

L1c

L. Strov UMBC

AIRS L1C, Freq Cal, RTA

L. Larrabee Strow and Scott Hannon

Physics Department and Joint Center for Earth Systems Technology University of Maryland Baltimore County (UMBC)

October 17, 2008

ASL Overview

L1c

L. Strow UMBC

- RTA upgrades
- Frequency Calibration
- L1C issues
- A new method for deriving spectroscopy from radiances??

ASL RTA

L1c

L. Strow UMBC

- New RTA ready, now IASI and AIRS RTA's have identical physics
- More recent HITRAN used, so ozone and water changed
- Empirical RTA tuning not yet done using coincident sondes
- Minor coefficient changes; additional CO₂ coefficient and Non-LTE coefficient
- RTA has several regression coefficient sets to account for frequency variability, fringe movements (Nov. 2003), and base CO₂ amounts.

name		<pre>yoffset(um)</pre>	Tef(K)	CO2(ppmv)
m130x370	:	-13.0	155.770	370
m140x370	:	-14.0	155.770	370
m130x385	:	-13.0	155.770	385
m140x385	:	-14.0	155.770	385
m130	:	-13.0	156.339	385
m140	:	-14.0	156.339	385
m150	:	-15.0	156.339	385

Implementation at JPL?

ASL Frequency Calibration

L1C L. Strov

- $\bullet~$ Use a cross-correlation technique on M12 (LW) for $\nu~$ calibration
- Cross-correlate L2CC radiances with Calc radiances. Calcs done using ECMWF.
- One ν calibration per granule.

ASL Δ B(T) for a dx = 1 um

L1C L. Strov

ASL

ν Calibration

Binned by 2 deg in latitude, 16 days in time

L. Strow

ASL Example Latitude Bins

L1C L. Strow UMBC

ASL

Time Dependent Drift: Raw Data

Good news, drift is slowing down

L. Strow

ASL Frequency Calibration Model

L1C

Raw ν calibrations were binned by 2 deg. in orbit phase, giving 180 data sets which were fit to the following expression:

$$\nu(t) = \nu_o - b_1 \exp(-t/b_2) + \sum_{i=1}^3 [a_i \sin(2\pi t + \phi_i)]$$

From now on, results are only for post-Nov. 2003. Separate fits for Aug. 2002 to Nov. 2003.

Fast behavior in which of the 180 equations you use (orbit phase). Slower behavior is in time.

ASL Derived $d\nu$ Time Constant

ASL Amplitude of Sinusoidal Terms

L1c L. Strow

ASL

Observed and Computed dx

Highest error obs removed (1.5%).

L. Strow

ASL Zoom of Obs and Computed dx

L1C L. Strow UMBC

ASL Zoom of Obs and Computed dx

L1C L. Strow

ASL Zoom of Obs and Computed dx

L1C L. Strow UMBC

Max B(T) Errors Over 5.8 Years

Includes Orbital Swings

L1c L. Strow UMBC

ASL Implementation

L1c

L. Strow UMBC Basic idea: Once know $\Delta \nu$, create two RTA calculations with nominal atmospheric state to determine $dR/d\nu$. Then $R_{L1c} = R_{obs} + dR/d\nu \times \Delta \nu$.

- Calibrate with reasonably clear FOVS
- Oevelop smooth model for calibration
- Use model to: (1) produce L1c (2) modify CC'd radiances in L2;
 - Calibration
 - Inputs: Clear only (poles?), CC'd radiances?
 - Auxillary info: ECMWF, AVN, limited climatology?
 - CPU intensive
 - Corrections
 - Create L1c, need "cloudy" state for RTA calcs
 - Create △B(T) for L1b, for ACDS only?
 - Correct L2cc radiances instead for retrievals?

ASL Biases vs ECMWF Vary with Secant of Viewing Angle

LIC

L. Strow UMBC

- Empirical corrections used average biases
- Spectroscopy, constituent abundance errors will vary with viewing angle/secant
- Assume ECMWF errors do not depend on secant angle
- Fit $dbias = offset + slope \times \Delta secant$; offset very small
- If assume bias = (inst_bias, model_bias) + slope × secant can use above fit to determine slope, and then solve for (inst_bias,model_bias)
- Still need atmospheric constituent amount/profile to get spectroscopy

Fit Results: Slope of dbias/dsec

Secant varies from 1 to 1.37

L. Strow

ASL Fit Results: Slope of dbias/dsec, zoom

L1C L. Strov UMBC

ASL Fit Results: Slope of dbias/dsec, zoom

L1C L. Strow UMBC

