DEMONSTRATION OF INNOVATIVE APPLICATIONS OF TECHNOLOGY FOR THE CT-121 FGD PROCESS

Plant Yates

Environmental Monitoring Program Report: First Quarter of 1994

(Final)

DOE DE-FC22-90PC89650 SCS C-90-00284

Prepared for:

Southern Company Services, Inc. P.O. Box 2625 600 North 18th Street Birmingham, Alabama 35291-1195

Prepared by:

Radian Corporation 8501 North Mopac Boulevard P.O. Box 201088 Austin, Texas 78720-1088

LEGAL NOTICE

This report was prepared by Radian Corporation for Southern Company Services, Inc. pursuant to a cooperative agreement partially funded by the U.S. Department of Energy and neither Southern Company Services, Inc., nor any of its subcontractors, nor the U.S. Department of Energy, nor any person acting on behalf of either:

- Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report or that the process disclosed in this report may not infringe privately-owned rights; or
- Assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Department of Energy.

EXECUTIVE SUMMARY

This progress report summarizes activities associated with the environmental monitoring program (EMP) during the first calendar quarter of 1994 for the U.S. Department of Energy's Innovative Clean Coal Technology project entitled "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." This demonstration project is being conducted at Georgia Power Company's Plant Yates Unit 1, located near Newnan, Georgia.

This document discusses progress made in EMP activities during the first calendar quarter of 1994. With the exception of certain compliance data, results are not presented in detail; instead, results will be reported in periodic reports focusing on discrete test periods.

During the months of January and February, the remaining low-particulate auxiliary tests were completed, including alternate limestone load-following tests and parametric alternate coal tests.

In March the high-particulate test period (i.e., with the ESP detuned) began. The first nine parametric tests of this test period were completed, including particulate loading measurements conducted by SRI.

Operational-phase groundwater monitoring continued during the quarter. Also, compliance monitoring was conducted and compliance reports were submitted by Georgia Power Company to the Environmental Protection Division of the Georgia Department of Natural Resources.

TABLE OF CONTENTS

		r	age
1.0	INTR	ODUCTION	1
2.0	PROJ	ECT SUMMARY	1
	2.1 2.2	Plant and Process Description	
3.0	PROJI	ECT STATUS	4
4.0	COM	PLIANCE MONITORING AND REPORTING	5
5.0	SUPP	LEMENTAL MONITORING	6
	5.1 5.2	Groundwater Monitoring	
6.0	QUAL	JTY ASSURANCE/QUALITY CONTROL ACTIVITIES	. 14
APPE	NDIX A	A: QUARTERLY AIR EMISSION REPORT FOR THE FIRST QUARTER OF 1994	A-1
APPE	NDIX E	3: QUARTERLY OPERATIONAL MONITORING REPORT FOR THE FIRST QUARTER OF 1994	B-1
APPE	NDIX (GROUNDWATER MONITORING RESULTS FOR THE FOURTH QUARTER OF 1993	C-1

LIST OF FIGURES

Page

1	Yates 100 MW CT-121 Process Flow Diagram	3
	LIST OF TABLES	
	Pag	ţе
1	Summary of Groundwater Samples Collected at Plant Yates on March 22-23, 1994	7
2	EMP Groundwater Monitoring Parameters	7
3	Gaseous Streams: Integrated Monitoring Schedule	8
4	Aqueous Stream Monitoring Schedule	9
5	Solid Stream Monitoring Schedule	.2
6	Gaseous Streams: Number of Samples Collected During the First Quarter of 1994 1	.2
7	Aqueous Streams: Number of Samples Collected During the First Quarter of 1994 1	.3
8	Solid Streams: Number of Samples Collected During the First Quarter of 1994 1	3

1.0 INTRODUCTION

This quarterly progress report summarizes activities associated with the environmental monitoring program (EMP) during the first calendar quarter of 1994 for the U.S. Department of Energy's Innovative Clean Coal Technology project entitled "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." This demonstration project is being conducted at Georgia Power Company's Plant Yates Unit 1, located near Newnan, Georgia. The Cooperative Agreement for this project was signed by DOE on April 2, 1990.

The EMP was developed to fulfill the following specific objectives:

- To provide monitoring data to fulfill environmental compliance requirements of local, state, and federal regulatory agencies;
- To define and describe additional supplemental monitoring activities, if needed; and
- To ensure that emissions and environmental impacts are consistent with projections provided in NEPA documents.

This document discusses progress made in EMP activities during the first calendar quarter of 1994. Results are presented for groundwater monitoring and compliance (air emissions and wastewater) monitoring, but the results of FGD process monitoring will be presented in periodic reports focusing on discrete test phases.

2.0 PROJECT SUMMARY

This section provides a brief description of the plant and process in addition to the demonstration project.

2.1 Plant and Process Description

Plant Yates consists of seven steam turbine electric generating units providing a total nameplate capacity of 1,250,000 kW. Units 1 through 5 (operational since the 1950s) are operated as intermediate load units and are located in one building that features a common 825-foot stack for venting emissions from all five units. Units 6 and 7, operational since 1974, are operated as base load units. A common 800-foot stack is used to vent emissions from Units 6 and 7, which are housed in a separate building. All of Plant Yates' units are equipped with electrostatic precipitators for particulate control.

Plant Yates typically uses coal that is a 50-50 blend of Arch Mineral and Old Ben coals from the Illinois Basin. The target coal sulfur content for the demonstration project is 2.5 percent. Raw water for process needs is drawn from the Chattahoochee River. Solid waste, in the form of bottom ash and fly ash, is sluiced to a series of wet ash disposal ponds.

2.2 Project Description

The CT-121 flue gas desulfurization project was constructed and is operated to treat the entire flue gas stream from Unit 1 (100 MW), which is approximately 12% of the total flue gas generated at Plant Yates. A 258-foot stack was constructed to vent emissions from the CT-121 process.

A simplified process flow diagram of the flue gas desulfurization process is shown in Figure 1. Major process sampling locations are shown in that diagram.

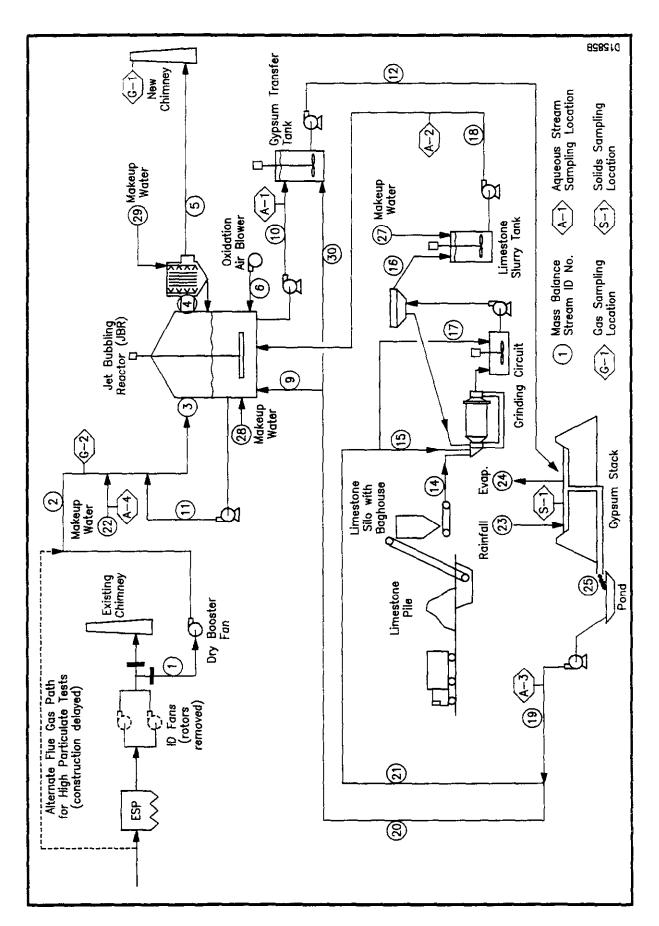


Figure 1. Yates 100 MW CT-121 Process Flow Diagram

3.0 PROJECT STATUS

The CT-121 demonstration project at Plant Yates consists of four distinct environmental test periods, including:

- Period 0: Site Preparation, Construction, and Startup of the Demonstration Project;
- Period 1: Testing at Low Fly Ash Loading—With ESP In Service;
- Period 2: Testing at High Fly Ash Loading—ESP Detuned or Out of Service; and
- Period 3: Post Demonstration Groundwater Testing.

Monitoring during Period 0 consisted solely of background (i.e., prior to project operation) groundwater monitoring. Samples were obtained during seven periods between September 6, 1990 and October 14, 1992.

On October 26, 1992, the CT-121 wet scrubber became operational for the first time. During the remainder of 1992, shakedown of the process equipment and data collection procedures was conducted.

In January, the Period 1 auxiliary test block continued with alternate limestone testing. The unit was operated in load-following mode based on system demand. The primary objective of this portion of the test period was to gather additional data on the scrubber's performance and produced gypsum dewatering characteristics while operating with Dravo limestone.

The Period 1 alternate coal tests began with the delivery of high-sulfur coal (about 4.3%) on January 25 and were nearly complete by the end of February. The purpose of these tests was to judge the flexibility and performance of the scrubber while using the higher sulfur

coal. Modifications were made both to the scrubber's limestone feed system and the JBR because of the significantly higher sulfur content of this coal compared to what had been used during previous tests (about 2.5%). The capacity of the limestone pumps was raised by installing larger motors, and additional oxidation air blowers were installed to maintain adequate SO₂ oxidation.

At the beginning of March, the boiler resumed operation using its normal fuel supply. Preparations were made to begin the high-particulate test period (i.e., with the ESP detuned). The residual amounts of 4.3% sulfur coal remaining in the coal handling system were consumed during the first week of the month. The gypsum/fly ash stack was prepared for use by laying down a layer of gypsum to guard against blinding of the underdrains with fine fly ash that can be expected after detuning the ESP. Detuning of the ESP began on March 14, and the parametric test block began on March 19, 1994.

Particulate sampling of the JBR inlet flue gas and stack gas streams was conducted by SRI during the first nine parametric tests. Preliminary results indicate that with the ESP fully de-energized, the CT-121 scrubber was capable of up to 99% particulate removal efficiency at full load. SO₂ removal efficiency for these tests compared favorably to model predictions for the first five tests; the other four tests were conducted at a pH of 3.5, which was outside the range of the model.

4.0 COMPLIANCE MONITORING AND REPORTING

Wastewater samples collected during the quarter for compliance purposes were as follows:

Stream/Parameter	Ash Transport Water	Final Plant Discharge
Total Suspended Solids	1	
Oil and Grease	/	
рН		1

During the quarter, compliance reports were submitted by Georgia Power Company, as required, to the Environmental Protection Division of the Georgia Department of Natural Resources. These reports are reproduced as Appendices A and B. Appendix A contains excess emission and monitoring system performance reports. Appendix B contains wastewater data.

During the first quarter of 1994, a semiannual progress report was submitted by GPC to the DNR, in accordance with an amendment (effective December 28, 1990) to the air operating permit for Source 1 (comprising Units 1, 2, and 3), No. 4911-038-4838-0.

5.0 SUPPLEMENTAL MONITORING

5.1 <u>Groundwater Monitoring</u>

Operational-phase groundwater monitoring was conducted during the quarter on March 22-23, 1994. The samples collected, shown in Table 1, were analyzed for the parameters shown in Table 2. Results for these samples will be available in the next quarterly EMP progress report.

A report containing the results of groundwater monitoring conducted during the fourth quarter of 1993 is provided as Appendix C. The results from previous quarters have been attached to previously submitted EMP reports.

5.2 FGD Process Monitoring

The monitoring schedules for gaseous, aqueous, and solid streams are shown in Tables 3, 4, and 5, respectively. Tables 6, 7, and 8 are summaries of the EMP monitoring conducted during the quarter.

Table 1
Summary of Groundwater Samples Collected at Plant Yates on March 22-23, 1994

Well ID	Sample ID	Analyses
GWA-1		Well dry; no samples collected
GWC-1	GWC-1-13-1	Anions, TOC, Metals, and Radionuclides
GWC-2	GWC-2-13-1	Anions, TOC, Metals, and Radionuclides
GWC-3	GWC-3-13-1 GWC-3-13-2	Anions, TOC, Metals, and Radionuclides Anions, TOC, and Metals
GWC-4	GWC-4-13-1	Anions, TOC, Metals, and Radionuclides
GWC-5	GWC-5-13-1	Anions, TOC, Metals, and Radionuclides
GWC-6	None	Well dry; no samples collected

Table 2

EMP Groundwater Monitoring Parameters

рН	Conductivity	Temperature			
Eh	Alkalinity	Total Dissolved Solids			
Bromide	Chloride	Total Organic Carbon			
Fluoride	Nitrate-Nitrite	Sulfate			
Trace Elements (Dissolved)					
Silver	Aluminum	Arsenic			
Boron	Barium	Beryllium			
Bismuth	Calcium	Cadmium			
Cobalt	Copper	Chromium			
Mercury	Iron	Potassium			
Lithium	Magnesium	Manganese			
Molybdenum	Sodium	Nickel			
Phosphorus	Lead	Sulfur			
Antimony	Selenium	Silicon			
Tin	Strontium	Tellurium			
Titanium	Thallium	Uranium			
Vanadium	Tungsten	Zinc			
	Oth	ner			
Radionuclides					

Table 3

Gaseous Streams: Integrated Monitoring Schedule

Parameter	Stack Gas Stream	Flue Gas Inlet to JBR	
Opacity	None	Continuous	
SO ₂	Continuous	Continuous	
O ₂	Continuous	Continuous	
Moisture Content	9/Parametric Test Period	9/Parametric Test Period	
SO ₃ , H ₂ SO ₄ Mist (contingent upon funding availability)	36/Parametric Test Period	36/Parametric Test Period	
Particulate Matter:			
Loading	9/Parametric Test Period and Annually	9/Parametric Test Period	
Particle Size Distribution (contingent upon funding availability)	9/Parametric Test Period	9/Parametric Test Period	

Table 4

Aqueous Stream Monitoring Schedule

Document	JBR	JBR Overnow	JBR Underflow	derflow
ratanicie:	a		a	
Liquid Phase				
Hd	M/T	4/M	M//	4/M
Chloride	M/T	4/M		
Sulfite	M/T	4/M		
Sulfate	M/T	4/M		
Carbonate	7/M	4/M		
Trace Elements		1/M		
Solid Phase				
Solids Content	J/M	4/M	M/L	4/M
Inert Content	J/M	4/M	W/L	4/M
Calcium	7/M	4/M	M/L	M/4
Magnesium			7/W	4/M
Sulfite			M/7	4/M
Sulfate	J/M	4/M	M/L	4/M
Carbonate	M/T	4/M	M/L	4/M
Trace Elements				I/M
TCLP				1/P

Table 4 (Continued)

	Limestone Slurry	e Slurry Feed	Gypsum Stack Return	ack Return	Makeup Water	. Water
Parameter	d	1	đ		a	1
Liquid Phase						
Hd	į		7/M	4/M	I/M	1/M
Chloride			7/M	4/M	1/M	1/M
Sulfite					M/I	1/M
Sulfate			7/M	4/M	1/M	1/M
Carbonate			7/M	4/M	1/M	1/M
Trace Elements			1/M	I/M		
Solid Phase						
Solids Content	7/M	4/M				
Inert Content	7/M	4/M				
Calcium	7/M	4/M				
Magnesium	J/M	4/M				
Carbonate	7/M	4/M				

Table 4 (Continued)

Abbreviations:

n/D = n times per day;
n/W = n times per week;
n/M = n times per month;
n/Q = n times per quarter;
1/nM = once per n months;
P = Parametric test; and
L = Long-term test. (Each of the two testing periods consists of a parametric test and a long-term test.)

Trace elements are the following:

Phosphorus	Lead	Sulfur	Antimony	Selenium	Silicon	Titanium	Uranium	Vanadium
Copper	Iron	Potassium	Magnesium	Manganese	Mercury	Molybdenum	Sodium	Nickel
Aluminum	Arsenic	Boron	Barium	Beryllium	Calcium	Cadmium	Cobalt	Chromium

Table 5
Solid Stream Monitoring Schedule

Parameter	Coal Feed
Proximate Analysis	Daily
Ultimate Analysis, Cl, and F	Twice Yearly
Trace Elements	Twice Yearly

Note: In addition to the monitoring shown, analysis of coal feed for sulfur, moisture, heating value, and ash content once per week is a regulatory compliance requirement.

Table 6

Gaseous Streams: Numbers of Samples Collected
During the First Quarter of 1994

Parameter	Stack Gas Stream	Flue Gas Inlet to JBR
Opacity	NA NA	Continuous
SO ₂	Continuous	Continuous
O ₂	Continuous	Continuous
Moisture Content	27	27
SO ₃ , H ₂ SO ₄ Mist	9	9
PM Loading	27	27
PM Size Distribution	9	9

Table 7

Aqueous Streams: Numbers of Samples Collected
During the First Quarter of 1994

Parameters	JBR Overflow and Underflow	Limestone Slurry Feed	Gypsum Stack Return	Makeup Water
pH	Twice daily when operating	NA	Daily when operating	Monthly
Anions (liquid and solid phases) and solids/inerts/Ca/Mg (solid phase)	11	11	11	2
Metals (liquid and solid phases)	0	NA_	00	NA

Table 8

Solid Streams: Number of Samples Collected
During the First Quarter of 1994

Parameters	Coal Feed
Proximate Analysis	Daily when operating
Ultimate Analysis, Cl, and F	3
Trace Elements	1

6.0 QUALITY ASSURANCE/QUALITY CONTROL ACTIVITIES

QA/QC activities for process data consist of calibrations, calibration checks, and related maintenance activities, all of which are recorded in log books. Six log books are used:

- 1. CEM flow rates and gas concentrations;
- 2. pH calibrations;
- 3. ΔP cells;
- 4. Density measurements;
- 5. Flow meters; and
- 6. Level meters.

APPENDIX A

QUARTERLY AIR EMISSION REPORT FOR THE FIRST QUARTER OF 1994

FIGURE 1

SUMMARY REPORT - GASEOUS AND OPACITY EXCESS EMISSION AND MONITORING SYSTEM PERFORMANCE

Reporting period dates: From $\frac{1-1-9}{2}$	94	to3-31-94	
Company: Ga. Power Company Plant Yates		Emission Limitation 40%	
Address: 708 Dyer Road Newnan, Ga. 30263		Monitor Manufacturer Lear Sieg	ler RM41
Process Unit(s) Description: Unit 1 Source	1 .	Date of Latest CMS Certification or Audit 1-14-94 Total source operating 109380 time in reporting period	
Emission Data Summary ¹		CMS Performance Summary¹	
Duration of excess emissions in reporting period due to:		CMS downtime in reporting periodue to:	od .
a. Startup/shutdown	570	a. Monitor equipment malfunctions	0
b. Control equipment problems	0	b. Non-Monitor equipment malfunctions	0
c. Process problems	66	-	
d. Other known causes	72	c. Quality assurance calibration	0
e. Unknown causes	0	d. Other known causes	0
2. Total duration of excess emission	648	e. Unknown causes	0
		2. Total CMS Downtime	0
3. Total duration of excess emissions x (100) [Total source operating time]	0.6 %	3. [Total CMS Downtime] x (100) [Total source operating time]	0 %

In accordance with condition 13(b) of the December 28, 1990 amendment to permit no. 4911-038-4838-0, the high particulate loading test phase of the Plant Yates Unit 1 Chiyoda Scrubber Project began on March 19, 1994.

I certify that the information contained in this report is true, accurate, and complete.

M. J. Knowles	ngKimling	Plant Manager	4/13/94
NAME	SIGNATURE	TITLE	/ DATE
		· · · · · · · · · · · · · · · · · · ·	

¹ For opacity, record all times in minutes. For gases, record all times in hours.

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Service of the

Today's Date 01/1	3/94	Repo	rt Date: 01/03/94
Today's Time: 11:0			rt Hour: 23 - 24
		,,,,,	
Opacity Percent	0600-0605 2.9	063 0- 0635 4.	4
-,, , , , , , , , , , , , , , , , ,	0606-0611 3.1	0636-0641 4.	
	0612-0617 3.3	0642-0647 4.	
	0618-0623 4.0	0648-065347	
	0624-0629 3.8	0654=0659 56	A TOWN
	0024 0029 010	The state of the s	The state of the s
Hourly Averages	S02	NOX	C02
Measured	2.3 ppm	0.0 ppm	20.7 %
Bias Adjusted	2.3 ppm ##	0.0 ppm ##	20.7 % \$\$
Rate	-0.27 lb/mmBtu		20.7
Bias Adjusted	-0.27 lb/mm8tu		
Mass Emission	0.0 lb/hr	0.00 157 1111500	194.5 ton/hr
Bias Adjusted	0.0 lb/hr		194.5 ton/hr
Bias Factor	1.00000	1.00000	1.00000
Source	1.0000	1.00000	
			1
Zero Calibration	-2.3 ppm	• •	0.2 %
Expected Value	0.0 ppm	O.O ppm	0.0 %
Span Calibration	428.3 ppm	895.3 ppm	19.8 %
Expected Value	433.0 ppm	896.0 ppm	19.7 %
Heat Input	-27.01		
· ·	-27.01 Flow	Gross Generation	Opacity
Hourly Averages		Gross Generation	Opacity
· ·			Opacity
Hourly Averages	Flow		Opacity
Hourly Averages	Flow 16486100 scfh \$\$		Opacity
Hourly Averages Measured Bias Adjusted	Flow 16486100 scfh \$\$ 16486100 scfh		Opacity
Hourly Averages Measured Bias Adjusted Bias Factor	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000		Opacity
Hourly Averages Measured Bias Adjusted Bias Factor Source	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000		
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh		-0.4 % 0.0 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh		-0.4 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh 347.4 scfh		-0.4 % 0.0 % 46.3 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh 347.4 scfh		-0.4 % 0.0 % 46.3 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh 347.4 scfh		-0.4 % 0.0 % 46.3 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh 347.4 scfh 350.0 scfh	0 MWge	-0.4 % 0.0 % 46.3 % 46.7 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	Flow	O MWge	-0.4 % 0.0 % 46.3 % 46.7 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh 347.4 scfh 350.0 scfh Opacity Monitor S02 Analyzer	O MWge - Normal - Normal	-0.4 % 0.0 % 46.3 % 46.7 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh 347.4 scfh 350.0 scfh Opacity Monitor S02 Analyzer NOX Analyzer	O MWge - Normal - Normal - Normal	-0.4 % 0.0 % 46.3 % 46.7 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh 347.4 scfh 350.0 scfh Opacity Monitor S02 Analyzer NOX Analyzer 02 Analyzer	O MWge - Normal - Normal - Normal - Normal	-0.4 % 0.0 % 46.3 % 46.7 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh 347.4 scfh 350.0 scfh Opacity Monitor S02 Analyzer NOX Analyzer O2 Analyzer Flow Monitor	O MWge - Normal - Normal - Normal - Normal - Normal	-0.4 % 0.0 % 46.3 % 46.7 %
Hourly Averages Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value Instrument Status	Flow 16486100 scfh \$\$ 16486100 scfh 1.00000 1 -0.7 scfh 0.0 scfh 347.4 scfh 350.0 scfh Opacity Monitor S02 Analyzer NOX Analyzer 02 Analyzer	O MWge - Normal - Normal - Normal - Normal - Normal	-0.4 % 0.0 % 46.3 % 46.7 %

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Today's Date 01/18/94 Report Date: 01/04/94 Report Hour: 19 - 20

Opacity Percent 0600-0605 8.5 0630-0635 6.9

•				.,.,		
Opacity Percent	0600-060	5 8.5	0630-	0635 6.	9	
•	0606-061		0636-	0641 32	0	
•	0612~061		0642-	0647 79	7××	
	0618-062	3 2.4	0648~	0653 51.	5xx	
	0624-062		0654-	0659 44.	8 **	
			-	** * .		
Hourly Averages	S02		NOX		C02	
Measured	3.1	PPM	1.1	PPM	20.9	%
Bias Adjusted	3.1	PPm ##	1.1	PPM ##	20.9	%
Rate	-0.22	lb/mmBtu		lb/mmBtu		
Bias Adjusted	-0.22	lb/mmBtu	-0.06	lb/mm8tu		
Mass Emission	0.0	lb/hr			99.4	ton/hr
Bias Adjusted	0.0	lb/hr				ton/hr
Bias Factor	1.000	00	1.00	000		0000
Source	1		1		1	
Zero Calibration	-3.1	PPm	-0.9	PPm	0.0	%
Expected Value	0.0	p p m	0.0		0.0	
Span Calibration	435.8	₽₽m	900.3		18.3	
Expected Value	433.0	PPm	896.0		18.2	
Heat Input	-21.18					
Hourly Averages	Flow		Gross Gen	eration	Opac	city
Measured	8346070	scfh	0	MWge	~	
Bias Adjusted	8346070	scfh		•		
Bias Factor	1.000	00				•
Source	1					
Zero Calibration	1.7	scfh			-0.3	%
Expected Value	0.0	scfh			0.0	
Span Calibration	347.9	scfh			46.3	
Expected Value	350.0	scfh			46.7	
Instrument Status	Opacity Mo	nitor	- Normal			

Instrument Status Opacity Monitor - Normal SO2 Analyzer - Normal NOX Analyzer - Normal O2 Analyzer - Normal Flow Monitor - Normal

Legend: ** -Excess Emission ## -Insufficient Data !! -Fans Off \$\$ -Boiler Off

Error 2/9 seeking in ../cem/yt1/daily1.dbf database.

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newman, Georgia

Today's Date	01/18/94	Report	Date:	01/04/94
Today's Time:	11:08	Report	Hour:	20 - 21

Opacity Percent	0600-0605-78-0-** 0606-0611 78.6 ** 0602-0617 76.8 ** 0618-0623 73.6 ** 0624-0629 56.0 **	0636-0641 46 064_0647 43	
Hourly Averages Measured Bias Adjusted Rate Bias Adjusted Mass Emission Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration	3.1 ppm 3.1 ppm 3.1 ppm 0.30 lb/mmBtu 0.30 lb/mmBtu 3.8 lb/hr 3.8 lb/hr 1.00000 1 -3.1 ppm 0.0 ppm 435.8 ppm 433.0 ppm	NOX 4.2 ppm 4.2 ppm 0.29 lb/mmBtu 0.29 lb/mmBtu 1.00000 1 -0.9 ppm 0.0 ppm 900.3 ppm 896.0 ppm	C02 20.0 % 20.0 % 84.2 ton/hr 84.2 ton/hr 1.00000 1 0.0 % 0.0 % 18.3 % 18.2 %
Heat Input Hourly Averages	11.15 Flow G	iross Generation	Opacity
Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	7384350 sefh 7384350 sefh 1.00000 1 1.7 sefh 0.0 sefh 347.9 sefh 350.0 sefh	0 MWge	-0.3 % 0.0 % 46.3 % 46.7 %
Instrument Status	SO2 Analyzer - NOX Analyzer - O2 Analyzer -	- Normal - Normal - Normal - Normal - Normal	
Legend:	** -Excess Emission !! -Fans Off	## -Insufficient \$\$ -Boiler Off	Data

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1

Newnan, Georgia Today's Date 01/18/94 Report Date: 01/04/94 Today's Time: 11:08 Report Hour: 21 - 22 +0600-0605-40"2"** Opacity Percent 0630-0635 29.5 0606-0611 37.9 0636-0641 26.8 0612-0617 35.7 0642-0647 24.7 0618-0623 33.9 0648-0653 23.2 0624-0629 31.8 0654-0659 23.7 Hourly Averages S02 NOX C02 Measured 3.1 ppm 4.2 ppm 20.1 % Bias Adjusted 3.1 ppm 4.2 ppm 20.1 % 0.40 lb/mmBtu 0.39 lb/mmBtu Rate 0.40 lb/mmBtu 0.39 lb/mmBtu Bias Adjusted Mass Emission 3.8 lb/hr 85.0 ton/hr Bias Adjusted 3.8 lb/hr 85.0 ton/hr Bias Factor 1.00000 1,00000 1.00000 Source 1 1 1 Zero Calibration -3.1 ppm -0.9 ppm 0.0 % Expected Value O.O ppm 0.0 ppm 0.0 % Span Calibration 435.8 ppm 900.3 ppm 18.3 % 433.0 ppm Expected Value 896.0 ppm 18.2 % Heat Input 7.87 Hourly Averages Flow Gross Generation Opacity _____ ------Measured 7420410 scfh 0 MWge Bias Adjusted 7420410 scfh Bias Factor 1.00000 Source 1 Zero Calibration 1.7 scfh -0.3 % Expected Value 0.0 scfh 0.0 % Span Calibration 347.9 scfh 46.3 % 350.0 scfh Expected Value 46.7 % Instrument Status Opacity Monitor - Normal SO2 Analyzer - Normal NOX Analyzer - Normal 02 Analyzer - Normal - Normal Flow Monitor Legend: ** -Excess Emission ## -Insufficient Data

\$\$ -Boiler Off

!! -Fans Off

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Today's Date 01/24/94 Report Date: 01/19/94

Today's Date 01/20 Today's Time: 08:38			ort Date: 01/19/54 ort Hour: 8 - 9
Opacity Percent	0606-0611 0.0 0512-0517 34.0 0618-0623 80.6	!! 0630-0635 11. !! 0636-0641 3. 0542-0647 2. ** 0648-0653 1. ** 0554-0659 1.	8 6 8
Rate Bias Adjusted Mass Emission Bias Adjusted Eias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	0.6 ppm ## 0.01 lb/mmBtu 0.01 lb/mmBtu 0.0 lb/hr 0.0 lb/hr 1.00000 1 1.7 ppm 0.0 ppm 432.2 ppm	60.6 ppm 60.6 ppm ## 1.02 lb/mmBtu 1.02 lb/mmBtu 1.00000	18.8 % 66.6 ton/hr 66.6 ton/hr 1.00000 1 -0.1 % 0.0 % 18.5 %
Hourly Averages	Flow	Gross Generation	Opacity
Bias Adjusted Bias Factor Source Zero Calibration Expected Value	1.00000 1 -1.8 sofh 0.0 sofh 352:1 sofh		-0.4 % 0.0 % 45.3 % 46.7 %
Instrument Status	Opacity Monitor SO2 Analyzer NOX Analyzer O2 Analyzer Flow Monitor	Normal CalibrationNormalCalibration WarningNormalNormal	
Legend:	** -Excess Emissio	n ## -Insufficient \$% -Boiler Off	; Data

Error 2/9 seeking in ../cem/yt1/daily1.dbf database.

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newman, Georgia

Today's Date 01/24/94 Report Date: 01/21/94 Report Hour: 20 - 21 Today's Time: 08:39 Opacity Percent 0600-0605 85.6 ** 0630-0635 1.7 0606-0611 36.4 0636-0641 1.7
 0606-0611
 36.4
 0636-0641
 1.7

 0612-0617
 1.7
 0642-0647
 1.6

 0618-0623
 0.8
 0648-0653
 7.1

 0624-0629
 1.3
 0654-0659
 10.9
 1.0 ppm 0.0 ppm 893.2 ppm Zero Calibration 2.3 ppm
Expected Value 0.0 ppm
Span Calibration 441.1 ppm 0.0 % 18.5 % 433.0 ppm Expected Value 896.0 ppm 18.2 % Heat Input -49.46 Hourly Averages Flow Gross Generation Opacity

Measured 10333700 sofh \$\$ 0 MWge

Bias Adjusted 10333700 sofh

Bias Factor 1.00000

Source 1 Source 1 Zero Calibration Expected Value -1.8 sofh -0.4 % 0.0 scfh 0.0% 346.8 sofh 350.0 sofh Span Calibration Expected Value 46.3 % 46.7 % Instrument Status Opacity Monitor - - Normal | 502 Analyzer - Normal NOX Analyzer - Normal - Normal Flow Monitor - Normal Legend: !! -Fans Off \$% -Boiler Off

Hourly Emission Measurement Summary Georgía Power Company Yates Unit 1 Newnan, Georgía

Today's Date 01/24/94 Report Date: 01/23/94 Report Hour: 23 - 24 Today's Time: 08:41 0600-0605 0.1 !! 0630-0635 40.4 ** Opacity Percent 0606-0611 0.1 0636-0641 85.8 ** 0642-0647 83.2 ** 0648-0653 58.8 ** 0654-0659 62.1 ** Hourly Averages 502 NOX 002 55.0 ton/hr 55.0 ton/hr 1.00000 1.00000 Zero Calibration 1.1 ppm -1.0 ppm 0.0 % Expected Value 0.0 ppm 0.0 ppm 0.0 % Span Calibration 439.2 ppm 901.7 ppm 18.5 % Expected Value 433.0 ppm 896.0 ppm 18.2 % 0.0 % 18.5 % Heat Input -15.72Hourly Averages Flow Gross Generation Opacity

Measured 4575030 scfh 0 Mwge
Bias Adjusted 4575030 scfh
Bias Factor 1.00000
Source 1 Source 1 Zero Calibration 0.3 sofh Expected Value 0.0 sofh Span Calibration 350.5 sofh Expected Value 350.0 sofh -0.4% 0.3 sofh 0.0 sofh 0.0% 46.3 % 46.7 % Opacity Monitor - Normal SO2 Analyzer - Normal NOX Analyzer - Normal O2 Analyzer - Normal Flow Monitor - Normal Instrument Status ** -Excess Emission ## -Insufficient Data !! -Fans Off \$0 -Boiler Off Legend: !! -Fans Off

Hourly Emission Measurement Summary

Georgia Power Company Yates Unit 1 Newman, Georgia

		Memuali, Redic		

Today's Date 02/0				ort Date: 01/34/94
Today's Time: 12:4	55		кер	ort 3007: 0 - 1
Opacity Percent	0600~0605	54.7 · · · · · · · · · · · · · · · · · · ·	90-0385 <u>22</u>	.2
		26.7 06		la La
	0e12-0617		42-0647 21	
	0619-0623	79.1 9 23.2 06	30-0453 TA	· 7
	0.24-0629	nagrae Me	∍aroaya 10 5x-0659 40	iviz Li <u>i</u> i okom
	0012###O05*	1 4 4 5 KM	ე⊤(10,9 y - 2 0)	
Hourly Averages	5.02	\ _{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	x*	0.2
Measureo	0.2 0	m <u>1</u>	জ ১৮সল	20.8 %
Bias Adjusted	0 2 mp	m 1	. हे विश्व	်ပုံ (ရှိ မွှ
Fet	-0 50 H.	Zmer@til −Ō		
Bias Adjusted	-0.02 35	/	.12 b/mm8tu	
Mara Enjosier	0.02 3.0		* 11 magaz * 1927 * 1992 * 100	
Bias Adjusted				
		Zian in the Line	***	77 らずpn/in
Eier Factor	1,00000		000019	$\frac{1}{2}$, $\mathcal{Q}(\mathfrak{H})$, $\mathcal{H}_{\mathfrak{H}}$
Source	1	<u> </u>		<u>i</u>
Zero Calibration		m -1	.0 pm	0.0 %
Expected Value	0.0 pp	m O	.0 ppm .7 pom	0.0 %
Span Calibration		m 901	.7 pom	18.5%
Expected Value	433.0 pp:		,O ppm	18.2 %
Heat Input	-13.66			
Hourly Averages	Flow	Gross (Generation	Opacity
Messured	6541460 sc	fh ^	Misae	
Eias Adjusted	5541450 50	fn	, p	
Blas Factor	1.00000			
Source	1			
Zero Calibration		2' 3 ;		: F1
Expected Value	0.0 50			
Span Calibration			•	ုဗ.ဂ္.ဦ
				46.3
Expected Value	క్ర.ం ఉం	ΙÚ		46.7 %
Instrument Status	Occar 1 y Mini			<u>.</u> •
	SO2 SHALYZAY	•		
	MOX Avalyzar		. J	
	02 Analyzer		• •	
	Flow Monitor	- δ27.37	7)	
Legend:	Mar AFVAGGA E	mission a# -	_ T ಉ ಸಾಗತ್ತಿ ನಿರ್ವಹ	e Panel a
and Special Production				다 단풍도준
	. Transfer (iii)	.I.	- <u>11</u> 27 (+	

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newman, Georgia

Today's Time: 08:29	,/94		ort Date: 01/24/94 ort Hour: 1 - 2
Opacity Percent	0600-06052.4 -* 0606-061151.9 ** 0612-0617	0936-0641 43 0642-0647 41 0946-0653 40	.5 ** .9 ** .9 **
Hourly Averages Measured Blas Adjusted Rate Blas Adjusted Mass Emission Flac Adjusted Blas Factor Source Zero Calibration Expected Value Span Calibration Expected Value Heat Input Hourly Averages	-0.29 lb/mmEtu 1.0 im/mm 1.0 1 / 0 r 1.00000 1 1.1 sem 0.0 sem 439.2 sem 433.0 sem	1.00000 1	2 .5 % (5 5 ton/hr (7 f ton/hr (7 f ton/hr (1.00000 (1 f ton/hr (3 f ton/hr (4 f ton/h (
Measured Bias Adjusted Eias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	6458280 sofh 6458280 sofh 1.00000 1 0.3 sofh 0.0 sofh	O MWQe	-0.4 % 0.0 % 40.3 % 45.7 %
Legend:	502 Analyzer - NOX Abaikser - O2 Analyzer -	- Normal - Normal - Normal	t Data

Error 2/9 seeking in ../cem/ytl/daily1.dbf database.

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newman. Georgia

Today's Date 01/04/94 Raport Date: 01/24/94 Today's Time: 08:29 Report Hour: 2 - 3 - 0600-0605 41.4 ** 0630-0635 45.3 ** Opacity Percent 0606-0611 40.4 ** 0636-0641 45,1 ** On12-0517 43.7 ** (5.42-0547 47.7 ** 0618-0623 43 0 ** 0648-0653 49 2 ** 0624-0629 A4.3 NA 0654-0659 54.3 XX Hourly Averages NoM **902** Maasurad 1.3 CHAR. 29.4.20 % 1 3 Opn 3.6 pcm Bias Adjusted 20.2 % F-41-4 Bias Adjusted ომდა ნუსუთასი 1 7 1976 16 5 1 July 11 1.3 1b/mm Bies Adjusted 69 1 ton/ht Blas Factor 1 (0000 1,000000 1,000000 Source 1 Zero Calibration Expected Value 1.1 pom -0.4 poq 0.1% 0.0 pem M99 0.0 0.0 % Span Calibration 439.2 pom දි∕ැ.ට සටm 15.4 % Expected Value 433.0 ppm 13.2 % 8-6.0 ppm Heat Imput 3.66 Flow Hourly Averages Gross Generation Opacity Measured 6000410 sofh Eias Adjusted 6000410 sofh 0 MWde Bias Factor 1.00000 Source Zero Calibration 0.3 sofn -0.4 % Expected Value 0.0 scfh 0.0 % Span Calibration 350 5 suth 4~ 3 % Expected Value - 350.0 scrn 46.7 % Instrument Gratus - Gracity Monscor - - promer 502 Analyzer - Normal - persal Calibration NOX Analyzer - Normal Calibration 02 Analyzar Flow Monitor - Normal Legend: II -kand Oit

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1

Newman, Georgia

=======================================			
Today's Date 02/0	4/94		Report Date: 01/24/94
Today's Time: 08:2	9		Report Hour: 3 - 4
Opacity Percent		.4 ** 0530-0635	
		.8 ** 0636-0641	
		.3 ** 0642-0647	
		.9 +* 0648-0653	
	0624-0629 41	11 48 0m54-0m59	15.4
Hourly Averages	ငော	96 X	<i>ਦ</i> <u>ਕ</u>
Measured		4.0 pm	
Bias Adjusted	1 7 000	4 O ppm	20 O S
- Pate	O 1 a li Zmoš	9tt 0.25 16/m	and the second s
Bias Adjusted		3tu 0.8/b/m	
Mass Emission	1.9 Ib/hr	3. 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6	71.5 ton/h
	1 5 lb/cr		71 3 ton/nr
Bias Factor	1 00000	<u>1</u> . O . No.	
Source	1 0 000	<u> </u>	2 () () () () () () () () () (
Zero Calibration			 C. ↑ 9.
Expected Value			
Span Calibration			
Expected Value		0.77.0 mua 0.8€8	
Heat Input	9.50 DPM	0.40 0.00	10.4 s
1156C 11150C	7.50		
Hourly Averages	Flow	Gross Generati	on Opacity
Measured	6295550 sofb	0 Hwise	· · · · · · · · · · · · · · · · · · ·
Elas Adjusted		<u> </u>	
	1.00000		
Source	1		
Zero Calibration			-0.4 S
Expected Value			ခ်ခြင်း
Span Calibration			48.3 %
Expected Value			46.7 %
			, 2 1 7 0
Instrument Status	Coartivanosinos		
	502 Amalyzar	- Normal	
	NOX Analyzer	- Normai	
	02 Analyzer	- Normal	
		- Normal Calib	NY 2, Y N 25Y:
	Flow Monitor	14. A Well Celtr	21 21 C 2 241)
Legend:			
Legend:	** -Excess Emis		cient Data

Error 2/9 seeking in ../cem/yt1/daily1.dbf database.

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newman, Georgia

Today's Date 02/04/94 Report Date: 01/24/94 Today's Time: 08:30 Report Hour: 13 - 14

 0600-0605
 17 1
 0630-0635
 4.9

 0606-0611
 19.8
 0636-0641
 4.3

 0612-0617
 55.6 **
 0642-0647
 3.4

 0618-0623
 12.9
 0648-0653
 3.9

 0624-0629
 5.3
 0654-0659
 4.1

 Opacity Percent Hourly Averages 502 MEX 002 11.6 % Measured Bias Adjusted 11 6 % Rate Sias Adjusted 64.7 to 00.00 កាមាន មួយស្រុក Bles Adjusted e4.7 ton/ar $\sum_{i=1}^{n} f_{i,i}^{(i)} f_{i,i}^{(i)} = f_{i,i}^{(i)} = f_{i,i}^{(i)} f_{i,i}^{(i)} = f_{i,i$ Elan Santar) ეგგები 1,500000 Source 2.3 (cm) 0.0 ppm 0 4 % Zero Calibration Expected Value O.O. s. -m 0.0% Expected Value U.1 ,... Span Calibration 435.6 pon: Fyoected Value 433.0 ppm 0.0 ⊃rm 18.6 % 18.2 % 908.9 pom 876 0 ppm heat Input 384 46 Hourly Averages Flow

Measured 9786890 soft

Bias Adjusted 9786690 soft

Bias Factor 1.00000

Source 1 Gross Generation Opacity GO MM⊅e Source Zero Calibration () ? e: + ~ -0.3 % O.O sort 0.0% Expected Value Expected value
Span Calibration 347.0 eath 350.0 soin 45.38 Expected Value 46.7% Instrument Status - Coacity Monitor - - Norwal SO2 Amalyzer - Poral i NOX Analyzer - No that - Normal 02 Analyzer Flow Monitor - Normal ** -Excess Emission - +# -Insufficient Data Legend: ii -Fans Off \$6 -Boller Orf

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Report Date: 27/02/94 Today's Date 03/03/94 Report Hour: 20 - 21 Today's Time: 08:12 00-05 0.4 !! 30-35 0.3 !! Opacity Percent 06-11 0.4 !! 36-41 3.5 12-17 0.4 !! 42-47 4.8 18-23 0.4 !! 48-53 10.5 24-29 0.4 !! 54-59 68.4 ** 502 NOX Hourly Averages 02 O PPm O PPM 20.8 % Measured O PPm Bias Adjusted O ppm 20.8 % 0 lb/mmBtu Rate -0.04 lb/mmBtu Bias Adjusted -0.04 lb/mmBtu 0 lb/mmBtu 0.2 lb/hr Mass Emission 0.2 lb/hr Bias Adjusted Bias Factor 1 1 1 Source 1 1 1 Zero Calibration 7.3 ppm 1.2 ppm 0 % O ppm Expected Value 0 % O ppm 1802.9 ppm 889.3 ppm 18 % Span Calibration 1798 ppm Expected Value 894 ppm 18.2 % Heat Input 0 Mass Emiss. CO2 0 ton/hr Hourly Averages Flow Gross Generation Opacity _____ ----_____ Measured 2390430 scfh 0 MWge Bias Adjusted 2390430 scfh Bias Factor 1 Source Zero Calibration 0 scfh -0.4 % Expected Value 0 scfh 0 % 349.9 scfh 46.3 % Span Calibration 350 scfh Expected Value 46.7 % Instrument Status Opacity Monitor - Normal SO2 Analyzer - Normal NOX Analyzer - Normal 02 Analyzer - Normal - Normal Flow Monitor ** -Excess Emission ## -Insufficient Data !! -Fans Off \$\$ -Boiler Off Legend:

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Today's Date 03/03 Today's Time: 08:12			oort Date: 27/02/94 Fort Hour: 21 - 22
70day 3 /1me: 00:12	•	,,,,,	ore noder 21 22
Opacity Percent	00-05 54.8 ** 06-11 52.2 ** 12-17 50.7 ** 18-23 39.6 24-29 85.2 **	42-47 86.9 ** 48-53 84.9 **	
Hourly Averages Measured Bias Adjusted Rate Bias Adjusted Mass Emission Bias Adjusted	SO2	0 lb/mmBtu	02 20 % 20 %
Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value Heat Input Mass Emiss. CO2	O ppm	1 1 7.3 ppm 0 ppm 889.3 ppm 894 ppm	1 0 % 0 % 18 % 18.2 %
Hourly Averages	Flow	Gross Generation	Opacity
Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	6901130 scfh 6901130 scfh 1 1 0 scfh 0 scfh 349.9 scfh 350 scfh	O MWge	-0.4 % 0 % 46.3 % 46.7 %
Instrument Status	Opacity Monitor SO2 Analyzer NOX Analyzer O2 Analyzer Flow Monitor	- Normal - Normal - Normal - Normal - Normal	
Legend:	** -Excess Emissic	on ## -Insufficien \$\$ -Boiler Off	nt Data

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Today's Date 03/03/94 Report Date: 27/02/94 Today's Time: 08:12 Report Hour: 22 - 23 Opacity Percent 00-05 91.2 ** 30-35 78.4 ** 06-11 88.1 ** 36-41 81.8 ** 42-47 89.5 ** 12-17 83.3 ** 18-23 81.7 ** 48-53 83 ** 24-29 81.3 ** 54-59 69.8 ** Hourly Averages S02 NOX 02 Measured O PPm O ppm 19.4 % Bias Adjusted 0 PPM O ppm 19.4 % Rate 0.14 lb/mmBtu O lb/mmBtu Bias Adjusted 0.14 lb/mmBtu 0 lb/mmBtu 4.2 lb/hr Mass Emission Bias Adjusted 4.2 lb/hr Bias Factor 1 1 Source 1 1 1 Zero Calibration 1.2 ppm 7.3 ppm 0 % Expected Value 0 PPM O ppm 0 % Span Calibration 1802.9 ppm 889.3 ppm 18 % Expected Value 1798 894 ppm 18.2 % ppm Heat Input 36.94 Mass Emiss. CO2 3.79 ton/hr Hourly Averages Flow Gross Generation Opacity ______ ______ Measured 6649140 scfh MWge Bias Adjusted 6649140 scfh Bias Factor 1 Source 1 Zero Calibration scfh 0 ~0.4 % Expected Value 0 scfh 0 % Span Calibration 349.9 scfh 46.3 % Expected Value 350 scfh 46.7 % Opacity Monitor Instrument Status - Normal SO2 Analyzer - Normal NOX Analyzer - Normal 02 Analyzer - Normal Flow Monitor - Normal ** -Excess Emission ## -Insufficient Data Legend:

!! -Fans Off

\$\$ -Boiler Off

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1

Newnan, Georgia

********		*************	************
Today's Date 03/03	/94	Rep	ort Date: 27/02/94
Today's Time: 08:13		•	ort Hour: 23 - 24
, , , , , , , , , , , , , , , , , , , ,			2.
Opacity Percent	00-05 62.9 **	30-35 17.7	
-,,	06-11 67.3 **		
	12-17 45.4 **		
	18-23 25.7		
	24-29 20.4		
	27 27 20.7	04 07 11.0	
Hourly Averages	502	NOX	02
Measured	0 ppm	O PPm	
Bias Adjusted	O PPM	O PPM	
	0.33 lb/mmBtu		17.7 4
Rate			
Bias Adjusted	0.33 lb/mm8tu	0 lb/mmBtu	
Mass Emission	5.2 lb/hr		
Bias Adjusted	5.2 lb/hr		
Bias Factor	1	1	1
Source	1	_ 1	1
Zero Calibration	1.2 ppm	7.3 ppm	0 %
Expected Value	O PPM	0 ppm	0 %
Span Calibration	• •	889.3 ppm	18 %
Expected Value	1798 ppm	894 ppm	18.2 %
Heat Input	28.17		
Mass Emiss. CO2	2.89 ton/hr		
Hourly Averages	Flow	Gross Generation	Opacity
Measured	7243450 scfh	0 MWge	
Bias Adjusted	7243450 scfh		
Bias Factor	1		
Source	1		
Zero Calibration	0 scfh		-0.4 %
Expected Value	0 scfh		O %
Span Calibration	349.9 scfh		46.3 %
Expected Value	350 scfh	•	46.7 %
Instrument Status	Opacity Monitor	- Normal	
•	SO2 Analyzer	- Normal	
	NOX Analyzer	- Normal	
	02 Analyzer	- Normal	
	Flow Monitor	- Normal	
Legend:	** -Excess Emissi	on ## ~Insufficie	it Data
	!! -Fans Off	\$\$ ~Boiler Off	•

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

_______ Report Date: 10/03/94 Today's Date 03/16/94 Report Hour: 17 - 18 Today's Time: 11:25 30-35 59.3 ** Opacity Percent 00-05 0.9 06-11 0.7 36-41 69.4 ** 12-17 1.2 42-47 75.5 ** 18-23 3.7 48-53 62.2 ** 24-29 43.7 ** 54-59 59.9 ** Hourly Averages S02 NOX 02 Measured O ppm 0 20.8 % DDW Bias Adjusted O PPM O ppm 20.8 % -0.22 lb/mmBtu 0 lb/mmBtu Rate -0.22 lb/mmBtu Bias Adjusted 0 lb/mmBtu 1.8 lb/hr Mass Emission Bias Adjusted 1.8 1b/hr Bias Factor 1 1 1 Source 1 1 1 Zero Calibration -2.5 ppm -0.2 % 8 ppm Expected Value O PPM O ppm 0 % Span Calibration 428.6 ppm 909.4 ppm 17.8 % Expected Value 428 ppm 894 ppm 18.2 % Heat Input 2.41 Mass Emiss. CO2 0.25 ton/hr Flow Hourly Averages Gross Generation Opacity _____ ----Measured 4338180 scfh 0 MWge Bias Adjusted 4338180 scfh Bias Factor 1 Source Zero Calibration 0 scfh -0.3 % Expected Value 0 scfh 0 % 349.9 scfh 46.3 % Span Calibration Expected Value 350 scfh 46.7 % Instrument Status Opacity Monitor - Normal SO2 Analyzer - Normal NOX Analyzer - Normal 02 Analyzer - Normal - Normal Flow Monitor Legend: ** -Excess Emission ## -Insufficient Data

\$\$ -Boiler Off

!! -Fans Off

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Today's Date	03/16/94	Report	Date:	10/03/94

Today's Date 03/16	/94		Report Date: 10/03/94
Today's Time: 11:25			Report Hour: 18 - 19
			,
Opacity Percent	00-05 63.4 **	30-35 22 2	
opacity refeele		36-41 44.7 **	
	12-17 26.6		
	18-23 23.8		
	24-29 23.3	54-59 73.4 **	
Hourly Averages	S02	NOX	02
Measured	2.5 ppm	O ppm	20 %
Bias Adjusted	2.5 ppm	O ppm	20 %
Rate	-5.78 lb/mmBtu	0 lb/m	mBtu
Bias Adjusted	-5.78 lb/mmBtu	0 1b/m	mBtu
Mass Emission	3.1 lb/hr		
Bias Adjusted	3.1 lb/hr		
-		4	4
Bias Factor	1	1	1
Source	1	1	1
Zero Calibration	-2.5 ppm	8 ppm	-0.2 %
Expected Value	O PPM	Med O	O %
Span Calibration	428.6 ppm	909.4 ppm	17.8 %
Expected Value	428 ppm	894 ppm	18.2 %
Heat Input	16.60	, ,	
Mass Emiss. CO2	1.70 ton/hr		
	2170 0011717		
Hourly Averages	Flow	Gross Generati	on Opacity
Measured	7469370 scfh	O MW	ge
Bias Adjusted	7469370 scfh		
Bias Factor	1 .		
Source	1		
Zero Calibration	0 scfh		-0.3 %
Expected Value			
· · · · · · · · · · · · · · · · · · ·			0 %
Span Calibration	349.9 scfh		46.3 %
Expected Value	350 scfh		46.7 %
Instrument Chatum	Onenitu Manitan	Mammal	
Instrument Status	Opacity Monitor	- Normal	
	SO2 Analyzer	- Normal	
	NOX Analyzer	- Normal	
	02 Analyzer	- Normal	
	Flow Monitor	- Normal	
Legend:	** -Excess Emissio		
	!! -Fans Off	\$\$ -Boiler	Off ·

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Today's Date 03/16/94 Report Date: 10/03/94 Today's Time: 11:25 Report Hour: 19 - 20 Opacity Percent 00-05 69.8 ** 30-35 44.5 ** 06-11 64.9 ** 36-41 43.5 ** 12-17 61.5 ** 42-47 40.3 ** 18-23 59.2 ** 48-53 37.5 24-29 56.1 ** 54-59 36.8 Hourly Averages S02 NOX 02 Measured 2.7 ppm O ppm 19.6 % Bias Adjusted 2.7 ppm O PPM 19,6 % Rate 0.26 lb/mmBtu O lb/mmBtu Bias Adjusted 0.26 lb/mmBtu O lb/mmBtu Mass Emission 3.4 lb/hr Bias Adjusted 3.4 lb/hr Bias Factor 1 1 1 Source 1 1 Zero Calibration -2.5 PPM 8 ppm -0.2 % Expected Value O PPM O ppm 0 % Span Calibration 428.6 909.4 ppm 17.8 % PPM Expected Value 428 ppm 894 ppm 18.2 % Heat Input 29.09 Mass Emiss. CO2 2.99 ton/hr Hourly Averages Flow Gross Generation Opacity ______ ____ 7481490 Measured scfh 0 MWge Bias Adjusted 7481490 scfh Bias Factor 1 Source Zero Calibration 0 scfh -0.3 % Expected Value 0 scfh 0 % Span Calibration 349.9 scfh 46.3 % Expected Value 350 scfh 46.7 % Instrument Status Opacity Monitor - Normal SO2 Analyzer - Normal NOX Analyzer - Normal 02 Analyzer - Normal Flow Monitor - Normal

\$\$ -Boiler Off

** -Excess Emission ## -Insufficient Data

!! -Fans Off

Legend:

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Today's Date 03/16/94 Report Date: 10/03/94 Today's Time: 11:28 Report Hour: 21 - 22 Opacity Percent 00-05 28.3 30-35 26.9 06-11 26.8 36-41 26.5 12-17 27.1 42-47 28.4 18-23 26.3 48-53 44.4 ** 24-29 27.3 54-59 41 ** S02 NOX 02 Hourly Averages 0 ppm 19.6 % Measured 3.6 PPM Bias Adjusted 3.6 ppm Mqq O 19.6 % 0.35 lb/mmBtu Rate O lb/mmBtu 0 lb/mmBtu Bias Adjusted 0.35 lb/mm8tu Mass Emission 4.5 lb/hr Bias Adjusted 4.5 lb/hr Bias Factor 1 1 1 1 Source 1 Zero Calibration -2.5 ppm 8 PPm -0.2 % Expected Value O ppm O ppm 0 % 17.8 % Span Calibration 428.6 ppm 909.4 ppm Expected Value 428 ppm 894 ppm 18.2 % Heat Input 29.19 Mass Emiss. CO2 2.99 ton/hr Hourly Averages Flow Gross Generation Opacity _____ ~---scfh Measured 7505340 0 MWge Bias Adjusted 7505340 scfh Bias Factor Source Zero Calibration 0 scfh -0.3 % Expected Value 0 scfh 0 % Span Calibration 349.9 scfh 46.3 % Expected Value 350 scfh 46.7 % Instrument Status Opacity Monitor - Normal SO2 Analyzer - Normal NOX Analyzer - Normal - Normal 02 Analyzer Flow Monitor - Normal

Legend: ** -Excess Emission ## -Insufficient Data !! -Fans Off \$\$ -Boiler Off

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

_______ Today's Date 04/14/94 Report Date: 15/03/94 Report Hour: 11 - 12 Today's Time: 09:37
 00-05
 6.1
 30-35
 32.1

 06-11
 6.2
 36-41
 31.4
 Opacity Percent 12-17 6.1 42-47 28.3 18-23 34 48-53 23.6 24-29 43.3 ** 54-59 23.1 Hourly Averages S02 NOX 02 311.2 ppm 292.8 ppm 8.1 % 311.2 ppm 292.8 ppm 8.1 % Measured 8.1 % Bias Adjusted 0.85 lb/mmBtu 0.63 lb/mmBtu Rate Bias Adjusted 0.85 lb/mmBtu 0.63 lb/mmBtu Mass Emission 684.7 lb/hr 684.7 lb/hr Bias Adjusted Bias Factor 1 1 Source 1 Zero Calibration -2.2 ppm 11.6 ppm 0% O PPm Expected Value O PPm Span Calibration 424.4 ppm 893 ppm 18.1 % Expected Value 428 ppm 894 ppm 18.2 % Heat Input 736.78 Mass Emiss. CO2 75.59 ton/hr Hourly Averages Flow Gross Generation Opacity _____ ______ Measured 14573900 scfh 75 MWge Bias Adjusted 14573900 scfh Bias Factor Source 1 Zero Calibration -0.8 scfh -0.4 % Expected Value 0 scfh 0 % Span Calibration 350.6 scfh 46.3 % 350 scfh Expected Value 46.7 % Opacity Monitor Instrument Status - Normal - Normal SO2 Analyzer NOX Analyzer - Normal 02 Analyzer - Normal Flow Monitor - Normal ** -Excess Emission ## -Insufficient Data Legend:

\$\$ -Boiler Off

!! -Fans Off

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newman, Georgia

Today's Date 04/17 Today's Time: 09:38	4/94	F	Report Date: 16/03/94 Report Hour: 10 - 11										
Opacity Percent	00-05 24.8 06-11 23.9 12-17 24.7 18-23 62.3 ** 24-29 67.7 **	36-41 50 ** 42-47 48.5 ** 48-53 43.4 **	•										
Hourly Averages Measured Bias Adjusted Rate Bias Adjusted Mass Emission Bias Adjusted	218 ppm 0.63 lb/mmBtu	NOX 314.7 ppm 314.7 ppm 0.70 lb/mmBtu 0.70 lb/mmBtu	8.4 %										
Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value Heat Input Mass Emiss. CO2	1 1 -3.4 ppm 0 ppm 423.3 ppm 428 ppm 755.60 77.53 ton/hr	1 8.6 ppm 0 ppm 892.2 ppm 894 ppm	1 0 % 0 % 18.1 % 18.2 %										
Hourly Averages	Flow	Gross Generation	n Opacity										
Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	14624700 scfh 14624700 scfh 1 1 1.3 scfh 0 scfh 348.4 scfh 350 scfh	75 MWg	-0.3 % 0 % 46.3 % 46.7 %										
Instrument Status	Opacity Monitor SO2 Analyzer NOX Analyzer O2 Analyzer Flow Monitor	- Normal - Normal - Normal - Normal - Normal											
Legend:	** -Excess Emissi !! -Fans Off	on ## -Insuffic \$\$ -Boiler O											

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newman. Georgia

Newnan, Georgia													
Today's Date 04/14 Today's Time: 09:38			port Date: 16/03/94 port Hour: 11 - 12										
Opacity Percent	18-23 38.3	30-35 36.8 36-41 37.2 42-47 36.9 48-53 36.9 54-59 36.4											
Hourly Averages Measured Bias Adjusted Rate Bias Adjusted Mass Emission Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value Heat Input Mass Emiss. CO2	SO2 212.4 ppm 212.4 ppm 0.61 lb/mmBtu 0.61 lb/mmBtu 480.6 lb/hr 480.6 lb/hr 1 1 -3.4 ppm 0 ppm 423.3 ppm 428 ppm 748.48 76.79 ton/hr		02 8.4 % 8.4 % 1 1 0 % 0 % 18.1 % 18.2 %										
Hourly Averages	Flow	Gross Generation	Opacity										
Measured Bias Adjusted Bias Factor Source Zero Calibration Expected Value Span Calibration Expected Value	14644300 scfh 14644300 scfh 1 1 1.3 scfh 0 scfh 348.4 scfh 350 scfh	75 MWge	-0.3 % 0 % 46.3 % 46.7 %										
Instrument Status	Opacity Monitor SO2 Analyzer NOX Analyzer O2 Analyzer Flow Monitor	- Normal - Normal - Normal - Normal - Normal											
Legend:	** -Excess Emissice !! -Fans Off	on ## -Insufficie \$\$ -Boiler Of	· - · · • · - ·										

Hourly Emission Measurement Summary Georgia Power Company Yates Unit 1 Newnan, Georgia

Today's Date 04/14/94 Report Date: 18/03/94 Today's Time: 09:39 Report Hour: 1 - 2 Opacity Percent 00-05 16 30-35 18.4 06-11 16.2 36-41 24.2 12-17 16.8 42-47 31.9 18-23 16.2 48-53 44.9 ** 34 24-29 16.7 54-59 Hourly Averages NOX S02 02 83.9 ppm Measured 250.1 ppm 9.7 % 83.9 ppm 250.1 ppm 9.7 % Bias Adjusted 0.27 lb/mmBtu 0.62 lb/mmBtu Rate Bias Adjusted 0.27 lb/mmBtu 0.62 lb/mm8tu Mass Emission 160.9 lb/hr Bias Adjusted 160.9 lb/hr Bias Factor 1 1 1 Source 1 1 1 Zero Calibration 0.6 ppm 8.6 ppm 0 % Expected Value 0 % O ppm O ppm Span Calibration 432.3 ppm 889.3 ppm 18.2 % Expected Value 894 ppm 18.2 % 428 ppm Heat Input 553.85 56.83 ton/hr Mass Emiss. CO2 Hourly Averages Flow Gross Generation Opacity ______ _________ 12461800 . scfh Measured 50 MWge Bias Adjusted 12461800 scfh Bias Factor 1 Source 1 Zero Calibration -4.9 scfh -0.4 % Expected Value 0 scfh 0 % Span Calibration 349.9 scfh 46.3 % Expected Value 350 scfh 46.7 % Instrument Status Opacity Monitor - Normal SO2 Analyzer - Normal NOX Analyzer - Normal 02 Analyzer - Normal Flow Monitor - Normal Legend: ** -Excess Emission ## -Insufficient Data !! -Fans Off \$\$ -Boiler Off

Today's Date 04/14/94
Today's Time: 09:39

Opacity Percent (

Hourly Averages

Opacity Monitor Breakdown Report

PLANT YATES	UNIT(S) 1	DATE 02-03-94

	TY READINGS DURING FUNCTIONS*		OPACITY MO	ONITORING SYSTEM MALFU	INCTION LOG
TIME	OPACITY (%)	TIME DISCOVERED	TIME CORRECTED	NATURE OF PROBLEM	CORRECTIVE ACTION TAKEN
0000					
0100					
0200			}		
0300					·
0400					
0500					
0600					
0700					
0800			-		
0900				MONTHLY	
1000		1030	1040	PREVENTATIVE MAINT. CLEANED OPTICS.	
1100					
1200					
1300					
1400					
1500					
1600					
1700					
1800					
1900					
2000					
2100					
2200	<u> </u>				
2300					

EXCESS EMISSIONS REPORT UNIT STARTUP LOG - TIME EACH BEGAN

UNIT(S): 1 SOURCE: 1 DATE FROM: 1-01-94 TO: 1-31-94 PLANT YATES

	GENERATOR ON LINE	8080		1133			
1. 1-11-74							
JOIN TOWN	PRECIPITATOR			0640			
	PULVERIZER	0555		1150			
	OILFIRE	0542	2235				
	DATE	01-19-94	01-23-94	01-24-94			

UPSET CONDITION LOG

PREVENTIVE ACTION TAKEN														
+ CORRECTIVE ACTION TAKEN	CONTINUED STARTUP.	CONTINUED STARTUP.	CONTINUED STARTUP.	CONTINUED SHUTDOWN.	CONTINUED STARTUP	CONTINUED STARTUP.	CONTINUED STARTUP.	LOADED MORE SLOWLY.						
EXPLANATION OF LPST	UNIT STARTUP.	UNIT STARTUP	UNIT STARTUP.	UNIT SHUTDOWN.	UNIT STARTUP.	UNIT STARTUP.	UNIT STARTUP.	RAISING LOAD TOO QUICKLY,						
TIME CORRECTED	2400	2106	0 6 30	2606	2400	0006	0330	1318						
TIME DISCOVERED	2348	1942	0618	2000	2330	0000	0054	1312						
DATE DISCOVERED	01-03-94	01-04-94	01-19-94	01-21-94	01-23-94	01-24-94	01-24-94	01-24-94						

PLANT MANAGER: 2

UNIT STARTUP LOG - TIME EACH BEGAN **EXCESS EMISSIONS REPORT**

UNIT(S): 1 SOURCE: 1
DATE FROM: 2-01-94 TO: 2-28-94 PLANT YATES

									T	1	Τ	Τ				П	ſ
NERATOR ON LINE		0080				PREVENTIVE ACTION TAKEN											
FLUB GAS AT 270 °P GENERATOR ON LINE					·	CORRECTIVE ACTION TAKEN	CONTINUED STARTUP.	CONTINUED STARTUP.									
PRECIPITATOR		0230				EXPLANATION OF UPSET											
PULVERIZER		0215					UNIT STARTUP.	UNIT STARTUP.									
IRE	.5					TIME	2118										
OIL FIRE	1955				TION LOG	TIME	2054	2124									
DATE	02-27-94	02-28-94			UPSET CONDITION LOG	DISCOVERED	02-27-94										

C:WINWORD\EXCESSI.DOC

PLANT YATES

EXCESS EMISSIONS REPORT UNIT STARTUP LOG - TIME EACH BEGAN

			-		
	GENERATOR ON LINE		0320		
SOURCE: 1	DATE FROM: 3-01-94 10: 3-31-94 TATOR HUE GAS AT 270 9F				
UNIT(S): 1 SOURCE:	DATE FROM PRECIPITATOR	2327			
	PULVERIZER	2327			
ONS REPORT	DATE OIL FIRE	1635			
XCESS EMISSIONS REPORT	DATE	03-10-94	03-11-94		

UPSET CONDITION LOG

										 			 _	
PREVENTIVE ACTION TAKEN														
CORRECTIVE ACTION TAKEN	CONTINUED STARTUP.	CONTINUED STARTUP.	CONTINUED STARTUP.	CONTINUED TESTING.	CONTINUED TESTING.	CONTINUED TESTING.	CONTINUED TESTING.							
EXPLANATION OF UPSET	UNIT STARTUP.	UNIT STARTUP.	UNIT STARTUP.	HIGH PARTICULATE LOADING TESTING.										
TIME		1948	2200	1130	1112	0154	2006							
TIME	1724	1836	2148	1124	1018	0148	2000							
DATE	03-10-94	03-10-94	03-10-94	03-15-94	03-16-94	03-18-94	03-18-94							

C:\WINWORD\EXCESSI.DOC

PLANT MANAGER:

APPENDIX B

QUARTERLY OPERATIONAL MONITORING REPORT FOR THE FIRST QUARTER OF 1994

From <u>01-01-94</u> To: <u>03-31-94</u>

Permit Number: GA0001473

Discharge Location: 01A - Condenser Cooling Water Units 1-5 Frequency of Analysis: 1/wk

- Location	Intake	Mixing Zone	N/A	Condenser	Condenser
Type Sample Frequency	In. Situ.	in. Situ.	T	Grab	Grab
Parameter	1/Wk Temp. ^O F	1/Wk Temp. ^O F	1/Wk Temp. ^O F	TRC mg/L	Time of TRC
i didiretet	temp, r	remp. T	iemp. "r	THE MIGH	Release
PCS Code	00011	00011	00018	50060	81400
Limits	N/A	Max.90	Max. 5	Inst. Max. 0.2	Max, 120 Min.
					
DATE				Note	Note
01-03-94	50.5	50.9	.4	 	1
01-13-94 01-21-94	45.3	45.9	.6		
01-25-94	40	40.8	.8		ļ
01-23-94	48	48	0		
02-04-94	44.1	46.4	2.3	 	
02-09-94	53.8	54.1	.3		
02-15-94	48.7	49.1	.4		
02-21-94	59.4	59.4	0	· · · · · · · · · · · · · · · · · · ·	 -

03-04-94	50	50	0	 	
03-07-94	57	58	1		· · · · · · · · · · · · · · · · · · ·
03-15-94	56.7	57.4	.7		
03-22-94	61.9	63.0	1.1		
03-30-94	58.3	58.5	.2		
					<u> </u>
	··-		······································		
Note: No chlorination were	performed on discharge 0	1A this quarter.			
		 			
		l I			į.
Month of: January					
No. of Samples	4	4	4		
No. of Samples Average Value	46	46	.45		
No. of Samples Average Value Max. Value	46 50.5	46 50.9			
No. of Samples Average Value Max. Value Min. Value	46	46	.45		
No. of Samples Average Value Max. Value Min. Value	46 50.5	46 50.9	.45 .8		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded	46 50.5 40	46 50.9 40.8	.45 .8 0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February	46 50.5 40	46 50.9 40.8	.45 .8 0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples	46 50.5 40 0	46 50.9 40.8 0	.45 .8 .0 .0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value	46 50.5 40 0	46 50.9 40.8 0	.45 .8 .0 .0 .0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value Max. Value	46 50.5 40 0 4 51.5 59.4	46 50.9 40.8 0	.45 .8 .0 .0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value Max. Value Min. Value	46 50.5 40 0 4 51.5 59.4 44.1	46 50.9 40.8 0 4 52.3 59.4 46.4	.45 .8 .0 .0 .0 .75 .2.3 .0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value Max. Value Min. Value	46 50.5 40 0 4 51.5 59.4	46 50.9 40.8 0 4 52.3 59.4	45 .8 .0 .0 .0 		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value Max. Value Min. Value Limits Exceeded	46 50.5 40 0 4 51.5 59.4 44.1	46 50.9 40.8 0 4 52.3 59.4 46.4	.45 .8 .0 .0 .0 .75 .2.3 .0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: March	46 50.5 40 0 4 51.5 59.4 44.1	46 50.9 40.8 0 4 52.3 59.4 45.4 0	.45 .8 .0 .0 .0 		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value Min. Value Limits Exceeded Month of: March No. of Samples	46 50.5 40 0 0 4 51.5 59.4 44.1 0	46 50.9 40.8 0 4 52.3 59.4 46.4 0	.45 .8 .0 .0 .0 .75 .2.3 .0 .0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value Min. Value Limits Exceeded Month of: March No. of Samples Average Value	46 50.5 40 0 0 4 51.5 59.4 44.1 0	46 50.9 40.8 0 4 52.3 59.4 46.4 0	.45 .8 .0 .0 .0 .75 .2.3 .0 .0 .0		
No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value Min. Value Limits Exceeded Month of: March No. of Samples Average Value Max. Value Limits Exceeded	46 50.5 40 0 0 4 51.5 59.4 44.1 0	46 50.9 40.8 0 4 52.3 59.4 46.4 0	.45 .8 .0 .0 .0 		
Month of: January No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: February No. of Samples Average Value Max. Value Min. Value Limits Exceeded Month of: March No. of Samples Average Value Min. Value Limits Exceeded	46 50.5 40 0 0 4 51.5 59.4 44.1 0	46 50.9 40.8 0 4 52.3 59.4 46.4 0	.45 .8 .0 .0 .0 .75 .2.3 .0 .0 .0		

From: <u>01-01-94</u> To: <u>03-31-94</u>

Permit Number: GA0001473

Discharge Location: 01H - Cooling Tower Blowdown Unit No. 6

Location Type Sample Frequency Parameter	Blowdown Grab 1.Wk/Linit FAC Avg. (mg/L)	Blowdown Grab 1/Mk/Unit FAC Max. (mg/L)	Blowdown Grab 1/Wk/Unit Total time of TRC Rel & TRC Avg. (Min, mg/L)	Tower Basin Grab 1/qtr Zinc Max. (mg/L)	Tower Basin Grab 1/qtr Chromium Max. (mg/L)
PCS Code	50064	50064	81400-50060	01092	01034
Limits	0.2	0.5	120	1.0	0.2
02-07-94				T 00	· · · · · · · · · · · · · · · · · · ·
03-17-94	- 	 	<u> </u>	.06 .18.	,00 .00
03-24-94	0	1 0	0	.10.	<u> </u>
- WZ+34		 	 	 	
<u> </u>				 	
		<u> </u>			
				ļ	
			 	}	 -
		<u> </u>		 	<u> </u>
		 	 	 	
	-	 	<u> </u>	 	
		 			
				 	
					
		<u> </u>		<u>}</u>	
		<u> </u>	ļ	ļ	
ļ			<u></u>	 	
	- 			 	
				 	
	 	 	 	 	
				 	
		T		<u> </u>	
Month of January	Did not Chlorinate				
No. of Samples					
Average Value	<u> </u>				
Max. Value	 				
Min. Value Limits Exceeded		 		 	
LIMIS EXCEPTED			 	 	
Month of: February	Did not Chlorinate	}	 	<u> </u>	<u> </u>
No. of Samples	DIO HOL OTHORISOIC	 		1	1
Average Value	 			.06	.00
Max. Value				.06	.00
Min. Value				.06	.00
Limits Exceeded				0	0
Month of: March					
No. of Samples	1	11	1	1	
Average Value	0	0	0	.18	.00
Max. Value Min, Value	0	0	0	.18	.00
	0	0	0	.18	.00
Limits Exceeded	1 0	Page 2 of 5	<u> </u>	1	0

Page 2 of 5

From: <u>01-01-94</u> To: <u>03-31-94</u>

Permit Number: GA0001473

Discharge Location: 01J - Cooling Tower Blowdown Unit No. 7

Location Type Sample Frequency Parameter	Blowdown Grab 1/Wk/Unit FAC Avg. (mg/L)	Blowdown Grab 1/Mk/Unit FAC Max. (mg/L)	Blowdown Grab 1,Wk/Unit Total time of TRC Rel & TRC Avg. (Min. mg/L)	Tower Basin Grab 1/qtr Zinc Max. (mg/L)	Tower Basin Grab 1/qtr Chromium Max. (mg/L)
PCS Code	50064	50064	81400-50060	01092	01034
Limits	0.2	0.5	120	1.0	0.2
		-		1.0	V.2
DATE					
02-07-94				.21	.00
02-15-94	0	0	0		
	<u> </u>	-			
			 	<u> </u>	
	<u> </u>		 		
	<u> </u>		 		
	 		1		
		<u> </u>			
					
	 				
	 				
					-
	 		 		
	 				
<u> </u>					
				 	
			ļ		
	 		} }		
					
	 				
					
	 		 }		
			1		
Month of January	Did not Chlorinate				
No. of Samples	Did not oftonizate	-	 		·
	 		 		
Average Value Max. Value	 				
Min. Value					
Limits Exceeded					
Limits Cacecucu					
Month of: February					
No. of Samples	1	1	1		
Average Value	0	0	0	.21	1 00
Max. Value	0	0	0	.21	.00
Min, Value	0	0	0	.21	.00
Limits Exceeded	0	0	0	0	.00
Emily Exocours	 	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	0
Month of: March	Did not Chlorinate	<u> </u>			
No. of Samples	Did that Other Batt				
Average Value	 				
Max. Value					
Min, Value					
Limits Exceeded					
Emilia Exococo			t		

From: <u>01-01-94</u> To: <u>03-31-94</u>

Permit Number: GA0001473

Discharge Location: 01B - Ash Transport Water

Location	Ash Transport Water	Ash Transport Water	Final Discharge
- Type Sample	Grab	Grab	Grab
Frequency	2/Month	2/Month	2/Month
Parameter	Suspended Solids	Oil & Grease	PH
	(ma/L)	(ma/L)	(PH Units)
PCS Code	(mg/L) 00530	(mg/L) 005 56	00400
Limits	Avg. 30 Max 100	Avg. 15 Max 20	Min, 6.0 Max, 9.0
	•	· ·	
DATE			
01-03-94	3	0	7.22
01-17-94	4	0	7.13
02-07-94	2	0	6.97
02-21-94	2	0	6.72
03-07-94	4	0 /	7.14
03-17-94	2	G	7.11
03-21-94	3	0	7.06
<u> </u>	<u> </u>	 	
ļ			
	 	 	······································
	 	 	
 		 	
}		 	
			
			
			
	<u> </u>		
ļ	<u> </u>		
			
<u></u>			<u></u>
<u> </u>	<u> </u>		
<u> </u>			
Month of: January			
No. of Samples	2	2	2
Average Value	3.5	0	
Max, Value	4	0	7.22
Min. Value	3	0	7.13
Limits Exceeded	Ö	0	0
Month of: February	 		
No. of Samples	 	2	2
Average Value	2 2 2 2	0	
Max. Value	2	0	6.97
Min. Value	2	0	6.72
Limits Exceeded	0	0	0
Linns Exceded	 	 	
Month of: March	 	}	
		 	3
No. of Samples	3	3	
Average Value	3	0	744
Max. Value	4 2	0	7.14
Min, Value	2	0	7,06
Limits Exceeded	0	0	0

Page 4 of 5

Georgia Power Company Plant Yates P.O. Box 718 Newnan, Georgia 30264

From: <u>01-01-94</u> To: <u>03-31-94</u>

Permit Number: GA0001473

There were no discharges from the following outfalls during the quarter covered by this report:

01L	Building Sump Overflow
01M	Building Sump Overflow
01N	Building Sump Overflow
02	Ash Pond Emergency Overflow
04	Low Volume Waste Sump
05	Coal Pile Runoff Emergency Overflow

Chemical waste basin supernatant was pumped to ash pond on March 15, 1994 at 8:00 a.m.

Oil & Grease	0
TSS	2 ppm
Copper	.42 ppm
Iron	.07 ppm
Ph	6.73

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

M. J. Knowles Plant Manager

Attachment

Page 5 of 5

APPENDIX C

GROUNDWATER MONITORING REPORT FOR THE FOURTH QUARTER OF 1993

DEMONSTRATION OF INNOVATIVE APPLICATIONS OF TECHNOLOGY FOR THE CT-121 FGD PROCESS

Plant Yates

Environmental Monitoring Program Report: Groundwater Monitoring for the Fourth Quarter of 1993

(Final)

DOE DE-FC22-90PC89650 SCS C-90-002284

Prepared for:

Southern Company Services, Inc. P.O. Box 2625 600 North 18th Street Birmingham, Alabama 35291-1195

Prepared by:

Radian Corporation 8501 North Mopac Boulevard P.O. Box 201088 Austin, Texas 78720-1088

LEGAL NOTICE

This report was prepared by Radian Corporation for Southern Company Services, Inc. pursuant to a cooperative agreement partially funded by the U.S. Department of Energy and neither Southern Company Services, Inc., nor any of its subcontractors, nor the U.S. Department of Energy, nor any person acting on behalf of either:

- 1. Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report or that the process disclosed in this report may not infringe privately-owned rights; or
- Assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Department of Energy.

TABLE OF CONTENTS

	Pag
1.0	INTRODUCTION
	1.1 Project Summary
2.0	SAMPLING AND ANALYTICAL METHODS
	2.1 Sampling Methods
3.0	SUMMARY OF RESULTS
4.0	SUMMARY OF QA/QC ACTIVITIES
	APPENDIX A: HISTORICAL MONITORING DATA FOR SELECTED PARAMETERS
	APPENDIX B: QA/QC RESULTS B-

LIST OF FIGURES

•	Page
1	Location of Groundwater Monitoring Wells 4
2	Historical Data for Representative Species from Well GWC-2 (Downgradient)
3	Historical Data for Representative Species from Well GWC-4 (Downgradient)

LIST OF TABLES

	Page
1	EMP Groundwater Monitoring Parameters 3
2	Summary of Groundwater Samples Collected at Plant Yates on January 5, 1994
3	Sample Containers, Preservation Method, and Maximum Holding Times
4	Analytical Methods 9
5	Results of Groundwater Monitoring Conducted January 5, 1994 (Fourth Quarter 1993)
6	Results for Duplicate Samples4th Quarter 1993

1.0 INTRODUCTION

This report summarizes the results of groundwater monitoring performed during the fourth calendar quarter of 1993 as part of the environmental monitoring program (EMP) for the U.S. Department of Energy's Innovative Clean Coal Technology project entitled "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." This demonstration project is being conducted at Georgia Power Company's Plant Yates Unit 1, located near Newnan, Georgia.

1.1 **Project Summary**

The purpose of this ICCT project is to demonstrate the use of the Chiyoda Thoroughbred-121 flue gas desulfurization process as a means of reducing SO₂ and particulate emissions from pulverized-coal utility boilers that use medium-sulfur coal. This project is also designed to demonstrate the lower cost and higher reliability of the CT-121 process compared to conventional wet limestone FGD processes.

The demonstration project at Plant Yates consists of four distinct environmental test periods:

- Period 0: Site Preparation, Construction, and Startup of the Demonstration Project (including background groundwater monitoring [29 months]);
- Period 1: Baseline Testing at Low Particulate Loading--ESP In Service (12 months);
- Period 2: Testing at High Particulate Loading--ESP Detuned or Out of Service (12 months); and
- Period 3: Post Demonstration Groundwater Testing and Gypsum Byproduct Evaluation.

Groundwater monitoring was initiated in Period 0 and will continue through Period 3.

1.2 Purpose and Scope of Groundwater Monitoring

The CT-121 process produces gypsum, which is being disposed of in an on-site stacking area, where the solids are concentrated as they are allowed to settle, dewater, and dry. The gypsum and gypsum/fly ash stacking area is lined with a synthetic liner to minimize the potential for adverse impacts on the groundwater. Requirements for the liner, leachate collection system, and groundwater monitoring are specified in the permit issued by the Georgia Department of Natural Resources (DNR). One requirement is the regular monitoring of groundwater before, during, and for two years after the demonstration program. The purpose of this monitoring is to demonstrate that the gypsum stacking area can be operated in an environmentally benign and acceptable manner.

In 1990, five groundwater monitoring wells were installed in the vicinity of the proposed gypsum stacking area. These wells were used to monitor baseline groundwater quality prior to construction of the stacking area. Monitoring was conducted every two months from September 1990 through July 1991. Table 1 is a summary of the parameters that were monitored during this period. The results of this monitoring activity were summarized in the report "Environmental Monitoring Program Report of Preconstruction Monitoring: 1990-1991 Background Water Quality."

Following the preconstruction monitoring period, and as a DNR permit requirement, two additional monitoring wells were installed in 1992. The locations of all seven monitoring wells are shown in Figure 1. Because of a delay in the commencement of Phase 1 testing, an additional round of preoperational groundwater monitoring was conducted on September 3-4 and October 14, 1992. The results from this monitoring

Table 1

EMP Groundwater Monitoring Parameters

рН	Conductivity	Temperature
Eh	Alkalinity	Total Dissolved Solids
Bromide	Chloride	Total Organic Carbon
Fluoride	Nitrate-Nitrite	Sulfate
	Trace Elements (Dissolve	ed)
Silver	Aluminum	Arsenic
Boron	Barium	Beryllium
Bismuth	Calcium	Cadmium
Cobalt	Copper	Chromium
Mercury	Iron	Potassium
Lithium	Magnesium	Manganese
Molybdenum	Sodium	Nickel
Phosphorus	Lead	Sulfur
Antimony	Selenium	Silicon
Tin	Strontium	Tellurium
Titanium	Thallium	Uranium
Vanadium	Tungsten	Zinc
	Other	
Radionuclides		

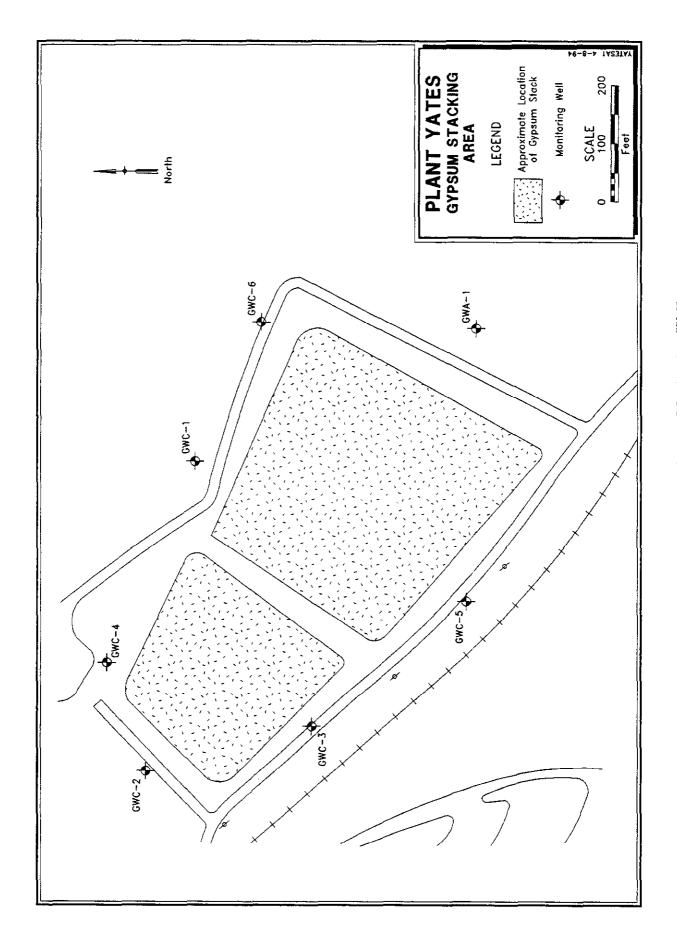


Figure 1. Location of Groundwater Monitoring Wells

effort were presented in the report "Interim Data Report of Preoperational Groundwater Monitoring: September 3-4 and October 14, 1992."

Operational-phase groundwater monitoring, which is performed on a quarterly basis, was initiated in the fourth quarter of 1992. Monitoring is conducted for the suite of parameters shown previously in Table 1. Samples are analyzed each quarter for all parameters shown except for radionuclides, which are monitored semiannually.

1.3 Report Contents

This report presents the results of quarterly operational-phase groundwater monitoring for the fourth calendar quarter of 1993. The groundwater monitoring wells were sampled on January 5, 1994. The delay in monitoring was due to scheduling conflicts that arose late in 1993.

Section 2 is a brief summary of the groundwater sampling and analytical methods. Monitoring results are presented in Section 3. Results of quality assurance/quality control (QA/QC) activities associated with sample analyses are summarized in Section 4. Tables of historical trends for selected parameters and the results for field and laboratory duplicates are given in the appendices.

2.0 SAMPLING AND ANALYTICAL METHODS

This section describes the methods used to obtain and analyze groundwater samples. These methods were specified in Radian's "Test Plan for Groundwater Monitoring Around the Plant Yates Gypsum Stacking Area," August 30, 1990, as amended.

2.1 <u>Sampling Methods</u>

The QED Well Wizard dedicated sampling system was used to purge the monitoring wells and collect samples. The Well Wizard system utilizes a dedicated Teflon® bladder pump and portable air compressor to extract groundwater samples.

To ensure the collection of a representative sample, standing water was removed from each well by purging a minimum of three wetted casing volumes. Conductivity, pH, redox potential, and temperature were monitored and recorded on field sampling forms during purging. Samples were collected after these indicator parameters stabilized and after at least three wetted casing volumes of water were removed or immediately following recovery if a well was purged dry.

Samples were obtained from five of the six downgradient wells (GWC-1, GWC-2, GWC-3, GWC-4, and GWC-5). As has been the case during previous rounds of monitoring, well GWC-6 could not be sampled since it was unproductive and contained no water. The upgradient well (GWA-1) was not sampled this quarter since it was also dry. Table 2 summarizes the groundwater samples collected during this monitoring period.

To preserve the integrity of the groundwater samples before analyses, proper sample container, preservation, holding time duration, shipment, and chain-of-custody procedures were followed. Sample bottles, preservation methods, and maximum holding times are summarized in Table 3.

2.2 Analytical Procedures

The analytical methods used in this program are listed in Table 4. There were no deviations from these methods.

Table 2
Summary of Groundwater Samples Collected at Plant Yates on January 5, 1994

Well ID	Sample ID	Analyses
GWA-1	None	Well dry; no samples collected
GWC-1	GWC-1-12-1	Anions, TOC, and Metals
GWC-2	GWC-2-12-1	Anions, TOC, and Metals
GWC-3	GWC-3-12-1 GWC-3-12-2	Anions, TOC, and Metals Anions, TOC, and Metals
GWC-4	GWC-4-12-1	Anions, TOC, and Metals
GWC-5	GWC-5-12-1	Anions, TOC, and Metals
GWC-6	None	Well dry; no samples collected

Table 3

Sample Containers, Preservation Method, and Maximum Holding Times

Bottle Label	Containers*	Parameter	Preservation Method	Maximum Holding Time (days)
Total Organic Carbon	500-mL Amber Glass	Total Organic Carbon	H ₂ SQ ₄ pH<2	28
Anions/TDS	1-L Plastic	Bromide	4°C	28
		Chloride	4°C	28
		Fluoride	4°C	28
		Nitrate-Nitrite	4°C	28
		Sulfate	.4°C	28
		Total Dissolved Solids	4°C	7
Metals	1-L Plastic	Trace Metals	Filtered On Site Ultrex II HNO, pH<2	180
Radioactivity	(3) 1-L Plastic	Radium 226, Radium 228, Gross Alpha, Gross Beta, Gross Gamma	Filtered On Site Ultrex II HNO, pH<2	180

'Sample containers supplied by either I-Chem or Eagle Picher.

Table 4

Analytical Methods

Parameter	Technique	Reference
pН	Potentiometry	EPA 150.1
Conductivity	Specific Conductance	EPA 120.1
Temperature	Temperature Probe	EPA 170.1
Eh	Electrometry	ASTM D1498
Alkalinity	Titrimetric or Colorimetric	EPA 310.1 or 310.2
Bromide	Ion Chromatography	EPA 300
Chloride	Ion Chromatography	EPA 300
Total Organic Carbon	Combustion/IR	EPA 415.1
Fluoride	SIE	EPA 340.2
Nitrate/Nitrite	Colorimetry	EPA 353.1
Sulfate	Ion Chromatography	EPA 300
Total Dissolved Solids	Filtration/Evaporation/Gravimetry	EPA 160.2
Mercury	On-site Filtration/Cold Vapor AA	EPA 245.1
Trace Elements	On-site Filtration/AA and ICP-AES	EPA 200.7, 7421 (Cr), 7060 (As), 7421 (Pb), 7041 (Sb), 7740 (Se), and 7841 (Tl)
Radium 226 and 228	Proportional Counter	ASTM D2460
Gross Alpha	Proportional Counter	ASTM D1943
Gross Beta	Proportional Counter	ASTM D1890
Gross Gamma	Gamma Ray Spectrometer	ASTM D2459

Legend:

AA = Atomic absorption spectrophotometry;

SIE = Specific ion electrode;

ICP-AES = Inductively coupled plasma-atomic emission spectrometry; and

IR = Infrared detection.

References:

EPA "Methods for Chemical Analysis of Water and Wastes," EPA-600/4-79-020, revised March 1983.

ASTM = American Society for Testing and Material, Annual Book of ASTM Standards.

3.0 SUMMARY OF RESULTS

The results of the fourth-quarter 1993 groundwater monitoring are presented in Table 5. The concentrations of all of the monitored dissolved constituents in the groundwater near the gypsum stacking area continue to be low.

To help determine whether the material in the gypsum stacking area is having an impact on groundwater quality, the monitoring data for a selected number of representative species from all of the monitoring rounds conducted to date were tabulated and examined. The representative species selected are those present in appreciable concentrations in the gypsum slurry, including the major cations and ions (i.e., calcium, magnesium, chlorine, and sulfate), as well as several other indicator parameters such as pH, TDS, conductivity, and alkalinity. The complete set of historical data for these species is provided in Appendix A. Examples of time versus concentration plots for several species are provided in Figures 2 through 4. Data are presented for the upgradient well, GWA-1, and two downgradient wells, GWC-2 and GWC-4. The location of these wells were shown previously in Figure 1. Since the upgradient well was dry this quarter, no additional data were obtained for this location.

The measured concentrations for all monitored parameters are generally close to the historically observed concentrations of these species. There is no evidence of any systematic increases in the concentrations of the monitored groundwater constituents. Based on the results obtained to date, there is no indication of leakage from the gypsum stacking area into the nearby groundwater.

Results of Groundwater Monitoring Conducted January 5, 1994 (Fourth Quarter 1993) Table 5

uS/cm) °C) /L CaCO ₃) d Solids (mg/L) Carbon (mg/L) .) (mg/L as N)	6.12 74 15.2 NR 29.9 22 <0.0277	5.75 53 16.4 NR 15.7	22	5.21	6.95
	74 15.2 NR 29.9 22 <0.0277 3.45	53 16.4 NR 15.7	22	63	
	15.2 NR 29.9 22 <0.0277 3.45	16.4 NR 15.7	16.9		39
	NR 29.9 22 <0.0277 3.45	NR 15.7 27	100	17.2	17.1
	29.9 22 <0.0277 3.45	15.7	NR	NR	NR
	22 <0.0277 3.45	27	9.3	9.2	10.8
(1)	<0.0277		<8.7	20	29
L.)	3.45	<0.0277	< 0.0277	0.167	<0.0277
L.)		3.80	2.79	6.72	2.55
	< 0.453	< 0.453	<0.453	<0.453	<0.453
Nitrate-Nitrite (mg/L as N)	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
(1) (1) (1)	69'0	0.414	0.0594	1.27	< 0.030
Surrate (IIIg/L)	3.26	5.78	<0.060	4.37	5.28
Silver (mg/L)	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049
Aluminum (mg/L)	< 0.028	<0.028	<0.028	<0.028	<0.028
Arsenic (mg/L)	<0.000984	<0.000984	< 0.000984	< 0.000984	< 0.000984
Boron (mg/L)	< 0.015	< 0.015	<0.015	<0.015	< 0.015
Barium (mg/L)	0.013	0.010	<0.010	0.010	< 0.010
Beryllium (mg/L)	< 0.00055	< 0.00055	< 0.00055	< 0.00055	< 0.00055
Bismuth (mg/L)	0.103₺	0.142 ^b	0.0985	0.115b	0.0973 ^b

Table 5 (Continued)

Parameter	GWA-1-12-1*	GWC-1-12-1	GWC-2-12-1	GWC-3-12-1	1-21-2-MD	GWC-5-12-1
Calcium (mg/L)		5.06	1.98	<1.0	1.3	1.3
Cadmium (mg/L)		<0.0050	< 0.0017	<0.0017	<0.0017	< 0.0017
Cobalt (mg/L)		< 0.0034	< 0.0034	< 0.0034	< 0.0034	< 0.0034
Copper (mg/L)		< 0.0038	<0.0038	<0.0038	< 0.0038	< 0.0038
Chromium (mg/L)		<0.010	0.011°	<0.010	< 0.010	<0.010
Mercury (mg/L)		<0.000050	< 0.000050	< 0.000050	<0.000050	< 0.000050
Iron (mg/L)		<i>16</i> 0°0	< 0.050	< 0.050	<0.050	< 0.050
Potassium (mg/L)		<3.0	<3.0	<0.37	<3.0	<3.0
Lithium (mg/L)		<0.0029	<0.0029	<0.0029	<0.0029	<0.020
Magnesium (mg/L)		3.7	1.8	<1.0	3.7	1.3
Manganese (mg/L)		<0.010	< 0.010	< 0.010	0.041	< 0.010
Molybdenum (mg/L)		< 0.0046	< 0.0046	<0.0046	< 0.0046	< 0.0046
Sodium (mg/L)		4.3	7.0	4.1	5.0	5.5
Nickel (mg/L)		<0.0099	0.037	<0.0099	<0.0099	< 0.0099
Phosphorus (mg/L)		< 0.061	< 0.061	< 0.061	< 0.061	< 0.061
Lead (mg/L)		08000'0>	< 0.00080	08000'0>	< 0.00080	< 0.00080
Sulfur (mg/L)		<5.0	<5.0	<5.0	<5.0	<5.0
Antimony (mg/L)		0.0030°	< 0.00104	< 0.00104	< 0.00104	< 0.00104
Selenium (mg/L)		<0.000843	< 0.000843	< 0.000843	< 0.000843	<0.000843
Silicon (mg/L)		12.7	12.9	6.7	8.6	11.4
Tin (mg/L)		< 0.014	< 0.014	< 0.014	< 0.014	< 0.014
Strontium (mg/L)		0.015	0.012	<0.0030	0.011	0.0096
Tellurium (mg/L)		< 0.0317	< 0.0317	< 0.0317	< 0.0317	< 0.0317
Titanium (mg/L)		<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Thallium (mg/L)		<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050

Table 5 (Continued)

Parameter	GWA-1-12-1*	GWC-1-12-1	GWC 2-12-1	GWC-3-12-1	[WC4:12:1	GWC-5-12-1
Uranium (mg/L)	,	<0.083	<0.083	< 0.083	<0.083	< 0.083
Vanadium (mg/L)		< 0.020	< 0.0024	< 0.0024	< 0.0024	< 0.0024
Tungsten (mg/L)		<0.046	<0.046	<0.046	< 0.046	< 0.046
Zinc (mg/L)		< 0.020	< 0.020	< 0.020	<0.0015	< 0.020

"Well was dry; no samples collected.

Detected in the method blank.

Less than five times the detection limit; results are expected to be less accurate as concentrations approach the detection limit.

NR = Not reported.

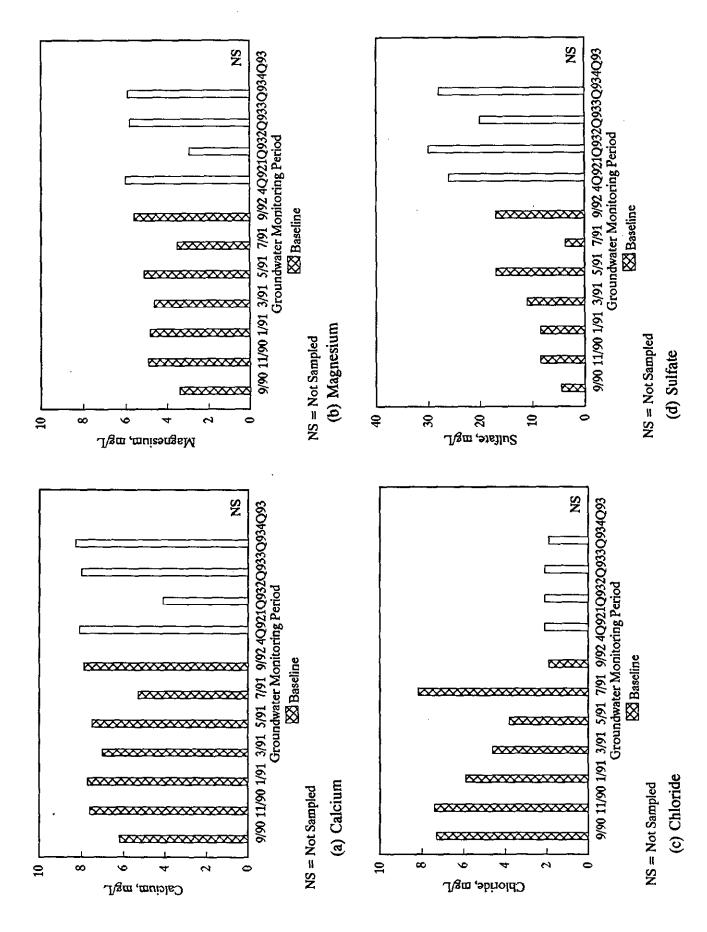


Figure 2. Historical Data for Representative Species from Well GWA-1 (Upgradient)

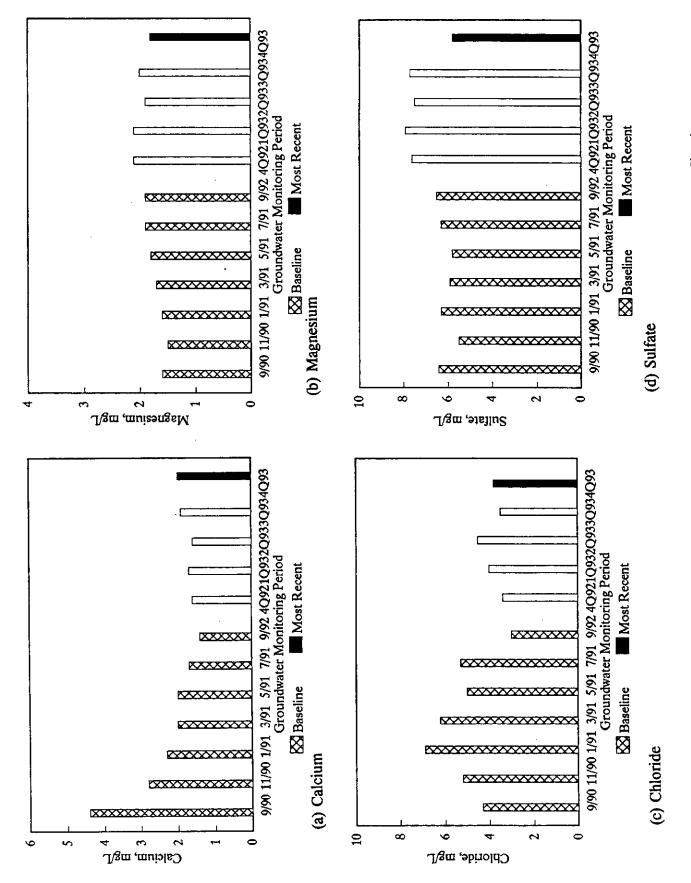


Figure 3. Historical Data for Representative Species from Well GWC-2 (Downgradient)

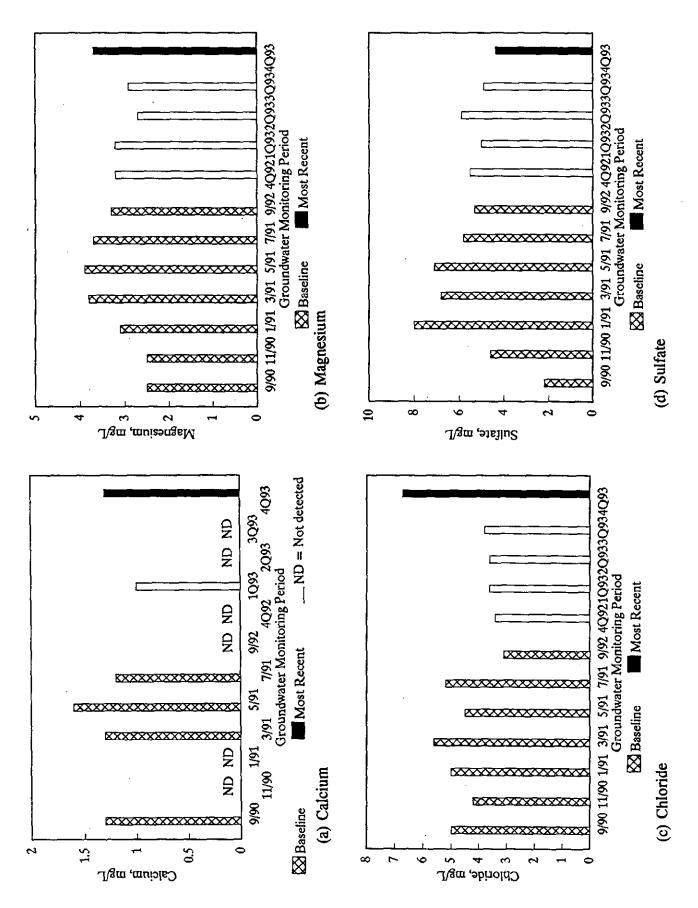


Figure 4. Historical Data for Representative Species from Well GWC-4 (Downgradient)

4.0 SUMMARY OF QA/QC ACTIVITIES

A number of QA/QC activities are being performed, as specified in the project's EMP, to assure that the data obtained meet project objectives. These include the following:

- Groundwater samples were split for independent analysis by a laboratory selected by SCS.
- Established sampling and analysis methods were specified and used. All samples were analyzed within the specified holding times, as outlined in Section 2. There were no deviations from the specified methods during this quarter's monitoring effort.
- Chain-of-custody procedures established in the test plan for this project were observed.
- In the laboratory, method blanks, control samples, and matrix spikes were analyzed in conjunction with the sample analyses, following recognized good laboratory practice. Specified recovery limits (typically 80 to 120%) were met for all analytes in the laboratory control samples and matrix spikes except phosphorus; average recoveries for all analytes were 98 percent. For phosphorus recoveries around 65% were obtained. The results for phosphorus are, therefore, questionable.
- Duplicate samples were obtained in the field and analyzed for all parameters. Replicate analyses were performed for a smaller number of parameters.

The results of the analysis of field and laboratory duplicates are summarized in Table 6 for those parameters measured above the detection limit. Complete results are provided in Appendix B. Differences in the duplicate analyses results were small for most species (i.e., less than 10%). For chloride, the percentage difference between the sample and the field duplicate was about 13%; but the result when the field duplicate was reanalyzed was much closer to the value obtained for the first sample. For bismuth, the percentage difference between the sample and the field duplicate was 25%; but this analyte was detected in the method blank, making the results for this analyte somewhat suspect.

Table 6

Results for Duplicate Samples--4th Quarter 1993

		Sample	Field Duplicate	%	Duplicate Analysis		Spec.
Parameter	Units		GWC-3-12-2		GWC-3-121-2	% RPD *	Limit
Chloride	mg/L	2.8	3.2	12.9	2.8	12.5	20
Nitrate-Nitrite (as N)	mg/L	0.059	0.056	-6.4	0.058	3.7	20
Bismuth	mg/L	0.099°	0.074°	-25.0			
Sodium	mg/L	4.1	4.0	-1.2			
Silicon	mg/L	9.7	9.6	-1.1			

^{*}Percent Difference = (GWC-3-12-2 - GWC-3-12-1)/GWC-3-12-1 * 100%.

$$RPD = \frac{\text{(Larger Value - Smaller Value)}}{\text{(Larger Value + Smaller Value)}/2} \times 100\%$$

^bRPD = Relative Percent Difference, defined as follows:

Detected in the method blank.

APPENDIX A

HISTORICAL MONITORING DATA FOR SELECTED PARAMETERS

Table A-1

T TI OTOMA

Historical Monitoring Data for Selected Parameters

						Base	Baseline Manitoring	16				
Parameter	Round 1 6 Sep 98	Round 3 2 Nov 90	Konnd 3 6.9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 3-4 Sep 92	Regard 8 29-30 Dec 93	Round 9 30-31 Mar 93	Kound 16 21 Jun 93	Reserted 11 23-24-Sept 93	Kound 12 5 Jan 94
Well: GWA-1		CW-1)										
Hd	5.86	6.27	9.5	6.7	6.05	5.94	6.4	5.7	6.82	6.1	5.9	
Conductivity	86	114	112	121	104	85	116	101	128	100	110	
Alkalinity	15.6	22.3	25.8	27.1	25	16.4	35.4	22.7	28	27	24.8	
TDS	76	87	98	84	06	77	66	110	011	116	66	
Chloride	7.3	7.4	6.8	4.6	3.8	8.2	6.1	2.1	2.1	2.1	1,9	
Sulfate	4.5	8.5	8.8	11	11	3.7	17	26	30	20	28	
Calcium	6.2	7.6	1.7	7	7.5	5.3	7.9	8.1	4.1	8.0	8.3	
Magnesium	3.4	4.9	4.8	4.6	5.1	3.5	5.6	6.0	2.9	5.8	6.9	
Sodium	4.2	4.8	4.9	4.3	4.4	3.8	4.1	4.2	4.0	4.4	4.3	
Silicon	8.6	11	14	91	11	9.6	15	17	11	18	17	
Well: GWC-1 (Formerly CW-2)	(Formerly	CW-2)										
Hd	60'9	5.79	5.62	5.93	6.04	5.96	6.1	4.5	5.83	6.0	0.9	6.1
Conductivity	18	0/	72	69	63	66	78	57	19	57	19	74
Alkalinity	21.7	22.9	24.4	22.1	20.5	25.8	27.8	23.3	22.5	24.1	27.3	28.9
TDS	81	51	59	52	48	64	64	68	43	74	70	
Chloride	3.5	2.8	3.1	3.4	2.8	2.5	2.5	2.6	2.6	2.6	2.5	3.5
Sulfate	7.6	5	2.8	<0.05	1.2	1.5	3.2	3.3	2.2	<2.5	2.6	3.3
Calcium	3.9	3.6	3.8	3.2	3.4	3.6	4.3	4.0	8.8	4.1	4.1	5.1
Magnesium	2.3	2.5	2.8	2.2	2.4	2.5	3.2	3.0	6.2	2.9	3.0	3.7
Sodium	5.9	5.2	4.3	4.1	4.2	4.1	4.0	4.0	4.2	4.0	3.8	4,3
Silicon	6	6	9.2	11	11	11	11	12	91	12	12	12.7

Table A-1 (Continued)

Parameter Sop 94 2 Now 96 6-5 Jan 51 Round 4 Round 5 Round 5 Parameter 6 Sep 94 2 Now 96 6-5 Jan 51 11 Mar 91 6 May 91 122 PH 5.64 5.6 5.6 5.6 5.3 4.97 122 PH 5.64 5.6 5.6 5.3 4.97 12.2 Conductivity 76 50 55 5.3 6.3 5.8 TDS 76 5.0 6.3 5.9 5.8 6.3 5.8 Chloride 6.4 5.5 6.3 5.9 5.8 5.8 5.8 Sulfate 6.4 5.5 6.3 5.9 7 7.5 5.8 Sulfate 6.4 5.5 6.3 7 7.5 5.8 5.8 5.8 Sulfate 6.4 5.1 4.8 4.73 4.1 7.5 5.1 Calcium 7.3 7.4 6.9 7 7.5 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
GWC-2 (Formerly CW-3) tivity 7.6 6.9 64 66 ity 7.6 6.9 64 66 ity 23.5 19.3 15.2 16.9 ity 7.6 5.0 5.5 6.9 64 66 ity 7.6 5.2 6.9 6.9 6.2 6.0 n 4.4 2.8 2.3 6.9 6.2 6.0 n 4.4 2.8 6.9 7 7 imm 1.6 1.5 1.6 1.7 7 GWC-3 (Formerly CW-4) 6.9 7 7 GWC-3 (Formerly CW-4) 4.8 4.73 1.1 ivy 11.5 9.9 11 1.0 ivy 11.5 9.9 11 3.4 1.0 e 3.2 3.2 3.4 2.8 3.4 2.6 e 3.2 2.1 < 0.05	ound 1 Roun Sep 90 2 No.			Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 34 Sep 92	Round S 29.30 Dec 92	Round 9 30-31 Mar 93	Round 16 21 Jun 93	Round 11 23-24 Sep 93	Round 12 5 Jan 94
tivity 76 69 64 6.5 64 6.6 6.9 6.4 6.6 6.9 6.4 6.6 6.9 6.4 6.6 6.9 6.4 6.5 6.9 6.4 6.5 6.9 6.2 6.9 6.4 6.2 6.9 6.4 6.2 6.9 6.4 6.2 6.9 6.9 6.2 6.9 6.9 6.2 6.9 6.9 6.2 6.9 6.9 6.2 6.9 6.9 6.2 6.9 6.2 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	ormerly CW-3											
tivity 76 69 64 66 file	5.64	5.6	5.04	5.5	4.97	5.65	5.5	4.6	5.29	5.4	5.6	5.8
ity 23.5 19.3 15.2 16.9 16.9 16.9 16.9 16.9 16.9 16.2 16.9 16.2 16.9 16.2 16.9 16.2 16.9 16.2 16.9 16.2 16.9 16.2 16.9	92	69	64	99	33	71	99	99	19	99	67	53
e 4.3 5.2 6.9 55 55 integrated by the control of th	23.5	19.3	15.2	16.9	12.2	17.5	18.2	17.3	12.5	14.1	15.9	15.7
e 4.3 5.2 6.9 6.2 6.3 in the control of the control	76	20	55	55	63	\$9	79	71	89	11	09	
itum 1.6 4 2.8 5.3 5.9 itum 1.6 1.5 1.6 1.7 itum 1.6 1.5 1.6 1.7 itum 1.6 1.5 1.6 1.7 itum 1.0 10 9.3 12 itum 1.1 itum 1.2 itum 1	4.3	5.2	6.9	6.2	\$	5.3	3.0	3.4	4.0	4.5	3.5	3.8
itum 1.6 1.5 1.6 1.7 1.1	6.4	5.5	6.3		5.8	6.3	6.5	7.6	7.9	7.5	1.7	5.8
itum 1.6 1.5 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.5 1	4.4	2.8	2.3	2	2	1.7	1.4	1.6	1.1	1,6	1.9	2.0
GWC-3 (Formerly CW-4) tivity 40 35 31 34 ity 11.5 15.2 9.9 11 e 3 2.8 3.2 3.4 e 3 2.8 3.2 3.4 ium 1 <1.0 <1.0 <1.0	1.6	1.5	1.6	1.7	1.8	6.1	6.1	2.1	2.1	1.9	2.0	1.8
GWC-3 (Formerly CW-4) 10 9.3 12 GWC-3 (Formerly CW-4) 4.8 4.73 tivity 40 35 30 34 ivy 11.5 15.2 9.9 11 ivy 11.5 15.2 9.9 11 e 3 2.8 3.2 3.4 e 3 2.8 3.2 3.4 n 1 <1.0 <1.0 <1.0 ium 1 <1.0 <1.0 <1.0 4.4 4.5 4.3 4.1 <1.0	7.3	7.4	6.9	1	7.5	7.6	7.5	7.4	7.5	6.7	8.9	7.0
GWC-3 (Formerly CW-4) 5.4 5.15 4.8 4.73 tivity 40 35 30 34 ity 11.5 15.2 9.9 11 so 35 31 34 e 3 2.8 3.2 3.4 e 3 2.8 3.2 3.4 n 1 <1.0 <1.0 <1.0 ium 1 <1.0 <1.0 <1.0 ium 4.4 4.5 4.3 4.1	10	10	9.3	12	11	11	11	13	12.0	11	13	12.9
tivity 40 35 4.8 4.73 tivity 40 35 30 34 ity 11.5 15.2 9.9 11 be 3 2.8 3.2 3.4 c 3 2.8 3.2 3.4 c 3 2.1 <0.05 <0.05 ity 1 <1.0 <1.0 <1.0 4.4 4.5 4.3 4.1		(
tivity 40 35 30 34 ity 11.5 15.2 9.9 11 e 3 2.8 31.2 3.4 e 3 2.8 3.2 3.4 1 2.6 2.1 <0.05 <0.05 itum 1 <1.0 <1.0 <1.0 itum 4.4 4.5 4.3 4.1	5.4	5.15	4.8	4.73	61.9	5.08	5.25	3.8	5.23	5.2	5.3	5.5
tty 11.5 15.2 9.9 11 e 3 2.8 3.2 3.4 e 3 2.8 3.2 3.4 n 2.6 2.1 <0.05 <0.05 ium 1 <1.0 <1.0 <1.0 4.4 4.5 4.3 4.1	40	35	30	34	32	35	32	27	33	27	27	22
e 3 2.8 3.2 3.4 2.6 2.1 <0.05 <0.05 1 <1.0 <1.0 <1.0 1 <1.0 <1.0 <1.0 4.4 4.5 4.3 4.1	11.5	15.2	6.6	11	7	11.11	10.0	8.9	7.0	8.5	9.1	9.3
to the contract of the contrac	50	35	31	34	39	41	28	37	44	52	21	
1	3	2.8	3.2	3.4	3.1	3.1	2.0	2.3	2.7	2.9	2.8	2.8
ium 1 <1.0 <1.0 <1.0 <1.0 ium 4.4 4.5 4.3 4.1	2.6	2.1	< 0.05	<0.05	6.0	1.5	1.7	2.6	1.6	<2.5	<2.5	<0.06
itum 1 <1.0 <1.0 <1.0 <1.0	-	(1.0	< 1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4.4 4.5 4.3 4.1	-	(1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	4.4	4.5	4.3	4.1	4.6	4.3	4.1	4.0	4.1	3.9	3.8	4.1
Silicon 8 7.8 3.9 8.5 8.6	8	7.8	3.9	8.5	8.6	8.3	8.3	9.3	0.6	8.7	9.2	9.7

Table A-1 (Continued)

						Rase	Baseline Manitoring	31				
Parameter	Reared 1 6 Sep 90	Round 2 2 Nov 96	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Bound 7 5-4 Sep 92	Round 8 29-30 Dec 92	Round 9 30-31 Mar 93	Round 10 21 Jun 95	Round 11 25-24 Sep 95	Round 12 5 Jan 94
Well: GWC-4 (Formerly CW-5)	(Formerly	CW-5)										
μd	5.34	4.97	4.8	4.6	5.03	5.4	5.05	3.9	5.04	5.2	5.2	5.2
Conductivity	79	. 62	99	72	54	70	72	58	64	52	54	63
Alkalinity	12.5	15.3	13.1	15.1	8.6	14.2	11.5	8.0	0.9	6.9	7.0	9.2
TDS	19	52	09	51	85	64	61	65	63	55	44	
Chloride	5	4.2	5	5.6	4.5	5.2	3.1	3.4	3.6	3.6	3.8	6.7
Sulfate	2.2	4.6	8	6.8	7.1	8.8	5.3	5.5	5.0	5.9	4.9	4.4
Calcium	1.3	<1.0	<1.0	1.3	9'1	1.2	<1.0	<1.0	1.0	<1.0	<1.0	1.3
Magnesium	2.5	2.5	3.1	3.8	3.9	3.7	3.3	3.2	3.2	2.7	2.9	3.7
Sodium	5.4	5.8	5.3	5.1	\$	2.2	4.8	6.4	4.7	4.4	4.4	5.0
Silicon	6.6	1.6	4.7	6.7	9.2	10	9.8	5'6	8.7	8.3	9.3	8.6
Well: GWC-5	2											
ЬH							5.6	4.4	6.13	5.4	5.6	7.0
Conductivity							19	09	54	41	40	39
Alkalinity							14.8	13.5	12.5	5 10.2	11.5	10.8
TDS							16	86	67	56	50	
Chloride							1.8	2.6	2.7	2.9	2.5	2.6
Sulfate							8.8	10	7.4	6.7	5.5	5.3
Calcium							2.1	2.7	2.2	1.6	1.4	1.3
Magnesium							1.9	2.3	1.8	1.5	1.4	1.3
Sodium							6.0	6.2	5.7	5.5	5.2	5.5
Silicon							12	14	13	12	12	11.4

APPENDIX B

QA/QC RESULTS

Table B-1
Results for Duplicate Samples--3rd Quarter 1993

				%	Duplicate Analysis	%	Spec.
Parameter	Units	GWE-3-12-1	GWC-3-12-2	Diff.	GWC-3-12-2	RPD	Limit
Total Dissolved Solids	mg/L						
Bromide	mg/L	< 0.028	<0.028		< 0.028		
Chloride	mg/L	2.8	3.2	12.9	2.8	12.5	20
Total Organic Carbon	mg/L	< 0.45	< 0.45		< 0.45		20
Fluoride	mg/L	< 0.050	<0.050		< 0.050		20
Nitrate-Nitrite (as N)	mg/L	0.059	0.056	-6.4	0.058	3.7	20
Sulfate	mg/L	< 0.060	< 0.060		< 0.060		20
Silver	mg/L	< 0.0049	< 0.0049	-			
Aluminum	mg/L	< 0.028	<0.028				
Arsenic	mg/L	< 0.00098	< 0.00098				
Boron	mg/L	< 0.015	<0.60				
Barium	mg/L	< 0.010	< 0.010				
Beryllium	mg/L	< 0.00055	< 0.00055				
Bismuth	mg/L	0.099 B	0.074 B	-25.0			
Calcium	mg/L	<1.0	<1.0				
Cadmium	mg/L	< 0.0017	< 0.0017				
Cobalt	mg/L	< 0.0034	< 0.0034				
Copper	mg/L	< 0.0038	< 0.020		"-		
Chromium	mg/L	< 0.010	< 0.010			*****	
Mercury	mg/L	<0.000050	<0.000050				
Iron	mg/L	< 0.050	<0.050				
Potassium	mg/L	<0.37	<3.0				
Lithium	mg/L	< 0.0029	<0.0029				
Magnesium	mg/L	<1.0	<1.0				
Manganese	mg/L	< 0.010	< 0.010				
Molybdenum	mg/L	< 0.0046	< 0.0046				
Sodium	mg/L	4.1	4.0	-1.2			
Nickel	mg/L	< 0.0099	<0.0099				
Phosphorus	mg/L	< 0.061	< 0.061				
Lead	mg/L	<0.00080	<0.00080				
Sulfur	mg/L	< 5.0	<5.0				
Antimony	mg/L	<0.0010	<0.0010				

Table B-1 (Continued)

Parameter	Units	GWC-3-12-1	GWC3-12-2	% Diff.	Duplicate Analysis GWC-3-12-2	% RPD	Spec. Limit
Selenium	mg/L	< 0.00084	<0.00084				
Silicon	mg/L	9.7	9.6	-1.1	<u>-</u>		
Tin	mg/L	< 0.014	< 0.014				
Strontium	mg/L	< 0.0030	< 0.0030				
Tellurium	mg/L	< 0.032	< 0.032				
Titanium	mg/L	<0.0010	< 0.0010				
Thallium	mg/L	< 0.00087	< 0.00087			_	
Uranium	mg/L	< 0.083	< 0.083				
Vanadium	mg/L	< 0.0024	< 0.0024				
Tungsten	mg/L	< 0.046	< 0.046				
Zinc	mg/L	<0.020	< 0.020				