

#### Status of Aqua



### Claire L. Parkinson Aqua Project Scientist NASA Goddard Space Flight Center

Presentation at the AIRS Science Team Meeting, Greenbelt, MD, October 14, 2008

## NASA





- Spacecraft: Excellent condition, although
  Partition 6 of the Solid State Recorder requires a reconfiguration eventually.
- AIRS: Excellent condition, performing superbly.
- AMSU-A: Still functioning well except for degradation in channels 4, 5, and 7.
- HSB: Inoperative (8-9 months of good data; survival mode since 2/5/03).
- AMSR-E: Excellent condition except for the 89 GHz channel using the A feedhorn and worrisome increases in the Antenna Drive Electronics motor current and torque and the Antenna Drive Assembly temperature.
- CERES (two sensors): FM3 is in excellent condition; the shortwave channel of FM4 failed as of 3/30/05.
- MODIS: Excellent condition except for band 6 (most band 6 detectors are non-functional).



#### AMSR-E Antenna Drive Electronics (ADE) Motor Current and Torque Progression



Time: Launch (May 4, 2002) through September 2008



### **Revised Aqua Lifetime Estimate**

- The Flight Dynamics Team has updated their estimates of expected fuel usage through 2017.
- Result: Aqua appears to have enough fuel to last at least through 2016 and perhaps through 2020, still with fuel available for the necessary end-of-mission maneuvers.

Aqua Definitive and Predicted Fuel Levels Over the Mission's Lifetime





- Successful CloudSat maneuver on 10/2/08 leaves CloudSat 124.1 km (16.54 seconds) ahead of CALIPSO and approaching CALIPSO at about 1.1 km/day (0.15 seconds/day).
- Orbiting Carbon Observatory (OCO) scheduled to launch 1/15/09, to be positioned in front of Aqua.
- Glory scheduled to launch 6/15/09, to be positioned between PARASOL and Aura.
- Some possibility that the Japanese Global Change Observation Mission – Water (GCOM-W) will join the A-Train in 2013 or later.

# Next 7 Slides: A Selection of Science Results from Aqua's Other (non-AIRS) Science Teams



## Sample MODIS and AMSR-E Snow Products (intra-Aqua comparisons)

MODIS 8-day composite 5-km resolution snow map, February 24 – March 2, 2004



Percent snow cover

Sample wintertime AMSR-E snow water equivalent (SWE) map



Images from Dorothy Hall and Jim Foster



#### Blended AMSR-E/MODIS Snow Product

- Air Force NASA Snow Algorithm (ANSA) blended product
  - High-resolution MODIS data
  - All-weather AMSR-E data
- Improved snow water equivalent (SWE) and snow extent products



Sample blended SWE image for 2/25/08 (from Jim Foster and Dorothy Hall)

ANSA SWE 20080225

SWE (mm

Sample validation results for snow extent from eastern Turkey (from Zuhal Akyurek and Dorothy Hall)



### MODIS Cloud Cover, Aqua vs. Terra



MODIS Aqua minus Terra monthly mean daytime cloud fraction averaged over the 5-year period August 2002 – July 2007 (from Steve Ackerman et al., *J. Atmos. Oceanic Technology*, 2008)

#### Antarctic Sea Ice from Two AMSR-E Algorithms and one SSMI Algorithm



Sample ABA and NT2 sea ice concentrations

## Time series of ice extents and ice areas

Algorithms: ABA – AMSR-E bootstrap SBA – SSMI bootstrap NT2 – AMSR-E NASA tear

Illustrations from Parkinson and Comiso (2008, *JGR*)





#### Average ice concentrations

| Algorithm               | Ice Extent Trend                                                                                 |
|-------------------------|--------------------------------------------------------------------------------------------------|
| ABA                     | - 65,000 ± 46,000 km²/yr                                                                         |
| SBA                     | - 68,000 ± 46,000 km²/yr                                                                         |
| NT2                     | - 67,000 ± 45,000 km²/yr                                                                         |
|                         |                                                                                                  |
|                         |                                                                                                  |
| Algorithm               | Ice Area Trend                                                                                   |
| Algorithm<br>ABA        | Ice Area Trend<br>- 78,000 ± 41,000 km²/yr                                                       |
| Algorithm<br>ABA<br>SBA | Ice Area Trend<br>- 78,000 ± 41,000 km <sup>2</sup> /yr<br>- 75,000 ± 41,000 km <sup>2</sup> /yr |

Table. Anomaly Trends, 7/02 - 12/06



#### Comparison of Climate Feedbacks from Models versus AMSR-E and CERES Data



Note: Great match between satellite and model results for the LW feedback, but not for the SW feedback.

Key message: The models are not properly simulating the SW feedback.

From Roy Spencer and William Braswell (2008, submitted)

#### Sample Aqua Data Intercomparison for Climate Studies: CERES Shortwave TOA Flux versus MODIS Cloud Fraction



From Norman Loeb and Bruce Wielicki, CERES Science Team

TOA = Top of Atmosphere

## NASSA

### Sample A-Train Data Fusion Efforts



CALIPSO-derived cloud and aerosol mask

Eventually will include:

(1) cloud overlap profiles from CALIPSO and CloudSat,

(2) Cloud and aerosol properties from CALIPSO, CloudSat, and MODIS,

(3) TOA radiative fluxes from CERES.

Goal: Improved radiative flux profiles.

From Norman Loeb and Bruce Wielicki, CERES Science Team



From Mous Chahine et al. (2008, GRL)



## **Upcoming Reviews**

#### • Aqua End-of-Prime-Mission (EOPM) Review.

- Scheduled for December 2-3, 2008.
- Focused on lessons learned and how NASA can improve future missions.
- Sample topics to include:
  - Instrument performance
  - Performance versus expectations
  - Data handling
  - Data flow to users
  - Cal/val, including an accounting of where the data products are with respect to validation
  - An accounting of any research products that have essentially become standard products
  - Interactions (among Aqua teams, with the rest of the A-Train, between centers, agencies, and countries)
  - · Possible improvements in the management of the mission or the science

#### • 2009 Senior Review

- Suggested revised scope being considered by HQ
  - Perhaps less all-encompassing than the 2007 Senior Review
  - Perhaps more oriented to science, data, and mission ops.
    - Do the data products address NASA objectives?
    - Are the products produced efficiently?
    - Are the products being used and by whom?
- Expect the call for proposals in December 2008.
  - Proposals due in March 2009.
  - Review panel to meet in late April 2009.
- Expect 3 review panels, for science, EPO, and Core mission.





- NOAA NCEP, ECMWF, and the UK Met Office use AIRS/AMSU temperature and radiance data.
- The National Hurricane Center uses AMSR-E rainfall and brightness temperatures.
- The U.S. Navy, UK Met Office, Australian Bureau of Meteorology, and the Japan Fisheries Information Service Center use AMSR-E SSTs.
- The Japan Meteorological Agency uses AMSR-E water vapor and precipitation data.
- At least 10 numerical weather prediction centers use MODIS polar winds.

#### Aqua Products Supporting Other Applications



Oregon Fires, 8/12/02, from MODIS

Volcanic SO<sub>2</sub> plume, 10/28/02, from AIRS





MODIS contrail detection reveals flight patterns of aircraft over Iraq



Dust storm in Iraq, 8/7/05, from MODIS

### Visibility of Aqua Results



#### IEEE TRANSACTIONS ON **GEOSCIENCE AND REMOTE SENSING** A PUBLICATION OF THE REE GEOSCIENCE AND REMOTE SENSING BOCIETY

PART I OF TWO PARTS

SPECIAL ISSUE ON THE MARCH 2003 EOS AQUA AMSR-E ARCTIC SEA ICE FIELD CAMPAIEN



**∲IEEE** 

## BAľ IA. IN

STADIUM SAFETY

OVORAK TECHNIQUE



#### IEEE TRANSACTIONS ON **GEOSCIENCE AND** REMOTE SENSING



**♦IEEE** 

#### Number of users of Aqua data, by year and domain



#### Validation of Atmospheric Infrared Sounder Observations



#### IEEE TRANSACTIONS ON **GEOSCIENCE AND**

**REMOTE SENSING** 



♦IEEE