

$\operatorname{CrIS}\nu\operatorname{Cal}$

L. Strow UMBC

Overview Sensitivity Approach Spectra Results

Conclusions

Pre-Launch Spectral Calibration of the CrIS Sensor on NPOESS/NPP

L. Larrabee Strow, Howard Motteler, and Scott Hannon

Physics Department and Joint Center for Earth Systems Technology University of Maryland Baltimore County (UMBC)

October 15, 2008

ASL Context of Cross-track Infrared Sensor (CrIS)

CrIS ν Cal

L. Strow UMBC

Overview

- Sensitivity
- Spectra
- Results
- Conclusions

- CrIS is a new infrared sounder for the NASA NPP platform and the NPOESS operational system, 1:30 am/pm orbit.
- NASA hopes to "bridge" climate measurements between AIRS on EOS/Aqua and CrIS/NPOESS with CrIS on NPP.
- IASI on EUMETSAT's METOP platform (since April 2007) is CrIS's counterpart in the 9:30 am/pm orbit.
- Instrument specifications driven by operational weather forecasting requirements (as they were for AIRS and IASI).
- However, AIRS performance is "climate-quality", IASI appears to be the same (we need more time).
- This work: Assessment of CrIS spectral performance during thermal vacuum testing (Spring 2008), with an eye towards climate quality.

ASL CrIS Instrument

CrIS ν Cal

L. Strow UMBC

Overview

Sensitivit

мрргоас

spectra

Results

Conclusions

- Interferometer with 0.8 cm OPD
- Three focal planes, each with a 3x3 array of detectors
 - Longwave (LW) focal plane
 - 650-1095 cm⁻¹
 - OPD = 0.8 cm, $\Delta v = 0.625 \text{ cm}^{-1}$
 - Midwave (MW) focal plane
 - 1210-1750 cm⁻¹
 - Data collect to 0.4 cm, $\Delta v = 1.25 \text{ cm}^{-1}$
 - Shortwave (SW) focal plane
 - 2155-2550 cm⁻¹
 - Data collect to 0.2 cm, $\Delta v = 2.50 \text{ cm}^{-1}$
- Metrology laser wavelength determined using on-board Neon lamp measurements, sample rate of ~90 minutes, hopefully asynchronously relative to orbital period.

NPP Thermal Vacuum (TVAC) spectral allocation requirements are 10 ppm for spectral registration and $\sim 0.6\%$ for Instrument Line Shape (ILS) width. NPOESS spectral calibration requirement is 5 ppm.

ASL Frequency Errors in B(T) Units for CO₂ Forcing

CrIS ν Cal

- L. Strow UMBC
- Overview

Sensitivity

- Approach
- Spectra
- Results
- Conclusions

Forcings/Responses

- Forcing (CO2 growth rate of 2 ppm/year) is ${\sim}0.06 K/year$ at 2388 cm $^{-1}.$
- Temperature signal $\sim 0.01 K/year$
- AIRS stability <0.01K/year (radiometric and frequency) allows CO₂ trends/variability to <0.5 ppm.
- Frequency requirements
 - CrIS: v stability of ~1 ppm = 0.015K at 2388 cm⁻¹
 - Suggests need Δv errors on CrIS to 1 ppm (0.5 ppm CO₂)
 - CrIS ILS width should remain stable.

ASL Pre-Flight Spectral Calibration Details

CrIS ν Cal

L. Strow UMBC

Overview

Sensitivity

Approach

Spectra

Results

Conclusions

• Detailed ILS Shape

- Performed on bench (not TVAC) with CO2 laser, so LW only
- Highly successful, good test of Sensor Data Record (SDR) software.
- Spectral Calibration and MW/LW ILS Shape (width)
 - Record gas cell spectra for LW (CO₂), MW (CH₄), and SW (HBr): truth for ILS v and width
 - Collect data at mission nominal temperature (Mn), and PQH/PQL temperatures (relevant to other orbits) that are $\sim \pm 28$ K offset from Mn expected temperature.
 - $\sim \pm 28$ K onset from Mn expected temperature.
 - Data collect includes Neon measurement for each gas
- Bottom line: TVAC spectral calibration was highly successful!

CrIS ν Cal

- L. Strow UMBC
- Overview
- Sensitivity
- Approach
- Spectra
- Results
- Conclusions

- Four data collects (plus 2-point radiometric cal measurements if needed)
 - Hot blackbody (BB): cell full, cell empty; (FT1, ET1)
 - Cold BB: cell full, cell empty; (FT2, ET2)
 - **3** Gas cell transmittance $\tau = \frac{FT2 FT1}{ET2 ET1}$
- FT1, etc. are complex count spectra
- Complex part of τ very small
- Each interferogram is converted into an uncalibrated spectrum, averaged, and transformed to on-axis transmittance spectra.
- Our apodization correction matrices are interpolated to the present estimate of the metrology laser λ_{met}.
- The best estimate of λ_{met} minimizes χ^2 between the Obs and Cal τ . (This is a big loop...)
- We allow the observed transmittances to be scaled and offset in this loop. Generally the scale factor is \sim 0.98-0.99 and the offset factor is \sim 0.01-0.02.

ASL Focal Plane Geometry: CrIS

Overview Sensitivity Approach

Results

Conclusions

Off-axis FOV spectra are shifted by >500 ppm, etc. UMBC mini-SDR algorithm adjusts these spectra back to effective on-axis measurements. At 1500 cm⁻¹, $\Delta \nu$ of 500 ppm = 6K in B(T).

Frequency errors will be written out using the above layout for FOVs.

45 Methodology: Freq. Calibration

CrIS v Cal

L. Strow UMBC

Overview

Sensitivity

Approach

Spectra

Results

Conclusions

- Keep number of fitted parameters as small as possible
- Start from scratch with gas cell data (similarly start from scratch with in-orbit data)
- First determine effective λ_{met} for each FOV , assuming perfectly aligned rectlinear focal plane geometry.
- Using known value of dv_{obs}/dr , where *r* is the radial position of the FOV from the interferometer optical axis, least-squares fit for the focal plane dx, dy, and for λ_{met} .
- Fit rigid focal plane position and metrology laser λ with:

$$dv_i^{error} = \left(dr_i \times \frac{d(ppm)}{dr}\right) + dv_{met}$$

where

$$dr = \sqrt{(x_i + dx)^2 + (y_i + dy)^2)} - \sqrt{(x_i^2 + y_i^2)}$$

and *i* is the FOV index. Use 9 FOVs to retrieve dx, dy, and dv_{met} .

ASL Test Nomenclature

CrIS ν Cal

- L. Strow UMBC
- Overview
- Sensitivity
- Approach
- Spectra
- Results
- Conclusions

- Test defined by band (LW/MW/SW) and temperature (MN, PQL, PQH)
- Often use gas name (CO₂/CH₄/HBr) instead of band (LW/MW/SW) item Results listed by test sequence as follows:
 - O₂, LW at MN
 - CO₂, LW at PQL
 - CO₂, LW at PQH
 - CH₄, MW at MN
 - OH4, MW at PQL
 - CH₄, MW at PQH
 - Ø HBr, SW at MN
 - Br, SW at PQL
 - IBr, SW at PQH
- If define Neon effective λ with CO₂, LW at MN, then you have 8 independent measurements of Neon calibration system. But, might need offsets for each band, giving 6 independent measurements.

ASL

CrIS v Cal

Raw Magnitude Spectra

Hot BB: empty/filled, Cold BB: empty/filled

A5L Uncorrected Raw CO₂ Spectrum

CrIS ν Cal

- L. Strow UMBC
- Overview Sensitivity Approach Spectra Results
- Conclusions

LW CO₂ FOV8 Obs versus Calc

Signal-to-Noise is Outstanding, as is Stability

ASL LW-CO₂ Summary

- L. Strow UMBC
- Overview Sensitivity Approach Spectra
- Results
- Conclusions

ASL MW-CH₄ Summary

ASL SW-HBr Summary

Focal Plane Appears to Shift *Slightly* with **Temperature**

Change in effective dv_{met} errors for LW (CO₂) from PQL to PQH (in ppm) are: 3.2 2.7 3.2 Results -1.7 -1.9 -1.3 -5.1 -5.9 -5.2

8 Х 3

This behavior allows separation of metrology laser wavelength from focal plane alignment.

	Observed Focal Plane Positions Assuming rigid movement of each 3x3 focal plane									
CrIS ν Cal L. Strow UMBC Overview Sensitivity	Mission Band LW MW SW	Nominal foc dx (urad) 124 146 134	al plane positio dy (urad) -496 -472 -438	on Note: SV PQL and liens	W derived from average of I PQH, SW Mn HBr data has					
Approach Spectra Results Conclusions	But, fig	gure below 200 150	shows dy cha	anges with ter	mperature + LW-Mn + LW-POL • LW-POH • MW-Mn					

100

50

0

-50

-100

-150 -200 -200

-150

-100

-50

Y (jurad)

O MW-PQL

O MW-PQH X SW-Mn

× SW-PQL

× SW-PQH

0

+

× о

+

0 X (µrad) 50

100

150

200

ASL

Observed (gas cell) versus Computed v_{met}

(All Units are PPM).

CrIS ν Cal L. Strow	Test	Constant FP (max-min)	Fitted FP (max-min)	Fit Improvement	dv _{met}	<i>dv_{met}</i> minus bias
UMBC	LW Mn	2.2	2.1	0.1	-3.0	-0.1
	LW PQL	7.2	3.5	3.7	-2.4	0.6
	LW PQH	5.7	2.7	3.0	-3.7	-0.8
	MW Mn	3.0	2.8	0.2	-3.0	-0.1
	MW PQL	7.4	2.2	5.1	-2.0	0.9
Results	MW PQH	5.2	2.6	2.6	-3.0	-0.1
	SW PQL	5.8	2.2	3.6	-2.4	0.6
	SW PQh	3.2	2.2	1.0	-4.2	-1.2

Mean improvement for fitted FP (excluding HBr SW Mn) is 2.4 ppm.

Mean dv_{met} = -2.9 \pm 0.7 ppm

If use LW (CO₂) Mn -3.0 ppm dv_{met} to calibrate Neon: Neon_cal becomes +18.0 ppm higher than NIST value Expect +14.7 ppm higher due to FOV divergence (taken from ITT) Agreement to within 3.3 ppm is remarkable

A5L Additional Improvements?

CrIS ν Cal

L. Strow UMBC

- Overview
- Sensitivity
- Approach
- Spectra
- Results
- Conclusions

- The CrIS spectral calibration has a 1-sigma std. of 0.7 ppm with 2 adjustable parameters (dx, dy) for each operating temperature.
- Are additional adjustments warranted?
- Note that weather centers won't bookkeep FOV ID.
- Answer: Since LW and SW ν calibration errors are reasonably correlated (~ 0.8) over FOV #'s between tests, small additional changes in FOV geometry could be warranted.

ASL CrIS ILS Width Measurements

CrIS v Cal

L. Strow UMBC

Overview Sensitivity

Spectra

Results

Conclusions

Generate obs-calc transmittances with a set of empirical apodizations, using a sinc function. This keeps OPD the same, but allows full-spectrum determination of observed line widths. Compare widths from (1) noiseless *computed* single-spike spectra convolved with no sinc apodization, and with (2) sinc apodization that minimizes obs-calcs to determine measured versus observed width.

- LW (CO₂): Obs widths \sim 0.2% broader, apodization < 1.5%
- MW (CH₄): Obs widths <0.06% broader, apodization < 0.4%
- SW (HBr): Obs widths \sim 0.8% narrower (direct measurements, with KB apodization)

CrIS ν Cal

- L. Strow UMBC
- Overview Sensitivity
- Approach
- Spectra
- Results
- Conclusions

- CrIS frequency calibration using the Neon lamp worked extremely well in TVAC.
- ~ 1 ppm accuracy at a single operating temperature with only 2-3 adjustable parameters (x, y, Neon Cal).
- Some evidence that further adjustments to the focal plane could be warranted.
- Measured CrIS ILS widths also appear to be extremely accurate, well within specifications.
- Congratulations to ITT!
- Thanks to the IPO (Karen St.Germain) and NASA (Jim Gleason, NPP Project) for funding this work; and to Dan Mooney and Bill Blackwell for the CrIS SDR Matlab reader.