DEMONSTRATION OF INNOVATIVE APPLICATIONS OF TECHNOLOGY FOR THE CT-121 FGD PROCESS

Plant Yates

Environmental Monitoring Program Report: Second Quarter of 1994 (Final)

DOE DE-FC22-90PC89650 SCS C-90-00284

Prepared for:

Southern Company Services, Inc. P.O. Box 2625 600 North 18th Street Birmingham, Alabama 35291-1195

Prepared by:

Radian International LLC 8501 North Mopac Boulevard P.O. Box 201088 Austin, Texas 78720-1088

Cleared by DOE Patent Counsel on September 11, 1995.

Legal Notice

This report was prepared by Radian Corporation for Southern Company Services, Inc. pursuant to a cooperative agreement partially funded by the U.S. Department of Energy and neither Southern Company Services, Inc., nor any of its subcontractors, nor the U.S. Department of Energy, nor any person acting on behalf of either:

- 1. Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report or that the process disclosed in this report may not infringe privately-owned rights; or
- 2. Assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Department of Energy.

Executive Summary

This progress report summarizes activities associated with the environmental monitoring program (EMP) during the second calendar quarter of 1994 for the U.S. Department of Energy's Innovative Clean Coal Technology project entitled "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." This demonstration project is being conducted at Georgia Power Company's Plant Yates Unit 1, located near Newnan, Georgia.

This document discusses progress made in EMP activities during the second calendar quarter of 1994. With the exception of certain compliance data, results are not presented in detail; instead, results will be reported in periodic reports focusing on discrete test periods.

During the months of April and May, the high-particulate parametric block tests were completed. The high-particulate load-following tests began in late May and continued through June. The long-term tests began with the ESP energized to provide approximately 90% particulate removal efficiency; this condition was selected to approximate a CT-121 retrofit downstream of a marginally performing particulate collection device. Initial scrubber operating conditions (pH = 4.5, JBR ΔP = 14 in. WC) for the long-term testing were identical to those used for the majority of the Low-Particulate Long-Term test block. Because of inhibited limestone dissolution, possibly caused by aluminum fluoride blinding, the pH was lowered to 4.0; following this change, the remainder of the month of June passed without significant incident.

Operational phase groundwater monitoring continued during the quarter. Also, compliance monitoring was conducted and compliance reports were submitted by Georgia Power Company to the Environmental Protection Division of the Georgia Department of Natural Resources.

Table of Contents

1.0	Introduction						
2.0	Project Summary						
	2.1Plant and Process Description12.2Project Description2						
3.0	Project Status						
4.0	Compliance Monitoring and Reporting4						
5.0	Supplemental Monitoring						
	5.1Groundwater Monitoring55.2FGD Process Monitoring5						
6.0	Quality Assurance/quality Control Activities						
	Appendix A: Quarterly Air Emission Report for the Second Quarter of 1994 A-1						
	Appendix B: Quarterly Operational Monitoring Report for the Second Quarter of 1994B-1						
	Appendix C: Groundwater Monitoring Report for the First Quarter of 1994 C-1						

List of Figures

1	Yates 100 MW CT-121 Process Flow Diagram	
---	--	--

List of Tables

1	Summary of Groundwater Samples Collected at Plant Yates on June 21-22, 19946
2	EMP Groundwater Monitoring Parameters
3	Gaseous Streams: Integrated Monitoring Schedule
4	Aqueous Stream Monitoring Schedule
5	Solid Stream Monitoring Schedule
6	Gaseous Streams: Numbers of Samples Collected During the Second Quarter of 1994
7	Aqueous Streams: Numbers of Samples Collected During the Second Quarter of 1994
8	Solid Streams: Numbers of Samples Collected During the Second Quarter of 1994 12

1.0 Introduction

This quarterly progress report summarizes activities associated with the environmental monitoring program (EMP) during the second calendar quarter of 1994 for the U.S. Department of Energy's Innovative Clean Coal Technology project entitled "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." This demonstration project is being conducted at Georgia Power Company's Plant Yates Unit 1, located near Newnan, Georgia. The Cooperative Agreement for this project was signed by DOE on April 2, 1990.

The EMP was developed to fulfill the following specific objectives:

- To provide monitoring data to fulfill environmental compliance requirements of local, state, and federal regulatory agencies;
- To define and describe additional supplemental monitoring activities, if needed; and
- To ensure that emissions and environmental impacts are consistent with projections provided in NEPA documents.

This document discusses progress made in EMP activities during the second calendar quarter of 1994. Results are presented for groundwater monitoring and compliance (air emissions and wastewater) monitoring, but the results of FGD process monitoring will be presented in periodic reports focusing on discrete test phases.

2.0 Project Summary

This section provides a brief description of the plant and process in addition to the demonstration project.

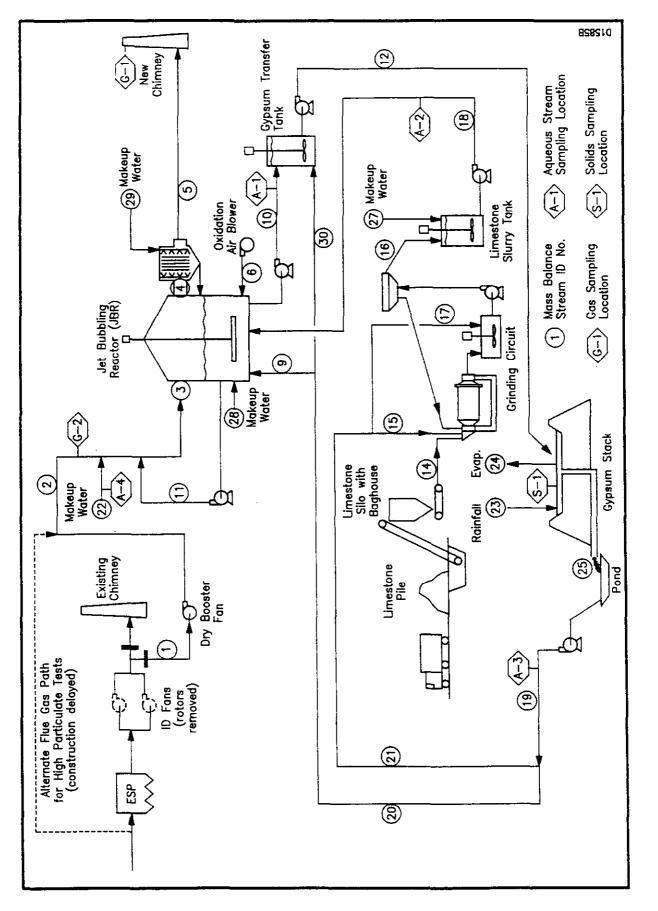
2.1 Plant and Process Description

Plant Yates consists of seven steam turbine electric generating units providing a total nameplate capacity of 1,250,000 kW. Units 1 through 5 (operational since the 1950s) are operated as intermediate load units and are located in one building that features a common 825-

foot stack for venting emissions from all five units. Units 6 and 7, operational since 1974, are operated as base load units. A common 800-foot stack is used to vent emissions from Units 6 and 7, which are housed in a separate building. All of Plant Yates' units are equipped with electrostatic precipitators for particulate control.

Plant Yates typically uses coal that is a 50-50 blend of Arch Mineral and Old Ben coals from the Illinois Basin. The target coal sulfur content for the demonstration project is 2.5 percent. Raw water for process needs is drawn from the Chattahoochee River. Solid waste, in the form of bottom ash and fly ash, is sluiced to a series of wet ash disposal ponds.

2.2 Project Description


The CT-121 flue gas desulfurization project was constructed and is operated to treat the entire flue gas stream from Unit 1 (100 MW), which is approximately 12% of the total flue gas generated at Plant Yates. A 258-foot stack was constructed to vent emissions from the CT-121 process.

A simplified process flow diagram of the flue gas desulfurization process is shown in Figure 1. Major process sampling locations are shown in that diagram.

3.0 Project Status

The CT-121 demonstration project at Plant Yates consists of four distinct environmental test periods, including:

- Period 0: Site Preparation, Construction, and Startup of the Demonstration Project;
- Period 1: Testing at Low Fly Ash Loading—With ESP In Service;
- Period 2: Testing at High Fly Ash Loading—ESP Detuned or Out of Service; and

Period 3: Post Demonstration Groundwater Testing.

Monitoring during Period 0 consisted solely of background (i.e., prior to project operation) groundwater monitoring. Samples were obtained during seven periods between September 6, 1990, and October 14, 1992.

On October 26, 1992, the CT-121 wet scrubber became operational for the first time. During the remainder of 1992, shakedown of the process equipment and data collection procedures was conducted.

In April 1994, the high-particulate parametric test block continued, following an inspection of the scrubber internals and flushing of the gas cooling piping and nozzles.

During the month of May, the high-particulate parametric test series was completed and the long-term, load-following portion of the high-particulate test phase was begun. The parametric testing was performed with the ESP completely de-energized to determine the effects of high flue-gas particulate loading on the scrubber system. The long-term tests began with the ESP energized to provide approximately 90% particulate removal efficiency; this condition was selected to approximate a CT-121 retrofit downstream of a marginally performing particulate collection device. Initial scrubber operating conditions (pH = 4.5, JBR ΔP = 14 in. WC) for the long-term testing were identical to those used for the majority of the low-particulate long-term test block.

The long-term high-particulate testing continued in June. Because of inhibited limestone dissolution, possibly caused by aluminum fluoride blinding, the pH was lowered to 4.0; following this change, the remainder of the month passed without significant incident.

4.0 Compliance Monitoring and Reporting

Wastewater samples collected during the quarter for compliance purposes were as follows:

Stream/Parameter	Ash Transport Water	Final Plant Discharge
Total Suspended Solids	1	
Oil and Grease	1	
рН		

During the quarter, compliance reports were submitted by Georgia Power Company, as required, to the Environmental Protection Division of the Georgia Department of Natural Resources. These reports are reproduced as Appendices A and B. Appendix A contains excess emission and monitoring system performance reports. Appendix B contains wastewater data.

During the third quarter of 1994, a semiannual progress report will be submitted by GPC to the DNR, in accordance with an amendment (effective December 28, 1990) to the air operating permit for Source 1 (comprising Units 1, 2, and 3) (No. 4911-038-4838-0).

5.0 Supplemental Monitoring

5.1 Groundwater Monitoring

Operational-phase groundwater monitoring was conducted during the quarter on June 21-22, 1994. The samples collected, shown in Table 1, were analyzed for the parameters shown in Table 2. Results for these samples will be available in the next quarterly EMP progress report.

A report containing the results of groundwater monitoring conducted during the first quarter of 1994 is provided as Appendix C. The results from previous quarters have been attached to previously submitted EMP reports.

5.2 FGD Process Monitoring

The monitoring schedules for gaseous, aqueous, and solid streams are shown in Tables 3, 4, and 5, respectively. Tables 6, 7, and 8 are summaries of the EMP monitoring conducted during the quarter. It appears that most, if not all, of the FGD process monitoring was performed as planned during the quarter.

Well ID	Sample ID	Analyses
GWA-1	None	Well dry; no samples collected
GWC-1	GWC-1-14-1	Anions, TOC, TOX, VOCs, and Metals
GWC-2	GWC-2-14-1	Anions, TOC, TOX, VOCs, and Metals
GWC-3	GWC-3-14-1	Anions, TOC, TOX, VOCs, and Metals
	GWC-3-14-2	Anions, TOC, TOX, VOCs, and Metals
GWC-4	GWC-4-14-1	Anions, TOC, TOX, VOCs, and Metals
GWC-5	GWC-5-14-1	Anions, TOC, TOX, VOCs, and Metals
GWC-6	None	Well dry; no samples collected

Table 1. Summary of Groundwater Samples Collectedat Plant Yates on June 21-22, 1994

Table 2. EMP Groundwater Monitoring Parameters

рН	Conductivity	Temperature
Eh	Alkalinity	Total Dissolved Solids
Bromide	Chloride	Total Organic Carbon
Fluoride	Nitrate-Nitrite	Sulfate
	Trace Elements (Dis	solved)
Silver	Aluminum	Arsenic
Boron	Barium	Beryllium
Bismuth	Calcium	Cadmium
Cobalt	Copper	Chromium
Mercury	lron	Potassium
Lithium	Magnesium	Manganese
Molybdenum	Sodium	Nickel
Phosphorus	Lead	Sulfur
Antimony	Selenium	Silicon
Tin	Strontium	Tellurium
Titanium	Thallium	Uranium
Vanadium	Tungsten	Zinc
	Other	
TOX	VOCs	

Parameter	Stack Gas Stream	Flue Gas Inlet to JBR
Opacity	None	Continuous
SO ₂	Continuous	Continuous
0 ₂	Continuous	Continuous
Moisture Content	9/Parametric Test Period	9/Parametric Test Period
SO ₃ , H ₂ SO ₄ Mist (contingent upon funding availability)	36/Parametric Test Period	36/Parametric Test Period
Particulate Matter:	····	
Loading	9/Parametric Test Period and Annually	9/Parametric Test Period
Particle Size Distribution (contingent upon funding availability)	9/Parametric Test Period	9/Parametric Test Period

.

Table 3. Gaseous Streams: Integrated Monitoring Schedule

schedule
Monitoring 5
ueous Stream
Table 4. Aqu

arantetPLPhase $7M$ TM TM hase $7M$ TM TM hase $7M$ $4M$ $7M$ he $7M$ $4M$ $4M$ he $7M$ $4M$ $4M$ he $7M$ $4M$ $4M$ he $7M$ $4M$ $4M$ he $7M$ $4M$ he $7M$ $4M$ he $7M$ $7M$ ale $7M$ $7M$ see $7M$ $7M$ n $7M$ $7M$ sium 100 $4M$ n $7M$ $7M$ ate $7M$ <		JBR O	JBR Overflow	JBR Underflow	derflow
T/M 4/M T/M 7/M 4/M 7/M 1 1/M 7/M 1 7/M 7/M 1	Parameter	Ρ	L	₽.	L
TM 4M TM TM $7/M$ $4/M$ $4/M$ $7/M$ $4/M$ $7/M$ $7/M$ $4/M$ $6/M$ $6/M$ $7/M$ $7/M$ $4/M$ $6/M$ $6/M$ $7/M$ $7/M$ $6/M$ $6/M$ $6/M$ $7/M$ $7/M$ $6/M$ $7/M$ $6/M$ 601 $7/M$ $6/M$ $7/M$ $7/M$ 601 $7/M$ $7/M$ $7/M$ $7/M$ 10 $7/M$ $7/M$ <td>Liquid Phase</td> <td></td> <td></td> <td></td> <td></td>	Liquid Phase				
7M $4M$ $4M$ $7M$ $4M$ $4M$ $1M$	Hd	W/L	4/M	W/L	4/M
7/M $4/M$ $3/M$ <t< td=""><td>Chloride</td><td>W/L</td><td>4/M</td><td></td><td></td></t<>	Chloride	W/L	4/M		
7M $4M$ $4M$ $7M$ $4M$ M $7M$ $4M$ M $1M$ $1M$ $1M$ $1M$ $1M$ $7M$ $1M$	Sulfite	W/L	4/M		
TM 4M M ents $1/M$ $1/M$ $1/M$ lent $7/M$ $1/M$ $7/M$ int $7/M$ $7/M$ $7/M$	Sulfate	W/L	4/M		
ents $1/M$ $1/M$ $1/M$ tent $7/M$ $4/M$ $7/M$ nt $7/M$ $4/M$ $7/M$ nt $7/M$ $7/M$ $7/M$ $7/M$ $7/M$	Carbonate	W/L	4/M		
tent $7/M$ $4/M$ $7/M$ int $7/M$ $4/M$ $7/M$ int $7/M$ $7/M$ $7/M$	Trace Elements		1/M		
Content $7/M$ $4/M$ $7/M$ Intent $7/M$ $4/M$ $7/M$ Intent $7/M$ $4/M$ $7/M$ Intent $7/M$ $7/M$ $7/M$ Intent $7/M$ $7/M$ $7/M$ Intents $7/M$ $7/M$ $7/M$ Intents $7/M$ $7/M$ $7/M$	Solid Phase				
intent $7/M$ $4/M$ $7/M$ n $7/M$ $7/M$ $7/M$ n $1/M$ $7/M$ $7/M$ n $1/M$ $1/M$	Solids Content	M/L	4/M	M/L	4/M
T/M T/M T/M T/M Ium T/M T/M Ium T/M T/M Ium T/M T/M	Inert Content	W/L	4/M	W/L	4/M
ium $7M$ ium $7M$ 100 $7M$ 100	Calcium	W/L	4/M	W/L	4/M
T/M T/M ate 7/M Ate 7/M Ate 7/M Ate 7/M Ate 7/M Ate 7/M	Magnesium			W/L	4/M
7/M 4/M 7/M ate 7/M 4/M 7/M clements 1/M 1/M 1/M	Sulfite			W/L	4/M
ate 7/M 4/M 7/M 6lements	Sulfate	W/L	4/M	M/L	4/M
Glements	Carbonate	W/L	4/M	W/L	4/M
	Trace Elements				1/M
	TCLP				1/P

Table 4 (continued	-
able 4 (contin	73
able 4 (contin	ā
able 4 (contin	Ξ.
able 4 (co	Ξ.
able 4 (co	.=
able 4 (co	+
able 4 (c	5
able 4 (c	0
able 4 (- 5
able	ع
able	
able	4
1.1	đ
1.1	÷
1.1	Ω.
•	

	Limestone Slurry Feed	slurry Feed	Gypsum Stack Return	ack Return	Makeup Water	Water
Parameter	đ	L	Ρ	L	Ρ	L
Liquid Phase						
Hd			W/L	4/M	1/M	1/M
Chloride			M/T	4/M	1/M	1/M
Sulfite					I/M	1/M
Sulfate			W/L	4/M	1/M	1/M
Carbonate			W/L	4/M	1/M	1/M
Trace Elements			1/M	1/M		
Solid Phase						
Solids Content	W/L	4/M				
Inert Content	W/L	4/M				
Calcium	W/L	4/M				
Magnesium	W/L	4/M				
Carbonate	W/L	4/M				

Table 4 (continued)

Abbreviations:

- n/D = n times per day; n/W = n times per week;

- n/M = n times per month;
 n/Q = n times per quarter;
 1/nM = once per n months;
 P = Parametric test; and
 L = Long-term test. (Each of the two testing periods consists of a parametric test and a long-term test.)

Trace elements are the following:

·	Phosphorus	Lead	Sulfur	Antimony	Selenium	Silicon	Titanium	Uranium	Vanadium
	Copper	Iron	Potassium	Magnesium	Manganese	Mercury	Molybdenum	Sodium	Nickel
	Aluminum	Arsenic	Boron	Barium	Beryllium	Calcium	Cadmium	Cobalt	Chromium

Parameter	Coal Feed
Proximate Analysis	Daily
Ultimate Analysis, Cl, and F	Twice Yearly
Trace Elements	Twice Yearly

Note: In addition to the monitoring shown, analysis of coal feed for sulfur, moisture, heating value, and ash content once per week is a regulatory compliance requirement.

Table 6. Gaseous Streams: Numbers of Samples CollectedDuring the Second Quarter of 1994

Parameter	Stack Gas Stream	Flue Gas Inlet to JBR
Opacity	NA	Continuous
SO ₂	Continuous	Continuous
O ₂	Continuous	Continuous
Moisture Content	0	0
SO3, H2SO4 Mist	0	0
PM Loading	0	0
PM Size Distribution	0	0

Table 7. Aqueous Streams: Numbers of Samples CollectedDuring the Second Quarter of 1994

Parameters	JBR Overflow and Underflow	Limestone Slurry Feed	Gypsum Stack Return	Makeup Water
pH	Twice daily when operating	NA	Daily when operating	Monthly
Anions (liquid and solid phases) and solids/inerts/Ca/Mg (solid phase)	18	21	18	4
Metals (liquid and solid phases)	2	NA	2	NA

Table 8. Solid Streams: Numbers of Samples CollectedDuring the Second Quarter of 1994

Parameters	Coal Feed
Proximate Analysis	Daily when operating
Ultimate Analysis, Cl, and F	0
Trace Elements	0

6.0 Quality Assurance/quality Control Activities

QA/QC activities for process data consist of calibrations, calibration checks, and related maintenance activities, all of which are recorded in log books. Six log books are used:

- 1. CEM flow rates and gas concentrations;
- 2. pH calibrations;
- 3. ΔP cells;
- 4. Density measurements;
- 5. Flow meters; and
- 6. Level meters.

Radian Corporation personnel were on site on June 14-15 to perform a quality assurance audit of the Plant Yates laboratory. The audit indicated that all of the quality control procedures established for the laboratory had been implemented and are being complied with, and that an appropriate level of quality control is being practiced. A report presenting the results of this audit will be included in the third quarter EMP Report. Appendix A

Quarterly Air Emission Report for the Second Quarter of 1994

.

PLANT: YATES UNIT : 1-3 CURRENT DATE : 04/13/1994 CURRENT TIME : 00:00:02

DAILY EMISSIONS REPORT FOR DATE : 04/12/1994

,

					OPACIT	'Y				OPACITY	INDEX	
TIME	Ħ	UF	6	MIN	ALM	AVG%		#	ΟF	EXCESSES	AVG	INDEX
0000-0100												
0100-0200												
0200-0300				5		60.96						
0300-0400												
0400-0500												
0500-0600							·.					
0600-0700												
0700-0900							•					
<u> 0800-0900</u>						· •						
<u> </u>												
1000-1100												
1100-1200												
1200-1300												
1300-1400												
1400-1500												
1500-1600	•											
1600-1700												
1700-1800												
1800-1900												
1900-2000												
2000-2100												
2100-2200												
2200-2300												
2300-2400												
SUMMARY				5		60.96						
LIMITS						44.00						34.00

.

PLANT: YATES UNIT : 1-3 CURRENT DATE : 04/15/1994 CURRENT TIME : 00:00:02

.

DAILY EMISSIONS REPORT FUR DATE : 04/14/1994

					OFACITY				OF ACITY		*
TIME	÷	ΟF	6	MIN	ALM	AVG%	ŧ	ÛF	EXCESSES	AVG	INDEX
0000-0100											
0100-0200											
<u> @2</u> @@~@3@@											
UIU0-0400											
0400-0500											
VS00-0600						·					
0600-0700		-									
ଏମିଏଡ-ଏଥିଏଏ											
<u> 0800-0900</u>											
<u> </u>											
1000-1100											
1100-1200											
1200-1300											
1300-1400				1		52.12					
1400-1500											
1500-1600											
1600-1700											
1700-1800											
1800-1900											
1900-2000				1		61.33					
2000-2100											
2100-2200											
2200-2300											
2300-2400											
SUMMARY				ž		56.72					
LIMITS						40.00					34.00

RLS 1489095

PLANT: YATES UNIT : 1-3 CURRENT DATE : 04/17/1994 CURRENT TIME : 00:00:02

DAILY EMISSIONS REPORT FOR DATE : 04/16/1994

					OFACITY	,			OF ACIT Y	INDE X	
TIME	#	υF	6	MIN	ALM	AVG%	ŧ	ŧ Ω∂	EXCESSES	AVG	INDEX
0000-0100											
0100-0200											
0200-0300											
<u> </u>											
0400-0500											
0500-0600						:					
0600-0700											
0700-0800											
0800-0900											
0900-1000										-	
1000-1100											
1100-1200											
1200-1300				З		72.67					
1300-1400											
1400-1500											
1500-1600				1		62.98					
1600-1700											
1700-1800				-		Fr =					
1800-1900				З		57.95					
1900-2000											
2000-2100											
2100-2200 2200-2300											
2300-2300											
COKIKI-C4KIKI											
SUMMARY				7		64.53					
LIMITS						40.00					34.202

RLS 1489096

.

.

PLANT: YATES UNIT : 1-3 CURRENT DATE : 04/18/1994 CURRENT TIME : 00:00:02

DAILY EMISSIONS REPURT FOR DATE : 04/17/1994

					OPACITY				OPAC11 Y	INDEX	
TIME	ŧ	UF	6	MIN	ALM	AVG%	#	13:-7	EXCESSES	AVG	INDEX
0000-0100											
0100-0200											
0200-0300											
0300-0400											
0400-0500											
ଉଟ୍ଟଉଏ-ଉଡେଡ						2					
0600-0700											
0700-0800											
ଏଥିଉପ-ଡ଼ିମ୍ବର୍ୟ											
0900-1000											
1000-1100											
1100-1200											
1200-1300											
1300-1400											
1400-1500				6		57.40					
1500-1600				10		74.85					
1600-1700				8		47.86			1		42.55
1700-1800											
1800-1900											
1900-2000				1		41.37					
2000-2100											
2100-2200											
2200-2300											
2300-2400											
SUMMARY				25		55.37			4		A-1 6 5
LIMITS				س ال	L	-33.37 40.00			1		42.55 34.00

--

.

PLANT: YATES UNIT : 1-3 CURRENT DATE : 04/23/1994 CURRENT TIME : 00:00:02

DAILY EMISSIONS REPORT FOR DATE : 04/22/1994

			,	мты	OPACITY ALM	AVG%	#	1115	OPACID Y EXCESSES		INDEX
TIME	77	U٣	Þ	14114	HG14	HVG/	***	- ډلر ۱	EXCROSED	HVO	TUDEX
0000-0100											
0100-0200											
0200-0300											
0300-0400											
0400-0500											
0500-0600											
0600-0700											
0700-0800 											
0800-0900											
0900-1000											
1000-1100											
1100-1200											
1200-1300											
1300-1400											
1400-1500											
1500-1600											
1600-1700						÷					
1700-1800											
1800-1900											
1900-2000											
2000-2100											
2100-2200											
2200-2300											
2300-2400				1		74,17					
SUMMARY				1		74.17					
LIMITS				-		40.00					34.00

PLANT: YATES UNIT: 1-3 CURRENT DATE: 04/24/1994 CURRENT TIME: 00:00:02

DAILY EMISSIONS REPORT FUR DATE : 04/23/1994

					OPAC1TY	r				OPACITY	INDEX	
LIWE	#	UF	6	MIN	ALM	AVG%		#	0F	EXCESSES	AVG	INDEX
0000-0100				9		78.92						
0100-0200												
0200-0300												
0300-0400				2 -	•	63.66						
0400-0500												
0500-0600												
0600-0700												
ଉ7ଉଡ-ଉଃଉଉ												
<u> </u>												
0900-1000												
1000-1100												
1100-1200												
1200-1300												
1300-1400												
1400-1500												
1500-1600												
1600-1700												
1700-1800							Έ.					
1800-1900												
1900-2000	•											
2000-2100												
2100-2200												
2200-2300												
2300-2400												
SUMMARY				11		71.29						
LIMITS						40.00						34.00
			•									

PLANT: YATES UNIT: 1-3 CURRENT DATE: 04/26/1994 CURRENT TIME: 00:00:02

DAILY EMISSIONS REPORT FOR DATE : 04/25/1994

TIME 0000-0100 0100-0200 0200-0300	#	OF	6	MIN	OFACITY ALM	AVG%	#	1)F	DPACITY EXCESSES	 INDEX
0300-0400 0400-0500 0500-0600 0600-0700 0700-0800										
0800-0900 0900-1000 1000-1100 1100-1200										
1200-1300 1300-1400 1400-1500 1500-1600										
1500-1600 1600-1700 1700-1800 1800-1900 1900-2000				1.		· 77.79				
2000-2100 2100-2200 2200-2300 2300-2300 2300-2400				1		45.93				
SUMMARY LIMITS				2		61.56 40.00				34.00

.

PLANT: YATES UNIT: 1-3 CURRENT DATE: 04/27/1994 CURRENT TIME: 00:00:02

.

DAILY EMISSIONS REPORT FOR DATE : 04/26/1994

LIME	±	11F	6	MIN	OPACITY ALM	AVG%	#	08-	OPACITY EXCESSES	INDEX
0000-0100	T	ω.	0.					2.		
0100-0200										
0200-0300										
0300-0400										
0400-0500										
0500-0600										
0600-0700										
0700-0800										
0800-0900										
0900-1000										
1000-1100										
1100-1200				1		43.31				
1200-1300										
1300-1400										
1400-1500										
1500-1600										
1600-1700										
1700-1800						2				
1800-1900										
1900-2000					•					
2000-2100										
2100-2200										
2200-2300										
2300-2400										
SUMMARY				1		43.31				
LIMITS						40.00				34 00

.

PLANT: YATES UNIT: 1-3 CURRENT DATE: 04/29/1994 CURRENT TIME: 00:00:02

÷ .

DAILY EMISSIONS REPORT FOR DATE : 04/28/1994

				(JPAC11	Y				UFAC11Y	1NDE X	
TIME	#	OF	6	MIN	ALM	AVG%		#	ÚF.	EXCESSES	AVG	INDEX
<u> </u>												
0100-0200												
0200-0300												
0300-0400												
0400-0500												
0500-0600												
0600-0700												
0700-0800				2		55,16						
<u> ଏ</u> ୫ଉଉ–ଡ୨ଉଉ												
0900-1000												
1000-1100												
1100-1200				1		45.08						
1200-1300												
1300-1400												
1400-1500												
1500-1600												
1600-1700							÷.					
1700-1800							•					
1800-1900												
1900-2000												
2000-2100												
2100-2200												
2200-2300												
2300-2400												
SUMMARY				З		50.12						
LIMITS						40.00						34.00

1900-2000 2000-2100 2100-2200 2200-2300			
2300-2400	1	44.52	
SUMMARY	1	44.52	
LIMITS		40.00	34.00

OPAC11Y UPACITY INDEX # OF 6 MIN ALM TIME AVG% # OF EXCESSES AVG INDEX 0000-0100 0100-0200 0200-0300 0300-0400 0400-0500 4540-0600 0600-0700 0700-0800 0800-0900 0900-1000 1000-1100 1100-1200 1200-1300 • 1300-1400 1400-1500 . 1500-1600 ---1600-1700 1700-1800 1800-1900 1900-2000 2000-2 2100-2 2200-2 2300-; SUMMA

DAILY EMISSIONS REPORT FOR DATE : 05/02/1994

PLANT: YATES UNIT : 1-3 CURRENT DATE : 05/03/1994 CURRENT TIME : 00100:02

PLANT: YATES UNIT: 1-3 CURRENT DATE: 05/04/1994 CURRENT TIME: 00:00:02

DAILY EMISSIONS REPORT FOR DATE : 05/03/1994

TIME 0000-0100 0100-0200 0200-0300 0300-0400 0400-0500 0500-0600 0600-0700 0700-0800 0800-0900	#	υF	6	MIN 1	JPAC11" ALM	ү Ауб% 40.67		#	UF.	OPACITY EXCESSES	INDEX
0800-0908 0900-1000 1000-1100 1200-1200 1200-1300 1300-1400 1400-1500 1500-1600 1600-1700 1700-1800 1800-1900 2000-2000 2000-2100 2100-2200 2200-2300 2300-2400							•				
SUMMARY LIMIIS				1		40.67 40.00					34.00

PLANT: YATES UNIT: 1-3 CURRENT DATE: 05/16/1994 CURRENT TIME: 00:00:06

DAILY EMISSIONS REPORT FOR DATE : 05/15/1994

				l	DEAC1	ìΥ				OPAC11Y	INDEX	
TIME	#	UF	6	MIN	ALM	AVG%		#	1)F	EXCESSES	AVG	INDEX
0000-0100												
0100-0200												
0200-0300												
0300-0400												
0400-0500												
<u> </u>												
0600-0700												
0700-0800							•, -					
<u> 0800-0900</u>							,-					
0900-1000										,		
1000-1100												
1100-1200										· -		
1200-1300												
1300-1400				2		68.90						
1400-1500				1		40.37						
1500-1600				4		46.19						
1600-1700				1		40.71						
1700-1900				1		4ć.lj						
1800-1900												
1900-2000												
2000-2100												
2100-2200				5		55.31						
2200-2300				T		51.01						
2300-2400												
SUMMARY				15		49.66						
LIMIIS						40.00						34.00

PLANT: YATEB UNIT: 1-3 CURRENT DATE: 05/17/1994 CURRENT TIME: 00:00:06

DAILY EMISSIONS REPORT FOR DATE : 05/16/1994

	ÚPAC11Y									OPAC117	INDEX	
TIME	i ŧ	OF	6	MIN	ALM	AVG%		#	Ú):	EXCESSES		INDEX
&&&&=&												
0100-0200												
0200-0300				1		40.51						
<u> </u>				i		41.05						
0400-0500												
0500-0600				1		48.71						
<u>0600-0700</u>												
0700-0800												
<u> </u>												
0900-1000												
1000-1100												
1100-1200												
1200-1300												
1300-1400												
1400-1500												
1500-1600												
1600-1700												
1700-1800							:					
1800-1900												
1900-2000												
2000-2100												
2100-2200												
2200-2300												
2300-2400												
SUMMARY				З		43.4 <u>2</u>						
LIMITS						40.00						34.00

PLANT: YATEB UNIT: 1-3 CURRENT DATE: 05/23/1994 CURRENT TIME: 00:00:05

DAILY EMISSIONS REPORT FOR DATE : 05/22/1994

-

				(JPAC11	Y				0PACITY	INDEX	
TIME	#	UF	6	MIN	ALM	AVG%		#	ÐF	EXCESSES	AVG	INDEX
0000-0100												
&1@@-@2@@												
<u> </u>												
0300-0400												
0400-0500												
0500-0600												
୭୫୭୭-୭୮୭୭												
ଉ7ଉଉ~ଉଛଉଡ												
ଉଥିଡା-ଡ଼ରୁଡ												
0900-1000												
1000-1100												
1100-1200												
1200-1300												
1300-1400												
1400-1500							•					
1500-1600				1		45.78						
1600-1700												
1700-1800												
1800-1900				_								
1900-2000				È		52.75						
2000-2100												
2100-2200												
2200-2300												
2300-2400												
CUMBOOV				-,		to the state						
SUMMARY				3		49.02 63.03						74 G.T.
LIMITS						40.00						34.00

.

. .

PLANT: YATES UNIT: 1-3 CURRENT DATE: 05/24/1994 CURRENT TIME: 00:00:06

DAILY EMISSIONS REPORT FUR DATE : 05/23/1994

.

.

•

				(JPACI	ΊY		UPACITY	INDEX	
TIME	#	UF	6	MIN	ALM	AVG%	# U	F EXCESSES	AVG	INDEX
QQQQ-Q1QQ										
0100-0200										
0200-0300										
0300-0400				З		45.83				
0400-0500				2		48.75				
0500-0600										
Q6QQ-Q7QQ										
0700-0 <u>9</u> 00										
4800-0900										
0900-1000										
1000-1100										
1100-1200										
1200-1300				i		41.70				
1300-1400										
1400-1500										
1500-1600										
1600-1700										
1700-1800										
1800-1900										,
1900-2000										
2000-2100										
2100-2200										
2200-2300										
2300-2400										
SUMMARY				6		45.43				
LIMIIS						40.00				34.00

		A 19	DIC 1490100
SUMMARY LIMITS	1	42,28 40,00	34、边边
2300-2400			
2200-2300			
2100-2200			
2000-2100			
1900-2000			
1800-1900			
1700-1800			
1600-1700			
1500-1600			
1400-1500			
1300-1400			
1200-1300			
1100-1200			
1000-1100			
ବ୍ରବରକ-1 ରବ୍ଦ			
ଏଥିଉଡିଡି୨ିଡିଡି			
Ø7ØØ-Ø8ØØ			
U600-0700			
0500-0600	1	42.28	
0400-0500			
0300-0400			-
0200-0300			

۰.

OPACITY

OF 6 MIN ALM AVG%

DAILY EMISSIONS REPURT FUR DATE : 05/27/1994

PLANT: YATES UNIT: 1-3 CURRENT DATE: 05/28/1994 CURRENT TIME: 00:00:06

.

FIME

0000-0100

0100-0200

.

UPACITY INDEX # OF EXCESSES AVG INDEX PLANT: YATES UNIT : 1-3 CURRENT DATE : 06/03/1994 CURRENT TIME : 00:00:03

DAILY EMISSIONS REPORT FOR DATE : 06/02/1994

				-	JPAC1T			OPAC11Y		-
TIME	#	OF	6	MIN	ALM	AVG%	# Ur	EXCESSES	AVG	INDEX
@@@@_@1@@										
0100-0200										
0200-0300										
0300-0400										
0400-0500										
0500-0600										
0600-0700										
<u> </u>										
<u>0800-0900</u>										
0900-1000										
1000-1100										
1100-1200										
1200-1300										
1300-1400										
1400-1500				1		49.19				
1500-1600										
1600-1700										
1700-1800										
1800-1900										
1900-2000										
2000-2100										
2100-2200										
2200-2300										
2300-2400										
						45 +5				
SUMMARY				1		49.19 40.00				34.00
LIMITS						40.00				

PLANT: YATES UNIT: 1-3 CURRENT DATE: 06/04/1994 CURRENT TIME: 00:00:03

DAILY EMISSIONS REPORT FOR DATE : 06/03/1994

					UPACI)	-			UPACITY		
TIME	#	υF	6	MIN	ALM	AVG%	4	FUF	EXCESSES	AVG	INDEX
0000-0100											
0100-0200											
0200-0300											
0300-0400											
0400-0500											
0500-0600											
0600-0700											
0700-0800											
0800-0900											•
0900-1000											
1000-1100											
1100-1200											
1200-1300						6 CA					
1300-1400				1		40.30					
1400-1500 1500-1600											
1600-1700											
1700-1800 1800-1900											
1900-2000											
2000-2100											
2100-2200							:				
2200-2300											
2300-2400											
SUMMARY				1		40.30					
LIMITS						44.00					34.00

PLANT: YATES UNIT: 1-3 CURRENT DATE: 06/05/1994 CURRENT TIME: 00:00:03

DAILY EMISSIONS REPORT FOR DATE : 06/04/1994

				(UPAC1	۱Y			OPACITY	INDEX	
TIME	#	υF	6	MIN	ALM	AVG%	4	# U:-	EXCESSES		INDEX
0000-0100											
0100-0200											
0200-0300											
USUQ-0400											
0400-0500											
0500-0600											
0600-0700											
<u> </u>											
0800-0900											
0900-1000							1				
1000-1100											•
1100-1200											
1200-1300				1		46.89					
1300-1400											
1400-1500											
1500-1600											
1600-1700											
1700-1800											
1800-1900											
1900-2000											
2000-2100											
2100-2200											
2200-2300											
2300-2400											
SUMMARY				1		46.89					
LIMITS						40.20					34.00

A-21

FIME 0000-0100 0100-0200 0200-0300 0300-0400 0400-0500 0500-0600 0600-0700 0700-0800 0800-0900	#	ŮF	6) MIN	JPACITY ALM	AV6%	#	UF	OPACITY Excesses		INDEX
0900-1000 1000-1100 1100-1200 1200-1300 1300-1400 1400-1500 1500-1600 1600-1700 1700-1800 1800-1900 1900-2000 2000-2100				1		49.45					
2100-2200 2200-2300 2300-2400 Summary Limits				1		49.45 40.00					34. බන
		X.								010	1/18011

DAILY EMISSIONS REPORT FOR DATE : 06/08/1994

PLANT: YATES UNIT: 1-3 CURRENT DATE: 06/09/1994 CURRENT TIME: 00:00:03 PLANT: YATES UNIT: 1-3 CURRENT DATE: 06/11/1994 CURRENT TIME: 00:00:03

.

.

DAILY EMISSIONS REPORT FUR DATE : 06/10/1994

				(JPACIT	Y			OPAC11Y	INDEX	
TIME	#	UF	6	MIN	ALM	AVG%	ŧ	# 08	EXCESSEG	AVG	INDEX
ଉହହାହ-ଜୀତଡ											
0100-0200											
<u> </u>											
<u> </u>											
0400-0500											
<u> </u>											
0600-0700											
୶୵୶ଵ୷ଌଌଡ଼ଡ଼											
୭୫୦୦–୭୨୦୦											
<u> </u>				1		44.26					
1000-1100											
1100-1200											
1200-1300											
1300-1400											
1400-1500											
1500-1600											
1600-1700											
1700-1800											
1800-1900											
1900-2000							÷				
2000-2100							•				
2100-2200											
2200-2300											
2300-2400							•				
SUMMARY				1		44.26					
LIMITS				÷		44.20					34,00
فت الما الغيب											

RLS 1489115

.

1111	π	UF.	Ċ,	C1718	HLH	HVUM	# OF EVECODED	HYD DRUCA
0000-0100								
0100-0200								
0200-0300								
୰ଽୠୠ୷ଡ଼୳ୠୠ								
0400-0500								
6500-6600								
0600-0700								
U/UU-USUU								
<u> 0800-0960</u>								
0900-1000								
1000-1100				1 -		84.38	5	
1100-1200				3		49.45		
1200-1300								
1300-1400								
1400-1500								
1500-1600								
1600-1700								
1/00-1800								
1800-1900								
1900-5000								
2000-2100								
5100-5500								
2200-2360								
2300-24000								
SUMMARY				<u>स</u> ्		66.92		
LIMITS						రరు కెడ 4 ని. జీని		24,90
						-0,00		0.000

.

OPACINY

OF 6 MIN ALM AVG% # OF EXCESSES AVG INDEX

OFACTIV INDEX

DAILY EMISSIONS REPORT FOR DATE : 06/13/1994

1 I ME

PLANT: YATES UNIT : 1-3 CURRENT DATE : 06/14/1994 CURRENT TIME : 00:00:03

	1-3 DATE :	06/21/1994 00:00:03	
	419910N9 06/20/1	REPORT FOR 994	
(TMF	#	OPACITY UP 6 MEN ALM A	06%

.

.

					•							
					i	OPACI	ΊY			GPACINY	1NDEX	
	FIME	#	Ú:F	6	MIN	нLМ	AV6%	井	Q_{1}^{2}	EXCESSES	нVG	INDEX
	0000-0100											
	0100-0200											
	0200-0300											
	<u> ଏ</u>											
	0400-0500											
	US00-0600											
	0600-0760											
	0/V0-0800											
	0800-0900											
	0900-1000											
	1003-1100				1 -		59.90			;		
	1100-1200											
	1200-1300											
	1300-1400											_
	1400-1500											
	1500-1600											
	1600-1700											
	1/00-1800											
	1800-1900											
	1900-2000											
-	2006-2100											
	2100-2200											
	2200-2300											
	2300-2400											
	SUMMARY				i		59.90					
	LIMINS						ને છે. છેલે					ي ي. بغني

.

.

PLANT: YATEB UNIT : 1-3 CURRENT DATE : 06/26/1994 CURRENT TIME : 00:00:03

·.....

•••

· • ·

5

DAILY EMISSIONS REPORT FOR DATE : 06/25/1994

				(OPACI	זי			UPACITY	INDEX	
(Ime	쁐	ប់ា	.6	MIN	H_H	AVG%	뀪	Ú:-	EXCESSES	нVю	INDEX
0000-0100											
0100-0200				2		68.25					
<u> </u>											
0300-0400											
0400-0500				í		46.07					
0500-0600											
0600-0700											
U/UU-0800											
0800-0900											
0901-000											
1000-1100											
1100-1200											
1200-1300											
1300-1400											
1400-1500	•										
1500-1600									÷		
1600-1700				3		61.83					
1/00-1800											
1800-1900											
1900-2000											
2000-2100											
2100-2200											
2200-2300 2300-2400		•									
C3810724410											
SUMMARY				÷		53,73					
LIMITS						40.00					34,00

:

PLANT: YATES UNIT : 1-3 CURRENT DATE : 06/27/1994 CURRENT TIME : 00:00:03

- i

DAILY EMISSIONS REPORT FOR DATE : 06/26/1994

		•	(IPACIT	Y			UPACID Y	1NDEX	
LINE	# UF	6	MIN	ALM	4VG%	÷	Ú:-	EXCESSED	έVΗ	INDEX
Ø000-0166										
0100-0200		-								
0200-0300										
<i>W300-0400</i>										
0400-0500										
0500-0600										
0600-0700										
0/00-0300										
<u> 0800-0900</u>										
0700-1000										
1000-1100			•							
1100-1200			1		55.47					
1200-1300			3		51.97 🔗					
1300-1400										
1400-1500										
1500-1600			10		54.32			1		36.74
1600-1700								•		
1700-1800										
1800-1900										
1900-2000			7		63.44					
2000-2100										
2100-2200										
2200-2300										
2300-2400				•						
SUMMARY			* 24		a t Tuin			4		*
LIMITS			21		26.30 AN ANA			i		35.74
LIMITS					4લે. પોલે					.44, QQ

. 📬

A-27

PLANT:	VATES		
UNIT :	1-3		
CURRENT	DATE	¥	06/28/1994
CURRENT	TIME	:	06:47:56

.

.

-

DEMAND FUR DAILY EMISSIONS REPORT FOR DATE : 06/27/1994

					JPAC1T	Ŷ				UPAC11Y	INDEX	
LIME	ŧ	Ð⊢.	6	ыцы	ALM	eve%		Ħ	ÚF.	EXCESSES	HVG	IMDEX
0000-0100												•
0100-0200				Ξ		54.07						
0200-0300												
0300-0400				1		48.03						
8488-8588												
#59%-86 0 0												
0600-0700												
0700-0800												
0800-0900												
0900-1000				1		58.51						
1000-1100												
1100-1200												
1200-1300							•					
1300-1400												
1400-1500												
1500-1600												
1600-1700												
1700-1800										,		
1800-1900												
1900-2000												
2000-2100												
2100-2200												
2200-2300												
2300-2400												
SUMMARY				4		55.25				4		
LINITS						40.00						34.00

.

•

OPACIBY INDEX

@1@ND-@ 50 @				
0200-0300	3	61.46		
0300-0400	2	66.32		
0400-0500				
0500-0600				
0600-0700				
0700-0800				
0800-0900				
0900-1000			2	
1200-1100				
1100-1200				
1200-1300				
1300-1400				
1400-1500				
1500-1600				
1600-1700				
1700-1800				
1800-1900				
1900-2000				
2000-2100				
2100-2200				
2200-2300				
2300-2400				
SUMMARY	5	8B.89		
LINIIS		40.00		1

OPAC11Y

OF 6 MIN ALM AVG% # OF EXCENSES AVG INDEX

DAILY EMISSIONS REPORT FOR DATE : 06/29/1994

TIME 0000-0100 0100-0200

PLANT: YATES UNIT: 1-3 CURRENT DATE: 06730/1994 CURRENT TIME: 00:00:02

.

.

Appendix B

Quarterly Operational Monitoring Report for the Second Quarter of 1994

QUARTERLY OPERATION MONITORING REPORT

Georgia Power Company Plant Yales P.O. Box 718 Newnan, Georgia 30264

۰,

.....

s:

From	04-01-94
To:	06-30-94

Permit Number: GA0001473

Discharge Location; 01A - Condenser Cooling Water Units 1-5 Frequency of Analysis: 1/wk

Location Type Sample	Intake In. Situ.	Mixing Zone In, Situ,	N/A T	Condenser Grab	Condenser Grab
Frequency	1/Wk	1/Wk	1/Wk		_
Parameter	Temp. ^O F	Temp. ^o F	Temp. ^o F	TRC mg/L	Time of TRC Release
PCS Code	00011	00011	00018	50060	B1400
Limits	N/A	Max.90	Max. 5	Inst. Max, 0.2	Max, 120 Min.
DATE				Note	Note
04-04-94	59.9	60.1	.2		
04-12-94	65,7	65.8	.1		
04-20-94	64.8	67.3	2.5		
04-27-94	72.1	76.1	4.0	ļ	ļ
05-04-94	64	65	1.0	<u></u>	
05-12-94	69	71	2.0	<u>+</u>	
05-19-94	71	73	2.0	1	1
05-24-94	72	76	4.0		1
<u> </u>	73	73		<u> </u>	
06-01-94 06-09-94	70	73	02	+	<u> </u>
	71	74	3	<u></u>	┦╍──────
06-17-94 06-20-94		81	4	<u>}</u>	<u>}</u>
	73	74	4	<u> </u>	
06-23-94			<u> </u>		
<u> </u>		<u>}</u>	<u>}</u>		<u>}</u>
			(
				-{	-{
Note: No chlorination were	e performed on discharge (DIA this quarter.			
Note: No chlorination were	e performed on discharge () A this quarter.			
Month of APRIL					
Month of APRIL No of Samples	4	4	4		
Month of APRIL No of Samples Average Value	4 66	4	1.7		
Month of APRIL No of Samples Average Value Max. Value	4 66 72.1	4 67 76.1	1.7		
Month of APRIL No of Samples Average Value Max. Value Man. Value	4 66 72.1 59.9	4 67 76.1 60.1	1.7 40 .1		
Month of APRIL No of Samples Average Value Max. Value	4 66 72.1	4 67 76.1	1.7		
Month of APRIL No of Samples Average Value Max. Value Man. Value Limits Exceeded	4 66 72.1 59.9	4 67 76.1 60.1	1.7 40 .1		
Month of APRIL No of Samples Average Value Max. Value Man. Value Limits Exceeded Month of: MAY	4 66 72.1 59.9	4 67 76.1 60.1	1.7 40 .1		
Month of APRIL No of Samples Average Value Max. Value Max. Value Limits Exceeded Month of: MAY No. of Samples	4 66 72.1 59.9 0	4 57 76.1 60.1 0	1.7 40 .1 0 4		
Month of APRIL No of Samples Average Value Max. Value Max. Value Limits Exceeded Month of: MAY No. of Samples Average Value	4 66 72.1 59.9 0 	4 67 76.1 60.1 0 4 71	1.7 40 .1 0 		
Month of APRIL No of Samples Averace Value Max. Value Limits Exceeded Month of MAY No. of Samples Averace Value Max. Value	4 66 72.1 59.9 0 	4 67 76.1 60.1 0 4 71 76	1.7 40 1 0 4 2.3 40		
Month of APRIL No of Samples Average Value Max. Value Max. Value Limits Exceeded Month of MAY No, of Samples Average Value Max. Value Max. Value Max. Value	4 66 72.1 59.9 0 	4 67 76.1 60.1 0 4 71	1.7 40 .1 0 		
Month of APRIL No of Samples Average Value Max. Value Limits Exceeded Month of MAY No. of Samples Average Value Max. Value Max. Value Limits Exceeded	4 66 72.1 59.9 0 4 69 72 64	4 67 76.1 60.1 0 4 71 76 65	1.7 40 .1 0 4 2.3 40 1.0		
Month of APRIL No of Samples Average Value Max. Value Max. Value Limits Exceeded Month of MAY No. of Samples Average Value Max. Value Limits Exceeded Month of JUNE Max. Value	4 66 72.1 59.9 0 0 4 69 72 64 0	4 67 76.1 60.1 0 4 71 76 65 0	1.7 40 .1 0 4 2.3 40 1.0 0		
Month of APRIL No of Samples Average Value Max. Value Max. Value Limits Exceeded Month of MAY No. of Samples Average Value Max. Value Limits Exceeded Month of JUNE No. of Samples	4 66 72.1 59.9 0 4 69 72 64 0	4 67 76.1 60.1 0 4 71 76 65 0 5	1.7 40 1 0 4 2.3 40 1.0 0 5		
Month of APRIL No of Samples Average Value Max. Value Max. Value Limits Exceeded Month of MAY No. of Samples Average Value Max. Value Limits Exceeded Month of MAY No. of Samples Average Value Min. Value Limits Exceeded Month of JUNE No. of Samples Average Value	4 66 72.1 59.9 0 4 69 72 64 0 5 73	4 67 76.1 60.1 0 4 71 76 65 0 5 75	1.7 40 1 0 4 2.3 40 1.0 0 5 2		
Month of APRIL No of Samples Average Value Max. Value Min. Value Limits Exceeded Month of MAY No. of Samples Average Value Max. Value Limits Exceeded Month of JUNE No. of Samples	4 66 72.1 59.9 0 4 69 72 64 0	4 67 76.1 60.1 0 4 71 76 65 0 5	1.7 40 1 0 4 2.3 40 1.0 0 5		

QUARTERLY OPERATION MONITORING REPORT

Georgia Power Company Plant Yates P.O. Box 718 Newnan, Georgia 30264

.

From: 04-01-94 To: 06-30-94

Permit Number: GA0001473

Discharge Location: 01B - Ash Transport Water

Location	Ash Transport Water	Ash Transport Water	5-10
Type Sample	Grab	Grab	Final Discharge
Frequency	2/Month		Grab
Parameter	2/Montin	2/Month	2/Month
r al ametor	Suspended Solids	Oil & Grease	PH
	(mg/L) 00530	(mg/L)	(PH Units)
PCS Code	00530	00556	00400
Limits	Avg. 30 Max 100	Avg. 15 Max 20	Min. 6.0 Max. 9.0
DATE	-		Milt: 0.0 Max. 9.0
04-0494	2	0	
04-18-94	2		6.78
		0	5.88
05-02-94	0		
05-16-94	1	0	6.94
		0	6,91
06-06-94	1	0	
06-20-94		0	6.89
		·	7.07
		<u> </u>	+
/		}	+
		<u> </u>	+
		<u> </u>	+
			· /· ······
		· · · · · · · · · · · · · · · · · · ·	+
			+
			+
		······································	· /· ·································
		······································	1
		······································	
		······································	<u>+</u>
		·	
		······································	<u>+</u>
			<u> </u>
			·
			<u> </u>
			······
No. 10 10 10 10 10 10 10 10 10 10 10 10 10			[
Monih of APRIL			T
No. of Samples	2	2	2
Average Value	2	0	······
Max, Value	2	0	6.88
Min. Value	2	0	6.78
Limits Exceeded	0	0	0
Month of: MAY			I
No. of Samples			
Average Value	2	2	2
Max, Value		0	
Min. Value	1	0	6.94
Limits Exceeded	0	0	6.91
LANNE LAUGUEU	0	0	0
Month of JUNE			
No. of Samples	-+		
Average Value	2	2	2
Max. Value	1	0	
Min. Value		0	7.07
Limits Exceeded	1 0	0	6.89
	UU	0	0

Georgia Power Company Plant Yates P.O. Box 718 Newnan, Georgia 30264

From: <u>04-01-94</u> To: <u>06-30-94</u>

Permit Number: GA0001473

There were no discharges from the following outfalls during the quarter covered by this report:

- 01L Building Sump Overflow
- 01M Building Sump Overflow
- 01N Building Sump Overflow
- 02 Ash Pond Emergency Overflow
- 04 Low Volume Waste Sump
- 05 Coal Pile Runoff Emergency Overflow

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

-

....

'An

M. J. Knowles Plant Manager

Attachment

Page 5 of 5

Appendix C

.

Groundwater Monitoring Report for the First Quarter of 1994

RCN 218-070-07-20

DEMONSTRATION OF INNOVATIVE APPLICATIONS OF TECHNOLOGY FOR THE CT-121 FGD PROCESS

Plant Yates

Environmental Monitoring Program Report: Groundwater Monitoring for the First Quarter of 1994 (Final)

DOE DE-FC22-90PC89650 SCS C-90-002284

Prepared for:

Southern Company Services, Inc. P.O. Box 2625 600 North 18th Street Birmingham, Alabama 35291-1195

Prepared by:

Radian International LLC 8501 North Mopac Boulevard P.O. Box 201088 Austin, Texas 78720-1088

Cleared by DOE Patent Counsel on September 11, 1995.

LEGAL NOTICE

This report was prepared by Radian Corporation for Southern Company Services, Inc. pursuant to a cooperative agreement partially funded by the U.S. Department of Energy and neither Southern Company Services, Inc., nor any of its subcontractors, nor the U.S. Department of Energy, nor any person acting on behalf of either:

- 1. Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report or that the process disclosed in this report may not infringe privately-owned rights; or
- 2. Assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Department of Energy.

C-4

TABLE OF CONTENTS

														P	ag	e
1.0	INTRO	DUCTION			•••	•••	• •	• •	•		•	•		•	•	1
	1.1 1.2 1.3	Purpose and	mary	ring				• •	• •		•			•	•	2
2.0	SAMP	LING AND	ANALYTICAL METHODS		••		•••	•			•	•	• •	•	•	5
	2.1 2.2		ethods													
3.0	SUMM	IARY OF R	ESULTS	•••	•••		••	• •	•	•••		•	••	•	•	6
4.0	SUMM	IARY OF Q	A/QC ACTIVITIES	• • •			••	•	•••		•			•	1	3
	APPEI	NDIX A:	HISTORICAL MONITORIN												A-	1
	APPE	NDIX B:	QA/QC RESULTS					• •			•	•		•	B-	1

LIST OF FIGURES

•

Page

•

.

1	Location of Groundwater Monitoring Wells	4
2	Historical Data for Representative Species from Well GWA-1 (Upgradient)	14
3	Historical Data for Representative Species from Well GWC-2 (Downgradient)	15
4	Historical Data for Representative Species from Well GWC-4 (Downgradient)	16

.

LIST OF TABLES

Page

.

1	EMP Groundwater Monitoring Parameters	3
2	Summary of Groundwater Samples Collected at Plant Yates on March 22-23, 1994	7
3	Sample Containers, Preservation Method, and Maximum Holding Times	8
4	Analytical Methods	9
5	Results of Groundwater Monitoring Conducted March 22-23, 1994 (1st Quarter 1994)	10
6	Results for Duplicate Samples—1st Quarter 1994	8

.

1.0 INTRODUCTION

This report summarizes the results of groundwater monitoring performed during the first calendar quarter of 1994 as part of the environmental monitoring program (EMP) for the U.S. Department of Energy's Innovative Clean Coal Technology project entitled "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." This demonstration project is being conducted at Georgia Power Company's Plant Yates Unit 1, located near Newnan, Georgia.

1.1 <u>Project Summary</u>

The purpose of this ICCT project is to demonstrate the use of the Chiyoda Thoroughbred-121 flue gas desulfurization process as a means of reducing SO_2 and particulate emissions from pulverized-coal utility boilers that use medium-sulfur coal. This project is also designed to demonstrate the lower cost and higher reliability of the CT-121 process compared to conventional wet limestone FGD processes.

The demonstration project at Plant Yates consists of four distinct environmental test periods:

- Period 0: Site Preparation, Construction, and Startup of the Demonstration Project (including background groundwater monitoring [29 months]);
- Period 1: Baseline Testing at Low Particulate Loading--ESP In Service (12 months);
- Period 2: Testing at High Particulate Loading--ESP Detuned or Out of Service (12 months); and
- Period 3: Post Demonstration Groundwater Testing and Gypsum Byproduct Evaluation.

Groundwater monitoring was initiated in Period 0 and will continue through Period 3.

1.2 <u>Purpose and Scope of Groundwater Monitoring</u>

The CT-121 process produces gypsum, which is being disposed of in an onsite stacking area, where the solids are concentrated as they are allowed to settle, dewater, and dry. The gypsum and gypsum/fly ash stacking area is lined with a synthetic liner to minimize the potential for adverse impacts on the groundwater. Requirements for the liner, leachate collection system, and groundwater monitoring are specified in the permit issued by the Georgia Department of Natural Resources (DNR). One requirement is the regular monitoring of groundwater before, during, and for two years after the demonstration program. The purpose of this monitoring is to demonstrate that the gypsum stacking area can be operated in an environmentally benign and acceptable manner.

In 1990, five groundwater monitoring wells were installed in the vicinity of the proposed gypsum stacking area. These wells were used to monitor baseline groundwater quality prior to construction of the stacking area. Monitoring was conducted every two months from September 1990 through July 1991. Table 1 is a summary of the parameters that were monitored during this period. The results of this monitoring activity were summarized in the report "Environmental Monitoring Program Report of Preconstruction Monitoring: 1990-1991 Background Water Quality."

Following the preconstruction monitoring period, and as a DNR permit requirement, two additional monitoring wells were installed in 1992. The locations of all seven monitoring wells are shown in Figure 1. Because of a delay in the commencement of Phase 1 testing, an additional round of preoperational groundwater monitoring was conducted on September 3-4 and October 14, 1992. The results from this monitoring effort were presented in the report "Interim Data Report of Preoperational Groundwater Monitoring: September 3-4 and October 14, 1992."

C-9

Table 1

EMP Groundwater Monitoring Parameters

pH	Conductivity	Temperature
Eh	Alkalinity	Total Dissolved Solids
Bromide	Chloride	Total Organic Carbon
Fluoride	Nitrate-Nitrite	Sulfate
Trace Elements (Dissolved)		
Silver	Aluminum	Arsenic
Boron	Barium	Beryllium
Bismuth	Calcium	Cadmium
Cobalt	Copper	Chromium
Mercury	Iron	Potassium
Lithium	Magnesium	Manganese
Molybdenum	Sodium	Nickel
Phosphorus	Lead	Sulfur
Antimony	Selenium	Silicon
Tin	Strontium	Tellurium
Titanium	Thallium	Uranium
Vanadium	Tungsten	Zinc
Other		
Radionuclides		

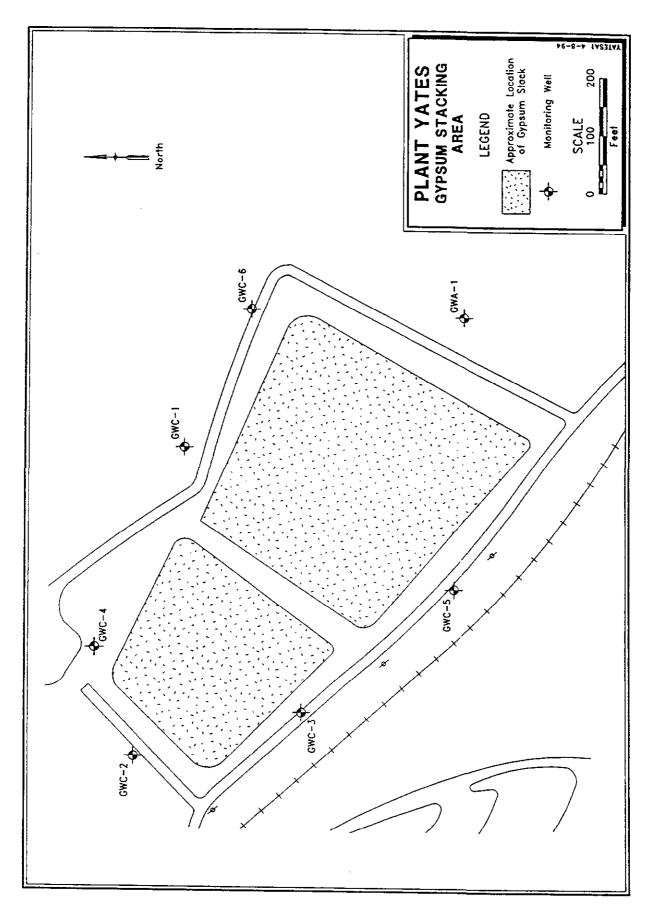


Figure 1. Location of Groundwater Monitoring Wells

Operatio

basis, was initiated in parameters shown preters shown except for

1.3 <u>Report</u>

To ensure the collection of a representative sample, standing water was removed from each well by purging a minimum of three wetted casing volumes. Conductivity, pH, redox potential, and temperature were monitored and recorded on field sampling forms during purging. Samples were collected when these indicator parameters stabilized after at least three wetted casing volumes of water were removed or immediately following recovery if a well was purged dry.

Samples were obtained from five of the six downgradient wells (GWC-1, GWC-2, GWC-3, GWC-4, and GWC-5). As has been the case during previous rounds of monitoring, well GWC-6 could not be sampled since it was unproductive and contained no water. The upgradient well (GWA-1) was also dry again this quarter, as it was during the fourth quarter 1993 round of groundwater monitoring. Table 2 summarizes the groundwater samples collected during this monitoring period.

To preserve the integrity of the groundwater samples before analyses, proper sample container, preservation, holding time duration, shipment, and chain-of-custody procedures were followed. Sample bottles, preservation methods, and maximum holding times are summarized in Table 3.

2.2 <u>Analytical Procedures</u>

The analytical methods used in this program are listed in Table 4. There were no deviations from these methods.

3.0 SUMMARY OF RESULTS

The results of the first-quarter 1994 groundwater monitoring are presented in Table 5. The concentrations of all of the monitored dissolved constituents in the groundwater near the gypsum stacking area continue to be low.

C-13

Table 2

Summary of Groundwater Samples Collected at Plant Yates on March 22-23, 1994

Well ID	Sample ID	Analyses
GWA-1	None	Well dry; no samples collected
GWC-1	GWC-1-13-1	Anions, TOC, Metals, and Radionuclides
GWC-2	GWC-2-13-1	Anions, TOC, Metals, and Radionuclides
GWC-3	GWC-3-13-1 GWC-3-13-2	Anions, TOC, Metals, and Radionuclides Anions, TOC, Metals, and Radionuclides
GWC-4	GWC-4-13-1	Anions, TOC, Metals, and Radionuclides
GWC-5	GWC-5-13-1	Anions, TOC, Metals, and Radionuclides
GWC-6	None	Well dry; no samples collected

3	
le	
ab	
Ë	

Sample Containers, Preservation Method, and Maximum Holding Times

Bottle Label	Containers*	Parameter	Preservation Method	Maximum Holding Time (days)
Total Organic Carbon	500-mL Amber Glass	Total Organic Carbon	H ₂ SO ₄ pH < 2	28
Anions/TDS	1-L Plastic	Bromide	4 °C	28
		Chloride	4 °C	28
		Fluoride	4 °C	28
		Nitrate-Nitrite	4 °C	28
		Sulfate	4 °C	28
		Total Dissolved Solids	4 °C	7
Metals	1-L Plastic	Trace Metals	Filtered On Site Ultrex II HNO ₃ pH<2	180
Radioactivity	(3) 1-L Plastic	Radium 226, Radium 228, Gross Alpha, Gross Beta, Gross Gamma	Filtered On Site Ultrex II HNO ₃ pH<2	180

* Sample containers supplied by either I-Chem or Eagle Picher.

Table 4

Analytical Methods

Parameter	Technique	Reference
pН	Potentiometry	EPA 150.1
Conductivity	Specific Conductance	EPA 120.1
Temperature	Temperature Probe	EPA 170.1
Eh	Electrometry	ASTM D1498
Alkalinity	Titrimetric or Colorimetric	EPA 310.1 or 310.2
Bromide	Ion Chromatography	EPA 300
Chloride	Ion Chromatography	EPA 300
Total Organic Carbon	Combustion/IR	EPA 415.1
Fluoride	SIE	EPA 340.2
Nitrate/Nitrite	Colorimetry	EPA 353.1
Sulfate	Ion Chromatography	EPA 300
Total Dissolved Solids	Filtration/Evaporation/Gravimetry	EPA 160.2
Mercury	On-site Filtration/Cold Vapor AA	EPA 245.1
Trace Elements	On-site Filtration/AA and ICP-AES	EPA 200.7, 7421 (Cr), 7060 (As), 7421 (Pb), 7041 (Sb), 7740 (Se), and 7841 (TI)
Radium 226 and 228	Proportional Counter	ASTM D2460
Gross Alpha	Proportional Counter	ASTM D1943
Gross Beta	Proportional Counter	ASTM D1890
Gross Gamma	Gamma Ray Spectrometer	ASTM D2459

Legend:

- AA = Atomic absorption spectrophotometry;
- SIE = Specific ion electrode;
- ICP-AES = Inductively coupled plasma-atomic emission spectrometry; and
 - IR = Infrared detection.

References:

EPA "Methods for Chemical Analysis of Water and Wastes," EPA-600/4-79-020, revised March 1983. ASTM = American Society for Testing and Material, Annual Book of ASTM Standards.

Parameter	GWA-1-13-1 * GWC-	GWC-1-13-1	GWC-2-13-1	GWC-3-13-1	GWC-4-13-1	GWC-5-13-1
pH	5.89	89	5.50	5.18	4.98	5.38
Conductivity (µS/cm)	61	-	57	28	72	43
Temperature (°C)	16.5	S.	17.4	17.2	16	17.8
Eh (mV)	126	<u> 6</u>	149	161	299	206
Alkalinity (mg/L CaCO ₃)	25	5	14	7.5	5.0	8.6
Total Dissolved Solids (mg/L)	66	6	76	42 ≎	64	53
Bromide (mg/L)	<0.	< 0.0277	< 0.0277	< 0.0277	0.133 °	< 0.0277
Chloride (mg/L)	2.43	43	3.70	2.77	11.3	2.34
Total Organic Carbon (mg/L)	0 ∨	<0.357	< 0.357	<0.357	< 0.357	< 0.357
Fluoride (mg/L)	0.05	0.0557 ^b	0.0390 ^b	0.0372 ه	0.0357 ه	0.0320 b
Nitrate-Nitrite (mg/L as N)	0.4	0.414	0.443	0.0827	0.943	0.0433 *
Sulfate (mg/L)	1.75	75	5.97	1.38	4.64	6.56
Radium 226 and 228 (pCi/L)	-0.06	-0.06 ± 0.13	0.06 ± 0.13	-0.03 ± 0.14	-0.14 ± 0.16	-0.09 ± 0.17
	1.14 ±	1.14 ± 0.57	0.77 ± 0.51	0.97 ± 0.52	0.79 ± 0.49	0.89 ± 0.51
Gross Alpha (pCi/L)	0.92 ±	± 0.42	1.44 ± 0.5	1.00 ± 0.40	1.16 ± 0.43	0.94 ± 0.41
Gross Beta (pCi/L)	2.05 4	± 0.73	1.58 ± 0.73	1.53 ± 0.71	0.99 ± 0.69	0.75 ± 0.68
Gross Gamma (pCi/L)						
Ac-227	N	NR	NR	NR	NR	NR
Ac-228	N	NR	NR	NR	NR	NR
Bi-212		< 109	< 100	<136	< 89.7	<93.7
Bi-214	157	157 ± 26	60 ± 19	43 ± 19	45 ± 21	37 ± 19
Co-60	6>	< 9.13	< 8.8	<11.1	<6.76	<11.0
Cs-134	<2	<23.9	< 18.4	< 17.7	< 19.0	< 18.0
Cs-137	<6	< 6.33	<7.75	< 10.9	<6.73	< 10.1
K-40		<148	<146	< 132	< 163	< 146

Results of Groundwater Monitoring Conducted March 22-23, 1994 (1st Quarter 1994)

Table 5

inued)
(Cont
5
able

Parameter	GWA-1-13-1 * GWC-1-13-1	GWC-2-13-1	GWC331331	CWCALLE	
Pb-211	NR	NR	an		T-cr-c-OMD
Pb-212	< 28.1	2062			NK
Pb-214	200 + 27	80 T 75	C112	< 22.3	<22.1
Ra-223		07 H 60	41 ± 22	00 ± 24	46 ± 23
Ra-226	2.20	<31.1	< 53.7	<50.9	< 47.5
Rn-219	661 >	<120	< 180	< 83.3	< 165
74-237	6.17>	<65.1	<73.9	<72.9	<63.3
Th-278	<45.5	< 90.1	< 95.3	<55.9	< 91.3
111-240	< 423	<623	< 637	< 592	< 522
167-11	<186	< 187	<367	< 323	< 323
407-11 800-11	<159	<202	<211	< 247	< 180
11-200	<11.6	< 9.50	<11.1	< 10.8	< 9.80
000 11	< 46.6	< 38.6	< 39.8	<53.7	<53.8
867-0	NR	NR	NR	NR	NR
Sulver (mg/L)	< 0.00492	< 0.00492	< 0.00492	0.0171	<0.00492
Alumnum (mg/L)	<0.0284 ^b	< 0.0284 ^b	< 0.0284	< 0.0284 ^b	< 0.0284
Atsentc (mg/L)	< 0.000647	< 0.000647	< 0.000647	< 0.000647	< 0.000647
Boron (mg/L)	<0.0151	<0.0151	<0.0151	0.023	<0.0151
Barium (mg/L)	0.0142	0.0119 ^b	0.00783	0.0286	0.0375
Beryllium (mg/L)	0.00268°	0.00075°	< 0.000554	0.0165	0.00563
Distriction (mg/L)	< 0.132	<0.132	< 0.132	<0.132	< 0.132
Cardmin (mg/L)	4.72	2.19	0.392°	1.81	1.65
Catenter (mg/L)	< 0.00172	< 0.00172	< 0.00172	0.0159	0.00381
COUGH (IIIg/L)	0.0041°	< 0.00340	< 0.00340	0.0183	0.00693
Cupper (mg/L)	< 0.00381	< 0.00381	< 0.00381	<0.00381	< 0.00381
	0.00466	0.00695°	< 0.00249	0.0187	0.00937
	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
nom (mg/L) Defeccium (me/L)	0.0502	0.0282 ^b	0.0142 ⁶	0.188 ^b	0.179
(7)minutesana (0.708	< 0.370	< 0.370	0.569°	0.402°

r 7
and the second s

<u>۳</u>
_
- 3
• •
· · · ·
_
-
_
7
()
\mathbf{U}
S,
S
S
S
Ξ
Ξ
3
Ξ
Ξ
e 5 ((
e 5 ((
le 5 ((
e 5 ((
le 5 ((
le 5 ((
ible 5 ((
le 5 ((
ible 5 ((
ible 5 ((
ible 5 ((

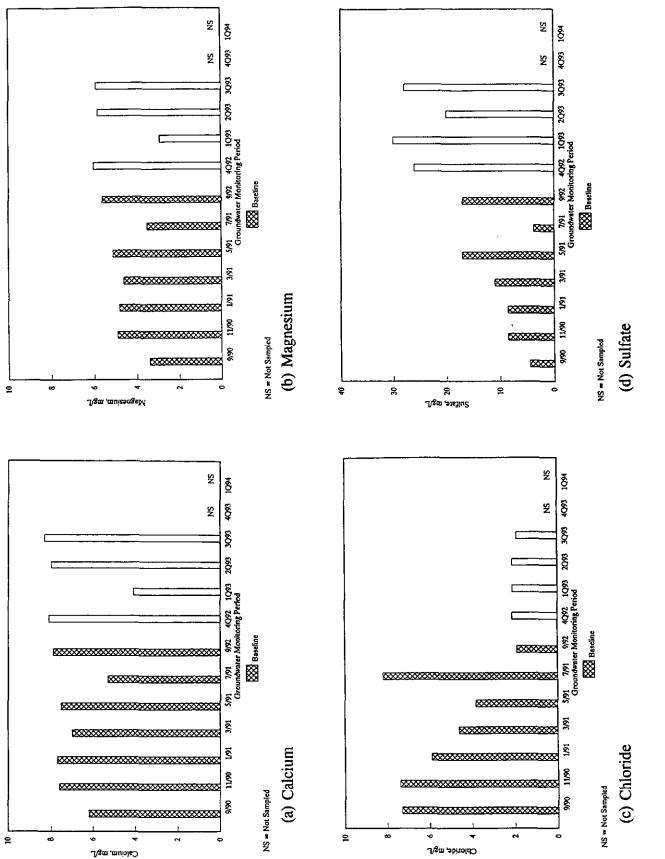
Parameter	GWA-1-13-1 *	GWC-1-13-1	GWC-2-13-1	GWC-3-13-1	GWC-4-13-1	GWC-5-13-1
Lithium (mg/L)		< 0.00543	< 0.00543	< 0.00543	< 0.00543	< 0.00543
Magnesium (mg/L)		3.14	1.92	0.962	5.05	1.60
Manganese (mg/L)		0.00298	0.00980	0.00206	0.0760	0.0134
Molybdenum (mg/L)		< 0.00463	< 0.00463	< 0.00463	0.0179°	< 0.00463
Sodium (mg/L)		4.12	7.15	4.35	5.33	5.74
Nickel (mg/L)		0.0119°	0.0767	< 0.00986	0.0319	0.0121°
Phosphorus (mg/L)		< 0.0610	< 0.0610	< 0.0610	< 0.0610	< 0.0610
Lead (mg/L)		< 0.00106	< 0.00106	< 0.00106	< 0.00106	< 0.00106
Sulfur (mg/L)		0.682	1.59	0.227	1.02	2.39
Antimony (mg/L)		< 0.00156	< 0.00156	< 0.00156	< 0.00156	< 0.00156
Selenium (mg/L)		0.00120 ^{b,e}	0.00151 ^{b.c}	0.000730 ^{b,c}	0.000830 ^{5,c}	< 0.000592
Silicon (mg/L)		11.9	13.3	10.1	9.91	11.8
Tin (mg/L)		< 0.0145	< 0.0145	< 0.0145	< 0.0145	0.0213°
Strontium (mg/L)		0.0117	0.0112	0.00513°	0.0112	0.0121
Tellurium (mg/L)		< 0.0317	< 0.0317	< 0.0317	< 0.0317	< 0.0317
Titanium (mg/L)		< 0.00159	< 0.00159	< 0.00159	< 0.00159	< 0.00159
Thallium (mg/L)		< 0.00103	< 0.00103	< 0.00103	< 0.00103	< 0.00103
Uranium (mg/L)		<0.199	< 0.199	< 0.199	<0.199	< 0.199
Vanadium (mg/L)		0.00561°	< 0.00236	< 0.00236	0.0168	0.00586°
Tungsten (mg/L)		< 0.0408	< 0.0408	< 0.0408	< 0.0408	< 0.0408
Zinc (mg/L)		0.00623°	0.00669°	0.00239°	0.0169	0.00771

* Well was dry; no samples collected.

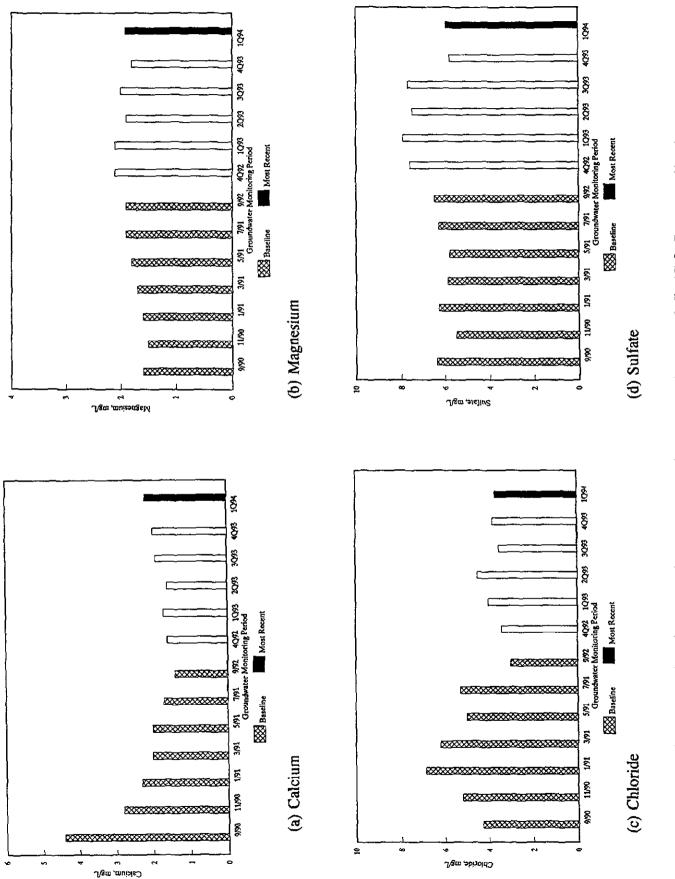
^b Detected in the method blank.

· Less than five times the detection limit; results are expected to be less accurate as concentrations approach the detection limit.

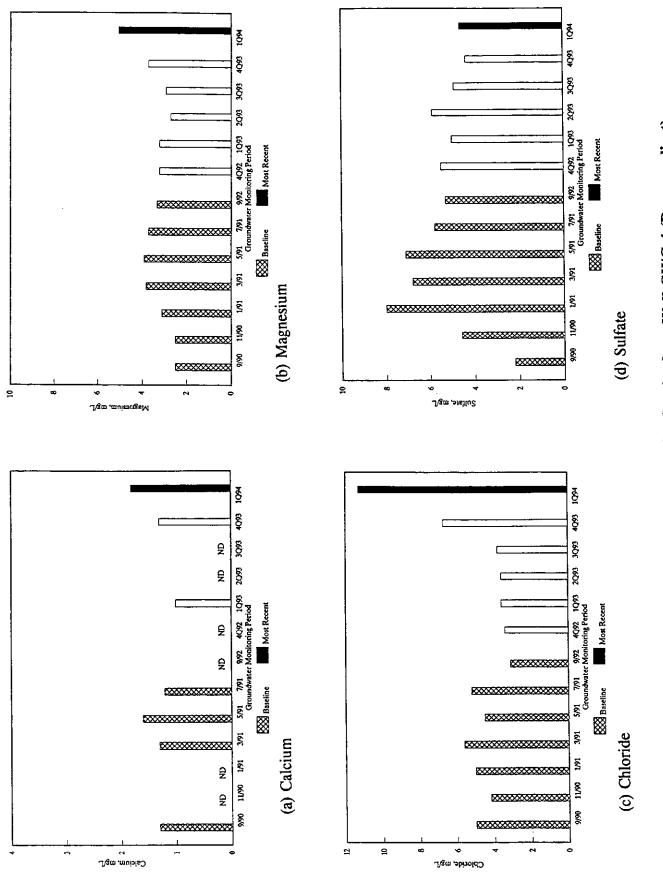
NR = Not reported.


To help determine whether the material in the gypsum stacking area is having an impact on groundwater quality, the monitoring data for a selected number of representative species from all of the monitoring rounds conducted to date were tabulated and examined. The representative species selected are those present in appreciable concentrations in the gypsum slurry, including the major cations and anions (i.e., calcium, magnesium, chloride, and sulfate), as well as several other indicator parameters such as pH, TDS, conductivity, and alkalinity. The complete set of historical data for these species is provided in Appendix A. Examples of time versus concentration plots for several species are provided in Figures 2 through 4. Data are presented for the upgradient well, GWA-1, and two downgradient wells, GWC-2 and GWC-4. The location of these wells were shown previously in Figure 1. Since the upgradient well was dry this quarter, no additional data were obtained for this location.

For well GWC-2, the measured concentrations for all monitored parameters are generally close to the historically observed concentrations of these species. For well GWC-4, the concentrations of chloride, magnesium, and possibly calcium were higher than the historically observed values. The observed increases may be due to the effects of a break in the gypsum pond dike that occurred on July 24, 1993, in the vicinity of this well. Close attention should be paid to future groundwater monitoring data to observe any continuing increases in concentration of chloride, magnesium, and calcium, and to identify potential causes.


4.0 SUMMARY OF QA/QC ACTIVITIES

A number of QA/QC activities are being performed, as specified in the project's EMP, to assure that the data obtained meet project objectives. These include the following:


• Groundwater samples were split for independent analysis by a laboratory selected by SCS.

- Established sampling and analytical methods were specified and used. All samples were analyzed within the specified holding times, as outlined in Section 2. There were no deviations from the specified methods during this quarter's monitoring effort.
- Chain-of-custody procedures established in the test plan for this project were observed.
- In the laboratory, method blanks, control samples, and matrix spikes were analyzed in conjunction with the sample analyses, following recognized good laboratory practice. Specified recovery limits (typically 80 to 120%) were met for all analytes in the laboratory control samples and matrix spikes except TOC; matrix spike recoveries were slightly above the 120% upper specified recovery limit for this parameter.
- Duplicate samples were obtained in the field and analyzed for all parameters. Replicate analyses were performed for a smaller number of parameters.

The results of the analysis of field and laboratory duplicates are summarized in Table 6 for those parameters measured above the detection limit. Complete results are provided in Appendix B. Differences in the duplicate analyses results were small for most species (i.e., less than 10%). For iron and selenium the measured concentrations in both samples were less than five times the detection limit, a region where less accurate results can be expected. Somewhat anomalous results were obtained for sulfate; the concentration in the original sample was 1.38 mg/L, while the concentration for the field duplicate was less than the detection limit of 0.0471 mg/L. Historically the sulfate concentration from this well has shown similar variability, but not during a given sampling campaign. The results for sulfate are, therefore, suspect. Results of duplicate analyses showed good reproducibility.

Table 6

Results for Duplicate Samples—1st Quarter 1994

Parameter	Units	Sample GWC-3-13-1	Field Duplicate GWC-3-13-2	% Diff	Duplicate Analysis GWC-3-13-2	% RPD ^b	Spec. Limit
Total Dissolved Solids	mg/L	42.0 ^d	41.0 ^d	-2.4	41.0 ^d	0.0	15
Chloride	mg/L	2.77	2.70	-2.5	2.71	0.37	20
Fluoride	mg/L	0.0372°	0.0345°	-7.3			
Nitrate-Nitrite as N	mg/L	0.0827	0.0835	1.0	0.0817	2.2	20
Sulfate	mg/L	1.38	< 0.0471	NC	<0.0471	NC	20
Radium 228	pCi/L	0.97 ± 0.52	0.96 ± 0.52	-1.0			
Gross Alpha	pCi/L	$1.00~\pm~0.40$	0.98 ± 0.44	-2.0			
Gross Beta	pCi/L	1.53 ± 0.71	1.80 ± 0.72	17.6			
Gross Gamma							
Bi-214	pCi/L	43 ± 19	34 ± 18	-21			
Pb-214	pCi/L	41 ± 22	41 ± 24	0			
Barium	mg/L	0.00783°	0.00747°	-4.6			
Calcium	mg/L	0.392 ^d	0.361 ^d	-7.9			
Iron	mg/L	0.0142°	0.00816 ^{c,d}	-42.5			
Magnesium	mg/L	0.962	0.964	0.2			
Manganese	mg/L	0.00206	0.00187	-9.2			
Sodium	mg/L	4.35	4.43	1.8			
Sulfur	mg/L	0.227	0.227	0.0			
Selenium	mg/L	0.000730 ^{c,d}	0.000870 ^{c,d}	19.2	< 0.000592d		
Silicon	mg/L	10.1	10.3	2.0			
Strontium	mg/L	0.00513	0.00467 ^d	-9.0			

* % Difference = (GWC-3-12-2 - GWC-3-12-1)/GWC-3-12-1 * 100 percent.

^b RPD = Relative Percent Difference, defined as follows:

$$RPD = \frac{(Larger Value - Smaller Value)}{(Larger Value + Smaller Value)/2} \times 100 \text{ percent.}$$

° Detected in the method blank.

^d Value is less than five times the detection limit; results are expected to be less accurate as concentrations approach the detection limit.

NC = Not computed.

APPENDIX A

Historical Monitoring Data for Selected Parameters

.

A-1
le /
Tab

Historical Monitoring Data for Selected Parameters

			Baseli	laseline Monitoring							
	Round 1	Round 2	Round 3	Round 4	Round 5	Round 6	Round 7	Round 8	Round 9	Round 10	Round 11
Parameter	6 Sep 90	2 Nov 90	8-9 Jan 91	11 Mar 91	8 May 91	12 Jul 91	3-4 Sep 92	29-30 Dec 92	30-31 Mar 93	21 Jun 93	23-24 Sep 93
Well: GWA-1 (Formerty CW-1)	(Formerty CW	(7									
Hq	5.86	6.27	5.6	6.7	6.05	5.94	6.4	5.7	6.82	6.1	5.9
Conductivity	86	114	112	121	104	85	116	101	128	100	110
Alkalinity	15.6	22.3	25.8	27.1	25	16.4	35.4	22.7	28	27	24.8
TDS	94	87	86	84	60	11	66	110	110	116	66
Chloride	7.3	7.4	5.9	4.6	3.8	8.2	1.9	2.1	2.1	2.1	1.9
Sulfate	4.5	8.5	8.5	11	17	3.7	11	26	30	20	28
Calcium	6.2	7.6	1.7	7	7.5	5.3	7.9	8.1	4.1	8.0	8.3
Magnesium	3.4	4.9	4.8	4.6	5.1	3.5	5.6	6.0	2.9	5.8	5.9
Sodium	4.2	4.8	4.9	4.3	4.4	3.8	4.1	4.2	4.0	4.4	4.3
Silicon	8.6	11	14	16	17	9.6	15	17	11	18	17
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94									
Well: GWA-1 (Formerty CW-1 Continued)	(Formerly CW	-1 Continued)									
PH	SN	NS									
Conductivity	SN	NS									
Alkalinity	NS	NS									i i
TDS	NS	NS									
Chloride	NS	NS									
Sulfate	SN	NS									
Calcium	NS	NS									
Magnesium	SN	NS	-								
Sodium	SN	NS									
Silicon	SN	NS									

			Basel	Baseline Monitoring							
	Round 1	Round 2	Round 3	Romd 4	Round 5	Round 6	Round 7	Round 8	Romd 9	Round 10	Romd 11
	GWC 1 (Formed: CW 3)		6-9 Jan 93	11 Mar 91	8 May 91	16 mf 7-1	3.4 Sep 91	29-30 Dec 92	30-31 Mar 93	21 Jun 93	13-24 Sep 93
:		1									
Hd	6.09	5.79	5.62	5.93	6.04	5.96	6.1	4.5	5.83	6.0	6.0
Conductivity	8	70	n	63	63	66	78	57	67	57	61
Alkalinity	21.7	22.9	24.4	22.1	20.5	25.8	27.8	23.3	22.5	24.1	27.3
TDS	8	51	59	52	*	2	64	68	43	74	2.1
Chloride	3.5	2.8	3.1	3.4	2.8	2.5	2.5	2.6	2.6	2.6	
Sulfate	7.6	S	2.8	< 0.05	1.2	l.	3.2	3.3	2.2	2 2 2	5.7 X C
Calcium	3.9	3.6	3.8	3.2	3.4	3.6	43	07			0,1
Magnesium	2.3	2.5	2.8	2.2	2.4	2.5	3.2	0.0	0.0 V		
Sodium	5.9	5.2	4.3	4.1	42				1.0		0.0
Silicon	6	0	60						7.	4.Ú	3.8
	States - States - States	de les contra series	2.6	=	=	=	11	12	16	12	12
Parameter	5 jan 94	Xound 13 22-23 Mar 94									
Well: GWC-1 (Formerty CW-2 Continued)	Formerly CW.	-2 Continued)									
Hq	6.1	5,89									
Conductivity	74	61								T	
Alkalinity	29.9	52									Ī
TDS	2	66									
Chloride	3.5	2.43									Ī
Sulfate	3.3	1.75									T
Calcium	5.1	4.72			<u></u> 	<u>+</u>					
Magnesium	3.7	3,14									
Sodium	4.3	4.12		<u> </u>	+			╉╼			T
Silicon	12.7	11.9									
						-	-	-	-	-	-

Table A-1 (Continued)

led)
ntinı
ల్రి
Ξ
<

			Baseli	Baseline Monitoring							
Parameter	Round 1 6 Sep 90	Round 2 2 Nov 90	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 3-4 Sep 92	Round 8 29-30 Dec 92	Round 9 30-31 Mar 93	Round 10 21 Jun 93	Round 11 23-24 Sep 93
Well: GWC-2 (GWC-2 (Formerly CW-3)	-						AND AND IN THE R. D. DOLL ON AND A DRIVE			1000 000 10 100 000 000 000 000 000 000
Hd	5.64	5.6	5.04	5.5	4.97	5.65	5.5	4.6	5.29	5.4	5.6
Conductivity	76	69	64	66	33	11	66	56	67	56	49
Alkalinity	23.5	19.3	15.2	16.9	12.2	17.5	18.2	17.3	12.5	14.1	15.9
TDS	76	50	55	55	63	65	79	11	68	11	60
Chloride	4.3	5.2	6.9	6.2	5	5.3	3.0	3.4	4.0	4.5	3.5
Sulfate	6.4	5.5	6.3	5.9	5.8	6.3	6.5	7.6	7.9	7.5	7.7
Calcium	4.4	2.8	2.3	2	2	1.7	1.4	1.6	1.7	9.I	6.1
Magnesium	1.6	1.5	1.6	1.7	1.8	1.9	1.9	2.1	2.1	1.9	2.0
Sodium	7.3	7.4	6.9	7	7.5	7.6	7.5	4.T	7.5	6.7	6.8
Silicon	01	10	9.3	12	11	11	11	13	12.0	11	13
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94									
Well: GWC-2 ()	GWC-2 (Formerly CW-3 Continued)	-3 Continued)									
Hd	5.75	5.5									
Conductivity	53	57									
Alkalinity	15.7	14									
TDS	27	76									
Chloride	3.8	3.7									
Sulfate	5.78	5.97									
Calcium	2.0	2.19									
Magnesium	1.8	1.92				1					
Sodium	7.0	7.15									
Silicon	12.9	13.3									

Continued)
У.
$\widetilde{}$
Y
Table

			Basel	eline Monitoring							
Paromater	Round I 6 San Of	Round 2 2 Nov 90	Round 3 8.0 Jan 01	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 [-2. Int 91	Round 7 3-4 Seo 92	Round 8 29-30 Dec 92	Round 9 30-31 Mar 93	Round 10 21 Jun 93	Round 11 23-24 Sep 93
Well: GWC-3 (Formerly CW-4)	Formerly CW										
Hq	5.4	5.15	4.8	4.73	6.19	5.08	5.25	3.8	5.23	5.2	5.3
Conductivity	40	35	30	34	32	35	32	27	33	27	27
Alkalinity	11.5	15.2	6.6	=	6	11.1	10.0	8.9	7.0	8.5	9.1
TDS	50	35	31	34	39	41	28	37	44	52	21
Chloride	3	2.8	3.2	3.4	3.1	3.1	2.0	2.3	2.7	2.9	2.8
Sulfate	2.6	2.1	<0.05	<0.05	6.0	1.5	1.7	2.6	1.6	<2.5	<2.5
Calcium	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Magnesium	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sodium	4.4	4.5	4.3	4.1	4.6	4.3	4.1	4.0	4.1	3.9	3.8
Silicon	e 0	7.8	3.9	8.5	8.6	8.3	8.3	9.3	9.0	8.7	9.2
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94									
Well: GWC-3 (Formerly CW-4 Continued)	Formerly CW	4 Continued)									
PH	5.5	5.18									
Conductivity	77	28									
Alkalinity	6.9	7.5									
TDS	<8.7	42							1		
Chloride	2.8	2.77									
Sulfate	<0.06	1.38									
Calcium	<1.0	0.392									
Magnesium	<1.0	0.962									
Sodium	4.1	4.35									
Silicon	9.7	1.01									

(p
ontinue
A-1 (C
Table

			Bas	eline Monitoring							
Parameter	Round 1 6 Sep 90	Round 2 2 Nov 90	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 Jul 91	Round 7 3-4 Sep 92	Round 8 29-30 Dec 92	Round 9 30-31 Mar 93	Round 10 21. Jun 93	Round 11 23-24 Sep 93
Well: GWC-4 (GWC-4 (Formerty CW-5)	-5)									
Hd	5.34	4.97	4.8	4.6	5.03	5.4	5.05	3.9	5.04	5.2	5.2
Conductivity	62	62	66	72	54	70	72	58	64	52	54
Alkalinity	12.5	15.3	13.1	15.1	8.6	14.2	11.5	8.0	6.0	6.9	7.0
TDS	61	52	60	51	58	64	61	65	63	55	44
Chloride	s	4.2	5	5.6	4.5	5.2	3.1	3.4	3.6	3.6	3.8
Sulfate	2.2	4.6	a C	6.8	7.1	5.8	5.3	5.5	5.0	5.9	4.9
Calcium	1.3	<1.0	<1.0	1.3	1.6	1.2	<1.0	<1.0	1.0	<1.0	<1.0
Magnesium	2.5	2.5	3.1	3.8	3.9	3.7	3.3	3.2	3.2	2.7	2.9
Sodium	5.4	5.8	5.3	5.1	\$	5.2	4.8	4.9	4.7	4.4	4.4
Silicon	6.6	9.1	4.7	9.7	9.2	10	8.6	9.5	8.7	8.3	9.3
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94									
Well: GWC-4 (Formerly CW-5 Continued)	(Formerly CW	-5 Continued)									I
Hq	5.2	4.98									
Conductivity	63	72									
Alkalinity	9.2	5.0									
TDS	20	64									
Chloride	6.7	11.3									
Sulfate	4.4	4.64									
Calcium	1.3	1.81									
Magnesium	3.7	5.05									
Sodium	5.0	5.33									
Silicon	9.8	9.91									

			Basel	Baseline Monitoring							
Partameter	Kound 1 6 Sep 90	Round 2 2 Nov 90	Round 3 8-9 Jan 91	Round 4 11 Mar 91	Round 5 8 May 91	Round 6 1-2 hal or	Round 7 Ld Sen 09	Round 8 29-30 Dec 92	Round 9 M-31 May 93		Romd 11
Well: GWC-5											
pH							5.6	4.4	6.13	5.4	5.6
Conductivity							61	60	54	41	64
Alkalinity							14.8	13.5	12.5	10.2	11.5
TDS							91	86	67	56	50
Chloride							1.8	2.6	2.7	2.9	2.5
Sulfate		_					90. 90	10	7.4	6.7	5.5
Calcium							2.1	2.7	2.2	1.6	1.4
Magnesium							1.9	2.3	a0.1	1.5	1.4
Sodium							6.0	6.2	5.7	5.5	5.2
Silicon							12	14	13	12	12
Parameter	Round 12 5 Jan 94	Round 13 22-23 Mar 94									
pH	7.0	5.38									
Conductivity	39	43									
Alkalinîty	10.8	8.6									
TDS	29	53									
Chloride	2.6	2.34									
Sulfate	5.3	6.56									
Calcium	1.3	1.65									
Magnesium	1.3	1.6									
Sodium	5.5	5.74									
Silicon	11.4	11.8									

Table A-1 (Continued)

APPENDIX B

QA/QC Results

Table B-1

Results for Duplicate Samples—1st Quarter 1994

Parameter	Units	Sample GWC-3-13-1	Field Duplicate GWC-3-13-2	% Diff	Duplicate Analysis GWC-3-13-2	% RPD ^b	Spec. Limit
Total Dissolved Solids	mg/L	42.0 ^d	41.0 ^d	-2.4	41.0 ^d	0.0	15
Bromide	mg/L	<0.0277	<0.0277	NC	< 0.0277	NC	
Chloride	mg/L	2.77	2.70	-2.5	2.71	0.37	20
Total Organic Carbon	mg/L	< 0.357	< 0.357	NC	< 0.357	NC	20
Fluoride	mg/L	0.0372°	0.0345°	-7.3			
Nitrate-Nitrite as N	mg/L	0.0827	0.0835	1.0	0.0817	2.2	20
Sulfate	mg/L	1.38	< 0.0471	NC	< 0.0471	NC	20
Radium 226 and 228	pCi/L	-0.03 ± 0.14 0.97 ± 0.52	-0.07 ± 0.13 0.96 ± 0.52	NC -1.0			
Gross Alpha	pCi/L	1.00 ± 0.40	0.98 ± 0.44	-2.0			
Gross Beta	pCi/L	1.53 ± 0.71	1.80 ± 0.72	17.6			
Gross Gamma							_
Bi-212	pCi/L	<136	<119	NC		1	
Bi-214	pCi/L	43 ± 19	34 ± 18	-21			
Co-60	pCi/L	<11.1	< 8.4	NC		i i	
Cs-134	pCi/L	<17.7	<17.0	NC			
Cs-137	pCi/L	<10.9	<6.77	NC			
K-40	pCi/L	<132	<157	NC			
Рь-212	pCi/L	<21.3	<21.3	NC			
Pb-214	pCi/L	41 ± 22	41 ± 24	0			
Ra-223	pCi/L	<53.7	<41.1	NC			
Ra-226	pCi/L	<180	< 185	NC			
Rn-219	pCi/L	<73.9	<64.6	NC			
Th-227	pCi/L	<95.3	<94.0	NC			
Th-228	pCi/L	<637	<523	NC			
Th-231	pCi/L	<367	<373	NC			
Th-234	pCi/L	<211	<151	NC			
T1-208	pCi/L	<11.1	<11.9	NC			

Parameter	Units	Sample GWC-3-13-1	Field Duplicate GWC-3-13-2	% Diff *	Duplicate Analysis GWC-3-13-2	% RPD ^{\$}	Spec. Limit
U-235	pCi/L	< 39.8	<34.8	NC			
Silver	mg/L	< 0.00492	< 0.00492	NC			
Aluminum	mg/L	<0.0284	< 0.0284	NC			
Arsenic	mg/L	< 0.000647	<0.000647	NC			
Boron	mg/L	<0.0150	< 0.0150	NC			
Barium	mg/L	0.00783°	0.00747°	-4.6			
Beryllium	mg/L	< 0.000554	< 0.000554	NC			
Bismuth	mg/L	< 0.0132	< 0.0132	NC			
Calcium	mg/L	0.392 ^d	0.361 ^d	-7.9			
Cadmium	mg/L	< 0.00172	< 0.00172	NC			
Cobalt	mg/L	<0.00340	< 0.00340	NC			
Copper	mg/L	< 0.00381	< 0.00381	NC			
Chromium	mg/L	< 0.00249	< 0.00249	NC			
Mercury	mg/L	< 0.000050	< 0.000050	NC			
Iron	mg/L	0.0142 ^c	0.00816 ^{c,d}	-42.5			
Potassium	mg/L	< 0.370	< 0.370	NC			
Lithium	mg/L	< 0.00543	< 0.00543	NC			
Magnesium	mg/L	0.962	0.964	0.2			
Manganese	mg/L	0.00206	0.00187	-9.2			
Molybdenum	mg/L	< 0.00463	< 0.00463	NC			
Sodium	mg/L	4.35	4.43	1.8			
Nickel	mg/L	< 0.00986	0.0144	NC			
Phosphorus	mg/L	< 0.0610	< 0.0610	NC			
Lead	mg/L	< 0.00106	< 0.00106	NC			
Sulfur	mg/L	0.227	0.227	0.0			
Antimony	mg/L	< 0.00156	< 0.00156	NC			
Selenium	mg/L	0.000730 ^{c,d}	0.000870 ^{c,d}	19.2	< 0.000592 ^d	NC	
Silicon	mg/L	10.1	10.3	2.0			
Tin	mg/L	< 0.0145	< 0.0145	NC			

Table B-1 (Continued)

Parameter	Units	Sample GWC-3-13-1	Field Duplicate GWC-3-13-2	% Diff	Duplicate Analysis GWC-3-13-2	% RPD ^b	Spec. Limit
Strontium	mg/L	0.00513	0.00467 ^d	-9.0			
Tellurium	mg/L	<0.0317	< 0.0317	NC			
Titanium	mg/L	< 0.00159	< 0.00159	NC			
Thallium	mg/L	< 0.00103	< 0.00103	NC			
Uranium	mg/L	<0.199	< 0.199	NC			
Vanadium	mg/L	< 0.00236	< 0.00236	NC			
Tungsten	mg/L	< 0.0408	< 0.0408	NC			
Zinc	mg/L	0.00239 ^d	< 0.00153	NC			

Table B-1 (Continued)

* % Difference = (GWC-3-12-2 - GWC-3-12-1)/GWC-3-12-1 * 100 percent.

^b RPD = Relative Percent Difference, defined as follows:

 $RPD = \frac{(Larger Value - Smaller Value)}{(Larger Value + Smaller Value)/2} \times 100 \text{ percent.}$

^c Detected in the method blank.

^d Value is less than five times the detection limit; results are expected to be less accurate as concentrations approach the detection limit.

NC = Not computed.