.14 -32.95 80.20 48.03 52.30 102.10 68.18

Equity Volatility Average Percentage Pricing Error Absolute Percentage Pricing Error

Sector N Merton BC LS HH CDG Merton BC LS HH CDG

Overall 93 -0.34 -8.43 -1.08 3.44 2.65 68.59 34.53 38.91 28.15 29.40

Communications 6 -25.96 -31.72 -29.26 -11.78 -4.81 39.51 35.87 37.72 26.92 33.19

Consumer Cyclical 32 33.98 -5.17 -1.82 9.21 6.17 102.94 35.01 41.00 33.67 31.25

Consumer Staple 14 -15.73 7.90 20.33 -2.88 -1.76 77.14 38.59 55.29 24.83 27.14

Energy 8 17.37 -15.34 7.04 8.67 0.53 70.55 40.40 35.91 29.40 25.52

Industrial 18 -21.77 -14.43 -4.56 3.19 -1.17 33.99 28.83 31.96 22.58 23.68

Materials 11 -29.45 -4.08 -5.55 4.82 7.92 41.16 30.56 30.52 21.85 29.60

Technology 4 -42.62 -8.48 2.16 -6.11 10.43 46.46 38.77 33.44 33.43 45.83
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Table A1: Summary Statistics of Individual Names
This appendix table reports ratings, 5-year CDS spread, equity volatility, leverage ratio, asset
payout, and recovery rate, for each of the 93 firms similar as those by ratings and sectors in Table
1.

Last Five Yr Equity Leverage Asset Recovery

Company Rating CDS (%) Volatility (%) Ratio (%) Payout (%) Rate (%)

Air Prods & Chems Inc A 0.238 28.358 33.067 2.086 40.863

Albertsons Inc BBB 0.692 35.540 54.662 3.650 41.008

Amerada Hess Corp BB 0.817 28.458 61.871 2.929 40.081

Anadarko Pete Corp BBB 0.427 31.244 47.816 1.688 39.439

Arrow Electrs Inc BBB 2.175 44.325 62.279 2.259 39.269

Autozone Inc BBB 0.708 33.269 30.222 0.827 41.977

Avon Prods Inc A 0.230 27.128 17.924 0.998 41.353

Baker Hughes Inc A 0.298 39.469 20.584 1.764 40.833

Baxter Intl Inc BBB 0.493 39.739 33.159 1.739 40.526

BellSouth Corp A 0.550 43.254 39.213 3.308 41.848

Black & Decker Corp BBB 0.389 29.569 45.897 1.566 42.200

Boeing Co A 0.517 36.815 56.877 1.744 39.336

BorgWarner Inc BBB 0.572 29.766 48.270 1.285 40.623

Bowater Inc BB 2.751 30.755 62.578 3.583 41.287

CSX Corp BBB 0.607 29.651 69.128 2.305 40.486

Campbell Soup Co A 0.319 27.171 36.114 2.699 40.063

Caterpillar Inc A 0.350 32.081 57.902 1.992 40.122

Cendant Corp BBB 1.595 42.626 59.864 1.291 39.440

Centex Corp BBB 0.895 41.148 69.613 2.543 40.670

Clear Channel Comms Inc BBB 1.413 45.192 35.378 1.487 40.789

Coca Cola Entpers Inc A 0.327 34.774 68.903 2.281 40.019

Computer Assoc Intl Inc BB 2.889 54.727 35.045 1.044 35.840

Computer Sciences Corp A 0.565 41.122 43.578 1.182 39.763

ConAgra Foods Inc BBB 0.470 27.510 43.829 3.516 39.320

Corning Inc BB 5.412 80.739 41.995 1.138 36.807

Delphi Corp BBB 1.470 40.828 77.164 1.535 40.539

Delta Air Lines Inc CCC 18.806 81.939 93.931 2.885 26.566

Devon Engy Corp BBB 0.732 31.487 56.495 2.281 40.513

Diamond Offshore Drilling Inc BBB 0.488 39.213 32.696 1.701 40.833

Dow Chem Co A 0.817 35.536 48.723 3.166 39.775

E I du Pont de Nemours & Co AA 0.241 30.318 37.916 2.574 41.409

Eastman Kodak Co BBB 1.317 37.618 56.431 2.550 38.839

Eaton Corp A 0.335 27.783 42.526 1.527 40.815

Electr Data Sys Corp BB 2.087 51.554 50.321 2.332 40.349

Eli Lilly & Co AA 0.219 35.486 13.956 1.898 40.494

Fedt Dept Stores Inc BBB 0.675 38.303 54.236 1.966 41.664

Ford Mtr Co BBB 2.977 47.060 92.612 2.769 41.849

GA Pac Corp BB 3.824 48.523 74.892 3.547 42.054

Gen Elec Co Inc AAA 0.427 36.356 63.713 2.223 40.883

Gen Mls Inc BBB 0.539 24.225 44.680 3.095 41.508

Gen Mtrs Corp BBB 2.434 35.537 94.017 2.595 41.278

Gillette Co AA 0.147 28.421 17.574 1.672 40.977

Goodrich Corp BBB 1.230 35.427 61.064 3.187 39.736

Goodyear Tire & Rubr Co B 7.671 65.509 88.106 2.245 39.840

H J Heinz Co A 0.310 23.404 39.061 3.199 41.748

Hilton Hotels Corp BBB 2.141 36.860 51.553 2.754 41.065

Home Depot Inc AA 0.222 39.170 14.502 0.741 42.223
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Table A1: Summary Statistics of Individual Names (continued)

Last Five Yr Equity Leverage Asset Recovery

Company Rating CDS (%) Volatility (%) Ratio (%) Payout (%) Rate (%)

IKON Office Solutions Inc BB 3.460 48.604 73.673 1.337 38.221

Intl Business Machs Corp A 0.381 31.166 32.683 0.578 39.991

Intl Paper Co BBB 0.740 30.566 58.274 2.944 39.674

J C Penney Co Inc BB 2.949 45.576 61.984 2.343 37.818

Jones Apparel Gp Inc BBB 0.634 32.547 26.906 1.353 41.338

Kerr Mcgee Corp BBB 0.745 26.472 59.613 3.398 41.242

Lockheed Martin Corp BBB 0.501 32.241 44.982 1.815 41.173

Lowes Cos Inc A 0.356 36.642 19.222 0.587 41.788

Ltd Brands Inc BBB 0.584 44.878 21.283 3.854 41.529

Lucent Tech Inc B 9.525 96.827 63.895 1.255 37.988

MGM MIRAGE BB 2.167 33.197 57.910 2.675 39.764

Masco Corp BBB 0.612 33.101 35.400 2.758 42.234

Mattel Inc BBB 0.534 35.721 21.203 2.269 40.322

May Dept Stores Co BBB 0.608 36.953 52.074 3.923 41.765

Maytag Corp BBB 0.773 38.307 58.938 2.213 41.476

McDonalds Corp A 0.322 38.651 30.956 2.107 40.051

Nordstrom Inc BBB 0.609 40.304 43.145 1.555 41.820

Norfolk Sthn Corp BBB 0.471 36.021 61.054 2.704 39.724

Northrop Grumman Corp BBB 0.675 26.992 51.679 1.844 40.890

Omnicom Gp Inc BBB 0.906 36.220 42.475 0.887 40.262

PPG Inds Inc A 0.360 27.727 37.415 2.667 42.133

Phelps Dodge Corp BBB 1.780 38.034 48.840 1.877 41.547

Pitney Bowes Inc A 0.211 27.063 46.124 2.645 41.674

Praxair Inc A 0.291 28.048 33.167 1.730 42.060

Procter & Gamble Co AA 0.163 23.275 21.002 1.289 40.450

Rohm & Haas Co BBB 0.353 29.283 43.281 2.241 42.235

Ryder Sys Inc BBB 0.590 29.285 65.616 2.294 39.827

SBC Comms Inc A 0.598 43.723 42.509 3.587 38.423

Safeway Inc BBB 0.724 39.373 52.084 1.893 41.592

Sara Lee Corp A 0.281 28.465 42.474 2.900 39.904

Sealed Air Corp US BBB 2.349 35.792 44.043 1.820 37.390

Sherwin Williams Co A 0.396 29.004 32.345 1.896 41.694

Solectron Corp B 4.976 86.414 54.483 1.908 39.241

Southwest Airls Co A 0.723 43.900 29.447 0.624 40.323

The Gap Inc BB 2.889 50.769 27.086 1.429 41.034

The Kroger Co. BBB 0.754 39.574 55.452 1.960 41.729

Tribune Co A 0.413 25.200 34.934 1.500 41.228

Utd Tech Corp A 0.260 30.856 37.047 1.116 39.475

V F Corp A 0.323 25.458 31.046 2.687 38.877

Valero Engy Corp BBB 1.075 36.741 65.574 2.174 40.715

Visteon Corp BB 2.671 46.160 87.957 1.297 41.348

Wal Mart Stores Inc AA 0.193 32.359 20.540 0.991 39.991

Walt Disney Co BBB 0.714 43.767 38.906 1.644 39.191

Weyerhaeuser Co BBB 0.753 29.759 62.255 3.509 41.164

Whirlpool Corp BBB 0.477 31.043 58.506 2.305 40.512

Williams Cos Inc B 6.836 84.181 83.953 3.724 35.851
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Figure 1: Average CDS Spreads over the Entire Sample
This figure plots the average CDS spreads of 93 firms with maturities ranging from 1 year to
10 years from January 2002 to December 2004. CDS spreads are in annualized percentage.
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Figure 2: CDS Spreads and Equity Volatility
This figure plots the time series of average 5-year CDS spreads and equity volatility by the
rating groups (A-AAA, BBB, CCC-BB). Equity volatility is estimated based on 5-minute
intraday stock return data.
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Figure 3: Leverage Ratio and Default Boundary
These are scatter plots between the oberserved debt/asset ratios and the estiamted bar-
rier/debt ratios of all the 93 firms for constant barrier models—Black and Cox (1976),
Longstaff and Schwartz (1995), and the double exponential jump diffusion model (Huang
and Huang, 2003).
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Figure 4: Observed and Model Implied CDS Term Structure
The figure plots time-series average CDS term structure by three rating groups. The five
model specifications considered include Merton (1974), Black and Cox (1976), Longstaff and
Schwartz (1995), Collin-Dufresne and Goldstein (2001), and the double exponential jump
diffusion model (Huang and Huang, 2003).
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Figure 5: Observed and Model 5-Year CDS Spreads
This figure plots the time series of observed 5-year CDS spreads and model implied ones
estimated from five structural models — Merton (1974), Black and Cox (1976), Longstaff
and Schwartz (1995), Collin-Dufresne and Goldstein (2001), and the double exponential
jump diffusion model (Huang and Huang, 2003).
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Figure 6: Observed and Model Implied Equity Volatility
This figure plots the realized volatility—estimated based 5-minute intraday stock returns—
and model implied equity volatility extracted from five structural models—Merton (1974),
Black and Cox (1976), Longstaff and Schwartz (1995), Collin-Dufresne and Goldstein (2001),
and the double exponential jump diffusion model (Huang and Huang, 2003).
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Figure 7: Observed Spot Leverage and the Long-Run Mean of Risk-Neutral Leverage
This figure plots the time series of leverage ratio (debt/asset) across three rating groups.
The long-run mean of the risk-neutral leverage is estimated using the Collin-Dufresne and
Goldstein (2001) model.
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