

AIRS Tropospheric CO₂ and (Upper-Trop) CH₄ retrievals.

Breno Imbiriba, Larrabee Strow, Sergio de Souza-Machado, and Scott Hannon.

> Atmospheric Spectroscopy Laboratory (ASL) University of Maryland Baltimore County Physics Department and the Joint Center for Earth Systems Technology

AIRS Science Team Meeting - Greenbelt, MD October 14, 2008

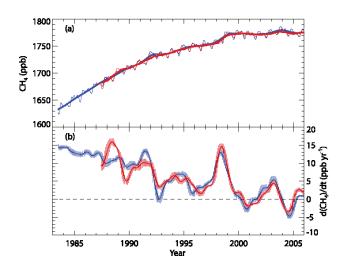
ASL Overview

CH₄
Ocean CO₂
AIRS CO₂ vs
CarbonTracker
Land CO₂
Retrievals
Land CO₂ vs C

Introduction

- Interested in measuring CO₂ and CH₄ with AIRS/IASI/CrIS
- Primary interest is rates, for monitoring growth of greenhouse forcing gases
- Using simple techniques to get rates quickly. AIRS CDS is data source (mostly), so no CC'd data used.
- We use ECMWF temperature fields, and ...
- Internal diagnostics show ECMWF temperature fields (for troposphere) are good enough.
- 4-year CO₂ climatology published in JGR in Sept. 2008
- This presentation:
 - CH₄ growth rates
 - Comparison of 4-year CO₂ climatology to NOAA CarbonTracker (CT)
 - Progress in CO₂ retrievals (300-600 mbar range) over land, esp. with regard to cloud filtering

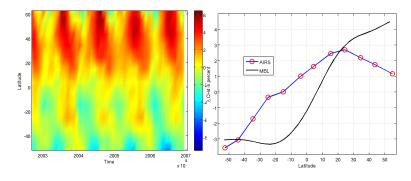
45 Use of ECMWF


Introduction
CH₄
Ocean CO₂
AIRS CO₂ vs
CarbonTracker
Land CO₂
Retrievals

- ECMWF uses radiosonde measurements as the "anchoring network" of observations for the ECMWF tropospheric temperatures with no bias correction, see Auligne, T., A. McNally, and D. Dee (2007), Adaptive bias correction for satellite data in a numerical weather prediction system, QJRMS, 133, 631–642, doi10.1002/qj.56.
- ullet ECWMF T(z) fields are essentially optimially interpolated radiosondes, AIRS/IASI radiances are bias-adjusted to agree with radiosondes
- Bias of AIRS vs ECMWF has a standard deviation in CO₂ channels at the AIRS noise level - before and after assimilation of AIRS at ECMWF.
- 4-year CO_2 growth rates derived from AIRS biases relative to ECMWF gives 2.2 ppm/year ± 0.2 ppm/year, compared to MLO in-situ rate of 2.05 ppm/year. This difference corresponds to 5mK/year difference in BT units.

CH₄: IPCC Report Shows Growth Slowing

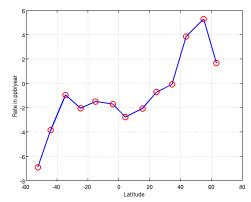
CH₄
Ocean CO₂
AIRS CO₂ vs
CarbonTracker
Land CO₂
Retrievals
Land CO₂ vs CT



ASL CH₄ Climatology

CH₄

- One CH₄ channel used: 1303.2 cm⁻¹
- One CO₂ line (with similar dBT/dT to 1303.3 cm⁻¹ CH₄ line) used to correct for variability in ECMWF upper-trop temperatures).
- dBT/dCH4 peaks ~300 mbar

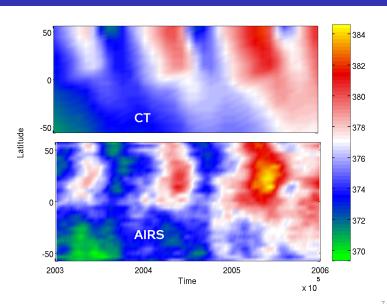

CH₄ Growth Rates

- Introduction CH₄
- Ocean CO₂

 AIRS CO₂ vs
 CarbonTracket

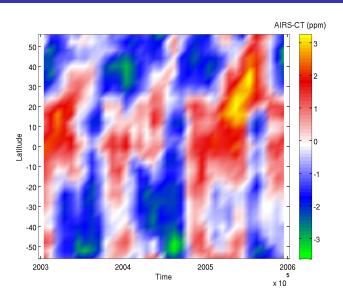
 Land CO₂
- Land CO₂ Retrievals Land CO₂ vs

- Growth rate measured as a function of latitude
- ullet 36 month growth rate = 0.90 \pm 3.9 ppb/year
- \bullet 48 month growth rate = -1.1 \pm 3.2 ppm/year
- \bullet Comparable to IPCC published rates, much lower than ${\sim}15$ ppm/year growth rates in the 70's and 80's.

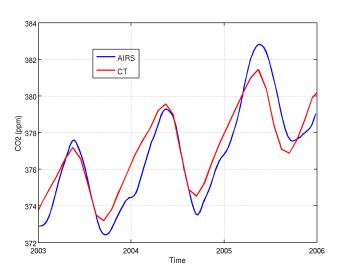


AIRS vs. CarbonTracker

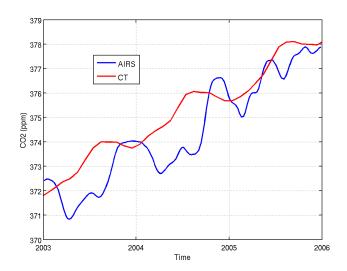
CT Convolved with (dBT/dCO₂)_L


Introduction
CH₄
Ocean CO₂
AIRS CO₂ vs
CarbonTracker
Land CO₂
Retrievals
Land CO₂ vs CT

ASL AIRS Minus CarbonTracker


AIRS CO₂ vs CarbonTracker

ASL AIRS vs. CarbonTracker: Avg. of 20N to 50N


AIRS CO₂ vs CarbonTracker

ASL AIRS vs. CarbonTracker: Avg. of 20S to 50S

AIRS CO₂ vs CarbonTracker

Conclusions: AIRS Ocean CO₂ vs CarbonTracker (CT)

Introduction

CH₄ Ocean CO₂

AIRS CO₂ vs CarbonTracker

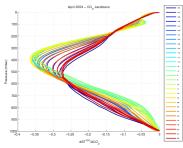
Land CO₂ Retrievals Land CO₂ vs C

- General agreement between AIRS and CT
- AIRS tropical CO₂ cycle more intense
- In NH, CT CO₂ general grows more quickly, AIRS and CT decrease in summer months generally similar
- In SH winter, AIRS CO₂ lower than CT, otherwise similar
- AIRS may be key instrument for improving CO₂ transport models, but more validation needed.

CO₂ General Retrieval Approach

Introduction

CH₄


Ocean CO₂

AIRS CO₂ vs

CarbonTracker

Land CO₂ Retrievals Land CO₂ vs C

- Input is clear FOVS in AIRS CDS
- SW and LW approach, Used LW for ocean, but SW appears better over land
 - Use channels sensitive to mid tropospheric CO₂
 - Narrow "Q branch" ν_2 transition at 791.75 cm^{-1} (LW)
 - Broad "R branch" ν_3 transition around 2387 2390 cm^{-1} (SW).
- \bullet Peak at 450mbar (Mid-Troposphere) \approx 6.7Km. Can be much lower over land in tropics.

Retrieval Steps

Introduction

Ocean CO₂

AIRS CO₂ vs CarbonTracke

Land CO₂ Retrievals

Land CO₂ vs C1

- Assume ECMWF has good temperature profile (unbiased).
- Correct for surface temperature and overall water content.
- In each band, solve for CO_2 and T_s .
- For example LW:
 - 790cm⁻¹ (no sensitivity to CO₂)
 - $791cm^{-1}$ (right on a CO₂ line).

$$\begin{array}{lcl} B_{obs}^{790} - B_{calc}^{790} & = & J_{T_s}^{790} \, \delta \, T_s \\ B_{obs}^{791} - B_{calc}^{791} & = & J_{T_s}^{791} \, \delta \, T_s + J_{T_{CO_2}}^{791} \, \delta \, CO_2 \end{array}$$

- Emissivity errors (and others) go into the "effective" T_s . Corrections are applied on sensitive channels
- Also accounts for very low clouds (below the sensitivity of the weighting function).

New Steps to Approach ppm Level CO₂ Retrievals over Land

Introduction

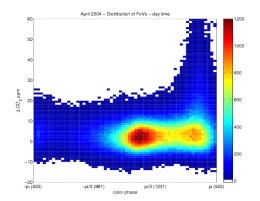
^H4 cean CO₂

AIRS CO₂ vs CarbonTracke Land CO₂

Retrievals

Land CO₂ vs CT

- Cloud contamination is key issue, especially cirrus
- Detection of clouds more difficult over land
- Will present new cloud flag concept
- Retrieved CO₂ depends on secant angle due to RTA errors (up to 6 ppm max)
- Methodology to correct RTA errors (calibration) does not require external calibration data
- Will show comparisons to CarbonTracker for three months


Land CO₂ Complicated by Cloud Contamination

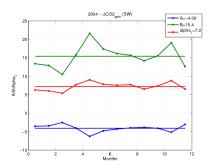
Introduction
CH₄

AIRS CO₂ vs CarbonTrackei

Land CO₂ Retrievals Land CO₂ vs (

- Empirically based cloud flag being tested. Uses ECMWF atmospheric fields to determine best cloud flag.
- Compute three **biases** across thermal window: 822 cm⁻¹ (cirrus), 961 cm⁻¹ (2616 cm⁻¹), 1231 cm⁻¹. Combine as RGB.
- $tan(h) = \frac{\sqrt{3}}{2} \frac{G-B}{B-G-B}$ is X-axis, Y-axis is CO₂, color is FOV count

Satellite Zenith Angle Correction


Assumes ECMWF Error independent of zenith angle

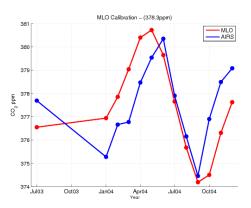
 RTA spectroscopy errors will accumulate acording to the secant of satellite zenith angle.

• CO_2 versus $\sec \theta_{sz}$ fit to a quadratic function: $CO_2 = A \sec^2 \theta_{sz} + B \sec \theta_{sz} + C.$

 Will adjust CO₂ ppm according to: $CO_2^{\text{new}} = CO_2 - A(\sec^2\theta_{sz} - 1) - B(\sec\theta_{sz} - 1).$

Note: nadir needs ~8 ppm spectroscopy correction (alpha)

Land CO2


16/23

Mauna Loa Calibration

Shown after 8 ppm correction

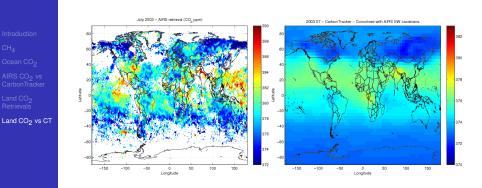
8 ppm correction same as correction derived from zenith angle bias!

• 5 deg box around the island - Fit for the 2004 annual mean.

Introduction
CH₄
Ocean CO₂
AIRS CO₂ vs
CarbonTracker
Land CO₂
Retrievals

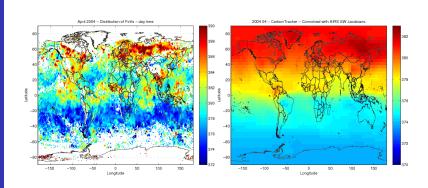
Comparison of Land CO₂ to CT for Several Months

Introduction

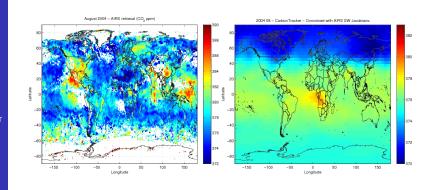

Ocean CO_:

AIRS CO₂ vs CarbonTracker

Land CO₂ Retrievals Land CO₂ vs CT Results clearly show seasonal patterns.

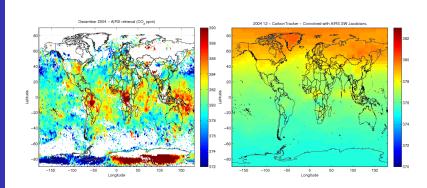

- Over Ocean reasonably confident, validated.
- ullet Over Land retrievals are \sim 2-6 ppm higher than CT
- See more CO₂ structure over land than CT.
- Cloud filtering algorithms significantly improved.

ASL July 2003


45*L* April 2004

Land CO2 vs CT

ASL August 2004


Land CO2 vs CT

ASL December 2004

Land CO2 vs CT

Conclusions, Land CO₂ Retrievals

CH₄

Ocean CO₂

AIRS CO₂ vs
CarbonTracker

Retrievals

Land CO₂ vs CT

- Land CO₂ retrievals in the 400-550 mbar region are very sensitive to cloud contamination, cloud flag is improving
- May test algorithm on CC'd data.
- May have calibration correction that doesn't require external data for absolute accuracy (secant angle correction).
- Comparisons to CT are encouraging, but biased high.
- Need to process large amount of data in order to maximize number of coincidences with validation data.