

Introduction

A-Train

Dust/Cirrus detection usin AIRS

February 200 Dust Storm 02/24/2007 02/21-24/2007

Dust spieces

OLR forcing : Fast estimate

AIRS L2

Conclusions

Comparison of AIRS Dust Retrievals with other A-Train Instruments

Sergio DeSouza-Machado, L. L. Strow, B. Imbiriba, S. E. Hannon, K. McCann, R. Hoff, J.V. Martins, O. Torres D. Tanré, J.L. Deuzé, F. Ducos

Atmospheric Spectroscopy Laboratory (ASL) Joint Center for Earth Systems Technology and University of Maryland Baltimore County Physics Department Hampton University, Atmospheric Laboratory of Optics, Universite of Sciences and Technologies of Lille, Lille, France

October 15, 2008

ASL Effects on Climate

Introduction

- A-Train
- Dust/Cirrus detection using AIRS
- February 2007 Dust Storm 02/24/2007 02/21-24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- Magnitude of climate forcing by clouds/aerosols is uncertain, and is as large as that due to greenhouse gases
- Space based instruments (mainly UV/VIS) detect dust storms with nearly daily global coverage
- Work still needs to be done in the IR eg
 - dust affects (TOA, surface) forcing
 - dust contaminates spectra used for atmospheric state retrievals
 - radiative forcing estimates need both the SW and LW components; LW component might be smaller than SW, but is affected day *and* night
- Dust in the atmosphere can dry/heat atmospheric layers, suppress hurricane formation

IPCC Radiative Forcings

Introduction

GLOBAL MEAN RADIATIVE FORCINGS

ASL AIRS and dust

Introduction

- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm 02/24/2007 02/21-24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- Many of the A-Train instruments (eg MODIS) can be used to study dust
- AIRS is VERY competitive with them (dust ODs, heights)
- AIRS also works day/night, over ocean (sunglint) and land
- AIRS can directly provide OLR forcing due to dust
- AIRS has sensitivity to dust height, but OLR forcing and L2 retrievals relatively insensitive to height, unlike dust optical depth.

ASL AIRS Contributions : Synergy with other instruments

Introduction

- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm 02/24/2007 02/21-24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- Land : MODIS Deep Blue has problems over bright surfaces (deserts) and OMI may not detect low-altitude dust.
- Sunglint : MODIS has trouble in sunglint regions
- Smoke/dust : MODIS can have difficulty distinguishing between the two aerosols
- Can help future missions eg GLORY
- Aerosol SW forcing : depends on single scattering albedo; good height info (from AIRS) will reduce uncertainty in SSA retrieval by OMI

ASL The A-Train

Introduction

A-Train

Dust/Cirrus detection using AIRS

February 200 Dust Storm 02/24/2007 02/21-24/2007

Dust spieces

OLR forcing : Fast estimate

AIRS L2

Conclusions

Intercompare results between 5 A-Train instruments Aura : OMI PARASOL : POLDER CALIPSO : CALIOP Aqua : AIRS and MODIS

ASL Instruments used in this study

A-Train

Dust/Cirrus detection using AIRS

February 200 Dust Storm 02/24/2007 02/21-24/2007

Dust spieces

OLR forcing : Fast estimate

AIRS L2

Conclusions

Instrument	Footprint	Retrieval	Swath	Available	Retrieval
	(km)	(km)	(km)	channels	reported at
AIRS	15	15	2000	IR	900 cm ⁻¹
CALIPSO	0.1	15	0	532,1064 nm	532 nm
PARASOL	7x6	20	1600	UV, Vis,NIR	865 nm
MODIS (land)	1	10	2330	Vis,NIR,IR	550 nm
MODIS (ocean)	1	10	2330	Vis,NIR,IR	858 nm
OMI	13×24	13×24	2600	UV	500 nm
AERONET	point	point	ground	VIS	500 nm

Most are passive VIS or UV instruments and so can only be used during the day AIRS : IR instrument; acquires data day and night CALIPSO : active (LIDAR) instrument; acquires data day and night

MODIS also has some TIR channels

ASL Dust and Cirrus Flags

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm 02/24/2007 02/21-24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- Set up a sequence of "threshold dust cloud tests"
- 5 channels chosen are [822.4 900.3 961.1 1129.03 1231.3] cm⁻¹
- Threshold tests *tt_i* involve split window BTD
- *tt*=380 over water; *tt*=360 over land (needs improvement)
- Cirrus flag : BT(960)-BT(820) \geq 2 K and BT(960) \leq 275 K

ASL Feb 20-24, 2007

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS

February 2007 Dust Storm

02/24/2007 02/21-24/2007

Dust spieces

OLR forcing : Fast estimate

AIRS L2

- Weather system arrived over NW Africa on 02/20/2007
- Progressed over Algeria, Libya, Egypt and over the Mediterranean towards Turkey by 02/24/2007
- Multiple overpasses by A-train instruments (and eg SEVIRI)
- Have retrieved aerosol ODs over land and sea for AIRS, CALIPSO, PARASOL (sea only), MODIS, OMI
- Some AIRS FOVs have dust and cirrus, others totally cloudy

ASL Feb 20-24, 2007

A-Train

Dust/Cirrus detection using AIRS

February 2007 Dust Storm

02/21-24/200

Dust spieces

OLR forcing : Fast estimate

AIRS L2

ASL AIRS retrieval scheme

- ECMWF for estimate of atmospheric profile and surface temps
- Emissivity : Masuda over ocean, U-Wisc database over land
- Use Volz database of IR optical constants (see later)

Details :

- Use $\simeq 30$ TIR channels between 800-1200 cm⁻¹ (hgt sensitive)
- Use 2602,2616 cm⁻¹ SWIR channels (OD sensitive)
- OD errors dominated by dust height placement : (CALIPSO can help, but ...)
- Linearized Newton Raphson scheme used to retrieved ODs at fixed AIRS layers; look for minimum spectral bias and average over 0.5×0.5 grid to retrieve height
- Go back one more time to retrieve final AIRS OD estimate

ntroduction

Dust/Cirrus detection using AIRS

February 2007 Dust Storm

02/24/2007 02/21-24/2007

Dust spieces

OLR forcing : Fast estimate

AIRS L2

A-Train

Dust/Cirrus detection using AIRS

February 200 Dust Storm

02/24/2007

Dust spieces

OLR forcing : Fast estimate

AIRS L2

ASL Results along CALIPSO ground track (Hgt)

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm 02/24/2007
- 02/24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- background is CALIPSO backscatter
 - black is surface, traversing Egypt(left) to Turkey(right)
 - horizontal line at 5.5 km shows peak backscatter between 5-20 km (indicator of high clouds)
 - vertical structure cannot be retrieved by AIRS
- Blue is AIRS height retrieval captures strong features

ASL Results along CALIPSO ground track (OD)

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm 02/24/2007
- 02/21-24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- CALIPSO assumes single scattering; not good at high ODs
- OMI uses GOCART heights; incorrect (higher than CALIOP) AIRS III uses same GOCART heights
- AIRS TIR ODs using retrieved height agree very well with MODIS and PARASOL total ODs

ASL Feb 24, 2007 summary of regressions along CALIOP track vs MODIS

A-Train

Dust/Cirrus detection using AIRS

February 200 Dust Storm 02/24/2007

02/21-24/200

Dust spieces

OLR forcing : Fast estimate

AIRS L2

Conclusions

Instrument	Slope	Intercept	Correlation
CALIOP (512 nm)	0.22	0.58	0.46
PARASOL (865 nm)	1.00	0.20	0.95
OMI (500 nm)	0.22	0.57	0.91
AIRS I (900 cm ⁻¹)	0.27	0.23	0.85
AIRS II (900 cm ⁻¹)	0.25	-0.01	0.95
AIRS III (900 cm ⁻¹)	0.14	0.02	0.95

Regressions done against MODIS 0.55 um total OD

ASL Retrieved heights (km)

- GOCART is usually too high
 - NE Mediterranean : hgt(GOCART) hgt(AIRS) ~ 1 km
 - south of Cyprus, along CALIOP track : hgt(GOCART) − hgt(AIRS) ≃ 1.5 − 2km
 - west/SW of Cyprus : $hgt(GOCART) hgt(AIRS) \simeq 1 1.5 km$
- mean(AIRS) hgt \simeq 2 km, mean(GOCART) hgt \simeq 3 km

ASL ODs : All instruments

AIRS

OMI

MODIS

PARASOL

ASL Correlations with MODIS

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm
- 02/24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- All instruments roughly agree with each other
- PARASOL cloud mask has been relaxed for this study
- MODIS coarse mode is much smaller than PARASOL coarse mode as it assumes spherical particles
- OMI has lowest ODs, as GOCART heights were too high
- AIRS does not have sun glint problems

ASL All days (Land and Ocean)

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm 02/24/2007
- 02/21-24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

Date	AIRS (900 cm ⁻¹)	OMI (0.50 um)	PARASOL (0.87 um)
	(corr) slope, int	(corr) slope, int	(corr) slope, int
21 (L)	(0.54) 0.13 MOD + 0.09	(0.58) 0.91 MOD + 0.48	(N/A) N/A MOD + N/A
22 (L)	(0.66) 0.13 MOD + 0.08	(0.77) 0.85 MOD + 0.64	(N/A) N/A MOD + N/A
23 (L)	(0.33) 0.11 MOD + 0.16	(0.51) 0.63 MOD + 1.27	(N/A) N/A MOD + N/A
23 (W)	(0.80) 0.17 MOD + 0.20	(0.73) 0.40 MOD + 1.11	(0.86) 0.79 MOD + 0.76
24 (W)	(0.95) 0.19 MOD + 0.02	(0.91) 0.50 MOD + 0.54	(0.95) 0.82 MOD + 0.19

02/22/2007

02/23/2007

MODIS on horizontal axis, OMI and AIRS on vertical axis

ASL CALIPSO/AIRS on 02/22-23/2007

Introduction

A-Train

Dust/Cirrus detection using AIRS

February 200 Dust Storm 02/24/2007 02/21-24/2007

02/21/24/200

OLR forcing Fast estimate

AIRS L2

Conclusions

2007-02-22-G129 (daytime) over land

2007-02-23-G010 (nighttime) over land and ocean

AIRS hgts vs CALIPSO backscatter AIRS ODs competitive with other instruments

ASL Identifying Species

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 2007 Dust Storm 02/24/2007 02/21-24/2007

Dust spieces

- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- Dust species have different optical constants in the thermal atmospheric window
- AIRS has many channels in this region, that could be used to differentiate between the spieces
- UV/VIS instruments cannot be used for this, as the refractive indices in those regions have less features

ASL Feb 2007 duststorm

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm 02/24/2007 02/21-24/2007

Dust spieces

- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- Using Kaolinite only produces a very large bias at 1080 cm⁻¹
- Volz, OPAC, Kaolinite, Gypsum, Quartz, mixed with CaCO3 (notch)
- Volz/CaCO3 mixture yield smallest overall residuals
- Makes sense, as kaolinite is more from the Southern Sahara/Sahel

ASL Outgoing Long wave Radiation and Clouds/Aerosols

Introduction

A-Train

Dust/Cirrus detection using AIRS

February 200 Dust Storm 02/24/2007 02/21-24/2007

Dust spieces

OLR forcing : Fast estimate

AIRS L2

Conclusions

AIRS can provide unique information on dust LW forcing SW forcing can be about $\simeq 10$ W/m2 OLR forcing over ocean can be ($\simeq 5$ W/m2) OLR forcing over land can much larger ($\simeq 20$ W/m2)

ASL OLR forcing over land/sea

Introduction

A-Train

Dust/Cirrus detection using AIRS

February 200 Dust Storm 02/24/2007 02/21-24/2007

Dust spieces

OLR forcing : Fast estimate

AIRS L2

Conclusions

Sahara and Mediteranean (02/23) Color axis : Landfraction

Mediteranean (02/24) Color axis : latitude

ASL AIRS L2 and dust

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 2007 Dust Storm 02/24/2007 02/21-24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- AIRS L2 quality flags fail (down to surface) where there is dust
- Surface temps (± 3 K), sea emissivities usually different (from ECMWF/Masuda)
- Temperature and water profiles also different from ECMWF
- Met in early Sept with Joel, Chris, Larrabee, John, Scott

ASL 2008/09/29 G 144

A-Train

Dust/Cirrus detection using AIRS

February 200 Dust Storm 02/24/2007 02/21-24/2007

Dust spieces

OLR forcing : Fast estimate

AIRS L2

Conclusions

AIRS dust flag

AIRS QA

Qual.Cloud_OLR = 0,1Qual.Temp_Profile_Bot = 0,1Qual.H2O = 0,1Qual.Guess_PSurf = 0,1

A.SL Conclusions

- Introduction
- A-Train
- Dust/Cirrus detection using AIRS
- February 200 Dust Storm 02/24/2007 02/21-24/2007
- Dust spieces
- OLR forcing : Fast estimate
- AIRS L2
- Conclusions

- Over ocean, AIRS ODs very competitive with those from PARASOL, MODIS, OMI
- $\bullet\,$ Over land, AIRS TIR ODs \simeq MODIS, OMI ODs
- AIRS dust layer heights compare very well against CALIPSO
- Many synergy possibilities between AIRS and other instruments

AIRS provides estimates of dust OLR forcing Scattering code works for dust, clouds, volcanic ash ...