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ZERO BOUND, OPTION-IMPLIED PDFS, AND
TERM STRUCTURE MODELS

DON H. KIM*

ABSTRACT. This paper points out that several known ways of modeling non-negative
nominal interest rates lead to different implications for the risk-neutral distribution of
the short rate that can be checked with options data. In particular, Black’s boundary
models (“interest rates as options”) imply a probability density function (pdf) that
contains a Dirac delta function and a cumulative distribution function (cdf) that is
nonzero at the zero boundary [P(K) « K behavior for put option price for strike K near
0], while models like the CIR and positive-definite quadratic-Gaussian (QG) models
have a zero cdf at the boundary [P(K) o« K¢, « > 1]. Eurodollar futures options data
are found to favor Black’s boundary models: the CIR/QG models, even multifactor
versions, have difficulty capturing option prices accurately not only in low interest rate
environments but also in higher interest rate environments, and data in early 2008
provide an almost tangible signature of the Dirac delta function in Black’s boundary
pdf models. Options data also contradict the prediction of well-known models whose
cdf is zero at the zero boundary, namely that the risk-neutral pdf is always positively
skewed.

1. INTRODUCTION

It is well known, at least since Breeden and Litzenberger (1978), that options at a
broad range of strikes can provide information about the whole risk-neutral distribution
of the underlying security prices, not just mean and variance. Policy makers and market
participants have utilized this fact to deduce the risk-neutral distribution of short-term
interest rates from eurodollar futures options or federal funds futures options, and many
studies have explored techniques that are useful in this regard and discussed their appli-
cations to various settings.! However, this literature so far has not made much connection
with the vast literature on dynamic term structure models, i.e., relatively little work has
been done to investigate what the option-implied risk-neutral distribution tells about
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the underlying stochastic process of interest rates and whether known term structure
models can capture the risk neutral distribution implicit in option prices.> The present
paper is a contribution toward filling this gap.

We shall be focusing in particular on the the zero boundary behavior of the short
rate and its ramifications for term structure models. Perhaps the best known model
that recognizes the presence of the zero bound is the CIR model, written down by Cox,
Ingersoll, and Ross in their seminal paper (1985). This type of model has the feature
that the cumulative distribution function (cdf) of the short rate vanishes as the short
rate approaches zero. A different treatment of zero-boundary behavior was proposed by
Fischer Black in his last paper (1995), in which the nominal short rate is modeled as
r¢ = max[zy, 0], where z; is a “shadow-rate” process that can go below zero. As we shall
see, this type of model implies a short rate cdf that is nonzero at the zero boundary.
Proper modeling of the behavior near the zero boundary (e.g., whether it is better
described as CIR-like, Black-like, or something else) is a basic and historically important
problem in term structure modeling, but it has significance beyond that, as different
boundary behaviors could signify different underlying macroeconomic mechanism of the
interest rate determination.

In the case of Japan, studies by Gorovoi and Linetsky (2004) and Ueno, Baba, and
Sakurai (2006) using yields data give strong support for Black-type models. However,
some might argue that this conclusion does not necessarily carry over to the postwar
US economy.® Indeed, non-negative interest rate modeling with US data has so far been
predominantly in terms of models whose short rate cdf is zero at the zero boundary, e.g.,
the BGM model (Brace, Gutarek, and Musiela (1997)), the multifactor CIR model, the
quadratic-Gaussian (QG) model, and the non-affine model of Ahn and Gao (1999).* As
the US short rate in the past 50 years has not been low enough to see a significant effect
of the zero bound on the yield curve,® the distinction between the two types of models
is difficult to discern from yields data. A key point of the present paper is that data on
out-of-money options can help, as the models may imply strong enough differences in
risk-neutral distributions, especially near the zero bound. Recently (early 2008), short-
term interest rates have come down to a fairly low level while uncertainty about interest
rates has remained relatively high, thus it is particularly interesting to explore what the

*Hérdahl (2000) and Hérdahl and Vestin (2005) explore the risk-neutral and physical measure prob-
ability density functions of certain term structure models, but they do not apply the models to actual
options data.

3In the US, interest rates seemed to display a Black-like behavior during the Great Depression of
1930s, which may have been one of the motivations for Black’s paper (1995, see p1376). The analysis of
the yield curve during that period is complicated by certain institutional effects; see Cecchetti (1988).

4Some results in the literature could be construed as an indication of reflection-like behavior. For
example, Goldstein and Kierstead (1997) note that according to Ait-Sahalia (1996) the US short rate
in the 1973-95 period had (physical-measure) dynamics that was similar to a Brownian motion with
two reflecting barriers.

"Bomfim (2003) notes that even when the federal funds target rate was at the historical low of 1%
in 2003, the effect of the zero bound was not very tangible in the yield curve.
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options data from this episode tell about term structure models. Beyond fundamen-
tal theoretical interest, modeling of risk-neutral distribution in such environment is an
important practical problem for market participants as well.

This paper makes largely two contributions. The first is to explore the implications
of well-known and tractable term structure models that respect the non-negativity con-
dition for nominal interest rates (e.g., the multifactor positive-definite CIR/QG models)
for the risk-neutral distribution of the short rate. In particular, this paper derives the
asymptotic form of their risk-neutral probability density function (pdf) at vanishing in-
terest rates (relevant for the discussion of the behavior near the zero boundary), which
does not seem to have been explored in the literature. This paper also develops a
method for fast computation of option prices for the risk-neutral distribution implied
by the multifactor CIR model and (positive-definite) QG model, and explores how well
these models perform in matching the observed out-of-money eurodollar futures option
prices. In addition, this paper points out that known models which have zero cdf at the
zero boundary imply a fairly strong restriction on the shape of the distribution, namely
that the distribution is always positively skewed, and examines whether this prediction
is born out in the options data. The second contribution is to examine the implications
of Black-type boundary models for option prices and option-implied pdfs. After deriving
the risk-neutral pdf of the simplest Black’s boundary model (“Black-Vasicek model”),
this paper develops flexible parametric models of risk-neutral pdf that are consistent
with Black’s boundary behavior and lead to convenient calculation of option prices, and
explore their practical performance.

The main findings are as follows. A flexible parametric pdf model with Black’s bound-
ary behavior (normal-mixture shadow rate model) is found to perform quite well in
matching the option prices across various strikes in a variety of interest rate environ-
ment from 1998 to 2008. The model produces implied prices of the 1-year-maturity
0.5%-strike eurodollar futures option in February and March of 2008 that agree fairly
well with actual settlement prices. On the other hand, the traditional lognormal-mixture
pdf model and 2-factor and 3-factor (positive-definite) CIR/QG models substantially un-
derprice this “low-strike” put option. The CIR/QG models have difficulty matching the
option prices accurately not only in low interest rate environments but also in higher
interest rate environments, often generating large and biased pricing errors. In addition,
options data contradict these models’ prediction that the skewness of the pdf is always
positive.

The remainder of this paper is organized as follows. Section 2 sets up the stage for the
later parts of the paper, discussing empirically important zero boundary behaviors and
reviewing the risk-neutral pdf extraction techniques. It also introduces a mathematical
object called the Dirac d-function, which seldom appears in finance literature but is
needed for the discussion of the pdfs with Black’s boundary behavior. Section 3 examines
the pdfs and option prices in one-factor models, comparing Black’s boundary model with
CIR/QG models. Section 4 examines richer pdf models and develops useful techniques
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for them; the application of these models to actual options data and the empirical results
are discussed in Section 5. Section 6 concludes.

2. PRELIMINARY DISCUSSION

2.1. “Zero-cdf model” vs Black’s model. Nominal interest rates cannot go below
zero. The best known model that respects this condition is the CIR model. This model
is nested by the so-called CEV model®

(1) dry = k(0 — ry)dt + orid By,

which admits two kinds of boundary behavior: when a > 1/2, the short rate r; does
not reach zero, i.e., zero is an inaccessible boundary (also called unattainable boundary).
When a < 1/2, the short rate r, can reach zero; in this case, zero is an accessible
boundary. The CIR model (o« = 1/2) can display both behaviors depending on the
parameters. More specifically, if the Feller condition

(2) k0/o® > 1/2

is satisfied, the zero boundary is inaccessible, and if not, it is accessible.

In the accessible boundary case (o < 1/2, or a = 1/2 and kf/c* < 1/2), zero is
a regular boundary (according to the terminology of Feller (1952)),” and additional
conditions at the boundary can be imposed. For example, requiring that r; stay at zero
forever after it hits the zero boundary amounts to having an absorbing boundary. As
the permanent stay of the short rate at zero would not be a promising description of
the actual economy, we shall not consider the absorbing boundary scenario further in
this paper, and instead focus on the regular “unrestricted boundary behavior”, after
Longstaff (1992).

Most of the non-negative interest rate models applied to the US data have been either
inaccessible boundary models or regular unrestricted boundary models. The former
include the CIR model with kf/c? > 1/2, the BGM model, and Ahn and Gao (1999)’s
non-affine model. The latter include the CIR model with kf/0* < 1/2 and (positive-
definite) quadratic-Gaussian model (Beaglehole and Tenney (1992)). All these models
(i.e., both the inaccessible boundary models and regular unrestricted boundary models)
share the feature that the cdf of the conditional distribution of the short rate is zero at
the zero boundary. Therefore, in this paper we shall refer to these models collectively
as “zero-cdf models”, for brevity.

6This model (in the physical measure) was empirically investigated by Chan et al (1992), who ob-
tained an « estimate of 1.5.

"See, also Karlin and Taylor (1981, Chap 15).

8Longstaff (1992) calls the bond pricing for the CIR model without further conditions “the unre-
stricted equilibrium”. One could consider yet other types of boundary condition, such as those leading
to “sticky boundary” or “elastic boundary”, but these yield much less tractable models, and I am not
aware of any studies in the finance literature that have explicitly investigated these possibilities.
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Let us now discuss Black’s boundary models. As the short rate in these models can
stay at the zero boundary for an extended period, they have the feature that a finite
probability mass is concentrated at the point » = 0; this means that the probability den-
sity function of the conditional distribution, f(r), is infinite at » = 0. Mathematically,

(3) Prob(r = hm/f Jdr=w >0, = f(r=0)=o0.

e—0t

A natural way to describe such a distribution is to use the Dirac J-function, which is
defined as®

(4) 5(x) = {O‘i llffifgi% /_OO 5(x)dr = 1.

[e.e]

It has the property [~ h(z)é(x — a)dz = h(a), where h(-) is an arbitrary function, and
it can be thought of as the pdf of a normal distribution (or any other distribution) with
a vanishing variance, i.e.,

(5) 5(z — @) = lim —— exp (-M) |

Using the d-function, the pdf of Black’s boundary models can be expressed as'®
(6) f(r) =wé(r) + f(r)

where f(r) is an improper probability density function with support at [0,00] (i.e.,
[ fr)dr =[5 frydr=1—w < 1).

The cumulative distribution function of the short rate, F'(r f f(s)ds, takes the
form

(7) F(r)=w+ /0 ' f(s)ds

(for r > 0). Note that the presence of the d-function in the pdf translates to a nonzero
cdf at the zero boundary (more precisely, lim, o+ F'(r) # 0).

2.2. Option-implied risk-neutral pdfs. Consider a eurodollar futures option with
strike K and maturity 7.!! Let 7 denote the futures rate at the maturity of the option,

9See, for example, Dirac (1958, p58). One place the d-function appears in the finance literature is in
the specification of initial conditions for the Kolmogorov (Fokker-Planck) equations; see, e.g., Goldstein
and Kierstead (1997).

ONote, incidentally, that the pdf of the absorbing boundary models also contains a delta function.

HIn the case of eurodollar futures options, the futures price is quoted as 100 — [futures rate].
Therefore, a put option on futures contract (futures price) is a call option on futures rate. In this paper,
“put option” will always mean put option on the futures rate, and “strike” is in terms of futures rate
(not futures price).
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and let f,(7) be the risk-neutral pdf of 7. The put option price P,(K) and the call
option price C,(K') can be expressed in terms of f, as

®) PAK) = / (K — #)f, (7)d,

[e.9]

Ck) = e [ - K
K
where the prefactor e”"#” denotes the price of a zero-coupon bond maturing 7 periods
hence.!? In the case of the eurodollar futures options, the futures rate at the option
maturity is the 3-month LIBOR. For simplicity, we shall treat this rate as the short rate
of interest, and drop the “tilde” symbol from 7.
Taking successive derivatives of both sides of eq. (8) gives a simple formula for the

pdf,
(9) f(K) — 6T’fTP//(K) — 6T’fTC//(K)’

where the double prime notation denotes second derivatives; the maturity index 7 has
been dropped for notational simplicity. In practice, options are available at discrete
values of K (say, K7, K% ... for put options and K¢, K§, ... for call options), and ob-
served prices could contain some errors. Taking numerical second derivatives (with an
interpolated function) to obtain f(r) typically leads to unrobust results.'> Therefore, a
common practice is to assume a flexible functional form for f(r;~), where 7 collectively
denotes the parameters of f, and solve the least squares problem

(10) ¥ = argmin((y),
C(v) = Z(POb(Kf’) — P(KP))? + Z(COb(Kf) — C(KQ))? + (F* = F)°

where the superscript ob denotes the observed values. Including the futures pricing er-
ror helps to pin down the mean of the distribution; note that the model-implied current
futures value F is E(r) = [*_r f(r;~y)dr. This least squares problem amounts to min-
imizing the pricing errors in absolute terms. Because options far out of money tend
to have very low prices, this metric in effect substantially discounts the information in
such options, as compared to near-the-money options. One could also consider min-
imizing the pricing errors in relative terms (i.e., replacing (P — P)? in eq. (10) by
(P — P°*)?/P%2 etc.), but this is not advisable, as the farther out-of-money options

2More precisely, we have Pr(K) = Elexp(— Jy rsds)max[0, K — 7]], where E denotes
the risk-neutral expectation. — Making the approximation FEexp(— fOT rsds)max[0, K — 7] =
Elexp(— [y rsds)]E[max[0, K — 7]] (which is common in this literature) gives eq. (8).

BTo overcome this problem, Shimko (1993) proposed to fit a smooth functional form for the Black-
Scholes implied volatility and then take derivatives of the Black-Scholes formula, but this method does
not tell much about the tail parts of the pdf.
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prices are expected to be less reliable, due to their lower liquidity and more pronounced
market microstructural effects (minimum tick sizes, etc.).

There are many possibilities for parametrizing f(r;v). The general wisdom is that a
flexible parametric form with 4 to 6 parameters is sufficient to match observed option
prices at various strikes.'* A parametrization substantially richer than this can often lead
to strange implications at minimal improvements in the fit of option prices (overfitting).

Perhaps the most popular parametric form is the “mixture of lognormals”:?

_ 1 (logr — p11)? 1 (logr — p2)*
(11) f(r) = ﬁm exp <—T> +(1_ﬁ)\/2_70'27” exp <_T> .

Note that if 5 =1, eq. (11) becomes just the lognormal distribution, which is an implicit
assumption behind the so-called Black implied-volatility formula (Black (1976)), which
is often used to quote cap/floor and swaption prices. Parametric forms like f(r) in
eq. (11) cannot be derived from known classes of term structure models. However,
certain parametric forms can be derived from a specific class of term structure models.
In Section 4.1, we shall discuss such an example, where an implicit parametric form for
f(r) is derived from the multifactor CIR and quadratic-Gaussian models.

It is also worth noting that despite the typically good performance, forms like (11)
do have a limitation that is particularly relevant to our problem (pdf modeling in the
proximity of the zero bound). Because the lognormal distribution has the feature that
f(r) — 0 as r — 0, the form (11) can have difficulty when the actual distribution
contains a J-function at » = 0. As noted earlier (eq. (5)), the delta function §(r) can
be approximated by a lognormal distribution with mean and variance close to zero,
which can be achieved by having a small o; and a large and negative py in eq. (11),
but in such a two-component mixture model this may incur a substantial cost in the
fit of other aspects of the pdf. Section 4.2 develops parametric forms for f(r) that can
describe Black’s boundary behavior more easily and naturally.

To have a manageable scope, this paper will be focusing only on the processes and
distributions in the risk-neutral measure (which determines pricing), and not the physical
(real world) measure.'® Therefore, henceforth we shall often drop the adjective “risk-
neutral” for brevity.

3. ONE-FACTOR MODELS

3.1. Black-Vasicek model. Let us now derive the pdf and option prices for the sim-
plest Black’s boundary model, which has the shadow rate described by the one-factor

14Gee, e.g., Jackwerth (2004)’s survey and the papers in BIS (1999).

5MeManus (1999, included in BIS (1999)) has compared with performance of the lognormal-mixture
pdf with other parametric forms in the context of eurodollar futures options.

Nonetheless, the risk-neutral and physical processes take the same (or similar) form in many term
structure model specifications, thus many of the qualitative findings in the present paper also apply to
the physical measure as well.
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Vasicek process:
(12) ry = max|0,z,
(13) dry = k(0 —x)dt + odB;.

This model, which we shall refer to as the “Black-Vasicek model,” has been theoretically
and empirically studied by Gorovoi and Linetsky (2004) and Ueno, Baba, and Sakurai
(2006) and others, but its risk-neutral pdf has not been discussed in the literature, to
my knowledge.'”

The conditional distribution of this model, i.e., the transition density f(r..,|F;), can
be easily obtained if one thinks in terms of the shadow rate process x; rather than the r;
process. Note that if x;,, > 0, we have r;,, = x;,,; hence in this case, the distribution
of r,, equals that of x;,.. On the other hand, if z;,, < 0, we have r,,, = 0. Thus all
scenarios in which x;,, is non-positive maps to a single point r;,, = 0. Therefore, we
have

(14) f(ripr|my) = fS(!L"t+T|ZEt) [(244r) + w(2t) 6(T44),

where f%(xy,,|7;) denotes the transition density of the z; process, w(x;) is the weight
of f(z4,+|z¢) in the nonpositive region, i.e.,

0
(15) wa) = / 15 (Trar|0) e,

and I(z) is the indicator function (I(z) = 1 for z > 0 and I(z) = 0 for z < 0). It
may be of interest to note that the distribution in eq. (14) can be thought of as a
special case of the “mixture” distribution, consisting of a truncated normal distribution
m 3 (xsr|7e) I(241-) and an infinitely sharp distribution §(x,y,) with weights 1 —
w(zy) and w(zy), respectively.

The transition density function f°(zy,|z;) for the Vasicek process is well-known:
Since the stochastic differential equation (13) has the solution

(16) Tppr =€ T+ (1 —e )0+ /T e "4 B,
0

the random variable = x,,, is conditionally normally distributed!®
(17) x ~ N(ji, &%),
with conditional mean and variance given by
(18) p o= e+ (1—e")0,

5 = ‘7—2(1 — e ),

2K

17Gorovoi and Linetsky (2004) derive an expression for the option prices in the Black-Vasicek model
using eigenfunction expansions, but they do not discuss pdfs.
1811 this paper, the symbol ~ means “is distributed as”.
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Figure 1: Black-Vasicek model pdf (a) and cdf (b). The vertical line at 0 in Figure (a) pictures a delta
function.

Thus, suppressing time indices and simplifying notations, we have the conditional
distribution of the short rate given by

(19) Fry =0 + 30 (25 ) 10

o
where w = ®(—f1/5), and ¢(-) and ®(-) are the standard normal pdf and cdf, respectively

(ie., ¢p(x) = e/2/\/2r, ®(x) = [*_dte ¥/?/y/2m). Integrating eq. (19) gives the
cdf, '

(20) F(r) = [w+®((r —p)/6) = &(=a/)]1(r) = &((r — f)/7)I(r).

The pdf and cdf of the short rate in the Black-Vasicek model are illustrated in Figure
la,b. The dashed line in Figure 1b is the part of the shadow rate distribution that
collapses onto the delta function at » = 0, denoted by a vertical line at zero in Figure
(a). Note also that the cdf F(r) approaches a finite number as r — 07 (Figure (b)).

The prices of T-maturity put/call options with strike K are straightforward to evalu-
ate. Substituting eq. (19) into eq. (8), we have

(21) P(K) = e "wK + (K = p)(®(k) — ®(—/5)) + 5(o(k) — ¢(=/5))],
(22) C(K) = e oo(k) — (K — i) (1 — ®(k))],
where k = (K — 1)/65.

Note that the indicator function I(r) and the Dirac delta function 6(r) are related by the identity
% = §(r). Thus, taking the derivative of eq. (20), we recover the expression (19).
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3.2. Two zero-cdf models. Let us now consider two well-known and tractable positive
interest rate models: the CIR model and the QG model. The CIR model is given by

(23) th = li(e - Tt)dt + U\/FtdBt.

It is well known (CIR, 1985) that the random variable r = r;,, in this model is condi-
tionally distributed (at time t) as

(24) o~ b,

where X7 , denotes the noncentral chi-squared random variable with v degrees of freedom
and noncentrality parameter A\, and

0.2(1 _ €_HT)

25 h =
(25) P
_ 4k0
)
4
A = —Ii G_KTT}.

o2(1 — e
Consider now the positive-definite 1-factor QG model
(26) r o= a2,
dry = k(0 — zy)dt + odB;.
Since the random variable x = 2, is conditionally normally distributed (eq. (17)), it

can be seen immediately that the distribution of random variable r = r;,, is given by
eq. (24), i.e., the same form as the CIR model, with

2

(27) b o
v = 1
A= e

where fi and & were given in eq. (18).
The pdf of the r ~ by}, distribution (CIR/QG models) is given by

(28) f) =139 (%) 10,
with
(20) o) = ge 02 (D) 0 Vo),

where I, () is the modified Bessel function of the first kind of order a.?® The option prices
and cdf are not available in simple form for this distribution, but it is straightforward
to compute them by one-dimensional numerical integrations with f(r).

205¢e, for example, Johnson, Kotz, and Balakrishnan (1994).
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3.3. Comparing the model implications. To get a feel for the qualitative differ-
ence between Black’s boundary models and zero-cdf (CIR/QG) models, it is instructive
compare the behavior of the pdf f(r) in the r — 0 limit.

For the CIR/QG model, expanding the expression (29) in powers of r, using the
well-known series expansion of the modified Bessel function of the first kind

R (22/4)7

(30) lo(2) = (32)° 2 TG+ e+ + 1)
gives

e M2 v e M\ —v v v
(31) F(r) = A=v) 5y opin),

@)ET(Z) T 2@h)ET(E 1)

where the notation O(r") denotes terms of order n or higher.?’ Thus, the cdf is given
by

e~ M2 v e M2\ —v)
Yy % rz 4+ L v %
(2b)25T(%) 2(2b)z (¥ + DI(5 + 1)

From eq. (31) it can be seen that depending on v, we can expect qualitatively different
behavior of f(r):

(33) lim f(r) = {go <2

(32) F(r) = ratl L O(ret?).

r—0 v > 2.

Recall that, for the CIR model (eq. (23)), v is given by eq. (25), therefore, the condition
v > 2 is the same as Feller condition (k6 > 502). It makes sense that accessible boundary
case (Feller condition violated) shows more probability density in the low 7 region than
the inaccessible boundary case.

Note also that since v = 1 for the QG model, we have lim, . f(r) = oo for the QG
model. As the zero boundary is accessible in the QG model (since z; in eq. (26) is
unrestricted, it can reach zero), it shows a qualitatively similar small-r behavior as the
CIR model with violated Feller condition. It should be noted, however, that an accessible
zero boundary does not always imply lim, o f(r) = oo, as we shall see with the case
of the 3-factor QG model (Sec. 4.1). Note also that even in the case lim,_q f(r) = oo
(one-factor CIR model with violated Feller condition and the QG model), the cdf is zero
at 7 = 0, since F(r) oc r*/? in the 7 — 0 limit.

The small-r behavior of the pdf in eq. (31) implies that the put option price for small
strike K is given by

e~ N2 4

(20)5T(%) v(v + 2) K2+ O,

@) PU) = e [ =y = e

21This result can be also derived using the Laplace transform technique, as shown in Appendix A.
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Figure 2: (a) The Black-Vasicek pdf (thick solid line) and inacessible boundary CIR/QG model pdf
(thin dashed line). (b) Accessible boundary model pdf (thin solid line). (c) Put option prices for
the Black-Vasicek model (thick solid line), accessible boundary CIR/QG model (thin solid line), and
inaccessible boundary model (thin dashed line). (d) Same as (c).

These asymptotic behaviors of CIR/QG models can be compared with the those of
the Black-Vasicek model:

(35) fr) = wilr) + M +0(r)
() = wt PEHT o)

P(K) = e mwK + O(K?).

(for r, K > 0), which are easily derived from the formulae in Section 3.1.

Figure 2 graphically illustrates the qualitative difference between Black’s boundary
models and CIR/QG models. Figure 2a plots, in thick solid line, the pdf of the Black-
Vasicek model with parameters in eq. (19) given by g = 2,6 = 1.2, which imply
w = 0.0478. It also shows, in thin dashed line, the pdf of the r ~ by , model with v =3
(corresponding to the CIR model satisfying the Feller condition), whose b and \ were
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determined such that the model matches the mean and variance of the Black-Vasicek
model;*? requiring the means and variances of the distributions be similar amounts to
having comparable at-the-money option prices. Figure 2b shows the pdf of the r ~ bxi A
model with v = 1 (corresponding to the CIR model violating the Feller condition and
the QG model) in thin solid line. As discussed with eq. (31), this pdf has a singularity
of the form 7~1/2, but it has a local minimum at a point very close to zero,?® and above
that it looks similar to the pdf of the r ~ bxg’)\ distribution with v = 3 (i.e., Figure 2a).

Despite the rough similarity in the shape of the pdf of the Black-Vasicek model and
the r ~ bx?j:L , model, the model-implied put prices are drastically different, with the
Black-Vasicek model producing far larger numbers, as shown in Figure 2c. This is
because the r=/2 singularity in the r ~ bx2_, , model is a much weaker singularity than
the o-function singularity in the Black-Vasicek model; to put it simply, Black’s boundary
model has a much larger probability weight at or near zero than the CIR/QG model.
Note also that in the low interest rate region the Black-Vasicek model shows a linear
dependence on K, as predicted by eq. (35).

Although the r, K — 0 behavior of the pdfs and put option prices derived above for
the one-factor Black-Vasicek and CIR/QG models are useful for getting a firm handle
on the zero boundary behavior of these models, these predictions might not be cleanly
testable empirically, as options might not exist (trade) at very low strikes, and even if
they existed their quality may be in doubt. Furthermore, certain market realities (to
be discussed at the end of Sec. 5.2) may blur the clean asymptotic behaviors. Still,
even if one moves onto regions where the asymptotic behaviors like (34) and (35) are no
longer accurate, the basic intuition would still carry over, and one would expect Black’s
boundary model to produce higher put option prices for small K’s than zero-cdf models
(with comparable mean and variance) when the rates are low enough (or the distribution
is wide enough) that the weight of the J-function piece in Black’s boundary model is
non-negligible. This is illustrated in Figure 2d (which plots the same objects as Figure
2c but on a larger scale). It is also interesting to note that the put option prices for
the 7 ~ bx;_s, model (inaccessible boundary) and the r ~ bx?_, , model (accessible
boundary) are quite similar, beyond the very small K region.

4. RICHER PARAMETRIC FORMS

The one-factor models considered in the previous section, though instructive, may be
too parsimonious to capture option prices accurately for a broad range of strikes. Let us
now therefore consider richer versions of zero-cdf models and Black’s boundary models.

*!Since the mean and variance of the r ~ by? , distribution are given by b(v + A) and 2b%(v + 2)),
respectively, for a given v (= 1,3 here) one can easily solve for b and .

2The approximate location of this point can be determined by setting the derivative of eq. (31) to
zero and solving for r.



14 D. H. KIM

4.1. Multifactor zero-cdf models. A non-negative, multifactor version of the CIR
model can be constructed by adding up independent CIR factors:

(36) ry = X1+ Top+ o+ Ty,

dl‘it = Iil(el — xlt)dt —+ O'i\/xitdBit
where the Brownian motions By, Bo;,.. are independent of each other. This “multifactor
CIR” model has been used in many settings, e.g., Duffie and Singleton (1997) and
Feldhfitter and Lando (2007).2*

Because x;’s are independent, the results about the 1-factor CIR model carries over
easily; it is straightforward to show that the distribution of r = ry, is given by

(37) r~ b1X12/1,)\1 + b2X12/2,)\2 _'_ U + b”X?/n,)\»,ﬂ (bl > 0)7

where x7, ).’s are independent noncentral chi-squared random variables with v; degrees
of freedom and noncentrality parameter \;, and

o2(1 —e ™)

38 b —
(38) I
4Hi‘9i
v, =
o;
4 i — KT
)\i = L$it-

o2(1 — e—riT)
Let us now consider the general n-factor positive-definite QG model,

(39) o= (x— ) U(x, — ),
dXt = /C(@ - Xt)dt + ZdBt,

where the superscript T denotes matrix transpose; x; is an n-dimensional vector x; =
[Z14, .oy xnt]T; K and X are n x n constant matrices; « and # are n-dimensional constant
vectors, and B; is an n-dimensional vector of standard Brownian motions. In order to
insure the non-negativity of r;, we require ¥ to be a symmetric positive-definite matrix.

It is straightforward to show that the conditional distribution of the short rate in the
positive-definite QG model also takes the form (37),%® with

(40) b = d; (>0)
v, = 1

A= ([PTC7H (@ —a)li)?,

24The multifactor CIR model belongs to Dai and Singleton (2000)’s A;—,(n) affine model classifica-
tion. Other kinds of multifactor affine models (the A<, (n) models) are not considered in this paper,
as they do not respect the non-negativity condition for nominal interest rates. The concluding section
of this paper, however, does make some comments relevant to these models.

Z5For a derivation, see Ahn, Dittmar, and Gallant (2002, Appendix B).
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where C', i are given by

(41) fo= e x + (I —e 8,
(42) C = Chol(Q), (ie., Q=CCT),
(43) Q = /e"C(T_S)EETe_’CT(T_S)ds,

0

(the notation X denoting the matrix exponential), and d; and P are from the diagonal-
ization of the symmetric positive-definite matrix CTWC:

(44) CTvC =PDP ' =PDPT,

where D is a diagonal matrix with diagonal elements dy,ds, ..., d, (the eigenvalues of
the CTWC matrix). Note that the dependence of )\; on x; has been suppressed in the
notation.

Models like the multifactor CIR model have been criticized for the restrictive nature
of the factor correlation structure. However, the positive-definite QG models have been
widely believed to accommodate a rich factor correlation structure, due to the ability to
specify IC and ¥ flexibly; see, e.g., Ahn, Dittmar, and Gallant (2002). Therefore, it bears
emphasizing that not only the multifactor CIR model but also the positive-definite QG
model has a short rate distribution given by a positive linear combination of independent
noncentral y? random variables, and that this holds no matter how flezible the model is
and no matter how many factors it has.

The pdf f(r) and cdf F(r) of the distribution for the multifactor CIR/QG model
(eq. (37)) do not have simple closed-form expressions in general, but the characteristic
function f(w) = E(¢™7) has a simple expression

; - Ajbjiw
45 = 1 — 2b.iw) Vil? A bt et
(45) fw) =IJ0 -2 ow (1250 )
due to the independence of the noncentral x? variables in eq. (37). From this, f(r) and
F(r) can be computed by evaluating the well-known Fourier-inversion integrals (see,

e.g., Stuart and Ord (1994, Chap. 4)),

(46) F0) = 2 [ Re(e s
(47) F(r) = %+% /0 N Im(ewz(_“))dw.

The option prices P(K) and C(K) for this model (integrals (8)) are also not available
in closed-form, but they can be expressed in terms of certain cumulative distribution
functions. For the computation of pdfs from options data (eq. (10)), it is desirable to
have a formula that allows fast computation of option prices. Appendix B derives such
a formula, using the the celebrated saddle-point formula of Lugannani and Rice (1980).
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Let us now consider the small-r behavior of f(r). Appendix A shows that

e‘zi)‘lﬂ 1 1 Z()\ —I/)/4b 1
48 = Fuivi—1 AN ¢ (D 74 o)

This form has an interesting dependence on the number of factors: the exponent in the
leading term increases with number of factors. For the QG model, we have

00, n=1,
(49) f(r —0) = ( finite, n =2,
0, n = 3.

This pattern is due to the fact that when there are more factors it is less likely for r
to approach 0 since all of the factors have to become small. Therefore, higher-factor
QG models are even more different from Black’s boundary models insofar as the zero-
boundary behaviors are concerned.

To get further insights into the distribution described by eq. (37), it is useful to
examine its cumulants (hence moments), which is straightforward to calculate from the

~

cumulant generating function (log(f(—iw))). The mean, variance, and the third central
moment of this distribution are easily derived from the cumulants of the noncentral y?
variables (see, e.g., Johnson, Kotz, Balakrishnan (1994, p447)):

(50) E(r) = XLbi(vi + )
Var(r) = X2 b?(l/i +2)\)
El(r— E(r)’] = Zi,8b}wi+3\).

It can be seen that because b;,v;,A; > 0 for all i, the skewness
E[(r — E(r))%]/Var(r)? is always positive.

More generally speaking, one cannot create a negatively skewed distribution by form-
ing a positive linear combination of independent, positive-skewed random variables.
Therefore, a model like

(51) e = blllflt + bgl’gt + -+ bnl’nt, (bz > O),

where z;; is Ahn and Gao (1999)’s one-factor process for the short rate, would again
have the feature that the short rate distribution is always positively skewed.?®

4.2. Flexible pdfs with Black’s boundary behavior. This section develops flexible
parametric forms for the risk-neutral pdf that are consistent with Black’s boundary
behavior. The earlier discussion with the Black-Vasicek model points to the way: write

261 have not seriously attempted to prove that the conditional distribution of the short rate in Ahn
and Gao (1999)’s model [ry = 1/x;, dry = &(0 — x¢)dt +&\/zzdBy;, (&,0 > 0, 2k0 > &2)] is positively
skewed for all feasible values of the parameters, but I believe so, as the right tail of the distribution
is thicker and longer than the left tail. (It can be shown that f(r) oc 7=% %" (a > 7/4,b > 0) for
r — 0, and f(r) xr™® (a > 2) for r — c0.)
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down a flexible form for the shadow rate distribution f° that has some weight below
zero, and take

(52) F) = POl — 1) fwdlr—1),  w= / " def(a).

Here we have a slightly more general expression in which the lower boundary r is not
necessarily zero.

The distribution f° can be modeled with similar degree of parsimony as the pdfs
that are in use in the extant literature. A natural candidate for f° is the “mixture of
normals” form, i.e.,

Sy 1 (r — m)? 1 (r—p)*
(53)  fo(r) = /31\/%01 exp <_T%) +ﬁ2m0.2 P <_ 203 ) ’

where (B3 = 1 — (3. Another possibility is the Gram-Charlier/Edgeworth expansion

o0 Fw=te () (e e () s T (1) ),

where H; are Hermite polynomials (Hs(z) = 2 — 3z, Hy(z) = a* — 62% + 3, etc.). This
expansion differs from the Gram-Charlier/Edgeworth expansion commonly used in the
option-implied pdf literature by the fact that it uses unit normal variable, rather than
unit lognormal variable. Note that in both eq. (53) and (54), f* is allowed to have some
probability weight below r = 0.

These forms, which are richer than that of the Black-Vasicek model (eq. (19)), can
be viewed as accommodating a more complicated process for the shadow rate, e.g., a
multifactor model with stochastic volatility.

The formula for P(K), C(K) and F for the mixture-of-normals shadow rate model
(eq. (53)) and the Gram-Charlier /Edgeworth shadow rate model (eq. (54)) are provided
in Appendix C.

5. EMPIRICAL EVIDENCE

5.1. Empirical strategy. To examine how well zero-cdf models perform in matching
option prices, I have implemented two versions of pdf models, which we shall refer to as
the QG3 model and the CIR2 model:

(55) QG3 : T~ lei)\l + ngi)\z + b3Xi>\3’
(56) CIR2:  r~bixs, .\, + b2Xiyays

(bi, vi, i > 0). For Black’s boundary model, I have implemented the model in which the
shadow rate distribution is that of the mixture of normals, i.e., eq. (53), which we shall
refer to as the B-MN model.?” For comparison with a popular benchmark pdf, I have

2T have also explored empirically the Black’s boundary model with Gram-Charlier/Edgeworth
shadow rate distribution (eq. (54)), and obtained results that are similar to the B-MN model. For
brevity, only the B-MN model results will be reported in this paper.
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model pdf parameters description

QG3  by,bo,b3, A1, A2, A3 3-factor QG(CIR) models.

CIR2  by,bo,v1,v9, A1, A2 2-factor CIR(QG) models.

B-MN (31, 1, 42,01, 09 Black’s boundary; mixture of normals.
MLN 31, 1, b2, 01, 02 Mixture of lognormals.

Table 1: Summary of the models. The pdf parameters for the QG3 and CIR2 models are defined in
eqs. (55) and (56). The pdf parameters for the MLN and B-MN models are defined in egs. (11) and
(53), respectively.

also computed the pdf based on the mixture of lognormals, i.e., eq. (11), which we shall
denote as the MLN model. These four models are summarized in Table 1.

The QG3 model covers all possible 3-factor positive-definite QG models, but it also
includes a special case of the 3-factor CIR model (k;6; = 107). The CIR2 model covers
all possible cases of the 2-factor CIR models, but it also nests the 2-factor QG model.
This model also nests the Longstaff-Schwartz (1992) model, which was regarded by at
least Hordahl (2000) as a promising model for describing the short rate distribution.
In terms of the number of parameters, the QG3 and CIR2 models are richer than the
B-MN and MLN models by one parameter.

It is also worth noting that, because the QG3 and CIR2 models originate from specific
term structure models, the pdf parameters b;,v;, \; (1; = 1 for QG3) are linked to
the elementary parameters of the term structure model and the state variables z;;.%®
Therefore the pdf parameters can be obtained from an estimated term structure model.
However, there are many ways of estimating term structure models,?® which could lead
to different estimated elementary parameters and state variables, and in turn, different
pdfs. Therefore, in this paper we shall simply treat the pdf parameters for the QG3
model and the CIR2 model as free parameters to be determined in the optimization
problem (10), in the same way as the pdf parameters for the B-MN and MLN models
are determined. This way can be viewed as giving the QG3 and CIR2 model a maximum
chance to fit options data.*®

Lastly, note that the estimation of multifactor CIR and QG models in the literature
have often included a constant term in the short rate, i.e., r; = ¢+ xy; + - -+ + 2, and

Z8Recall, from eqs. (38) and (40), that ); in the multifactor CIR/QG models depend on ;.

For example, one could use just the current yield curve information (daily recalibration) or use
historical yields data to estimate the model in a time-consistent way. The estimation technique itself
could be of many variety (e.g., MLE, GMM, etc.). One could also opt or opt not to use options data in
the estimation.

30This is analogous to the daily recalibration of term structure models that is often done in finance
industry. Note that after setting the left hand side of eq. (38) or eq. (40) to the pdf parameters
determined this way, one can search for the elementary parameters and state variables that best fit the
yield curve, but the yield curve fit may be poorer than the unconstrained case.
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ry = c+ (x; — )T (x;, — ). Empirically, Duffie and Singleton (1997) obtained a negative
¢ for the multifactor CIR model, but in that case it is no longer a non-negative interest
rate model. Ahn, Dittmar, and Gallant (2002) obtained a positive ¢ in their estimation
of the QG model; in this case, there is no probability weight in the region [0, ¢|. In any
case, the inclusion of the constant term does not change major qualitative behaviors of
these models, including the prediction that the pdfs are always positively skewed.

5.2. Data. For the empirical investigation, we shall confine attention to the eurodollar
futures option with maturity of about 1 year. The 1-year maturity was chosen so as
to have a horizon that is reasonably short but at the same time long enough to have a
sizeable width of the distribution.

To get a sense of the performance of the models in a variety of contingencies, I have
computed the pdfs for the above four models for every last business day of the month
from May 1998 to March 2008. Besides these monthly data, I also have computed the
pdfs from a second dataset consisting of daily data from Feb 4, 2008 to April 28, 2008.
As we shall see, this period is particularly interesting as regards the zero boundary
behavior question.

The options data used in this paper are from CME (Chicago Mercantile Exchange).
The prefactor e "/7 in eq. (8) was computed using the 1-year LIBOR. The CME eurodol-
lar futures options are American options. I have converted their price into corresponding
European price by subtracting the early excercise premium computed based on Baroni-
Adesi and Whaley (1987)’s formula; these corrections tended to be fairly small.

The eurodollar futures options markets have fixed maturity dates (identical to ma-
turity dates for the eurodollar futures contracts, 4 days a year); for each date in the
sample, I chose the option maturity that is closest to 365.25 days. This creates a saw-
tooth behavior of the time series of option maturities (oscillating between approximately
T and § year) for the monthly sample.

The options are typically available at strikes with multiples of 25 basis points, but
sometimes there are options with strikes at odd multiples of 12.5 basis points, which are
dropped as they tend to be not as liquid as the even multiples. Also, in order to avoid
illiquid options, only the options with strikes at which there is a nonzero open interest
are used. Thus the number of call and put options used in the pdf computations varies
over time.

Figure 3 shows the minimum put strike and the maximum call strike that were avail-
able on each day of the monthly sample. Also shown is the put strike rate that corre-
sponds to the current futures rate minus 1.50*, and the call strike rate that corresponds
to the futures rate plus 1.50*, where the proxy ¢* for the standard deviation of the pdf
is computed as

(57) o* =\T10PF,
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Figure 3: Available option strikes for 1-year maturity options. Maximum call strike and minimum put
strike are shown in thick solid lines. The current futures rate F is shown in thin solid lines. The thin
dashed lines are F+1.50*.

where o is the Black implied volatility (Black (1976)) and 7 is the option maturity.*!
As can be seen, these numbers (thin dashed line) tend to lie inside the [min(put strike),
max(call strike)] band, indicating that typically a fairly wide range of strikes are avail-
able, spanning at least —1.5¢* to 1.5¢™* units around the mean of the distribution. I
have used only the out-of-money puts and calls (puts at or below the current futures
rate and calls above the current futures rate). Thus at each multiples of 25bp (between
the minimum put strike and maximum call strike), there is only one option (either put
or call), or none (when there is no open interest).

Table 2 provides some statistics regarding the liquidity of options proxied by open
interest, for strikes 0.250*,0.50*, 0%, 1.50* away from the mean.®> Options about %
standard deviation from the current futures rate are the most active, but the whole
strike range (at least up to 1% standard deviation) is fairly active; e.g., the median open
interest in the 1.50* put option is more than a third of that of the 0.5¢* option.

Lastly, as a caveat, note that since the r here is taken to be the 3-month LIBOR, the
“zero bound” (more precisely, the lower bound) is not exactly at zero, as the 3-month
LIBOR contains a premium for credit/liquidity risk, besides some differential between

31Though simple, this number agrees fairly well with the standard deviation computed from the
B-MN model.

328ince options are available at discrete strikes in multiples of 0.25%, the strikes closest to the
respective numbers were chosen. If there is no strike within 25 basis points of the number, it is not
counted. This will be the convention also when the pricing errors for strikes £1.5¢* away from the
mean are examined in Sec. 5.3.



ZERO BOUND, PDFS, TERM STRUCTURE MODELS 21

put call
dist. from F mean 25% 50% 75% mean 256%  50% 5%

0.250™ 48664 16320 32749 58906 28072 10106 18352 36747
0.50* 49449 15436 37047 57529 32491 9994 20434 37852
o* 45561 4625 25362 99226 27141 9868 19236 34176
1.50* 31512 4738 13262 37920 19890 3726 10412 26950

Table 2: Mean open interest, and 25-,50-, and 75-percentile open interest.

the 3-month rate and the instantaneous rate. This means that the proper location of
the delta function for the Black’s boundary model pdf (r) should be a small but nonzero
number. Furthermore, the delta function itself would be smudged out a bit, in other
words,

; 1 (z — 1)
(58) 3o 1) = oo (-7
where € is a small number (but not ¢ — 0 as in eq. (5)), would be a more accurate
description. However, as long as € is small enough, the delta function §(z — r) should
provide a good approximation of & (r —1).

It is difficult to get a precise sense of r for the 3-month LIBOR, but the recent
Japanese experience can provide some guidance: even at the height of Bank of Japan’s
Quantitative Easing Program, the 3-month yen TIBOR rate (an analogue of the US
dollar LIBOR) did not go below 8 basis points. For simplicity, the main computations
in this paper assumed that the lower bound r is at 0, but I have also computed the pdf
for the B-MN model with r = 0.15% to check the robustness of the results. Intuitively
one would expect that the difference between these two settings would be immaterial for
option strikes that are substantially larger than the effective lower bound (i.e., K > 1),
but at a very low strike (e.g., 25 basis points), there may be a more visible difference
between r = 0 vs r = 0.15%.

5.3. Option pricing performance. To get a sense of the overall fit across strikes, it
is useful to look at the root-mean-square errors, i.e.,

(59) RMSE = (C/(1 4 n, + n.))?,

where ¢ is the minimized value of ¢ in eq. (10).

Figure 4 shows the time series of RMSEs based on the four models (B-MN, MLN,
CIR2, QG3) for the 1998-2008 period. As can be seen in the top panel, the B-MN model
(Black’s boundary model) and the MLN model (conventional benchmark) performed
similarly well, the MLN model producing a somewhat smaller RMSE in 2003-2004 and
larger RMSE in 2007-2008. Note that during most of the data period, with the exceptions
around 2003 and 2008, the distributions were sufficiently away from the zero bound (as
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Figure 4: Root mean square option pricing errors. Top panel: B-MN and MLN models. Bottom panel:
QG3 and CIR2 models.

can be seen in Figure 3), thus the B-MN model was simply the “mixture of normals”
model (i.e., f = f7); the results indicate that there is little practical difference between
the normal-mixture model and the lognormal-mixture model most of the times. On the
other hand, the QG3 model and CIR2 model led to notably larger RMSEs. (Note the
difference in the y-axis scales in top panel and bottom panel). Between the two models,
the RMSE numbers were very similar, practically lying on top of each other.

It is also useful to examine the individual (strike-specific) pricing errors, Pmodel — peb
and C™edel — C°b Table 3 displays summary statistics for the pricing errors for put
options with strikes 0.250* and 1.50* units below F and call options with strikes 0.250*
and 1.50* units above F. It can be seen that the errors for the QG3 and CIR2 models
are not only large, but they also deviate systematically from zero. For example, even
the 75-percentile value of the pricing error for the put option at the strike of F—1.50* is
negative; this negative bias means that the QG3 and CIR2 models tend to systematically
underprice the farther-out-of-money put options. On the other hand, they tend to
overprice the near-the-money call options.
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0.250* 1.50*

mean 25% 50% 5% mean 25% 50% 5%

put B-MN -0.0014 -0.0030 -0.0010 0.0009 -0.0003 -0.0019 -0.0001 0.0012
MLN -0.0008 -0.0026 -0.0007 0.0017 -0.0017 -0.0032 -0.0009 0.0013

CIR2 0.0031 -0.0007 0.0031 0.0076 -0.0155 -0.0198 -0.0140 -0.0074

QG3 0.0028 -0.0011 0.0027 0.0077 -0.0157 -0.0198 -0.0141 -0.0083

call B-MN -0.0014 -0.0036 -0.0011 0.0006 0.0011 -0.0008 0.0010 0.0028
MLN -0.0011 -0.0027 -0.0010 0.0007 0.0009 -0.0010 0.0008 0.0027

CIR2 0.0043 0.0009 0.0044 0.0080 0.0005 -0.0056 0.0011 0.0056

QG3 0.0041 0.0008 0.0041 0.0079 0.0011 -0.0050 0.0010 0.0058

Table 3: Statistics (mean, 25-, 50-, and 75-percentile values) about put option pricing errors at strikes
F—0.250* and F — 1.50* (top half of the table), and call option pricing errors at strikes F + 0.250* and
F + 1.50* (bottom half of the table).

In sum, the pdfs based on zero-cdf term structure models (CIR2 and QG3 models)
perform notably worse than the MLN and B-MN models despite having one more param-
eter, suggesting that the kind of restrictions on the shape of the risk-neutral distribution
implied by these models are not well supported by data.

5.4. Is the pdf always positively skewed? As pointed out in Section 4.1, well-known
zero-cdf term structure models, including the multifactor CIR and positive-definite QG
models, imply that the skewness of the risk-neutral distribution of the short rate is
always positive. To check this prediction, we can examine the model-implied skewness
E[(r — E(r))®]/E[(r — E(r))**? from the B-MN and MLN pdfs, shown in Figure 5a.
The sharp vertical lines that occur in the MLN measure are a small number of occasions
in which the MLN model produced very large skewness values that went out of bounds
of the figure, even though option pricing errors were small. Ignoring these pathological
cases, the B-MN and MLN models tell fairly similar story. In particular, the risk neutral
distribution was negative during an extended period of time in recent years (2006-07).
Negatively-skewed pdfs occurred also around 1998 and 2001.

A test of skewness that does not need an assumption about the functional form of
the pdf can be constructed as follows. Note that a negatively skewed distribution has
mean < median, while a positively skewed distribution has mean > median.*® Since
the cumulative distribution function F(r) at the median is 1/2 by definition, one can
check whether the skewness is always positive by examining whether the condition

(60) F(F)>1/2

33This is the idea behind the Pearson measure of skewness = 3 [mean-median]/[standard devia-
tion]. This definition of skewness is not identical to the more common definition [third central mo-
ment]/[standard deviation]?/2. However, the two definitions are qualitatively and quantitatively similar
for unimodal distributions with moderate asymmetry.
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holds, where we have used the fact that the mean of the risk-neutral distribution is the
current futures rate. Since

(61) F(K) =e"P(K) =1+ " C"(K),

we can check the condition (60) by evaluating the first derivatives P’ and C” at F using
the piecewise-cubic Hermite interpolation scheme for P(K) and C'(K). Figure 5 shows
F(F)’s based on puts and calls. It can be seen that F'(F) can move below 1/2; indeed,
where this occurs is quite close to where the skewness measures intersect the O-line in
Figure (a).

An example of negatively skewed pdf (April 30, 2007) is shown in Figure 6. The
B-MN and MLN models produce fairly similar pdf (except for a small “wiggle” in the
MLN pdf), and both clearly show a notable negative skew. As discussed earlier, since
zero-cdf models like the QG3 model cannot produce a negatively skewed distribution,
the estimated pdf from this model is a nearly symmetric distribution instead. Not

-1 1 1 1 1 1 1
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.4 . ;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 5: (a) Model-implied skewness from the B-MN and MLN pdfs. (b) Alternative test of skewness
based on the Pearson measure.
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Figure 6: Pdfs on April 30, 2007

surprisingly, pricing errors of the QG3 and CIR2 models tend to be particular large
during the times of negatively skewed pdfs (as can be seen in Figure 4b).

5.5. Financial market turmoil of 2008. In early 2008, the turmoil in financial mar-
kets that had begun in mid-2007 intensified, posing considerable systemic risk and raising
much concern about the broader economy. This lead to a substantial lowering of the
federal funds target rate (and of the market’s expectation of the future target rate). In
March, the 1-year-ahead eurodollar futures rate had dropped to levels as low as 1.9%.
Amid heightened uncertainty about the path of the interest rate, eurodollar futures op-
tions with very low strikes, in particular 0.25% and 0.5%, had begun to trade. This
section explores whether the above models, if any, can explain the prices observed for
these options.

It befits to start with a cautionary remark that the liquidity in these put options
was significantly lower than near-the-money options. The l-year-maturity 0.25%-strike
option, in particular, had an open interest of only about 30. However, the market in
the 0.5%-strike option was more active, with decent open interest (ranging from 2000
to 8000 in the months of February and March, comparable to the 25 percentile open
interest in the put options with strikes ¢* to 1.50* away from the current futures rate
in Table 2). Therefore, at least the 0.5%-strike option merits a serious look.

Figure 7a shows the pricing error P™o%! — P for the 0.5%-strike option from the
B-MN, MLN, and QG3 models, for every business day from February 4 to April 28,
2008. The MLN and QG3 models (and the CIR2 model, not shown) generated much
larger errors than the B-MN model in this period, and these errors were systematically
negative, i.e., the QG3 and MLN models tended to underprice the option. These errors
were particularly large during the first half of March; this is precisely the period where
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the B-MN model indicates a substantial weight of the J-function piece (w in eq. (52)),
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Figure 7: (a) Pricing errors P™%l — P°b for K = 0.5%. (b) Weight of the Dirac delta function in
the B-MN pdf (w in eq. (52)). (c) The ratio P™°l/P° for K = 0.5%. The B-MN*(0.15%) pdf
computations were done without using put options with strikes below 1%.
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Figure 8: Observed put option prices (circle) and call option prices (diamond) and model predictions
on March 10, 2008.

shown in Figure 7b. Although not shown, the pricing errors for K = 0.25% tell a similar
story. Figure 7c shows the ratio P™°%! / P°® for the B-MN, MLN, and QG3 models. Note
that the ratio is much smaller than 1 (sometimes orders of magnitude smaller) for the
MLN and QG3 models, i.e., these models grossly underpriced the K = 0.5% option.

To show a representative day from this period, the fit of put and call option prices
on March 10, 2008 is shown in Figure 8. Note that the QG3 model fits the put and
call option prices rather poorly; the CIR2 model (not shown) gives similar results. The
B-MN model prices put and call options fairly well across strikes. The MLN model also
prices put and call option price well, except at the strikes of 0.25% and 0.5%.

The model-implied pdfs for this date, shown in Figure 9, help explain this result. The
MLN model pdf has a bimodal structure with a pronounced peak in the low interest
rate region (centered at about 0.5%) and a broader peak at about 2.5%. This produces
a fairly good fit of option prices for most of the strikes, but since the left tails of both
peaks have to vanish at 0, it leads to low prices of put options at strikes of 0.5% and
0.25%. The QG3 model also has a pdf that vanishes in the zero limit (recall from Section
4.1 that the pdf of the 3-factor positive-definite QG model has the behavior f(r) o< /T,
r — 0), thus producing much lower prices of low-strike options than the B-MN model
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Figure 9: Pdfs on March 10, 2008.

which has a delta function singularity with weight of about 0.04. It is also interesting
to note that the modal implications of the pdfs are quite different, e.g., the QG3 pdf
indicates that the most likely value is less than 2%, while the B-MN pdf indicates that
the most likely value is larger than 2%.

Several alternative computations of the pdf were done to check the robustness of the
results. For example, put options with strikes below 1% were dropped in the computation
(10), but this led to very similar results as the original computations. In other words,
the good fit of the low-strike put option in the B-MN model is not due to their inclusion
in the computation.

Another robustness check is with respect to the choice of the lower-boundary; as
discussed in Section 5.2, there are reasons to consider a nonzero r. The computation
of the B-MN model pdf with r = 0.15% again matched the price of the 0.5%-strike put
option reasonably well. Figure 7c shows, with inverted triangle symbols, the Pmodel / peb
ratio for this case (this computation also dropped options with strikes less than 1%);
it can be seen that the ratio is still fairly close to 1, and much larger than the values
predicted by the QG3 and MLN models.**

Lastly, note that 2002-3 is another interesting period from which the near-zero behav-
ior of the risk-neutral pdf can be studied, but this paper forgoes a treatment comparable
to that given to the 2008 episode, for space considerations.

34Two remarks: (1) Note that the P04l / Pob yatios for the QG3 and MLN models in Figure 7c were
computed from the pdfs that assumed r = 0. If these models also used r = 0.15% (via the functional
form f(r —r)), they would have predicted even smaller ratios. (2) In the case of the 0.25%-strike put
option (not shown in figures), the r = 0.15% lower bound for the B-MN model led to a P™°d¢ / Pob ratio
that is about half of the r = 0 case, but this still represents much larger values than the corresponding
numbers from the QG3, CIR2, and MLN models.
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6. CONCLUDING REMARKS

The main conclusions of this paper can be summarized as follows. (1) Black’s bound-
ary model can capture the low-strike put option prices in February and March of 2008,
which would have seemed puzzlingly high from the viewpoint of the popular zero-cdf
term structure models. While some might alternatively argue that the “high” prices of
these options are due to low liquidity or irrational pricing, we can say, at least, that the
Black’s boundary behavior provides one possible rational explanation for them. (2) Well-
known non-negative interest rate models like the multifactor (positive-definite) CIR/QG
models not only have difficulty capturing the low-strike option prices in early 2008 but
also generate large and biased option pricing errors at other times as well. We have seen
this specifically in the context of 2-factor and 3-factor CIR/QG models, but the theoret-
ical arguments presented in Sec 4.1 suggest that having more factors would not change
this conclusion. We have also seen that options data contradict the prediction that the
pdf is always positively skewed. These constitute strong evidence against well-known
term structure models that have zero cdf at the zero boundary.

This paper also has broader implications:

(a) The encouraging results from the flexible parametric pdf model with Black’s
boundary behavior developed here suggests that such a model may be useful for practi-
cal applications to other settings, for example, the extraction of risk-neutral pdfs from
the Japanese interest rate options market (euroyen futures options).

(b) The evidence against zero-cdf models (and evidence for Black’s boundary models)
documented here indicates that, in modeling the postwar US economy there is little
motivation to search for “special” macroeconomic mechanisms that would generate be-
haviors in which the short rate always stays above zero or “bounces off” from zero.*®

(c) While the tractability of the affine and QG models may provide some incentive
to consider the positive-definite versions of these models as approzimate models (even if
the true boundary behavior were Black’s boundary behavior), the results in this paper
cautions that they would be poor approximations, at least in certain contexts.

(d) This paper provides some justification for favoring models that can have nega-
tive nominal interest rates. It may appear counter-intuitive to deliberately ignore a
clearly reasonable constraint about nominal interests (positive-definiteness). Indeed,
Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2003) considered it a virtue
that the QG model’s parameters can be restricted so as to guarantee the positivity of
nominal interest rates, and to my knowledge, all published papers that studied the QG
model empirically have imposed such restriction. In so doing, however, they rule out
specifications such as

(62) Ty =c+xt — 13,

3Note that macroeconomic models that optimize the standard cost function
EY; Baxi; + (1 — a)n?;)] (the GDP gap z; and inflation 7 being unbounded random
variables), with the condition ry > 0 introduced via a Lagrange multiplier, would lead to a Black-like
boundary behavior, as opposed to a CIR-like behavior.
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Though it allows negative nominal rates, a specification like this accommodates nega-
tively skewed pdfs (as observed in Sec. 5.4). The key point is that such specification is
very similar to Black’s model specification (which guarantees non-negative interest)

(63) ry = max|0, ¢ + 23, — 23],

except when rates are close enough to zero for the zero bound to have substantial ef-
fects;*® hence most of the times it corresponds to Black’s boundary model. In situations
in which the zero bound matters, eq. (62) would no longer be a good approximation
of (63), but in this case the positive-definite versions of the QG model would not be a
good approximation of (63) either.

The empirical design of this paper had the following features: (i) the focus on the
risk-neutral measure, and (ii) day-by-day implementations using only options data (and
the current futures rate) for that day. Though this design was sufficient for detecting
the problems with zero-cdf models (such as the multifactor positive-definite CIR/QG
models) and yielded useful techniques for modeling pdfs for low interest rate scenarios,
in the future it would be useful to extend the design to also examine the physical-
measure processes and distributions, and utilize the time-series as well as the cross-
sectional aspects of both options data and yield curve data, to achieve a more detailed
understanding of the near-zero boundary processes.

APPENDIX A. THE r — 0 BEHAVIOR OF THE PDF FOR
MULTIFACTOR CIR/QG MODELS

This appendix derives the small-r asymptotic expansion of the probability density function
f(r) for the distribution r ~ b1X12’17>\1 +- 4 bnxl%m)\n.
For this, we will use the Laplace transform of the probability density function

(64) flw) = /0 e " f(r)dr
The inverse Laplace transform
1 c+i00 _
(65) ) =5 [ el
T Je—ico

gives back the pdf from f(w).
The Laplace transform of the pdf, i.e. E(e "), is simply related to the characteristic

function E(e™") as f(w) = f(iw). Therefore, from eq. (45), we have

n e jbjw/(142bjw)
(66) 1;[ 1+ 2bjw)il2

The basic idea is to expand this in powers of 1/w, which will then lead to an inverse transform
in powers of r.

36How close is “close enough to zero” may depend on the context of the problem; e.g., out-of-money
put option pricing would be more sensitive to this issue than at-the-money option pricing.
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Note that the exponent in the exponential in eq. (66) can be written

o T3 (o)

and that

(68) (1 + 2bjw)"i/? = (2bjw)"i/? (1 + :TJ]% + 0(1/w2)> :
Therefore,

@) Fw) exp(—5)j/2 + (37 /4b;) 1 /w + O(1/w?))

(IT;(2b5)"3/2)w™ivi /2 (1 4 (Sjv;/4bj)1/w + O(1/w?))
exp(—X;A;/2) <w_zjuj/2 . <E')\j - l/j> o Sivi/2-1 +O(w_2juj/2_2)> ‘
(I1;(2b;)¥3/2) 7 4b;

Because the inverse Laplace transform of w™9 is simply 971 /I'(q), we obtain immediately eq.
(48).

APPENDIX B. OPTION PRICES FOR RISK-NEUTRAL DISTRIBUTION DESCRIBED BY POSITIVE
LINEAR COMBINATION OF INDEPENDENT NONCENTRAL X2 RANDOM
VARIABLES

This appendix derives an approximate (but very accurate) formula for option prices for the
distribution of short rate implied by CIR/QG models.

We want to evaluate the expressions
(70) C(K) = e ""E((r—K) I(r— K))
(71) PK) = ¢e"E(K—-r) (K —-r1))
where FE is an expectation with respect to the distribution r ~ by Xz2/1, a ot an?/n, \, - Since
E(I(K —r)) is the cumulative distribution function F(r), we have
(72) CK) = e (E(r I(r—K))—K(1-F(K))

P(K) = e "(KF(K)—E(r I(K —r))).

Thus we need to evaluate E(r I(-)). For this, it is useful to define a new probability measure,

with Radon-Nikodym derivative r/E(r). (This can be done because r is a positive random
variable.) In terms of the new measure (denoted with superscript ), we have

(73) E(r 1()) = E(r)E'(1(-)),

therefore

(74) C(K) e T(E(r)(1 - FT(K)) — K(1 - F(K))
P(K) = e "T(KF(K) - E(r)FI(K)),

where FT(K) denotes the cdf in the new measure. From eq. (50), E(r) is simply E(r) =
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It thus remains to derive expressions for cdfs F(K) and FT(K). This can be done using
the saddle-point formula of Lugannani and Rice (1980) for cdfs,>” which uses the cumulant
generating function C(w) = log E(e¥"):

1 1
(75) FK) = o) =0l) (5 - 1)
2z =/2(w* K — C(w")) sgn(w*)

where w* is the solution of the equation

C'(w) = K.

Note that C(w) is related to the characteristic function as C(w) = log f(—iw). Thus, from
eq. (45), we have

n e)\ibiw/(l_m)iw) n )\Zblw Vi
i=1 ¢ i=1 ¢

The cumulative distribution function in the new measure F(K) is given by the same expres-
sion as that of F(K), except that the cumulant generating function C in eq. (75) is replaced
by the cumulant generating function for the new measure, C, which is given by

(77) CT(w) = log ET(e*T) = log(E(e*"r)/E(r)).
Using the identity

wr o 0 wry 9 ; .
(78) B(er) = 5o B(ET) = 2= f(-iw),

it is straightforward to show

(79) CT(w) = C(w) + log

- i vib; -
1Y (] —l i i i .
Z<(1—2b,~w)2 * 1—2biw>] Og(;b@ 1))

i=1

I have checked the Lugannani-Rice formula for the cumulant generating functions C,C'
against the Fourier-inversion formula for cdf (eq. (47)) at several sets of parameter values,
and found that in all cases the agreements were excellent across the entire range of K, i.e.,
both in the tail and center regions of the distribution. One caveat is that the formula can be
numerically unstable when K happens to be the mean of the distribution (i.e., K = C'(w = 0),
K = C"(w = 0)). However, such situation occurs rarely in our optimization problem (eq. (10));
if it does occur, one can find a nearby parameter vector that does not have the problem but
has a very similar pdf content, or use the conventional (slower) formula (47) with characteristic
functions corresponding to C,C.

37Lugannani and Rice (1980) derived their formula via a judicious choice of the path of integration
for the inverse Fourier (Laplace) transform representation of the cdf. This formula found much use in
the statistics literature (e.g., Daniels (1987)); its application to stock option pricing (lognormal-type
distributions) was explored by Rogers and Zane (1999).
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APPENDIX C. OPTIONS AND FUTURES PRICES FOR FLEXIBLE PDFS WITH BLACK’S
BOUNDARY BEHAVIOR

This appendix provides formulae that are useful for the implementation of flexible pdf models
with Black’s boundary behavior.

It is straightforward to show that the option prices for the normal-mixture shadow rate
distribution £ (eq. (53)) and lower boundary r are given by

(80) P(K) = e "w(K —r) +Zﬁm i(P(ki) — @(p,)) + o(ki) — o(p,))]

C(K) = e /7 Zﬁzaz 2 (1 - q>(kl)))v

where
(81) ki = (K —w)/oi, p; = (r— pi)/oi,
(82) w = 5®(p)+ B2(p,)

The current futures rate F= ffooo rf(r)dr is given by

(83) —TUT—FZBZ O-Z(b +:u'z(1 - (I)(_Z)))

=1

The option prices for the Gram-Charlier /Edgeworth shadow rate distribution (eq. (54)) and
lower boundary r are given by

(84) HK)=e4ﬂwm—m+dmwpuﬁﬁmkm+§m% P+l
(85)  C(K) = e "7o(Hg(k) + CHS(k) + L Hi(K) ).
where
k
(36) H(sp) = [ (k= o)H(@)la)ds
p
(87) mw) = [ @ D@
(88) ko= (K—up)fo, p=(r—p)fo.

Using the property of Hermite polynomials that H;(x)¢(z) = (—1)j% (x), it is straight-
forward to show

it i
(89) w=B(p) — < Ha(p)d(p) — 5 Ha(p)d(p) — -
Similarly, and using integration by parts, we have
(90) Hi(k) = Hj—2(k)o(k)

(91) HY(k;p) = (k—p)Hj-1(p)d(p) + Hj-2(k)p(k) — Hj—2(p)d(p)
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for j > 2. The integrals H§(k) and H} (k) are given by
(92) Hi(k) = (k) — k(1 — ®(k)),
(93) Hi(ksp) = k(2(k) = 2(p)) + (¢(k) — d(p)).
The current futures rate is given by
Fo= wr+pl—2(p)+0d(p)

(94) + %(b(p)(sz(p) +oHi(p)) + ;—Z¢(p)(£H3(p) +oHa(p)) + -+ .
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