

AIRS Data Assimilation at SPoRT

Brad Zavodsky and Will McCarty (UAH)

Shih-hung Chou and Gary Jedlovec (MSFC)

AIRS Science Team Meeting
Greenbelt, MD October 10, 2007

Motivation: Use of AIRS measurements within a data assimilation system can potentially provide better atmospheric representation—particularly over data void regions—and improve short-term weather forecasts

- ♦ SPoRT AIRS Assimilation focuses on short-term regional forecasts—compliments work at JCSDA
- Profile Assimilation (B. Zavodsky)

- Motivation and review of previous case study work
- Design of experiment for month-long statistics
- Results from month-long statistics
- Direct Radiance Assimilation (W. McCarty)
 - Channel selection and assimilation cycle
 - Results of case study
- ♦ SPoRT AIRS DA work presented Sept. 24 and 25 at EUMETSAT/AMS Satellite Conference in Amsterdam, The Netherlands

Profile Assimilation Introduction

- Assimilation of AIRS profiles may benefit regional centers that are influenced by data sparse areas but are not equipped to handle radiance assimilation
 - Melbourne and Miami NWS WFOs
- Previous work at SPoRT has focused on Nov. 20-22, 2005 case study
 - Found that AIRS profiles have positive impact on analyses by shifting large-scale model first-guess towards rawinsonde observations
 - AIRS-updated initial conditions showed positive impact in temperature, mixing ratio, and 6-hr cumulative precipitation at most forecast times
- More days needed to be run to find new case studies and to obtain a more robust set of cumulative statistics of forecast impact
 - 33 days of model runs from 17 January to 22 February 2007 were run (missing initial conditions for 3-5 February and 11 February)
 - These results are shown herein

- ◆ L2 Version 5 temperature and moisture profiles assimilated over land and water with quality control using P_{Best} value in each profile
 - Eastern and central CONUS swathes combined into one swath; assimilation time is mean of the two overpasses
 - Only night time overpasses used
- ♦ 12-km WRF initialized at 0000 UTC on each forecast date using 40-km ETA/NAM; ADAS to assimilate profiles

- ♦ Results of the 33 days of model runs are validated using sensible weather parameters compared to observations
 - Temperature and mixing ratio verified with 50 radiosondes east of 105°W
 - 6-hr cumulative precipitation verified with NCEP Stage
 IV data east of 105°W mapped to WRF grid

Results: 36 Hour Forecast Impact

- ◆ AIRS reduces temperature bias at most levels by ≈0.3°C in lower and upper levels
- ♦ AIRS changes low and mid-level moisture by as much as 5% at some levels
- ◆ Temperature and moisture adjustments made without large increases to RMS error

- 6-hr cumulative precipitation improves with inclusion of AIRS profiles
 - Larger ETS (bars) for AIRS runs indicates improvement in predicted precipitation location and amount
 - Bias scores (lines) closer to 1.0 for AIRS suggest improvement in coverage of precipitation features

Motivation: Use of AIRS measurements within a data assimilation system can potentially provide better atmospheric representation—particularly over data void regions—and improve short-term weather forecasts

- ♦ SPoRT AIRS Assimilation focuses on short-term regional forecasts—compliments work at JCSDA
- Profile Assimilation (B. Zavodsky)
 - Motivation and review of previous work
 - Design of experiment for month-long statistics
 - Results from month-long statistics
- Direct Radiance Assimilation (W. McCarty)

- Channel selection and assimilation cycle
- Results of case study
- ♦ SPoRT AIRS DA work presented Sept. 24 and 25 at EUMETSAT/AMS Satellite Conference in Amsterdam, The Netherlands

Radiance Assimilation Introduction

- ♦ In the NCEP Global Data Assimilation System (GDAS), AIRS has already been shown to have a significant impact in both northern and southern hemisphere global forecasts (Le Marshall et al. 2006)
- Previous work focused on preparation of AIRS radiances for data assimilation
 - CO₂ Sorting Technique can detect clouds and determine uncontaminated channels in hyperspectral data to increase the number of usable channels over a masking approach
- ◆ The proper use and assessment of these measurements within a regional system—such as the North American Model (NAM) Data Assimilation System (NDAS)—has yet to be fully assessed
 - Considerations of the proper utilization of AIRS data within the pseudooperational NDAS environment and a preliminary look at their impact are investigated herein

Channel Selection for Regional Assimilation

- Operationally, NCEP GFS uses 151 channels of the 281 channel subset
- Limitations to using a regional model:
 - lower P_{top} (2 hPa; red line)
 - O₃ not used in regional model
- No shortwave (< 5 μm) channels are used
- Plots show profile normalized Jacobians of each constituent: $\frac{dT_b}{da} * 0.1q_i$
- ♦ Green hashes denote 151 GDAS channels
- ♦ Red hashes denote 103 regional channels
- ♦ No additional channels in regional subset that are not used in global analysis

- ♦ All NCEP operational observations are assimilated every 3 hours (± 1.5 hrs) for the NOAIRS runs; AIRS radiances are the only difference between NOAIRS and AIRS runs
- A two-week spin-up period to propagate the impact of the AIRS measurements through the analysis and allow bias corrections to stabilize
- Gridpoint Statistical Interpolation (GSI) and the Weather Research and Forecasting Nonhydrostatic Mesoscale Model (WRF-NMM) used as analysis and model systems

48-hr forecast valid at 0000 UTC on 11 April 2007

♦ 500 hPa height anomalies for control (NOAIRS; blue) and control+AIRS (AIRS; red); corresponding NDAS analysis in black

Solid contours correspond to troughs; dashed cont
 Height Anomaly

Analysis AIRS NOAIRS

- ♦ A: model domain (dashed lines)
- ♦ B: subdomain characterisized by conventional obs in analysis (solid lines)
- Both height anomaly correlation (R) and standard deviation (σ) show significant improvement throughout the troposphere

- ♦ SPoRT AIRS Assimilation focuses on short-term regional forecasts—compliments work at JCSDA
- Profile Assimilation Conclusions/Future Work
 - For 33 days of model runs in late Jan./early Feb.
 - Biases are reduced in temperature and mixing ratio at most levels
 - 6-hr cumulative precipitation coverage and forecast accuracy improve
 - Further analysis of individual days from case study to determine where AIRS provides most added value; migrate to 3DVAR
- Direct Radiance Assimilation Conclusions/Future Work
 - Limitations in use of AIRS radiances in regional NDAS reduced the number of usable channels by 17% relative to the 281 subset but still retained 37% of the channels overall
 - An initial case study shows statistically significant forecast improvement throughout the entire model domain due to the assimilation of AIRS data
 - Further investigate determination of cloud contamination using CO₂ sorting technique; further investigate use of AIRS radiances over a longer set of studies

Questions?

Suggestions?

Comments?

