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SSMIS Scan Pattern 

• The first SSMIS instrument was successfully 
launched on October 18th, 2003, aboard the 
Defense Meteorological Satellite Program 
satellite F16 (DMSP-F16) 

• SSMIS is a conically-scanning passive 
microwave radiometer that includes 7 
temperature sounding channels peaking below 
30 Km, and 7 peaking between 30 Km and 80 
Km, 4 water vapor channels, along with 
imaging channels from the heritage SSMI 
instrument 

• The tropospheric and stratospheric 
temperature sounding channels are similar to 
those of the AMSU-A instrument aboard 
NOAA satellites 15-18, which have 
tremendous positive impact on numerical 
weather prediction (NWP) systems 

• The AMSU-A instruments have cross track 
scanners, as opposed to the conically-scanning 
SSMIS.  
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Channel Characteristics of F16 SSMIS 
(Poe et al., 2001) 

Channel   
     Center Freq  .  3-db Width     Freq. Stab      Pol.  NEDT  Sampling Interval(km) 

  (GHz)   (MHz)   (MHz)    (K) 
1.  50.3   380  10  V  0.34   37.5   
2.  52.8   389  10  V  0.32   37.5   
3.  53.596   380  10  V  0.33   7.5   
4.  54.4   383  10  V  0.33   37.5   
5.  55.5   391  10  V  0.34   37.5   
6.  57.29   330  10  RCP  0.41   37.5   
7.  59.4   239  10  RCP  0.40   37.5   
8.  150   1642(2)  200  H  0.89   12.5   
9.  183.31+/-6.6  1526(2)  200  H  0.97   12.5   
10. 183.31+/-3  1019(2)  200  H  0.67   12.5   
11. 183.31+/-1  513(2)  200  H  0.81   12.5   
12. 19.35   355  75  H  0.33   25   
13. 19.35   357  75  V  0.31   25   
14. 22.235   401  75  V  0.43   25   
15. 37   1616  75  H  0.25   25   
16. 37   1545  75  V  0.20   25   
17. 91.655   1418(2)  100  V  0.33   12.5   
18. 91.655   1411(2)  100  H  0.32   12.5   
19. 63.283248+/-0.285271  0.08  RCP  2.7   75   
20. 60.792668+/-0.357892  0.08  RCP  2.7   75   
21. 60.792668+/-0.357892+/-0.002  0.08  RCP  1.9   75   
22. 60.792668+/-0.357892+/-0.0055  0.12  RCP  1.3   75   
23. 60.792668+/-0.357892+/-0.016  0.34  RCP  0.8   75   
24. 60.792668+/-0.357892+/-0.050  0.84  RCP  0.9   37.5   
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Results 
• LAS channels are stable over short time 
intervals 
• Bias varies monthly as a function of 
latitude and orbit 

– Noticeable for temperature channels 
– Major perturbation for moisture 
channels  

– Caused by variable heating of the 
primary reflector 
– Additional contribution from 
solar heating of warm load surface 

–  Reproducible over annual time cycle 
• Channels 1-5 V-polarized rather than 
specified H-pol 

SSMIS Lower Atmospheric Soundings Cal/Val  

DGS view of F-16 
from sun 



5 

LAS Cal/Val Methods 
Radiative Transfer-based Calibration 
• SDRs compared with radiative transfer calculations based on: 

SSMIS Lower Atmospheric Soundings Cal/Val  

Special and 
Operational Radio- 
sondes 

Lidar 

NWP Fields 
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SSMIS Lower Atmospheric Soundings Cal/Val  

Special Measurement Campaigns 
• Aircraft-based dropsondes 
• Shipboard radiosonde launches 

Direct Aircraft-based Radiometer Calibration 
• NASA Goddard CoSMIR for soundings channels 

Other tools: DGS, 
Thermal Modeling, SIMS 

Special measurements 
coordinated by Steve Swadley, 
NRL 
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DMSP/Aerospace Cal/Val Data Archive  

Collocations performed on daily basis 
• SSMIS, SSM/T-1, SSM/T-2, SSM/I, AMSU, 
OLS 
• RSDRs, TDRs, SDRs, EDRs 
• NWP—AVN, NOGAPS, ECMWF (provided 
through NRL, courtesy of ECMWF) 
• CDFSII 
• Operational RAOBs 
• Surface data 

• Software developed by Aerospace 
• Standardized IDL data readers 
• Collocation software 
• Data analysis software 
• RAOB QC software 

Satellite and ground truth data acquired by Aerospace at AFWA 

SSMIS Water Vapor TDRs 
Barking Sands Region 
 6 Nov 2003 
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•  Aerospace wrote its own QC Code
 which checks for: 

–  non-physical temps. 
–  temp continuity 
–  Non-physical lapse rate 
–  Continuity at the tropopause 
–  Many other conditions 

•  Code corrects certain conditions 
•  Code rejects non-compliant profiles 

–  More than 60% rejection rate 

Automated Quality Control Software Essential for
 Radiosonde Data Screening 
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Operational Radiosonde Sites Contributing to SSMIS Cal/Val 
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Atmospheric Lidar at Aerospace 
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History of Lidar at Aerospace 

•  Raman Lidar of water at Malabar FL –1996 
–  Proof of value to DMSP Cal/Val efforts 

•  Development of ATLS – 1996 
–  ATLS operational 1997 

•  DMSP cal/val using ATLS -SSMI, SSM/T1, SSM/T2  
–  F14 and F15  
–  Kauai 
–  San Nicolas Is.  
–  Table Mtn. Facility  

•  DMSP F16 SSMIS cal/val 
–  Kauai 

•  DMSP F17 SSMIS cal/val 
–  Kauai 
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ATLS-2  

•  40’ std. shipping container 
•  Zenith pointing only 
•  1 meter aperture receiver 
•  12 W 355 nm  
•  2.5 W 374 nm tunable 

–  Seeded, doubled Alexandrite laser 

•  Mesospheric Temperature 
–  85-105 km alt. 

•  Water , tropo and stratospheric
 temperature 
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Barking Sands Nov 6, 2003 6:38 UTC 
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Depolarization Elastic Scattering 

Nov 6, 2003 6:38 UT 
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Barking Sands Water Vapor, April 19, ‘02 

Water vapor highly 
variable in space and 
time- Balloons can’t 
capture this 
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CH9 

CH10 Lidar                                        RAOB          ECMWF 

SSMIS - SSMT2 - AMSUB - RT - Calibn - summary. ppt Rev 4 data Collected charts4. ppt 
yh040629b. ppt 

Scatter Plots of RTM Versus SDRs 
SSMIS LAS Moisture Channels 
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Cal/Val Discovered Significant SSMIS Bias Changes 

•  During specific seasons SSMIS
 data show strong dependence
 on ascending/decending node
 and lattitude 



23 

•  Operational Radiosondes 
•  NWP 
•  Special Radiosondes 
•  Lidar 

–  Barking Sands 
–  JPL 
–  ARM/CART SGP 
–  Other 

•  Aircraft 
–  CoSMIR 
–  APMIR 
–  Special Campaigns 
–  ACARS 

–  Critical for LAS  
–  Critical for LAS –ECMWF 
–  Critical for LAS  

–  Critical for LAS  
–  Critical for UAS --MLO 
–  Unsuccessful, RS90 Supporting 
–  Insufficient data 

–  Very Helpful for LAS  
–  Critical for Surface Channels 
–   Supporting LAS 
–  Insufficient matchup data 

SSMIS Cal/Val Lessons Learned: 
Critical Sources of Ground Truth 
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Lidar played an important role in SSMIS cal
/val 

–  Deployed to Kauai over two-year period 
–  Made water vapor measurements to 18 km altitude coincident with F-16

 over-flights 
–  Made temperature measurements to 85 km altitude coincident with F-16

 over-flights 
–  Supported ER-2 data showing polarization problem 
–  Helped to uncover reflector emissivity issue producing bias errors  
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BACKUP SLIDES 
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Applicable ground truth methods 
NWP and/or RAOBs   Lidar + Radiosondes 
Scientific Radiosondes   Exceeds current state-of-art 

AVMP performance requirements and current estimates  
Subject    Specified Values   Threshold Values   

Clear, Surface to 600 mb  14%   0%  or 0.2g/kg)   
Clear, 600 mb to 300 mb  15%   35% (or 0.1g/kg)   
Clear, 300 mb to 100 mb  12% (or .05g/kg)  35% (or 0.1g/kg)  
Cloudy, Surface to 600 mb  16%   20% ( or 0.2g/kg)   
Cloudy, 600 mb to 300 mb  17%   40% ( or 0.1g/kg)  
Cloudy, 300 mb to 100 mb  16% (or.05g/kg)   40% (or 0.1g/kg)   

AVTP performance requirements and current estimates 
Clear, Surface to 300 mb  0.9 K / 1 km Lyr   1.6K   
Clear, 300 mb to 30 mb  1 K / 3 km Lyr   1.5K   
Clear, 30 mb to 1 mb   1.5 K / 5 km Lyr   1.5K   
Clear, 1 mb to 0.5 mb  3.5 K / 5 km Lyr   3.5K  
Cloudy, Surface to 700 mb  2.0 K / 1 km Lyr   2.5K   
Cloudy, 700 mb to 300 mb  1.4 K / 1 km Lyr   1.5K   
Cloudy, 300 mb to 30 mb  1.3 K / 3 km Lyr   1.5K   
Cloudy, 1 mb to 0.5 mb  3.5 K / 5 km Lyr   3.5K   

NPP ATMS Radiometric calibration error limit:  ~0.5K  (pg 41 NPP Cal/Val Plan, Dec 30, 2001) 

NPOESS Sounding Requirements 
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Ascending and Descending Bias over Conus Versus Month 
SSMIS Channel 4 Based on Raobs 
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The small spread in lidar data allows for 
accurate determination of reflector 
emissivity from slope 
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The large spread in balloon data does 
not allow for accurate determination of 
reflector emissivity from slope 
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NWS Lihue Raob and Barking Sands RS-90 Radiosonde 

Comparisons between Radiosondes 
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ATLS-1 Specifications 

•  Full sky scanning .75 m aperture 
•  12W 10 nsec 355 nm transmit beam 
•  9 channel receiver 

–  3 Water (high/low alt.) 
–  2 Nitrogen(high/low alt.) 
–  4 Elastic (2 polarizations/ high/low) 

•  Transportable by truck or military
 aircraft (C-130, C-5, C-17) 

•  Water to 18 km 
•  Temp to 85 km 
•  70 km range for cloud detection 
•  Requires 1-2 days setup  
•  Power (50 amps, 208 3 phase)  
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Water in the Atmosphere 

• Water is not well mixed in the atmosphere 
–  Above the mixing layer water is found in layers, often not thicker than tens

 of meters 
–  Lidar is sensitive to the presence of such thin layers 

•  By measuring the mixing ratio and the temperature, relative humidity
 (RH) can be determined using lidar 
•  Excellent spatial and temporal resolution 
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Barking Sands Water Vapor, April 25, ‘02 
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Rayleigh Temperature Lidar 
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Lidar Siting 

•  ATLS is a mobile system, capable of being deployed anywhere on the
 globe by military aircraft, and in CONUS by truck 
•  Planned lidar data sites include  

–  CART ARM site (mid-CONUS) 
• Water, temp, atms. Density, AOT 

–  Mid-Pacific 
–  Eastern CONUS  
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ATLS attributes  for NPP/NPOESS cal/val 

•  Mobile 
–  Siting anywhere on the globe 
–  Sea level siting important for water vapor 

•  Flexible  
–  Can be configured for a variety of measurements  

•  Scanning capability 
–  Cloud mapping 
–  LOS with satellite sensor 

•  Balloon sondes co-located with lidar 
–  Insures high quality data accuracy 
–  Allow complete altitude coverage for temp and humidity, important for

 radiative transfer calculations 
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• Do not rely on derived performance estimates 
• Verify calibration is stable to environmental temperature using sources emitting 
at measurement frequencies (Confirm frequency/bandpass drift is acceptable.  
Blackbody test is inadequate.) 
• Verify polarization for each feedhorn 
• Verify off-axis rejection for full system at all frequencies 
• Verify calibration for full radiometric path 

• If reflector is outside calibration path, verify microwave emissivity at all measurement 
frequencies, verify reflector surface roughness, surface durability, and IR and visible 
characteristics 
• Verify intrusion-free field of view 
• Verify stable calibration in thermal vac under varying simulated solar loads to all 
instrument components 

_____________________________________ 
Verify is defined above as “develop and apply reliable laboratory test methods” 

Lessons Learned during SSMIS Cal/Val 
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SSMIS RTM Bias, Yearly Average 

Measured by Global Operational Radiosondes 

Temperature Water Vapor 
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•  Radiative transfer 
– Improve atmospheric transmission model 
– Improve surface model 

•  Operational Radiosondes 
– Increase vertical resolution 
– Improve moisture accuracy 
– Improve ceiling altitude 
– Improve high altitude accuracy 
– Increase number of collocations 
– Decrease ascent time 

SSMIS Cal/Val Lessons Learned: 
Measurement Wish List 
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SSMIS Cal/Val Lessons Learned: 
Don’t Underestimate Required Resources! 

•  Personnel 
–  Data archive management (Thomas, Kishi)   2 
–  Radiative transfer (Hong)     2 
–  Special Campaigns (Swadley)     2 
–  Lidar (Farley)      1 
–  Data Analysis (Wessel, Fote)     3 
–  Program Management (Boucher, Bohlson)    1 
–  Special Investigations (Kunkee, Plonski, Boucher)   2 
–  DGS, thermal      1 

• Total      14 FTE
 yrs 
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•  Improved NWP 
–  Improved vertical resolution  
–  Improve moisture accuracy 
–  Improve high altitude temperature accuracy and increase ceiling 
–  Improve in frontal regions 
–  Improve cloud characterization 
–  Update hourly 

•  Lidar 
–  Frequent operation, including daytime 
–  Multiple locations, marine, continental, polar 
–  Extend to 100 km 
–  Avoid orographic influences 
–  Improve calibration stability 
–  Improve cloud diagnostics, add upward microwave 

SSMIS Cal/Val Lessons Learned: 
Measurement Wish List 


