

AIRS Boundary Layer Products: Validation and Operational Use

Brad Zavodsky (UAH)

Gary Jedlovec (MSFC)

AIRS Science Team Meeting
Greenbelt, MD October 10, 2007

Motivation: Most weather occurs in the Planetary Boundary Layer (PBL), but observations are scattered point observations like METARs, RAOBs, ground-based sensors, and buoys. AIRS could add thousands of systematic observations of the PBL to aid forecasters.

- Planetary Boundary Layer (PBL) Refresher/Tutorial
- UAH MPR and RSA Rawinsonde Validation Datasets
- Products for NWS WFOs
- Summary/Future Plans

Planetary Boundary Layer (PBL)

- ♦ The planetary boundary layer (PBL) is the lowest 1-2 km influenced by:
 - friction (slows and redirects winds)
 - evapotranspiration (modulates moisture)
 - heat and energy transfer (radiation and convection; modulates temperature)
- Two types of PBLs:
 - stable (nocturnal): characterized by cool surface with capping
 - unstable (afternoon): characterized warm air near surface

- AIRS may aid in detection of:
 - destabilization in unstable PBL that can lead to convection
 - depth of stable PBL that can cause fog, smoke, or low clouds to linger near the surface and disrupt travel or cause serious health risks

Mobile Integrated Profiling System (MIPS)

MIPS stationed at NSSTC in Huntsville

 12Z rawinsonde launched from Redstone Arsenal (approximately 10 km south of NSSTC)

Microwave Profiling Radiometer (MPR)

- ♦ MPR is one component of MIPS instrument suite
- ♦ Generates temperature, dew point, and liquid water profiles at vertical resolution of 100 m below 1 km and 250 m above 1 km every minute
- ♦ Temperature accuracy:
 - 1.0 K from surface to 2 km
 - 1.5 2.0 K from 2-10 km
- Moisture accuracy:
 - 0.2 0.3 gm⁻³ from surface to 2 km
 - 1.0 1.5 gm⁻³ from 2-10 km

- ◆ SPoRT uses UWDB profiles (currently V4; soon V5) AIRS temperature and moisture data to produce NRT comparisons between MPR and AIRS
- ♦ A sounding comparison is generated for the closest AIRS sounding within 75 km of the MPR location
- Results of these comparisons are available in NRT on SPoRT website
- Website provides ability to zoom to lowest3 km of troposphere

http://weather.msfc.nasa.gov/sport/mips_airs/investigations.html

AIRS & MPR Boundary Layer valid for 0859 UTC on 10/02/2007 Distance: 31 km

Sample AWIPS display of an AIRS product

- ♦ Forecasters will only use data in their native system (AWIPS)
- Use AIRS to fill in temporal voids in radiosonde data record
- Emphasis on real-time data access
- Possible PBL products:
 - PBL height
 - mean PBL T and q
 - stability parameters (LCL, mean lapse rate, etc.)
- Work with forecasters to assess added value of product by use of online surveys

- ♦ SPoRT, through its partnership with UAH has access to unique datasets in the MPR and RSA radiosondes for validating AIRS PBL capabilities
- ♦ AIRS derived products can be a valuable asset to address NWS forecast problems associated with the atmospheric boundary layer

- Finalize comprehensive plan to:
 - validate real-time V5 AIRS profiles in the lowest 3km using MPR and RSA radiosonde data over northern Alabama
 - produce unique real-time boundary layer products (e.g. PBL height, mean PBL T, q and stability) from AIRS in AWIPS format to address NWS forecast problems
 - look at transitioning AIRS products to operations in the NWS Southern Region (assessment of product utility for NWS)

