BLAST FURNACE GRANULAR COAL INJECTION RESULTS USING PULVERIZED AND GRANULATED HIGH VOLATILE COAL

Report on Trials 3 and 4

Work Performed Under Cooperative Agreement No.: DE-FC21-91MC27362

For U.S. Department of Energy Office of Fossil Energy P.O. Box 880 Morgantown, West Virginia 26507-0880

> By Bethlehem Steel Corporation Bethlehem, Pennsylvania 18016

> > April 1999

BLAST FURNACE COAL INJECTION TRIAL RESULTS USING GRANULATED AND PULVERIZED HIGH VOLATILE COAL

INTRODUCTION

This report presents the results of two trials conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. The trials were conducted using granulated and pulverized high volatile coal from Colorado. The first trial was conducted to quantify the effect that a high volatile western coal, Colorado Oxbow, has on the blast furnace operation and the process economics compared to the eastern low volatile coal that is the current standard at Burns Harbor. The high volatile western coal was pulverized for the second trial. The pulverized trial period is compared to the granular period using the high volatile coal and analyzed for blast furnace process differences.

The first trial, the comparison of high to low volatile coal, is an important aspect of the demonstration project. This trial shows the role that coal chemistry, specifically carbon and ash content, has on the blast furnace process. The objective of the second trial was to determine if injected coal size, i.e., pulverized versus granulated, has an impact on blast furnace performance. This comparison of pulverized versus granulated coal was an important part of the demonstration project.

This demonstration project is divided into three phases:

Phase I - Design

Phase II - Construction

Phase III - Operation

The design phase was conducted in 1991-1993. The design of this coal injection system, especially the coal grinding mills, make it possible to pulverize as well as granulate coal for furnace injection. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995.

BACKGROUND

The granulated coal injection facility at the Burns Harbor Plant began operation in January 1995. Coal injection began on D furnace in mid-December 1994, primarily to test the coal grinding and preparation circuits. Significant operations began January 19, 1995 when coal was injected through four tuyeres at a total rate of 20 pounds/NTHM. Coal injection was initiated on C furnace on February 9, 1995 using four tuyeres at an overall rate of 25 pounds/NTHM. The remaining 24 tuyeres used natural gas injection at the same time. These conditions were maintained throughout February and March.

Complete coal injection began on D furnace in April 1995 and on C in June 1995. Since that time the operation has progressed steadily and culminated in the development of efficient operating practices using the granulated coal facility.

During the start of coal injection, Sydney coal, a high volatile eastern coal, was used on both furnaces for eight months. Subsequently, six different low volatile coals were used on both furnaces for seven months. The low volatile coals performed well and led to the use of Buchanan low volatile as the standard coal since 1996.

Meaningful analysis of blast furnace process changes that occur with a change to injected coal type or sizing requires a base test period from which comparisons can be made. The requirements for an acceptable trial are:

- 1. A steady state operating period. The length of the period is flexible, however, the longer the trial duration, the more definitive the results.
- 2. Minimal furnace outages or delays during the trial.
- 3. A minimum of major furnace process changes during the trial, particularly with the process variable that is being evaluated.

BLAST FURNACE OPERATIONS

The Burns Harbor C furnace is designated as the granulated coal test facility due, in large part, to the physical improvements made to the furnace during the 1994 reline. This furnace was used for the low volatile coal trial and the higher ash coal trial.^{1,2} However, operational difficulties on C furnace during the Colorado coal trial period required that the D furnace be used for the evaluation of both granular and pulverized high volatile coal.

Table 1 shows the operating time periods used on D furnace for the two trials. Operating data from August 1998 is used as the base period to compare the furnace operation using low volatile granular coal with the trial of granular high volatile coal conducted in October, 1998. The second trial was with pulverized Colorado coal. These trial results were compared to those of the granulated Colorado coal trial. This trial was planned to run the full month of November; however, extreme wear to the grinding mills during the granular trial resulted in the inability of the mill to pulverize the coal. Consequently, the first two weeks of November were used for emergency repairs. The pulverized coal trial began on November 13 and concluded on November 26 when the Colorado coal supply was depleted.

The important operating conditions that indicate the full range of furnace performance results are discussed and documented for the base and trial operating periods in the following. In addition, environmental stream testing of the closed water and gas cleaning systems, furnace refractory temperatures, thermal loads and refractory wear readings are presented for the operating trial periods.

FURNACE TRIAL OPERATING CONDITIONS

The D Furnace Operation

The high volatile coal injection evaluation was completed during the 4th quarter of 1998. The trial comparing the high volatile, western coal to an eastern, low volatile coal was an important test in the DOE cooperative demonstration project. The second trial, comparing the operation of the blast furnace with granular high volatile coal to the same coal with pulverized sizing, was the heart of the demonstration project. The planning for these trials and the procurement of the high volatile coal from Colorado began during the spring of 1998. Five trainloads, approximately 40,000 tons, of the coal was ordered for delivery beginning in September. The trial period was to begin on C furnace on October 1, 1998. However, operating difficulties, unrelated to coal injection, began to plague C furnace. Several major outages on C furnace during late September and extending throughout the trial period in October resulted in poor operating conditions. It was also necessary to switch C furnace to natural gas from coal injection in order to stabilize the furnace operation. The frequent delays and the use of natural gas caused a lack of meaningful data with coal injection. Since the Colorado coal supply was dwindling and the prospects of C furnace returning to a suitable operating standard was unlikely, the trial was switched to D furnace. The first two comparison periods on D furnace, complete monthly periods during August and October, proceeded as planned. However, the pulverized, high volatile period which was also planned as a full month trial during November had to be shortened. On November 1, when the coal-grinding mill was adjusted to produce pulverized coal, the resulting coal did not meet the sizing requirements. A close examination of the mills revealed that the high volatile coal used during the previous month had severely worn the bull ring on both mills and pulverizing was not possible. Emergency repairs for resurfacing the bullrings of both mills began immediately. Twelve days were required to repair and reset the mills to produce pulverized coal. Fortunately, enough Colorado coal remained to conduct a fourteen-day trial before the supply ran out on November 27.

General Trial Observations:

The use of granular low volatile coal at Burns Harbor began during 1996 and has resulted in excellent operating performance. These operating results and a subsequent DOE trial conducted in October, 1996 established a good benchmark on the use of granular low volatile coal for injection in the blast furnace.¹ The base operating period selected for this trial, August 1998, reflects the advantages of the granular low volatile coal and is shown in Table 1. The coke rate of 683 pounds/NTHM at a coal injection rate of 250 pounds/NTHM resulted in an overall low fuel rate of 935 pounds/NTHM and contributed to the good production level of 7078 NTHM/day. This period provides a good comparison base for the high volatile coal operating periods. The blast furnace operation using granular, high volatile, western coal during October is shown on Table 1. Compared to the base period, the coke rate is 115 pounds higher at 798 pounds/NTHM. Although the injected coal rate is about 60 pounds/NTHM lower at 190 pounds/NTHM, the increase in coke rate is not proportional to the injected coal decrease. This comparison shows that the low volatile coal supports a lower furnace coke rate than the high volatile coal.

The results of the blast furnace performance with pulverized high volatile coal are shown as Trial 2 in Table 1. The coke rate, coal injection rate and the overall fuel rate are very similar to the operation using granular high volatile coal. The injected coal rate is lower during this period because the two coal grinding mills could only pulverize 183 pounds/NTHM of coal. The comparison of the two trial periods shows similar results and leads to the conclusion that the blast furnace process is unaffected by the injected coal being granulated or pulverized.

The initial plan was to inject the western coal at a rate of 250 pounds/NTHM, the same as in the August 1998 base period. However, this coal was very difficult to grind even to a granular size. At this point in the granular trial, we realized that we would not be able to pulverize this coal at a rate of 250 pounds/NTHM. Therefore, to insure a good coke comparison and furnace operation between the granular and pulverized trials, the granular coal was kept to a rate that we thought could be sustained during the pulverized coal trial. Even at the lower rate of 190 pounds/NTHM, the grinding mills could not maintain this level during the pulverized trial period. Although trial data is more compelling than speculation, we believe that the comparison of granular versus pulverized coal would remain the same at even higher injection levels.

One furnace variable that was of concern during the planning phase of the trial for using pulverized coal was permeability. Table 1 shows that during the base period and the granular trial there was no change in permeability. The values were 1.43 and 1.42, respectively. During the pulverized coal trial, the furnace permeability did decrease to 1.33. However, this was likely because Chinese coke was not on the furnace during the pulverized trial period but was in the burden during the two previous operating periods. We have previously documented the increase in furnace permeability that accompanies the use of larger sized Chinese coke.³ We believe that the reduction in permeability during this period is attributable to the lack of Chinese coke rather than the use of pulverized coal. This is supported by the fact that the permeability on the D furnace remained low, at 1.36, during December 1998 after the pulverized coal trial had ended and Chinese coke was no longer available.

Coal Chemistry and Sizing:

The comparison of injected coal chemistry between the Buchanan and the high volatile, Oxbow coal is shown on Table 2. The large difference in coke rate seen between the aforementioned periods is attributable to the difference in carbon content of the two coals. The Oxbow coal averages 73.2% carbon versus 86.3% for the Buchanan low volatile coal. The increase in coke rate is also due to the higher ash content of the Oxbow coal. Buchanan ash content is 5.23% compared to 11.20% for the Oxbow. The furnace slag volume during the operating period with Buchanan is 430 pounds/NTHM. The higher ash content of the Oxbow causes the slag volume to rise to 461 pounds/NTHM during the first trial. A slag volume increase in the blast furnace results in an increase in the coke rate.

Coal sizing was a concern and was closely monitored during each trial period. Table 3 shows the injected coal sizing for each period as well as the raw coal sizing. The raw coal sizing shown is the size fraction of the coal as measured by the vendor at the shipping site. The product coal sizing shown in the table is the size fraction of the injection coal after grinding in the preparation mills. The granular sizing shown for the low volatile, Buchanan and the high volatile, Oxbow coal is the monthly average of daily samples taken on D furnace during August and October. The values for the pulverized sizing are the average of ten daily samples taken during the pulverized trial. The pulverized coal only shows the minus 200 mesh fraction because, unlike the granular size, the pulverized coal particles stick together and the measurement is made using a device with only one screen. This equipment puts the entire sample under vacuum and draws the portion of coal that is -200 mesh through the screen. This method of analysis was done on a daily basis to insure that the grinding mills were set properly. A more accurate method of screen analysis, the wet screen method, is often used. The Burns Harbor Plant laboratory is not equipped for this method, however, two samples were sent to an independent laboratory for wet analysis. The average of the two samples is also shown on Table 3. This method shows that the minus 200-mesh fraction of the injected coal is 74%.

The raw coal sizing shown on Table 3 demonstrates a fundamental difference between high volatile and low volatile coal. The low volatile coal arrives at the coal grinding facility with 83% of the coal already sized at minus one-quarter inch. The grinding mills require less energy to achieve the proper sizing for injection than for the high volatile coal that is only 36% minus one-quarter inch. In addition, grinding the low volatile coal with an HGI of 100 is much easier than grinding the Oxbow coal that has an HGI of 46 – 48. This is demonstrated later.

Furnace Coke Rate Results:

One of the reasons for the October trial was to determine the coke rate difference between the use of low volatile and high volatile injected coals. In order to assess the furnace coke rate during a trial, all of the variables that affect the furnace coke rate and are different from the base must be adjusted for by using coke correction factors. The variables that are not corrected or adjusted are those affected by the operating variable that is being assessed. After all of the operational coke differences between the base period and the trial period are accounted for, the remaining coke is attributed to the variable being studied. Since the Colorado coal is higher in ash than the Buchanan coal and is a consequence of the difference between the two coals, we have not adjusted the coke rate for changes in the furnace slag volume. The blast furnace slag volume is directly affected by the injected coal ash.

The result of the first comparison of the base period to the granulated high volatile period is shown in Table 4. The primary correction for the October period is the rather large difference in the injected coal rate. A correction of one pound/NTHM injected coal replacing one pound/NTHM of coke is used for the difference in injection rate. Hot metal silicon content did increase substantially during the granular trial period and a correction of 11 pounds/NTHM is used for this factor. After each factor in the analysis is accounted for, we are left with a 46 pound/NTHM higher coke rate in the high volatile trial period than during the low volatile base period. The higher coke rate is attributed to the use of the high volatile coal. This result is plausible because the Buchanan coal is 13% higher in carbon content than the Oxbow coal. Since carbon is the primary fuel and reductant for the furnace, the difference in fuel rates is understandable. In addition, the almost 6% higher ash content of the western coal is a distinct coke disadvantage. The previously mentioned higher ash coal trial documents a coke disadvantage of three pounds per NTHM for each one percent increase in the ash content of the injected coal. Regardless of where and how each furnace factor is applied, the overwhelming conclusion from this comparison is that the low volatile coal provides a very substantial coke rate advantage to the blast furnace.

The coke comparison of the high volatile granular trial to the pulverized trial is shown in Table 5. The operating periods are very similar and there were only small corrections necessary. We included blast furnace slag volume in these corrections because the injection coal type was the same for both periods. The largest corrections were for the decrease in wind volume during the pulverized period and the increase in slag volume. The wind decreased because the furnace permeability was lower due to the lack of Chinese coke in the burden as previously discussed. The three pound coke difference for the pulverized trial period is within the plus or minus five-pound error limit and strongly indicates that there is no difference in the blast furnace operation with the use of pulverized coal.

Table 6 shows the blast furnace sulfur balance results for both of the trials. The sulfur content of all of the raw material inputs as well as the material outputs use the monthly average sulfur analysis. The sulfur content of the blast furnace gas is the average of three samples that were taken for each period by Mostardi Platt. The balances are very good for both trial periods.

Coal Grinding Energy Consumption:

The primary reason for adopting the British Steel granular coal injection technology was to inject coal into the blast furnace by the most efficient and cost effective method. One reason for choosing granular over the pulverizing process is presented in Figure 1. The figure shows the combined energy consumption of both coal grinding mills per ton of coal processed. Four points of interest are shown on the figure.

The first point, May 1998, is a period during which we attempted to pulverize low volatile coal. During this month pulverized coal was produced in the mill but severe line plugging did not allow for an appropriate furnace process trial. This experience was

detailed in the quarterly status report for the period April-June 1998.⁴ The energy consumption in April increased from about 10 KWH/ton with granular coal to 14 KWH/ton with pulverized coal.

The granular coal base period is labeled on Figure 1 as "granular low vol." The third point is from the high volatile granular period. The increase from 7.5 KWH/ton for granular, low volatile coal to 19.6 KWH/ton for granular, high volatile is very significant. These two points are an added incentive for the use of low volatile coal at Burns Harbor. The last point on Figure 1 shows the rise in energy consumption from the granular period in October to the pulverized period during the last two weeks in November. The KWH/ton increase from 19.6 to 31.4 is very significant in the overall cost of preparing the coal for injection.

FURNACE THERMAL CONDITIONS AND REFRACTORY LINING WEAR

The D furnace is equipped with a Thermal Monitor System consisting of two components: twenty four thermocouples embedded in the refractory lining of the furnace at three elevations and an extensive system of thermocouples in the discharge water cooling system at nine furnace elevations. The heat loss in the furnace is calculated for the various elevations from the water system thermocouples.

In addition to the array of thermocouples, wear monitors are located in the refractories of the furnace at various elevations and quadrants. These monitors give an indication of the amount of brick that is remaining in the furnace at various elevations.

The furnace operation can be evaluated implicitly by studying differences in these measurements over time. For example, if there are higher heat loads observed in the furnace during a change in the furnace practice, we may imply that the practice change was responsible for the increased heat loads. We have observed, with the use of the refractory wear monitors that coal injection causes increased wear of the brick lining.

Figure 2 shows the inwall refractory temperatures at three elevations. These values have changed very little during the entire year. This figure indicates that during the trial periods as well as the base period there was no change in the refractory temperatures.

Figure 3 shows the calculated thermal loads in the bosh, mantle and cooling Row 2. These are the lower elevations in the furnace. As in Figure 2, there is no significant change in the values during the trial periods.

In October, during the granular, high volatile coal trial there was a significant increase in the thermal load values at Row 4 and Row 7. This is shown on Figure 4. Figure 5 shows the same increase at Row 16. There is not a good explanation for the increase in values at these three distinct elevations since the thermal loads returned to the previous values in the ensuing high volatile, pulverized trial. The furnace practices did not change significantly between the granular and pulverized trial periods.

Figure 6 shows the refractory wear monitor readings from the beginning of the D furnace campaign. The amount of injected coal is also shown since the start-up of the facility. The refractory wear appears to have accelerated when coal injection began and during the following months. However, as operating practices were fine-tuned and the other furnace variables came into line, the refractory wear lessened and has been steady over the last year. Refractory wear with coal injection now appears to be about the same as before coal injection with the adoption of consistent practices and a steady state operation.

ENVIRONMENTAL TEST RESULTS

Gaseous Streams:

Blast furnace gas samples were obtained from D furnace and analyzed by Mostardi Platt Associates, Inc. during the two trial periods with the high volatile coal. The results of the samples are presented in Appendix 1. When Mostardi Platt was on site to take the gas samples, plant operators were not aware of which furnace would eventually be designated as the trial furnace. Therefore, Mostardi Platt took samples on C and D furnace during the two trial periods. Although we are not discussing the gas samples taken on C furnace, the gas analysis results are show in Appendix I.

Wastewater Monitoring:

During the trial periods from October 1, 1998 through November 30 and including the data from December 1998, monitoring of the Division's treated process water effluent (Monitoring Station 011) and the Division's combined effluent (Outfall 001) was conducted in accordance with the Division's NPDES permit. In addition, internal monitoring of the Blast Furnace Recirculating Water System was performed weekly. All monitoring results for ammonia, nitrogen and total cyanide at Monitoring Station 011, Outfall 001 and the Blast Furnace Recirculating Water System were within the applicable limitations and/or expected ranges. There were no adverse affects on the Division's wastewater system that could be attributed to the BFGCI system during the trial periods with granular and pulverized coal. The results for the three month period that includes the trials is shown in Appendix II.

CONCLUSIONS

The primary goal of the Clean Coal Project and the Cooperative Agreement with the United States Department of Energy was to demonstrate the advantages of using a granular coal injection facility rather than a pulverized coal injection system. Secondary objectives were to determine the effect of coal grind size and coal type on blast furnace performance. This series of trials has clearly shown that granular coal can ce used on a large blast furnace with good results. In addition, the furnace operation using low volatile versus high volatile coal is, without doubt, a superior operation.

The energy consumption for pulverizing compared to granulating the same coal is significantly higher. The high volatile coal required 31.4 KWH/ton to pulverize during

this trial and 19.6KWH/ton to granulate. In addition, the operating data clearly shows that the blast furnace process is unaffected by whether the coal is pulverized or granular at the coal injection rate of 183 pounds/NTHM.

Another conclusion, based on the trial is that the low volatile coal replaces more coke than the lower carbon content, high volatile coal. This result is very important to the Burns Harbor Plant. Prior to coal injection the Plant had to purchase coke to supplement the coke produced. Until the successful use of low volatile coal began and large reductions in coke rate were accomplished, the blast furnace was still dependent on some outside purchased coke. At a production rate of 14,000 NTHM/day for two furnaces, the blast furnace operation is currently self-sufficient with the home coke supply. However, during times of high productivity, there could be a slight need for external coke. The successful injection of low volatile coal closes a large portion of the coke supply/use gap.

We also believe, based on the unsuccessful attempt to inject pulverized, low volatile coal, that it is not possible to inject low volatile coal unless it is in the granular size range. Other blast furnace operators have tried to use low volatile coal in a pulverizing system and have failed due to plugging in the coal delivery lines. This is, for the Burns Harbor facility, a key attribute for the granular system.

ACKNOWLEDGEMENTS

The blast furnace operation with the Oxbow coal was extremely difficult during the trial periods. The management at the Burns Harbor Plant is commended for supporting Bethlehem's commitment to the Department of Energy to demonstrate the Granular Coal Injection System.

In addition, the blast furnace superintendent, D. G. Hill and his supervisors are thanked for their diligence in completing these trials despite the extreme adversity of the operation.

The work accomplished showed that the conclusion of these trials is clear. Granular coal injection using low volatile coal provides Bethlehem with measurable advantages, operationally as well as economically.

TABLE OF CONTENTS

-

INTRODUCTION	1
BACKGROUND	1
BLAST FURNACE OPERATIONS	2
FURNACE TRIAL OPERATING CONDITIONS	3
FURNACE THERMAL CONDITIONS AND	_
REFRACTORY LINING WEAR	7
ENVIRONMENTAL TEST RESULTS	8
CONCLUSIONS	8
ACKNOWLEDGEMENTS	9
REFERENCES	10

•

LIST OF TABLES

Table 1	D Furnace – DOE Trials with High Volatile Coal
Table 2	Coal Chemistry Comparison of Low Volatile and High Volatile Coal
Table 3	Raw Coal and Product Coal Sizing Comparison
Table 4	Adjusted Coke Rate Comparison – Granular Low Volatile and Granular High Volatile Coal
Table 5	Adjusted Coke Rate Comparison – Granular High Volatile and Pulverized High Volatile Coal
Table 6	D Furnace Sulfur Balance – Granular High Volatile and Pulverized High Volatile Coal Periods

LIST OF FIGURES

- Figure 1 Burns Harbor Coal Grinding Mill Energy Consumption
- Figure 2 Burns Harbor D Furnace Inwall Refractory Temperatures
- Figure 3 Burns Harbor D Furnace Thermal Loads

۰.

- Figure 4 Burns Harbor D Furnace Thermal Loads
- Figure 5 Burns Harbor D Furnace Thermal Loads
- Figure 6 Burns Harbor D Furnace Lining Wear vs Coal Injection

APPENDICES

- Appendix I Gaseous Stream Testing Results
- Appendix II Wastewater Monitoring Summaries

REFERENCES

- Trial 1 Report Clean Coal III Project BLAST FURNACE GRANULAR COAL INJECTION – RESULTS WITH LOW VOLATILE COAL, November 1997 Cooperative Agreement No.: DE-FC21-91MC27362
- 2. Trial 2 Report Clean Coal III Project BLAST FURNACE GRANULAR COAL INJECTION – RESULTS WITH HIGHER ASH COAL, November 1997 Cooperative Agreement No.: DE-FC21-91MC27362
- 3. QUARTERLY TECHNICAL PROGRESS REPORT BLAST FURNACE GRANULATED COAL INJECTION – JULY 1 TO SEPTEMBER 30, 1998
- 4. QUARTERLY TECHNICAL PROGRESS REPORT BLAST FURNACE GRANULATED COAL INJECTION – APRIL 1 TO JUNE 30, 1998

•

•

D Furnace DOE Trials with High Volatile Coal

.

	BASE	TRIAL 1	TRIAL 2
	Buchanan Coal	Oxbow, Colorado Coal	Oxbow, Colorado Coal
	Granular	Granular	Pulverized
	AUGUST 1998	OCTOBER 1998	November 13-26,1998
Production, NTHM/day	7078	6689	6710
Delays, Min/day	48	66	73
Coke Rate, Ib/NTHM Rep.	683	798	800
Natural Gas Rate, lbs/NTHM	2	2	0
Injected Coal Rate, lbs/NTHM	250	190	183
Total Fuel Rate, lbs/NTHM	935	990	983
Burden %:			
Sinter	30.8	35.3	35.7
Pellets	69.0	64.5	63.6
Misc.	.2	.1	.7
BOF Slag, Ibs/NTHM	10	0	D
Blast Conditions:			
Dry Air, SCFM	149,599	150,096	141,539
Blast Pressure, psig	37.6	38.0	37.4
Permeability	1.43	1.42	1.33
Oxygen in Wind, %	25.5	25.3	26.4
Temp, F	2089	2044	2080
Moist., Grs/SCF	21.2	. 19.3	22.8
Flame Temp, F	3836	3870	3935
Top Temp, F	263	216	197
Top Press, psig	16.7	17.0	16.6
Coke:			
H2O, %	4.7	5.1	5.2
Chinese Coke, %	14.5	12.3	0
Hot Metal %:			
Silicon	.49	.60	.52
Standard Dev.	.104	.115	.110
Sulfur	.041	.036	.035
Standard Dev.	.016	.012	.014
Phos.	.058	.062	.061
Mn.	.37	.40	.39
Temp., F	2652	2640	2686
Slag %:			
SiO2	37.30	36.60	36.20
AI2O3	9.47	10.46	10.50
CaO	40.09	39.29	38.82
MgO	11.21	11.26	11.72
Mn	.36	.37	.37
Sultur	1.45	1.43	1.33
D/A	1.10	1.07	1.08
	1.38	1.38	1.40
volume, IDS/INTHM	430	461	504

Coal Chemistry Comparison of Low Volatile and High Volatile Coal

Coal	Buchanan			Oxbow, Colorado				
		TRAIN #	#1	#2	#3	#4	#5	AVERAGE
Vol Matter, %	18.00		37.83	37.8 9	36.62	36.68	36.68	37.14
C(%)	86.3		74.44	75.10	72.62	72.39	71.52	73.214
O(%)	2.18	,	8.13	8.03	7.90	8.15	7.74	7.99
H2(%)	4.15		5.28	5.26	5.01	5.08	4.91	5.108
N2(%)	1.20		1.79	1.76	1.62	1.78	1.66	1.722
CI(%)	.16		.02	.02	.01	.01	.03	0.018
Ash. %	5.23		9.51	9.06	12.07	11.90	13.45	11.198
Total Mois.,%	6.45		NA	NA	5.79	5.47	6.46	5.91
Sulfur, %	.76		.85	.79	.72	.70	.72	.76
GHV, BTU/b HGI	15,000 100		13,519 NA	13, 493 NA	12,962 NA	13,306 NA	12,761 NA	13,208 46 - 48
Phos. (P2O5),%	.004		.055	.057	.041	.064	.050	.053
Alkali, %								
(Na20,K20)	(.030 , .09)		(.262,.087)	(.262,.087)	(.279,.129)	(.361,.148)	(.370, 159)	(.265,.122)
SiO2 (%)	1.77		5.16	5.02	5.68	8.09	8.13	6.42
AI2O3 (%)	1.14		2.28	2.44	1.99	2.66	2.92	2.46
CaO (%)	.63		.36	.37	.31	.42	.39	.37
MgO (%)	.10		.18	.17	.20	.24	.28	.21

Raw Coal and Product Coal Sizing Comparison

Buchanan Coal Raw Coal Sizing

•

Screen Size	% On	% Cum
+2"	0.0	0.0
2x1-1/4"	0.6	0.6
1 -1/4 x1"	0.7	1.3
1 x3/4 "	1.7	3.0
3/4x1/2"	4.5	7.5
1/2x3/8"	1.5	9.0
3/8x1/4"	8.0	17.0
1/4 x4M	2.0	19.0
4x8M	15.0	34.0
8x16M	17.0	51.0
16x28M	16.0	67.0
28x48M	13.0	80.0
48x100M	11.0	91.0
100x200M	5.3	96.3
-200M	3.7	100.0

Buchanan Coal Product Coal Sizing Granular Size August 1998

Screen Size	<u>% On</u>	% Cum
+4M	0.0	0.0
-4x8M	0.2	0.2
-8x16M	2.0	2.2
-16x30M	8.1	10.3
-30x50M	15.3	25.6
-50x100M	28.4	54.0
-100x200M	32.6	86.6
-200x325M	12.2	98.8
-325M	1.2	100.0

Screen Size	<u>% On</u>	% Cum
2*	0.0	0.0
1 "	17.9	17.9
1/ 2 "	25.1	43.0
1/4"	21.0	64.0
-1/4"	36.0	100.0

Oxbow Coal Raw Coal Sizing

Oxbow Coal Product Coal Sizing Granular Size October 1998

Screen Size	% On	% Cum
+4M	0.0	0.0
-4x8M	1.1	1.1
-8x16M	6.2	7.3
-16x30M	14.5	21.8
-30x50M	16.6	38.4
-50x100M	18.1	56.5
-100x200M	18.6	75.1
-200x325M	15.1	91.2
-325M	9.8	100.0

Oxbow Coal Product Coal Sizing Pulverized Size November 13-26

+ 50 Mesh	- 200 Mesh
0.48%	66.10%

Oxbow Coal Product Coal Sizing Pulverized Size 2 Sample Average (Wet Analysis)

		Screen Size	% Cum
		+8M	0.00
		-8x16M	0.03
		-16x28M	0.18
Granulated Coal is:	100% -4 Mesh(5mm)	-28x48M	0.56
	98% -7 Mesh(3mm)	-48x100M	7.07
	< 30% -200 Mesh	-100x200M	26.24
		-200x325M	49.40
Pulverized Coal is:	65% -200 Mesh	-325M	100.00

BURNS HARBOR D FURNACE ADJUSTED COKE RATE COMPARISON GRANULAR LOW VOLATILE COAL COMPARED TO GRANULAR HIGH VOLATILE COAL

	Buchanan Base AUGUST 1998	Colorado Oxbow OCTOBER 1998
Coke Correction Variables:	Granular	Granular
Natural Gas, Ibs/NTHM Coke Correction, Ibs coke	2.0	2.0 0.0
Injected Coal, Ibs/NTHM Coke Correction, Ibs coke	250	190 -60.0
Sinter, % Coke Correction, lbs coke	30.6	35.0 +3.5
Pellets, % Coke Correction, lbs coke	68.5	63.9 +3.7
Wind Volume, SCFM Coke Correction, lbs coke	149,600	149,600 0.0
Blast Temperature, F Coke Correction, Ibs coke	2089	2045 •7.7
Added Moisture, Grs./SCFM Wind Coke Correction, lbs coke	21.2	19.5 +5.8
Iron Silicon Content, % Coke Correction, Ibs coke	.49	.60 -11.0
Iron Sulfur Content, % Coke Correction, lbs coke	.042	.037 -2.5
Iron Manganese Content, % Coke Correction, Ibs coke	.37	.40 -0.7
Coke Ash(Includes Chinese Coke) Coke Correction, Ibs coke	7.80	7.80 0.0
TOTAL CORRECTIONS: lbs coke	BASE	-68.9
Reported Furnace Coke Rate, lbs/NTHM Corrected Furnace Coke Rate, lbs/NTHM	683 BASE	798 729

Coke Rate Difference from Base

.

.

46 Pounds of Coke/NTHM

•

.

.

.

•

BURNS HARBOR D FURNACE ADJUSTED COKE RATE COMPARISON GRANULAR HIGH VOLATILE COAL COMPARED TO PULVERIZED HIGH VOLATILE COAL

Coke Correction Variables:	Colorado Oxbow OCTOBER 1998 Granular	Colorado Oxbow 11/13-11/26/98 <u>Pulverized</u>
Natural Gas, Ibs/NTHM Coke Correction, Ibs coke	2.0	0.0 -2.4
Injected Coal, Ibs/NTHM Coke Correction, Ibs coke	190	183 -7.0
Sinter, % Coke Correction, Ibs coke	35.0	35.7 +0.6
Pellets, % Coke Correction, ibs coke	63.9	63.6 + 0.2
Wind Volume, SCFM Coke Correction, Ibs coke	149,600	141,539 +8.2
Blast Temperature, F Coke Correction, Ibs coke	2045	2080 +6.0
Added Moisture, Grs./SCFM Wind Coke Correction, Ibs coke	19.5	22.8 -11.0
Iron Silicon Content, % Coke Correction, lbs coke	.60	.52 +8.0
Iron Sulfur Content, % Coke Correction, Ibs coke	.037	.035 -1.0
Iron Manganese Content, % Coke Correction, Ibs coke	.40	.39 +0.3
Furnace Slag Volume, Ib/NTHM Coke Correction, Ibs coke	461	504 -8.6
Coke Ash(Includes Chinese Coke) Coke Correction, Ibs coke	7.80	7.70 +2.0
TOTAL CORRECTIONS: lbs coke	BASE	-4.7
Reported Furnace Coke Rate, lbs/NTHM Corrected Furnace Coke Rate, lbs/NTHM	798 BASE	800 795
Coke Rate Difference from Base		-3

BURNS HARBOR D FURNACE SULFUR BALANCE GRANULAR HIGH VOLATILE COAL TRIAL

÷

ULFUR INPUT:	October 1998	SULFUR OUTPUT	October 1998
laterial:		Material:	
urnace Coke, Sulfur Analysis	0.72%	Blast Furnace Slag, Sulfur Analysis	1.43%
Tons Coke Used	82830	Tons Produced	47799
Tons Sulfur In	596.4	Tons Sulfur Out	683.5
njected Coal, Sulfur Analysis	0.76%	Blast Furnace Iron, Sulfur Analysis	0.036%
Tons Coal In	19804	Tons Produced	207373
Tons Sulfur In	150.5	Tons Sulfur Out	74.7
Binter, Sulfur Analysis	0.02%	Flue Dust, Sulfur Analysis	0.46%
Tons Sinter Used	115766	Tons Produced	1144
Tons Sulfur In	23.2	Tons Sulfur Out	5.3
² ellets, Sulfur Analysis	0.01%	Filter Cake, Sulfur Analysis	0.52%
Tons Sinter Used	211703	Tons Produced	2995
Tons Sulfur In	21.2	Tons Sulfur Out	15.6
Scrap, Sulfur Analysis	0.13%	Top Gas, Sulfur Content	1.7 grs./100SCF
Tons Scrap Used	3546	Gas Produced, MMCF	103,400
Tons Sulfur In	4.6	Tons Sulfur Out	12.5
TOTAL TONS OF SULFUR IN:	795.9	TOTAL TONS OF SULFUR OUT: SULFUR OUT/SULFUR IN:	791.6 0.995

BURNS HARBOR D FURNACE SULFUR BALANCE PULVERIZED HIGH VOLATILE COAL TRIAL

SULFUR INPUT:	November 13-26,1998	SULFUR OUTPUT	November 13-26,1998
Material:		Material:	
Furnace Coke, Sulfur Analysis	0.72%	Blast Furnace Slag, Sulfur Analysis	1.33%
Tons Coke Used	37565	Tons Produced	23719
Tons Sulfur In	270.5	Tons Sulfur Out	315.5
Injected Coal, Sulfur Analysis	0.76%	Blast Furnace Iron, Sulfur Analysis	0.035%
Tons Coal In	8595	Tons Produced	93938
Tons Sulfur In	65.3	Tons Sulfur Out	32.8
Sinter, Sulfur Analysis	0.02%	Flue Dust, Sulfur Analysis	0.55%
Tons Sinter Used	52835	Tons Produced	456
Tons Sulfur In	10.6	Tons Sulfur Out	2.5
Pellets, Sulfur Analysis	0.01%	Filter Cake, Sulfur Analysis	0.46%
Tons Sinter Used	94255	Tons Produced	1148
Tons Sulfur in	9.4	Tons Sulfur Out	5.3
Scrap, Sulfur Analysis	0.13%	Top Gas, Sulfur Content	1.1 ars./100SCF
Tons Scrap Used	1070	Gas Produced, MMCF	47,400
Tons Sulfur In	1.4	Tons Sulfur Out	3.7
TOTAL TONS OF SULFUR IN:	357.2	TOTAL TONS OF SULFUR OUT:	359.8
		SULFUR OUT/SULFUR IN:	1.007

BURNS HARBOR - COAL GRINDING MILL ENERGY CONSUMPTION

•

•

.

BURNS HARBOR D FURNACE - THERMAL LOADS

BURNS HARBOR D FURNACE - THERMAL LOADS

BURNS HARBOR D FURNACE - THERMAL LOADS

FIGURE 6 LINING WEAR vs. COAL INJECTION BURNS HARBOR "D" FURNACE

Date Blown In: 11/4/91 Date of Last Measurement: 11/12/98 RAS/JCM Blast Furnace Granulated Coal Injection Environmental Monitoring Report .

•

.

Appendix I – Gaseous Stream Testing Results

Mostardi-Platt Associates, Inc. A Full-Service Environmental Consulting Company 945 Oaklawn Avenue Elmhurst, Illinois 60126-1012 Phone 630-993-9000 Facsimile 630-993-9017

GAS ANALYSIS STUDY Performed For BETHLEHEM STEEL CORPORATION At The Burns Harbor Plant Blast Furnaces C and D Burns Harbor, Indiana October 23, 1998

[©] Copyright 1998 All rights reserved in Mostardi-Platt Associates, Inc.

MOSTARDI PLATT PROJECT 84115 DATE SUBMITTED: NOVEMBER 13, 1998 .

Bethlehem Steel C-Blast Furnace Gas Test Results Burns Harbor, Indiana

					Total Sulfur Content		
Date Sampled	Time Sampled	Hydrogen (mol %)	CO2 (mol %)	O2 (mol %)	Carbon Monoxide (mol %)	(ppmv)	(as gr/100 scf)
10/23/98	0800	6.44	23.5	0.67	22.9	20.1	1.26
10/23/98	1015	6.45	23.2	0.70	21.6	29.4	1.84
10/23/98	1145	8.38	22.4	0.73	21.1	48.9	3.06

D-Blast Furnace Gas Test Results Burns Harbor, Indiana

						Total Sulfur Content			
Date Sampled	Time Sampled	Hydrogen (mol %)	CO1 (mol %)	O2 (mol %)	Carbon Monoxide (mol %)	(ppmv)	(as gr/100 scf)		
10/23/98	0800	3.46	23.6	0.67	22.6	32.2	2.01		
10/23/98	1015	2.96	21.4	0.70	20.2	25.6	1.60		
10/23/98	1145	3.15	21.7	0.59	20.8	23.7	1.48		

.

IGT Institute of Ges Technology

.

Analytical Report

المراجب المراجب والمرادين

(1/)2/91 IGT Log # : 98146201 xts

Cileat Name: M	atterdi-Plat	Associated	. inc.	
IGT Sample Number 9	1.46701			
Samela Descriptions #4	116.001			- <u>1</u> CI
Seathle Parculate		8	B 113	
Date ABaryzes: 10	110134 110134	ABBIJE	N B	
Component	Mai %	Dec. Limit	Weight %	
tellum	N.D.	0.001%	N.D.	
Hydrogen	5.44%	0.04%	6.43%	
Carbon Diexide	23.5%	0,03%	34,3%	
Ethane		0.03%		
Ethane		0,03%		
Окудин/Агран	0.67%	0.03%	8.72%	
Niewgez	46.5%	0,03%	43.2%	
Menhape		0.03%		
Carbon Monoxide	22.9%	0.03%	317 2	
Edityme		0.002%		
Topana		0.002%		
Propulse		0.002%		
Propudienc		0,002%		
Propyrise		0.002%		
-Butane		0.002%		
-Britane		0.002%		
-Butana		0.002%		
- Butane		0.002%		
l'Ans-2-Butche		0.002%		
Cis-2-Durene		0.002%		
"J-Bundimu		0.002%		
teo-Pentante		0.001%		
-Pastana		0.002%		
-Penane		0.002%		
Personal State Sta		0.002%		
terane Mus		0.002%		
ilydrogen Sulfide	8.0001%	0,0001%	8.0001%	
Carbonyi Sulfida	0.00190%	0,00002%	0.00379%	
Joidand field		0.00%		
	<u>N.D.</u>	0.001%	<u>N.D.</u>	
[otal	100.0%			
Calculated Rest Gas Proje	rties per AST?	4 03588-91		
Lange (area)	14.694	14.77		
Create (poin/**	1 9000	0 98907		
Balatius Canadas -	1 6464	1 0404		
	T 200			
	73.7 Ba A	77.7 B4 7		
	73.8	<u></u>		
	01 7	ei «		

Notes: All black values are below described limit N.D. - Net Determined

IGT Institute of Gas Technology

...........

.....

11/12/98 IGT Log # : 98146201.xis

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: <u>Mosardi-Platt Associates, Inc.</u> IGT Sample Number: 98146201 Sample Description: 84115-001 Date Analyzed: 10/29-11/6/98 Analyst: RJB

1CA

limits, and are included for information only. All blank values are below detection limit.

Component Name	PPN	AV I	Component Name	PPMV
Hydrogen Sulfide		1.1	Thiophene	· · · · · ·
Sulfur Dioxide			C1-Thiophenes	
Carbonyi Sulfide	1	9.0	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiopheae	
Ethyl Mercsptan			C1-Benzochiophenes	
i-Propyl Mercaptan			C2-Benzothiopbenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
			Thiophenol	
Dimethyl Sulfide				
Methyl Ethyl Sulfide			Individual Unidentified	
Diethyl Sulfide			Sulfur Compounds	
Di-t-Butyl Sulfide			(all as monosulfides)	
Dimethyl Disulfide				
Methyl Ethyl Disulfide				•
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl a-Propyl Disulfide				
Ethyl t-Buryl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide			Total Identified:	20.1
Di-n-Propyl Disulfide				
i-Propyl I-Butyl Disulfide			Total Sulfar Content	
a-Propyl t-Butyl Disulfide			AS PPMV	20.1
Di-t-Butyl Disulfide			As Grains/100 SCF	1.26
Dimethyl Trisulfide				
Disthyl Trisulfide				
Di-t-Butyl Trisulfide				
• • •	Notes:	Co	mponent Detection Limit:	
		1 p	parv for Hydrogen Sulfide	
		0.1	ppmv for all other compounds p	er sulfur
		Un	derlined numbers are below stand	and detectio

Institute of Gas Technology 1700 South Mt. Prospect Rd. Des Plaines, JL 60018

EXTENDED GAS ANALYSIS BY GC/FID

IGT Sample Number: 998146201 Sample Description: \$4115-001 Date Analyzed: 11/11/98 Analyst: RJB

1CA

Component Name	Mole %	Wt %	Component Name	Mole %	Wt %
Neon-state	BÖL	See	Paradine		
Isopentanc	BDL	SynGes	Hextings	BDL	BDL
n-Penninge	BDL	Data	Heptines	BDL	BOL
			2.2.4-Trimethylocataoc	BDL	BOL
			Octates	BDL	BDL
Cyclealkauez			Nonnet	BDL	BOL
Cyclopentane	BDL	BDL	Decanes	BDL	BOL
Methylcyclopenane	BDL	BDL	Undecases	BDL	BDL
Cyclohexane	BDL	BDL	Dodecanes	BOL	BOL
Methylcyclohexage	BDL	BDL	Tridecapes	BDL	BOL
			Terraducanes	BDL	BOL
Aromatics			Pentadecanes	BDL	BOL
Benzone	BDL	BDL	Hexadecanes	BDL	BDL
Toluene	BDL	BDL	Heptadecanes	BDL	BOL
Ethylbenzene	BDL	BDL	Octadacanes	BDL	BDL
m-Xylene	BDL	BOL	Nonadecanes	BDL	BDL
p-Xylene	BDL	BDL	Eicosanes +	BDL	BDL
Styrune	BDL	BOL			
o-Xylenc	BDL	BOL			
C3 Benzenes	BOL	SDL			•
Nachthaisne	BDL	BDL			
C1 Naphtheienes	BDL	BDL			
C2 Naphthalenes	BOL	BDL			
	Tomi from Cycle	ocatione to Elcos	ines +	BDL	BDL

Notes: BDL = below detection limit (0.0001 mole %).

-

,

IGT Institute of Gas Technology

-

Net HV (Dry) =

Net HV (Set.) =

.

Analytical Report

11/12/98 IGT Log # : 98146202.xls

Major Componen	t Gas Analysis	By Gas Chromatography
Client Name:	Mastardi-Plat	Associates, Inc.
ICT Sample Number:	96146202	
Sample Description:	84115-004	
Date Analyzed:	10/29-11/6/98	Analyst: R/B

2CB

Composent	Mol %	Des. Limit	Weight %
Hatian	N.D.	0.001%	N.D.
Hydrogen	6.45%	0.04%	6.0%
Carbon Diexide	23.2%	0.03%	33.9%
Eduar	_	0.03%	
Eduar		0.03%	
Oxygen/Argen	0.70%	0.03%	0.75%
Nitragan	48.1%	0.03%	44.8%
Mathene		0.03%	
Carbon Monoxide	21.6%	0.03%	20.[%
Ethyne		0.002%	
Propune		0.002%	
Propune		0.002%	
Propadione		0.002%	
Propyrie		0.002%	
i- Bugne		0.002%	
n-Butanc		0.002%	
I-Busene		0.002%	
i-Buttine		0.002%	
Trans-2-Butana		0.002%	
Cis-2-Bulline		0.002%	
1.3-Quantinum		0.002%	
NIG-Puptana		0.001%	
i-Ptowne		0.002%	
e-Pasane		0.002%	
Pendanes		0.002%	
Homme Plus		0.002%	
Hydrogen Sullide	6.0009%	0.0001%	6,6010%
Carbonyi Sulida	8.89206%	0.00002%	0.0041196
Unedentified		0.03%	
	<u>N.D.</u>	0.001%	<u>. N.D.</u>
l ethr	100.0%		(81.8%
Calculated Reel Gas Prope	rtim per ASTN	D3588-91	
Temp. ("F)	68.6	6.6	
Prop. (pela)-	14.696	14.73	
Compressibility Factor (2) =	0.99909	0,99909	
Relative Density =	1.0389	1.0389	
Great HV (DRY) =	91.4	91.6	
Gress HV (SAT.) =	89.6	90.0	
Wobbe Loden =	89.6	19 1	

Notes: All blank values are balow detection limit N.D. - Not Determined

87.0

85,4

87.2

15.6

2CB

ļ

Analytical Report

11/12/98 IGT Log # : 98146202_xls

Institute of Gas Technology

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc.

IGT Sample Number: 9\$146202

Sample Description: \$4115-004

Date Analyzed: 10/29-11/6/98 **Analyst:** RJB

Component Name	PPM	ÍV 🛛	Component Name	PPMV
Hydrogen Sulfide		8.8	Thiophene	
Sulfur Dioxide			C1-Thiophenes	•
Carbonyl Sulfide	20	0.6	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyi Mercaptao				
t-Butyl Mercaptan			Thiophane	
			Thiophenol	
Dimethyl Sulfide				
Methyl Ethyl Sulfide			Individual Unidentified	
Diethyl Sulfide			Sulfur Compounds	
Di-t-Butyl Sulfide			(all as monosulfides)	
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyi t-Butyl Disulfide			-	
Di-i-Propyl Disulfide			Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide			Total Identified:	29.4
Di-g-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Salfur Contest	
n-Propyl t-Buryl Disulfide			AS PPMV	29.4
Di-t-Bury! Disulfide			As Grains/100 SCF	1.54
Dimethyl Trisulfide				
Disthyl Trisuifide				
Di-t-Buryl Trisulfide				
	Notes:	Com	ponent Detection Limit:	
			ny for Hydrogen Sulfide	
		0.1 m	prov for all other compounds n	er sulfur
		Unde	wined numbers are below stan	danti deternico

limits, and are included for information only. All blank values are below detection limit.

EXTENDED GAS ANALYSIS BY GC/FID

-

ST Sample Number: 998146202 Sample Description: \$4115-004 Date Analyzed: 11/11/98 Analyst: RJB

2 C B

ponent Name	Mole %	Wt %	Component Name	Mole %	Wt %
Entrac	BDL	See	Pureffins		
NULDE	BDL	SynGes	Hexanes	BDL	BOL
tane	BDL	Data	Heptanes	BDL	BDL
			2.2.+-Trimethylpentane	BOL	BDL
			Octanes	BOL	BDL
elicanes			Nonance	BDL	BDL
pentanc	BDL	BDL	Decanes	BDL	BDL
/icyclopentage	BDL	BOL	Undecanas	BOL	BOL
herane	BDL	BDL	Dodocanes	BDL	BDL
/icyclohexane	BDL	BDL	Tridecapes	BDL	BDL
•			Tetradecanes	BOL	BOL
untier			Pensadocanes	BDL	BDL
	0.0001%	<0.0001%	Hexadecapes	BDL	BDL
DC	BDL	BDL	Heptadecanes	BDL	BDL
Penzene	BDL	BDL	Octadecenes	BDL	BDL
lene	BDL	BDL	Nonadecanes	BDL	BOL
enc	BDL	BDL	Eicosanes +	BDL	BDL
10	BDL	BDL	•		
20£	BDL	BDL			
125765	BDL	BOL			
taiene	BDL	BDL			
obthalenes	BDL	BDL			
phibalenes	BDL	BDL			
	Total from Cycl	openane to Eicos	pes +	0.0001%	. <0.0001%

: BDL - below detection limit (0.0001 mole %).

,

,

.

Analytical Report

1/12/98 KT Log # : 96146203.sts

Majer Component Gas Analys	a By Gas Chromatography
Client Name: Montardi-Pl	att Associates, Iac.
IGT Sample Number: 98146203	$2 \subset \mathbb{A}$
Sample Description: \$4115-005	
Data Analyzed: 10/29-11/9/9	S Analyst: R/B

Component	Mei %	Des Link	Weight %
Hatinan	N.D.	0.001%	N.D.
Hydrogen	1.34%	0.04%	6.57%
Carbon Districts	22.4%	0.03%	33.9%
Ethene		0.03%	
Ethene		0.03%	
Okyach Areca	0.73%	0.03%	8.30%
Mennen	47.4%	0.03%	45.1%
Mathene		0.03%	
Carbos Menuxide	21.1%	0.03%	20.8%
Ediyac		0.002%	
Propense		0.002%	
Propence		0,002%	
Propadiene		0.002%	
Progyme		0.002%	
i-Bussee		0.002%	
a-Bulline		0.002%	
1-Dutres		0.002%	
i-Buinns		0.002%	
Trans-2-Busine		0.002%	
Cis-2-Buteon		0.002%	
1.3-Butadiene		0.002%	
nm-Pencase		0,001%	
j-Punane		0.002%	
e-Peemec		0 002%	
Puntones		0.002%	
House Plus		0.002%	
Hydrogen Selfide	8,9027%	0.0001%	19131%
Carbonyl Sullide	0.00215%	0.00002%	0.00439%
Unidenzified		0.03%	
	N.D.	0.001%	<u>N.D.</u>
Total	100.8%		106.8%
Calculated Real Gas Prope	rties per ASTM	D3588-91	
Temp. ("F)=	68.0	60.0	
Press, (pein)-	14.696	14.73	
Compressibility Factor (z) =	0,99913	0.99913	
Relative Dunnity ••	1.0174	1,0174	
Gree HV (DRY) =	96.3	96.5	
Grans HV (SAT.) =	94.6	94.8	
Wobbe index =	9 <u>5</u> .5	95.7	
Net HV (Dry) =	90.6	90,8	
Nut HV (Sat.) =	89.0	89.2	

Notes: All blank values are below detection limit N.D. - Net Desermined

ţ

Analytical Report

l 1/12/98 [GT Log # : 98146203.xls

Institute of Gas Technology

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates, Inc.

IGT Sample Number: 98146203 Sample Description: \$4115-005 Date Analyzed: 10/29-11/9/98

Analyst: RJB

3CA

Component Name	PPM	V	Component Name	PPMV		
Hydrogen Sulfide	27.	.4	Thiophene			
Sulfur Dioxide			C1-Thiophenes			
Carbonyl Sulfide	21.	5	C2-Thiophenes			
Carbon Disulfide			C3-Thiophenes			
Methyl Mercaptan			Benzochiophene			
Ethyl Merceptan			C1-Benzothiophenes			
i-Propyl Mercaptan			C2-Benzothiophenes			
n-Propyl Mercaptan						
t-Butyl Mercaptan			Thiophane			
			Thiophenol			
Dimethyl Sulfide			-			
Methyl Ethyl Sulfide			Individual Unidentified			
Diethyl Sulfide			Sulfur Compounds			
Di-t-Butyl Sulfide			(all as monosulfides)			
Dimethyl Disulfide						
Methyl Ethyl Disulfide						
Methyl i-Propyl Disulfide						
Diethyl Disulfide						
Methyl n-Propyl Disulfide						
Methyl t-Buryl Disulfide						
Ethyl i-Propyl Disulfide						
Ethyl p-Propyl Disulfide						
Ethyi t-Buryl Disulfide						
Di-i-Propyl Disulfide			Total Unidentified:	0.00		
-Propyl a-Propyl Disulfide			Total Identified:	48.9		
Di-n-Progyl Disulfide						
-Propyl t-Butyl Disulfide			Total Salfur Content			
-Proovi t-Butvi Disulfide			AS PPMV	48.9		
Di-t-Butyl Disulfide			As Grains/100 SCF	3.06		
Dimethyl Trisulfide						
Disthy! Trisulfide						
Di-t-Buryl Trisulfide						
	Notes:	Сотц	ponent Detection Limit:			
		l ppn	i ppmv for Hydrogen Sulfide			
		0.1 ppmv for all other compounds per sulfur				
		Unde	rlined numbers are below stan	dard detectio		
		limits, and are included for information only.				

All blank values are below detection limit.
- -

EXTENDED GAS ANALYSIS BY GC/FID

T Sample Number: 998146203 ample Description: 84115-005 Date Annlyzed: 11/11/98 Annlyzet: RJB

3CA

onent Name	Mole %	Wt %	Component Name	Mole %	Wt %
(200	BDL	See	Parafiles		
inc	BDL	SynGus	Hexenes	BDL	BDL
8 6	BDL	Deta	Heptages	BDL	BDL
			2.2.4-Tranethylpentane	BDL	BDL
			Octimes	BDL	BDL
ikanes			Nonsnes	BDL	BDL
xotane	BDL	BDL	Decanes	BOL	BDL
yclopeneane	BOL	BDL	Undecanes	BDL	BOL
	BDL	BDL	Dodecanes	BOL	BDL
ryciohexano	BOL	BDL	Tridecanes	BOL	BOL
			Tetradecanes	BDL	BDL
tics .			Pontadecanes	BDL	BOL
:	0.0002%	<0.0001%	Hexadecanes	BDL	BDL
•	0.0001%	<0.0001%	Heptadecanes	BDL	BDL
12enc	BDL	BDL	Octadecanes	BDL	BDL
16	BOL	BDL	Nonadacanes	BDL	BDL
•	BDL	BDL	Eicosanes +	BDL	BDL
	BOL	BDL			
•	BOL	BDL			
Xnet	BDL	BDL			
lene	BDL	BDI.			
shalenes	BDL	BDL			
theienes	BDL	BDL			
	Total from Cycl	opentane to Eicosa	cies +	0.0003%	<0.0002%

IDL = below detection limit (0.0001 mole %).

.

11/12/98

KTT Lag # : 98146204.xis

Analytical Report

Major Component Gas Analysis By Gas Chromatography							
Client Name: Mostardi-Piat	Angeians, Inc.						
IGT Sample Number: 98146204	100						
Sample Description: \$4115-006	IUA						
Date Analyzed: 10/29-11/9/98	Analyst: R/B						

Composent	Mot %	Det Limit	Weight %
Halina	N.D.	0.001%	N.D.
Hydrogen	3.46%	0.04%	1.23%
Carbon Diexide	22.6%	0.03%	31.6%
Silone		0.03%	
Stheas		0.03%	
Oxygen/Argen	0,67%	0.03%	6.78%
Nitragen	49.6%	0.03%	45.0%
Motions		0.03%	
Carbon Mexercide	22.6%	6.03%	28.5%
Ethyne		0.002%	
Propune		0.002%	
Projame		0.002%	
Preparation		0.002%	
Progyne		0.002%	
i-Brane		0.002%	
n-Dimene		0.002%	
1-Butene		0.002%	
i- Buttenc		0.002%	
Trans-2-Buttane		0,002%	
Cla-3-Batante		0.002%	
1,3-Bundime		0.002%	
Ado-Peninat		0.001%	
-Pasiene		0.002%	
A-Palinc		0.002%	
Pervisions		0.007%	
Minane (198		0.002%	
Hydragen Sulfida	0.00041%	0.0001%	0.0004%
Carbony: Sulfige	0.0028296	0,00002%	0.00540%
Viulintiigii		0.03%	
	<u>N.D.</u>	0.001%	N.D.
			14611.29
Colentated Real Gas Prop	rthm per ASTN	L D3588-91	
1 000 0. (* 7)*	10.0	10.1	
PTELL, (print)	[4,876	34.73	
		0.97904	
		1.0612	
		64.6	
LITER HV (3AI.) =	82. 9	10.1	
	Ę1.6		
748t HV (DIY) =	82.0	722	
Nut HV (Sat.) =	80.6	80.8	

Notes: All blank values are below demailes limit N.D. - Net Determined

Institute of Gas Technology

Institute of Gas Technology

Analytical Report

11/12/98 IGT Log # : 98146204_xis

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc. IGT Sample Number: 98146204 Sample Description: 84115-006 Date Analyzed: 10/29-11/9/98 Analyst: RJB

Component Name	Component Name PPMV		Component Name PPM		
Hydrogen Sulfide		.0	Thiophene		
Sulfur Dioxide			C1-Thiophenes		
Carbonyl Suifide	28	12	C2-Thiophenes		
Carbon Disulfide			C3-Thiophenes		
Methyl Mercaptan			Benzothiopheue		
Ethyl Mercaptan			C1-Benzothiophenes		
i-Propyl Mercaptan			C2-Benzothiophenes		
n-Propyi Mercaptan					
t-Butyl Mercaptan			Thiophane		
			Thiophenot		
Dimethyl Sulfide					
Methyl Ethyl Sulfide			Individual Unidentified		
Diethyl Sulfide			Sulfur Compounds		
Di-t-Butyl Sulfide			(all as monosulfides)		
Dimethyl Disulfide			•		
Methyl Ethyl Disulfide					
Methyl i-Propyl Disulfide					
Diethyi Disulfide					
Methyl n-Propyl Disulfide					
Methyl t-Busyl Disulfide					
Ethyl i-Propyl Disulfide					
Ethyl a-Propyl Disulfide					
Ethyl t-Buryl Disulfide					
Di-i-Propyl Disulfide			Total Unidentified:	0.00	
i-Propyl n-Propyl Disulfide			Total Identified:	32.2	
Di-n-Propyl Disulfide					
-Propyl t-Butyl Disulfide			Total Sulfur Content		
n-Propyl t-Buty) Disulfide			AJ PPMV	32.2	
Di-t-Butyl Disulfide			As Grains/100 SCF	2.01	
Dimethyl Trisulfide					
Disthyl Trisulfide					
Di-t-Butyl Trisulfide					
	Notes:	Com	ponent Detection Limit:		
) bbi	nv for Hydrogen Sulfide		
	0.1 ppmv for all other compounds per sulfur				
	Underlined numbers are below standard detectio				
		limi	its, and are included for inform	ntion only.	

All blank values are below detection limit.

1DA

IGT Sample Number: 998146204 Sample Description: 84115-006 Date Analyzed: 11/11/98 Analyzt: RJB

Wt % **Component Name** Mole % Wt % mponent Name Mole % See BDL Paraffies ipentane BOL BOL SynGas Hexanes xentanc 0.0001% BDL tntane BDL Deca Heptanes BDL 2.1.4-Trimethylpentane BDL BDL BDL BDL Octanes losikanes Nonanas BDL BDL BDL BDL Decanes BDL BDL lopentane BDL BOL Undecanes BDL BOL hylcyclopentane BDL BDL BDL Johecane BDL Dodecanes BDL BDL. thylcyclohexane BOL Tridecases BOL BDL BOL Tetradecanes BOL BOL Instics Pentadecanes BDL BDL BDL BOL dent Hexadecanes BDL BOL BDL Heptadecanes BOL UCING ylbenzene BDL BOL Octadecanes BOL BDL (yiene BDL BDL Nonadecunes BDL BDL BOL BDL Eicosanes + BOL BOL ylene BDL BDL **10**C BDL BDL yleac BDL BDL Bensenes BDL BDL hthelene Naphthalenes BDL BDL. Naphthalenes BOL BDL BDL BOL Total from Cyclopentane to Eicosanes +

m: BDL = below detection limit (0.0001 mole %).

...

.

,

Institute of Gas Technology

Analytical Report

1/12/98 IGT Log # : 98146205 xis

٠

.

Majer Compensat Gas Analysis By Gas Chromatography							
Client Name:	Mestardi-Plat	American lac.					
IGT Sample Number:	98146205		200				
Sample Description:	84115-008		2017				
Date Analyzed:	10/30-11/9/98	Analyst: RJB					

Component	Mei %	Det. Limit	Weight %
History.	N.D.	0.001%	N.D.
Hydrogen	2,96%	0.04%	8.29%
Carteen Diexide	21.4%	0.03%	38.6%
Ethene		0.03%	
Estime		0.03%	
Oxygen/Argon	0.70%	0.03%	8,74%
Nitrogen	54.8%	0.03%	58.8%
Methane		0.03%	
Carbon Monexide	20.2%	0.03%	18.4%
Ethyne		0.002%	
Propana		0.002%	
Propuna		0.002%	
Propadient		0.002%	
Ртерупе		0.002%	
i-Bunne		0.002%	
n-Bulanc		0.002%	
1-Burene		0.002%	
i-Butane		0.002%	
Trans-2-Builtine		0.002%	
C:-J-Bentre		0,002%	
1.3-Bussilenc		0.002%	
ROO-PENGLAR		0.001%	
+PCMARE		0.002%	
A-Pentane		0.002%	
		0.002%	
Nextee The		0.002%	
Rydrogen Same		0,000175	
Carpent's Sectore	1.00/30 %	0,0002%	0.043414
	No	9.93%	
Tetal	100.036	0.00176	100.00
Calculate Real Gas Prope	THE PER ASTN	0.562-71	
Committing Renter (a)		14.73	
Relation Descing	1.0607	0.77712	
Canas KN/ (Dat V)	(, 986/A 76/3	3.99924 1 1 1 1	
Green MV (SAT) -	75.5	73.1	
	77 4	73.8	
Mar ATV (Doc) -	70.0 71 0	73.5 71 J	
	74.7 41 4	73,8 71 4	
(MELICA (362) =	11.7	71.0	

Notes: All black values are below detection limit N.D. - Not Detectiond

Analytical Report Institute of Gas Technology

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mosmedi-Plan Associates. Inc. IGT Sample Number: 98146205 Sample Description: 84115-008 2. D.A Date Analyzed: 10/30-11/9/98 Analyst: RJB

Component Name	PPM	V Compos	aent Name	PPMV
Hydrogen Sulfide		Thiophene	<u> </u>	<u> </u>
Sulfur Dioxide		CI-Thiopi	henes	
Carbonyl Sulfide	2:	.6 C2-Thiopi	Senes	
Carbon Disulfide		C3-Thioph	ienes	
Methyl Mercaptan		Benzothia	phene	
Ethyl Mercaptan		C1-Benzol	thiophenes	
i-Propyl Mercaptan		C2-Benzol	thiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan		Thiophene	}	
		Thiopheno	H	
Dimethyl Sulfide				
Methyl Ethyl Sulfide		Individual	Unidentified	
Diethyl Sulfide		Sulfur Con	npounda	
Di-t-Buryl Sulfide		(all as mon	iosulfides)	
Dimethyl Disulfide				
Methyl Ethyl Disulfide		•		-
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl a-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide		Total Unid	entified:	0.00
-Propyl n-Propyl Disulfide		Total Ident	ified:	25.6
Di-n-Propyl Disulfide				
-Propyl t-Buryl Disulfide		Total Sulfi	ar Content	
n-Propyl t-Buryl Disulfide		As PPMV	<u></u>	25.6
Di-t-Butyl Disulfice		As Grains/	100 SCF	1.60
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
-	Notes:	Component Detect	tion Limit:	
		l ppmv for Hydro	gen Sulfide	
		0.1 ppmv for all of	ther compounds per	r sulfur
		Inderlined sumba	un un balant maad	and determin

limits, and are included for information only. All blank values are below detection limit.

IGT Sample Number: 98146205 Sample Description: 84115-008 Date Analyzed: 11/12/98 Analyst: R/B

2DA

omponent Name	mponent Name Mole % Wt % Component Name		Component Name	Mole %	Wt %
BODENNINE	BDL	Sec	Parallas		•_
opentane	BDL	SynGes	Hexanes	BDL	BDL
Pentanc	BOL	Data	Heptanes	BDL	BDL
			2.2.4-Trimethylpentane	BDL	BDL
			Octanes	BOL	BDL
ycloaficanes			Nonanes	BDL	BDL
velopentane	BOL	BDL	Decanes	BDL	BOL
cthylcyclopentane	BDL	BDL	Undecanes	BDL	BDL
reloherane	BDL	BOL	Dodecanes	BDL	BDL
ethylcyclohexane	BDL	BDL	Tridecanes	BDL	BDL
			Tetradecanes	BOL	8DL
rematics			Pentadecanes	BDL	BOL
nzene	BDL	BDL	Hexadecanes	308	BDL
luene	BDL	BDL	Heptadecanes	BDL	BDL
hylbenzene	BOL	BDL	Octadecanes	8DL	BDL
-Xyiene	BDL	BDL	Nonadecanes	BDL	BDL
Xylens	BDL	BDL	Eicosanes -	8DL	BDL
yrene	BOL	BDL			
Xylens	BDL	BDL			
Benzenes	BDL	BOL			•
phthaiene	BDL	BDL		•	
Naphthalenes	BDL	BDL			
2 Naphthalenes	BDL	BDL			
	Total from Over	Secure to Eicon	anes +	ROT	801

oms: BDL = below detection limit (0.0001 mole %).

.

Analytical Report

.

1/12/96 IGT Log # : 98146206.als

.

· · · **- -**

GT Institute of Ges Technology

Majer Component Gas Analysis By Gas Chromatography								
Client Name: Mostardi-Platt Associates, Inc.								
IGT Sample Number: 5	E146206		ZDA					
Sample Description: I	4115-010		501					
Date Analyzed: 1	0/30-11/9/98	Assiyst:	RJB					
		•						
Compensat	Mot %	Det. Limit	Weight %					
Heikum	N.D.	0.001%	N.D.					
ity is gen	3.15%	0.04%	6.21%					
Carbon Diexide	21.7%	0.03%	31.1%					
Ethene		0.03%						
Eduane		0.03%						
Oxygen/Argen	6.57%	0.03%	8.62%					
Niwagen	53.7%	9.03%	49.1%					
Vertene		9.03%						
arben Meesside	26.8%	0.03%	19.8%					
		0.002%						
		0.00276						
		0.00276						
		0.00275						
Restance		0.00276						
		0.00296						
		0.0075%						
Butthe		0.00256						
rant-2-Butane		0.002%						
in-J-Button		0.00276						
J-Berndiene		0.002%						
-Penders		0.00196						
Pennice		0.00256						
-Penne		0.902%						
		0.002%						
lexane Plus		0.002%						
lydrogen Sulfide		0.0001%						
arbonyi Sullida	£.00137%	0.0000296	8.00464%					
in-dentified		0 03%						
	N.D.	0 001%	N.D.					
	Toerbar		100.0%					
Calculated Real Gas Prop	erties per ATTM	(D)588-91						
Temp. (*F)=	68.6	41 0						
Press. (pain)=	14.696	14.73						
Compressibility Factor (z) -	0.99911	0,9991]						
Relative Depoity -	0000.1	1.9600						
Gress HV (DRY) =	77,7	77.8						
Grees HV (SAT.) =	76.3	76.5						
Wubbe Index =	75.4	73,6						
Nat HV (Dry) =	75_5	75.7						
Net HV (Set.) +	74,2	74,4						

Notes: All blank values are below detection limit N.D. - Not Determined GT

Analytical Report Institute of Gas Technology

11/12/98 IGT Log # : 98146206.xls

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates, Inc.

IGT Sample Number: 98146206

Sample Description: \$4115-010 Date Analyzed: 10/30-11/9/98 3DA

Analyst: RJB

PPMV Component Name Component Name PPMV Hydrogen Sulfide Thiophene Sulfur Dioxide C1-Thiophenes Carbonyl Sulfide 23.7 C2-Thiophenes Carbon Disulfide C3-Thiophenes Methyl Mercaptan Benzothiophene Ethyl Mercaptan C1-Benzothiophenes i-Propyl Mercaptan C2-Benzothiophenes n-Propyl Mercaptan t-Buryl Mercaptan Thiophane Thiophenol Dimethyl Sulfide Methyl Ethyl Sulfide Individual Unidentified **Diethyl Sulfide** Sulfur Compounds Di-t-Butyl Sulfide (all as monosulfides) **Dimethyl Disulfide** Methyl Ethyl Disulfide Methyl i-Propyl Disulfide **Diethyl Disulfide** Methyl n-Propyl Disulfide Methyl t-Butyl Disulfide Ethyl i-Propyl Disulfide Ethyl n-Propyl Disulfide Ethyl t-Buryl Disulfide Di-i-Propyl Disulfide Total Unidentified: 0.00 i-Propyl n-Propyl Disulfide Total Identified: 23.7 Di-a-Propyl Disulfide i-Propyl t-Butyl Disulfide **Total Salfur Content** 23.7 n-Propyl t-Butyl Disulfide AS PPMV Di-t-Butyl Disulfide As Grains/100 SCF 1.45 **Dimethyl Trisulfide Diethyl Trisulfide** Di-t-Butyl Trisulfide Notes: **Component Detection Limit:**

I ppurv for Hydrogen Sulfide 0.1 ppmv for all other compounds per sulfur Underlined numbers are below standard detactio limits, and are included for information only, All blank values are below detection limit.

.

.

.

٠

EXTENDED GAS ANALYSIS BY GC/FID

IGT Sample Number: 98146206 Sample Description: 84115-010 Date Analyzed: 11/12/98 Analyst: 8/B

.

3DA

Component Name	Component Name Mole % Wt % Component Name		Mole %	Wt %	
Neopentane	BDL	Sec	?araffins		
Laopentane	BDL	SynGes	Hexagens	BDL	BDL
n-Pentane	BDL	Deck	Hoptanes	BDL	BDL
			2.2.4-Trimethylpentane	BDL	BDL
			Octanes	BDL	BDL
Cycioalkanes			Nonanes	BOL	BDL
Cyclopentane	BDL	BDL	Decenes	BDL	BDL
Methylcyclopentage	BDL	BDL	Undecases	BDL	BDL
Cyclohexane	BDL	BDL	Dodecanes	BDL	BDL
Methylcycloheune	BOL	BDL	Tridecanes	BDL	BDL
			Tetradecases	BDL	BDL
Aromatics			Pensidecanes	BOL	. BDL
Bentitos	0.0001%	⊲0.0001%	Hexadecanes	BDL	· BDL
Tolunne	BDL	BDL	Heptadocanes	BDL	BDL
Ethylbetizene	BDL	BDL	Octadecanes	BDL	BDL
m-Xylene	BDL.	BOL	Nonadacanca	BDL	BDL
p-Xylene	BOL	BDL	Eicosanes +	BDL	BDL
Styrene	BOL	BDL			
o-Xylene	BOL	BDL			
C3 Benzenes	BDL	BDL			
Naphtheices	BDL	BOL		•	
C1 Naphthalenes	BDL	BDL			
C2 Naphthalenes	BDL	BDL			
	Total from Cycl	opentage to Elcose	ne: +	0.0001%	<0.0001%

ious: BDL = below detection limit (0.0001 mole %).

,

.

Sacual Plat Sociality (A Full-Service Environmental Consulting Company 945 Oaklawn Avenue Elmhurst, Illinois 60126-1012 Phone 630-993-9000 Facsimile 630-993-9017

GAS ANALYSIS STUDY Performed For BETHLEHEM STEEL CORPORATION At The Burns Harbor Plant Blast Furnaces C and D Burns Harbor, Indiana November 13, 1998

> © Copyright 1998 All rights reserved in Mostardi-Platt Associates, Inc.

MOSTARDI PLATT PROJECT 84634 DATE SUBMITTED: DECEMBER 18, 1998 .

.

Bethlehem Steel C-Blast Furnace Gas Test Results Burns Harbor, Indiana

						Total Sulfur Content		
Date Sampled	Time Sampled	Hydrogen (mol %)	CO2 (mol %)	O2 (mol %)	Carbon Monoxide (mol %)	(ppmv)	(as gr/100 scf)	
11/13/98	1000	13.7	31.9	0.65	9.40	28.0	1.75	
11/13/98	1115	8.2	20.6	0.84	21.9	40.0	2.50	
11/13/98	1215	14.1	34.4	0.67	4.82	18.6	1.16	

D-Blast Furnace Gas Test Results Burns Harbor, Indiana

						Total Sulfur Content		
Date Sampled	Time Sampled	Hydrogen (mol %)	CO2 (mol %)	O2 (mol %)	Carbon Monoxide (mol %)	(ppmv)	(as gr/100 scf)	
11/13/98	1000	2.98	19.8	0.63	21.7	12.9	0.81	
11/13/98	1115	2.99	21.9	0.66	22.5	19.9	1.24	
11/13/98	1215	3.05	21.1	0.58	21.0	20.4	1.28	

Analytical Report

۰.

BT Institute of Gas Technology

.

12/3/98 IGT Log # 98148701.xls

.

Major Componen	t Gas Analysis By Gas Chromatography
Client Name:	Mostardi-Platt Associates, Inc.
IGT Sample Number:	98148701
Sample Description:	84634-001

Date Analyzed: 11/17-12/1/98 Analyst: RJB

Mal % Des Limit - Walaba %

Component	Mei %	Det. Limit	Weight %
Helium	N.D.	0.001%	N.D.
Hydrogen	13.7%	0.04%	0.94%
Carbon Dioxide	31.9%	0.03%	47.5%
Ethene		0.03%	
Ethane		0.03%	
Oxygen/Argon	0.65%	0.03%	0.72%
Nitrogen	43.9%	0.03%	41.7%
Methane	0.47%	0.03%	0.25%
Carbon Monoxide	9,40%	0.03%	8.92%
Ethyne		9.002%	
Рторале		0.002%	
Propenc		0.002%	
Propadiene		0.002%	
Рторупе		0.002%	
i-Butane		0.002%	
n-Butane		0 002%	
i-Butenc		0.002%	
i-Butene		0.002%	
Trans-2-Butene		0.002%	
Cis-2-Butene		0.002%	
1,3-Butadiene		0.002%	
neo-Pentane		0.001%	
i-Pentane		0.002%	
n-Pentane		0.002%	
Pentenes		0.002%	
Hexane Plus		0.002%	
Hydrogen Sulfide	0.0005%	0.0001%	0.0006 %
Carbonyl Suitide	0.00225%	0.00002%	0.00458%
Unidentified		0.03%	
Water	<u>D.N</u>	0.001%	<u>N.D.</u>
Total .	100.0%		100.0%
Calculated Real Gas Prope	rties per ASTM	D3588-91	
Temp. (*F)=	60.0	60.0	
Press. (psia)=	14.696	14.73	
Compressibility Factor [z] =	0.99886	0.99886	
Relative Density *	1.0199	1.0199	
Gross HV (DRY) =	81.9	\$2. 1	-
Gross HV (SAT.) =	\$0.4	\$0 .6	
Wobbe Index =	81.1	\$1.3	
Net $HV(Dry) =$	72.0	72.2	
Net HV (Sat.) =	70.8	70.9	

Notes: All blank values are below detection limit

N.D. - Not Determined

Flowing liquid and black solid material were present in the sample cylinder.

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc.

IGT Sample Number: 98148701

Sample Description: 84634-001

Date Analyzed: 11/17-12/1/98 Analyst: RJB

Component Name	PPN	ſV	Component Name	PPMV
Hydrogen Sulfide		5.3	Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide	2	2.5	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan	0	.23	Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
			Thiophenol	
Dimethyl Sulfide				
Methyl Ethyl Sulfide			Individual Unidentified	
Diethyl Sulfide			Sulfur Compounds	
Di-t-Buryl Sulfide			(all as monosulfides)	
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified	0.00
i-Propy(n-Propy(Disulfide			Total Identified:	28.0
Di-n-Propyl Disulfide				20.0
-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide				78.0
Dist-Buryl Disulfide			As Graine/100 SCE	1.75
Dimethyl Triculfide			As Granis roo Ser	1.75
Diathyl Triculfida				
or-r-baryr misumue	Notes	<u> </u>	nearent Detertion I imit.	
	110162:		aponent Detection Limit:	
		191	nervior rivorogen Sumac	
		U.1 A 11	black values are below der	
		All	DIANK VALUES ARE DELOW DETECTION	n 11 mit.

Flowing liquid and black solid material were

.

present in the sample cylinder.

IGT Sample Number: 98148701 Sample Description: 84634-001 Date Analyzed: 12/3/98 Analyst: RJB

lomponent Name	Mole %	Wt %	Component Name	Mole %	Wt %
ennentane	BDI.	\$ ~~	Paraffins		
opentane	BDI	SvnGas	Hexanes	801	BDI
.Pentane	BDL	Deta	Hentanes	0.0001%	0.0004%
	200	244	7.7 4 Trimethylpentane	BDI.	BDf.
			Octapes	BDL	BDI
veloaikanet			Nonanes	BDL	BDL
velopentane	BDL	BDL	Decanes	BDL	BDL
lethylcyclopentane	BDL	BDL	Undecanes	BDL	BDL
velohexane	BDL	BDL	Dodecapes	BDL	BDL
lethvicyclohexane	BDL	BDL	Tridecanes	BDL	BDL
			Tetradecanes	BDL	BDL
romatics			Pentadecanes	BDL	BDL
enzene	BDL	BDL	Hexadecanes	BDL	BDL
oluene	BDL	BDL	Heptadecanes	BDL	BDL
thylbenzene	BDL	BDL	Octadecanes	BDL	BDL
-Xylene	BDL	BDL	Nonadecanes	BDL	BDL
Xylene	BDL	BDL.	Eicosanes -	BDL	BDL
yrene	BDL	BDL			
Xylene	BDL	BDL			
3 Benzenes	BDL	BDL			
anhthaicne	BDL	BDL			
1 Naphthalenes	BDL	BDL			
2 Naphthalenes	BDL	BDL			
	Total from Cycle	opentane to Eicos	anes +	0.0001%	0.0004%

otes: BDL = below detection limit (0.0001 mole %).

Flowing liquid and black solid material were present in the sample cylinder.

,

,

Analytical Report

Major Component Gas Analysis By Gas Chromatography						
Client Name: M	lostardi-Plat	Associates	<u>. Inc.</u>			
IGT Sample Number: 98	3148702					
Semple Deteriotion: 84	634-003					
Sample Description. 6-		4 I I	910			
Date Analyzed: 11	1/17-20/98	Алазузі: 1	QB			
Component	Mol %	Det. Limit	Weight %			
Helium	N.D.	0.001%	N.D.			
Hydrogen	2.15%	0.04%	0.14%			
Carbon Dioxide	(5.3%	0.03%	22.8%			
Ethene		0.03%				
Ethane		0.03%				
Oxygen/Argon	9.28%	0.03%	9.88%			
Nitrogen	58.5%	0.03%	53.9%			
Methane		0.03%				
Carbon Monoxide	14.3%	0.03%	13.2%			
Fihune		0.002%				
Processe		0.002%				
Propens		0.002%				
Propertiene		0.007%				
Promise		0.002%				
- Burne		0.007%				
		0.002%				
		0.002%				
i-Burana		0.002%				
		0.007%				
		0.00274				
		0.002%				
		0.001%				
		0.007%				
		0.00296				
n-rengene Bennene		0.00184				
renienes Vienes filius		0.001%				
Mexane Plus		0.00274				
nyarogen Santae	0.0013084	0.000176	0.0077694			
Carbonys Sullike	V.VU1J7 .+	0.0000276	0.001/3/4			
Unidentified	ND	0.037	ND			
Total	100.0%	9,0017	100.0%			
i ocat	100.0 /0		100.074			
Calculated Real Gas Prope	erties per ASTA	4 D3588-91				
Temp. ("F)=	60.0	60.0				
Press. (psia)=	14.696	14,73				
Compressibility Factor [2] =	0.99926	0.99925				
Relative Density =	1.0492	1.0492				
Gross HV (DRY) =	53.3	53.4				
Gross HV (SAT.) =	\$2.3	52.5				
Wobbe Index =	52.0	52.1				
Net HV (Dry) =	51.8	51.9				
Net HV (Sat.) =	50.9	51.0				

Notes: All blank values are below detection limit N.D. - Not Determined

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates, Inc. IGT Sample Number: 98148702 Sample Description: 84634-003 Date Analyzed: 11/17-20/98 Analyst: RJB

Component Name	PPM	V	Component Name	PPMV
Hydrogen Sulfide			Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide	13	i.9	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
			Thiophenol	
Dimethyl Sulfide				
Methyl Ethyl Sulfide			Individual Unidentified	
Diethyl Sulfide			Sulfur Compounds	
Dí-t-Butyl Sulfide			(all as monosulfides)	
Dimethyl Disulfide				
Methyl Ethyl Disulfide			<u>.</u>	
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide			Total Identified:	13.9
Di-n-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyi t-Butyl Disulfide			As PPMV	13.9
Di-t-Butyl Disulfide			As Grains/100 SCF	0.87
Dimethyl Trisulfide				
Diethvi Trisulfide				
Di-t-Butyl Trisulfide				
	Notes:	Comp	onent Detection Limit:	
		l ppm	v for Hydrogen Sulfide	
		0.1 pp	my for all other compounds p	er sulfur

All blank values are below detection limit.

GT Sample Number: 98148702 Sample Description: 84634-003 Date Analyzed: 12/2/98 Analyst: RJB

•

.

mponent Name	Mole %	<u>Wt %</u>	Component Name	Mole %	Wt %
pentane	BDL	See	Paraffins		•
entane	BDL	SynGas	Hexanes	BDL	BDL
intane	BDL	Data	Heptanes	BDL	BDL
			2,2.4-Trimethylpentane	BDL	BDL
			Octanes	BDL	BDL
ioalkanes			Nonanes	BDL	BDL
opentane	BDL	BDL	Decanes	BDL	BDL
hylcyciopentane	BDL	BDL	Undecanes	BDL	BDL
lohexane	BDL	BDL	Dodecanes	BDL	BDL
hylcyclohexane	BDL	BDL	Tridecanes	BDL	BDL
			Tetradecanes	BDL	BDL
matics			Pentadecanes	BDL	BDL
zene	BOL	BDL	Hexadecanes	BDL	BDL
ienc	BDL	BDL	Heptadecanes	BDL	BDL
ibenzene	BDL	BDL	Octadecanes	BDL	BDL
ylene	BDL	BDL	Nonadecanes	BDL	BDL
lene	BDL	BDL	Eicosanes +	BDL	BDL
ine	BDL	BDL			
riene	BDL	BDL			•
lenzenes	BDL	BDL			
hthalene	BDL	BDL			
laphthalenes	BDL	BDL			
aphthalenes	BDL	BDL			
	Total from Cyclo	pentane to Eicosa	ines ÷	BDL	BDL

.

.

es: BDL = below detection limit (0.0001 mole %).

IGT Institute of Gas Technology

7-Dec-98	Analytical Report	Log # : 981509.doc
'urchase Order #:	20997	
Company :	Mostardi-Platt Associates, Inc.	
leport Address :	945 Oaklawn Avenue	
•	Elmburst IL 60126	
lequester :	Frank Jarke	•
'hone:	(630) 993-9000	
ax:	(630) 993-9017	
Vork Description :	Project # 84634	
eceived Date :	4-Dec-98	
umber of Samples :	1	
ample Description :	See attached Chain of Custody Rep	ort .

isclaimer:

either IGT nor any person acting on behalf of IGT assumes any liability with respect to the use of, or for damages sulting from the use of, any information presented in this report.

Submitted by:

Technical Contact:

Sherman Chao, Ph.D., (847) 768-0587

mel

Russell J.Bora, (847) 768-0693

Chemical Research Services

12/17/94 IGT Log # : 98150901 xia

.

Institute of Gas Technology

Major Component Gas Analysis By Gas Chromotography Client Name: <u>Masturell-Platt Associates. Inc.</u> IGT Sample Number: 98150901 Semple Description: 84634-004 Date Analysed: 12/4-17/98 Analyst: RJB

Analytical Report

Mol % Det. Links Weight % Component Helium . N.D. 0.001% ND. 0.04% Hydrogen 8.23% 8.97% 0.03% 31.1% 28.6% **Carton Diskids** 0.03% Ethene 0.03% Eduard 1.93% 1.14% 0.03% Oxygen/Argen 41.3% 0.03% 46.4% Nieugen Mathana 0.07% 21.5% 0.03% 21.8% **Carbon Monexide** 0.002% **Elicyma** 0.002% Property 0.002% Propane 0.002% Propodie 0.002% Propyne 0.007% i-Bumne 0.002% a-Berne 0.002% 1-Dutone 0.002% i-Butene 0.002% Trans-2-Detens Cip-2-Dustine 0.002% 0,002% 1J-Bundie 0.001% non-Penn 0.002% i-Persone 0.002% e-Pastana 0.007% Protection Hastans Pha -0.002% 0.0001% 6.0077% Hydrogen Sulfide 8.8924% Cartanyi Suifide 8.00181% 0.00002% 6.06372% Veidentified 0.03% NĎ 0.001% N.D. Water Terei 100.0% 106.0% Calculated Real Gas Properties per ASTM D3000-91 Tunp. (*F)= 64.6 " Prust. (gote)** 14.696 1473 Compressibility Pactor [z] = 0.99919 0.99919 Relative Descrip -1.0090 1.0090 Gress HV (DRY) -96.6 7U. Great HV (SAT.) = 96.9 97.L Webbe ladex = 9L (98.4 Net HV (Dry) = 93.2 93.0

> Notes: All blank values are below detection timit N.D. - Not Determined

113

91.6

- -

Net HV (Sat.) =

Analytical Report Institute of Gas Technology

12/17/98 IGT Log #: 9\$150901.xls

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc.

IGT Sample Number: 98150901

Sample Description: \$4634-004 Date Analyzed: 12/4-17/98 Analyst: RJB

Component Name	PPN	ſV	Component Name	PPMV
Hydrogen Sulfide	2	1.6	Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide	1	8.1	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan	0	.26	Benzothiopheas	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Beazothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
			Thiophenol	
Dimethyl Sulfide				
Methyl Ethyl Sulfide			Individual Unidentified	
Diethyl Sulfide			Sulfur Compounds	
Di-t-Butyl Sulfide			(all as monosulfides)	
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Buryl Disulfide				•
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disutfide				
Ethyi t-Buryi Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide			Total Identified:	40.0
Di-n-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			AL PPMV	40.0
Di-t-Buryl Disulfide			As Graina/100 SCF	2.50
Dimethyl Trisulfide				- •
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
• • • • •	Notes:	Çо	nponent Detection Limit:	
		ם ו	pmv for Hydrogen Sulfide	

0.1 ppmv for all other compounds per sulfar

All blank values are below detection limit.

.

T

.

.

.

.

Major Component (Gas Analysis	By Gas Chi	romatogra
Client Name: M	lostardi-Plat	t Associates	<u>. Inc.</u>
IGT Sample Number: 9	8148703		
Sample Description: 8	4634-005		
Date Analyzed: 1	1/17-20/98	Analyst:	rjb
2000.0000000000000000000000000000000000		•	
Component	Mol %	Det. Limit	Weight %
Helium	N.D.	0.001%	N.D.
Hydrogen	14.1%	0.04%	0.95%
Carbon Dioxide	34,4%	0.03%	50.9%
Ethene		0.03%	
Ethane		0.03%	
Oxygen/Argon	0.67%	0.03%	0.73%
Nitrogen	44,7%	0.03%	42.1%
Methane	1.30%	0.03%	0.70%
Carbon Monoxide	4.82%	0.03%	4.54%
Егрупе		0.002%	
Propane		0.002%	
Propene		0.002%	
Propadiene		0.002%	
γιοργηε		0.002%	
-Butane		0.002%	
n-Butane		0.002%	
-Butene		0.002%	
-Butene		0.002%	
Frans-2-Butene		0.002%	
Cis-2-Butene		0.002%	
L3-Butadiene	•	0.002%	
neo-Pentane		0.001%	
-Pentane		0.002%	
1-Pentane		0 002%	
enienes		0.002%	
Hexane Plus		0.002%	
Hydrogen Sultide	0.0011%	0.0001%	0.0013%
arbonyl Sulfide	0.00072%	0.00002%	0.00145%
Unidentified		0.03%	1.1 Ph
water	100.0%	0.001%	100 0%
	100.070		100.076
Calculated Real Gas Prope	erties per ASTA	1 D3588-91	
	60.0	60.0	
Press. (psia)=	14.696	14.73	
Compressibility Factor [z] =	0.99875	0.99875	
Relative Density =	1.0277	1.0277	
Gross HV (DRY) =	76.8	77 0	
Gross HV (SAT.) *	75.5	75.6	
Wobbe Index =	75.8	75.9	
Net HV (Dry) =	65.9	66.0	
Net HV (SaL) =	64.7	64.9	

Notes: All blank values are below detection limit

N.D. - Not Determined

Flowing liquid and black solid material were present in the sample cylinder.

Analytical Report Institute of Gas Technology

Γ

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc. IGT Sample Number: 98148703 Sample Description: 84634-005 Date Analyzed: 11/17-20/98 Analyst: RJB

Component Name	PPN	AV 🛛	Component Name	PPMV
Hydrogen Sulfide		11.4	Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide	-	7.21	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
			Thiophenol	
Dimethyl Sulfide				
Methyl Ethyl Sulfide			Individual Unidentified	
Diethyl Sulfide			Sulfur Compounds	
Di-t-Butyl Sulfide			(ail as monosulfides)	
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide			Total Identified:	18.6
Di-n-Propyl Disulfide				
i-Propyl t-Buryl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	18.6
Di-t-Buryl Disulfide			As Grains/100 SCF	1.16
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
-	Notes:	Cor	nponent Detection Limit:	
		l pi	omv for Hydrogen Sulfide	
		0.1	ppmy for all other compounds n	er sulfur
		All	blank values are below detection	n limit.

Flowing liquid and black solid material were present in the sample cylinder.

Γ Sample Number: 98148703 ample Description: 84634-005 Date Analyzed: 12/1/98 Analyst: RJB

•

.

Donent Name	Mole %	Wt %	Component Name	Mole %	Wt %
119.04	וחפ	See	Da - 65		
itane	BDL	Sec			
	BUL	Syncias	HEXADES	BDL	BDL
NIC	BUL	Dais	Heptanes	BDL	BDL
			4.4.4 I rimeinyipentane	BDL	. BDL
			Octanes	BDL	BDL
likanes			Nonanes	BDL	BDL
entane	BDL	BDL	Decanes	BDL	BDL
lcyclopentane	BDL	BDL	Undecanes	BDL	BDL
lexane	BDL	BDL	Dodecanes	BDL	BDL
cyclohexane	BDL	BDL	Tridecanes	BDL	BDL
			Teiradecanes	BDL	BDL
tics			Pentadecanes	BDL	BDL
le	BDL	BDL	Hexadecanes	BDL	BDL
e	BDL	BDL	Heptadecanes	BDL	BDL
enzene	BDL	BDL	Octadecanes	BDL	BDL
ne	BDL	BDL	Nonadecanes	BDL	BDL
ne	BDL	BDL	Eicosanes –	BDL	BDL
;	BDL	8DL			
ne	BDL	BDL			
zenes	BDL	BDL			
aiene	BDL	BDL			
hthalenes	BDL	BDL			
hthalenes	BDL	BDL			
	Total from Cyclo	Dentane to Eicosa	nat -		
	- Total Holli Citelo	pennane to Eleusa		BUL	BDL

•

s: BDL = below detection limit (0.0001 mole %).

wing liquid and black solid material were present in the sample cylinder.

.

•

Major Component Gas Analysis By Gas Chromatography						
Client Name: M	lostardi-Plat	LAssociates	<u>. Inc.</u>			
IGT Sample Number: 9	8148704					
Sample Description: 8	4634-007					
Dess Analyzed 1	1/17.20/08	Anolyet				
Date Analyzed: 1	1/1/~20/90	Analysis	NB			
Component	<u>Mai %</u>	Det Limit	Weight %			
Helium	N.D.	0.001%	N.D.			
Hydrogen	1.98%	0.04%	0.20%			
Carbon Dioxide	19.8%	0.03%	28.6%			
Ethene		0.03%				
Ethane		0.03%				
Oxygen/Argon	0.63%	0.03%	0.67%			
Nitrogen	54,9%	0.03%	50.5%			
Methane		0.03%				
Carbon Monoxide	21.7%	0.03%	20.0%			
Ethvne		0.002%				
Propane		0.002%				
Propent		0.002%				
Propadiene		0.002%				
Propyne		0.002%				
i-Butane		0.002%				
n-Butane		0.002%				
I-Butene		0.002%				
i-Butene		0.002%				
Trans-2-Butene		0.002%				
Cis-2-Butene		0.002%				
1.3-Butadiene		0.002%				
neo-Pencane		0.001%				
i-Pentane		0.002%				
n-Pentane		0.002%				
Pencenes		0.002%				
Hexane Plus		0.002%				
Hydrogen Sulfide		0.0001%				
Carbonyl Sulfide	0.00129%	0.00002%	0.00255%			
Unidentified		0.03%				
Water	N.D.	0.001%	ND.			
Total	100.0%		100.0%			
Calculated Real Gas Prop	erties per ASTN	1 D3588-91				
Temp. ("F)=	66.0	60.0				
Press. (psia)=	14.696	14.73				
Compressibility Factor [z] =	0.99917	0.99917				
Relative Density =	1.0512	1.0512				
Gross HV (DRY) =	79.8	30.0				
Gross HV (SAT.) =	78.4	78.6				
Wobbe Index =	77.8	78.0				
Net HV (Drv) =	77.7	77.9				
Net HV (SaL) =	76.4	76.6				
,						

Notes: All blank values are below detection limit N.D. - Not Determined

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: <u>Mostardi-Platt Associates. inc.</u> IGT Sample Number: 98148704 Sample Description: 84634-007 Date Analyzed: 11/17-20/98 Analyst: RJB

Component Name	PPN	AV	Component Name	PPMV
Hydrogen Sulfide			Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide	I	2.9	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan			-	
t-Butyl Mercaptan			Thiophane	
			Thiophenol	
Dimethyl Sulfide				
Methyl Ethyl Sulfide			Individual Unidentified	
Diethyl Sulfide			Sulfur Compounds	
Di-t-Buryl Sulfide			(ail as monosulfides)	
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide			Total Identified:	12.9
Di-n-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	12.9
Di-t-Butyl Disulfide			As Grains/100 SCF	0.81
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
	Notes:	Сотр	onent Detection Limit:	
		l ppm	iv for Hydrogen Sulfide	
		0.1 pp	omv for all other compounds p	er sulfur

Sample Number: 98148704 imple Description: 84634-007 Date Analyzed: 12/2/98 Analyst: RJB

•

onent Name	Mole %	<u>Wt %</u>	Component Name	Mole %	Wt %
	PDI	See	Da an Alima		
ane	BDL	See	r aranins		
iuc.	BDL	Syncas	riexanes	BUL	BDL
36	BDL	Data	Heptanes	BDL	BDL
			Z.Z.+ Inmethylpentane	BDL	BDL
			Octanes	BDL	BDL
kanes			Nonanes	BDL	BDL
ntane	BDL	BDL	Decanes	BDL	BDL
yclopentane	BDL	BDL	Undecanes	BDL	BDL
xane	BDL	BDL	Dodecanes	BDL	BDL
yclohexane	BDL	BOL	Tridecanes	BDL	BDL
			Tetradecanes	BDL	BDL
tics		_	Pentadecanes	BDL	BDL
;	0.0003%	0.0007%	Hexadecanes	BDL	BDL
	BDL	BDL	Heptadecanes	BDL	BDL
nzene	BDL	BDL	Octadecanes	- BDL	BDL
ne	BDL	BOL	Nonadecanes	BDL	BDL
. C	BDL	BDL	Eicosanes +	BDL	BDL
	BDL	BDL			
e	BDL	BDL			
tenes	BDL	BDL			
uene	BDL	BDL			
nthalenes	BDL	BDL			
hthalenes	BDL	BDL			
	Total from Cycl	opentane to Eicos	anes +	0.0003%	0.0007%

.

.

BDL = below detection limit (0.0001 mole %).

۲

,

.

.

.

Major Component	Major Component Gas Analysis By Gas Chromatography					
Client Name:	Mostardi-Plan	Associate:	L.Inc.			
IGT Sample Number:	98148705					
Sample Description:	84634-009					
Date A solymod:	11/17-20/08	A naiver-	R IB			
Date Analyzed.	11/1/-20/20					
Component	Mei %	Det. Limit	Weight %			
Hetium	N.D.	0.001%	N.D.			
Hydrogen	2,99%	0.04%	0.20%			
Carbon Dioxide	21.9%	0.03%	31.3%			
Ethene		0.03%				
Ethane		0.03%				
Oxvgen/Argon	0.66%	0.03%	0.69%			
Nitrogen	52,0%	0.03%	\$7.3%			
Methane		0.03%				
Carbon Monexide	22.5%	0.03%	20.5%			
Ethyne		0.002%				
Propane		0.002%				
Propene		0.002%				
Propadiene		0.002%				
Рторуле		0.002%				
i-Butane		0.002%				
n-Butane		0.002%				
I-Butene		0.002%				
i-Butene		0.002%				
Trans-2-Butene		0.002%				
Cis-2-Butene		0. 002%				
1.3-Butadiene		0.002%				
neo-Pentane		0.001%				
i-Penmne		0.002%				
n-Pentane		0.002%				
Pentenes		0.002%				
Hexane Plus		0.002%				
Hydrogen Sulfide		0.0001%				
Carbonyt Sulfide	0.00199%	0.00002%	0.00389%			
Unidentified		0.03%				
Water	<u>N.D</u>	0.001%	<u>N.D.</u>			
Total	100.0%		100.0%			
Calculated Real Gas Pro	perties per ASTN	1 03588-91				
Temp. (*F)*	60.0	60.0				
Press. (psis)~	14.696	14,73				
Compressibility Factor [z] =	0.99910	0.99910				
Relative Density =	1. 0626	1.0626				
Gross HV (DRY) =	\$2,4	\$2.6				
Gross HV (SAT.) =	81.0	81.2				
Wobbe Index =	80.0	80 . I				
Net HV (Dry) =	80.4	80.6				
Net HV (Sat.) =	79.0	79.2				

Notes: All blank values are below detection limit N.D. - Not Determined

Institute of Gas Technology

.

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc. IGT Sample Number: 98148705 Sample Description: 84634-009 Date Analyzed: 11/17-20/98 Analyst: RJB

Component Name	PPM	V Component Name	PPMV
Hydrogen Sulfide		Thiophene	
Sulfur Dioxide		C1-Thiophenes	
Carbonyl Sulfide	19	.9 C2-Thiophenes	
Carbon Disulfide		C3-Thiophenes	
Methyl Mercaptan		Benzothiophene	
Ethyl Mercaptan		C1-Benzothiophenes	
i-Propyl Mercaptan		C2-Benzothiophenes	
n-Propyl Mercaptan			
t-Butyl Mercaptan		Thiophane	
		Thiophenol	
Dimethyl Sulfide		-	
Methyl Ethyl Sulfide		Individual Unidentified	
Diethyl Sulfide		Sulfur Compounds	
Di-t-Butyl Sulfide		(all as monosulfides)	
Dimethyl Disulfide			
Methyl Ethyl Disulfide			
Methyl i-Propyl Disulfide			
Diethyl Disulfide			
Methyi n-Propyi Disulfide			
Methyl t-Butyl Disulfide			
Ethyl i-Propyl Disulfide			
Ethyl n-Propyl Disulfide			
Ethyl t-Butyl Disulfide			
Di-i-Propyl Disulfide		Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide		Total Identified:	19.9
Di-n-Propyl Disulfide			
i-Propyl t-Butyl Disulfide		Total Sulfur Content	
n-Propyl t-Butyl Disulfide		As PPMV	19.9
Di-t-Butyl Disulfide		As Grains/100 SCF	1.24
Dimethyl Trisulfide			
Diethyl Trisulfide			
Di-t-Butyl Trisulfide			
•	Notes:	Component Detection Limit:	
		l ppmv for Hydrogen Sulfide	
		0.1 ppmv for all other compounds	per sulfur

All blank values are below detection limit.

.

•

Γ Sample Number: 98148705 ample Description: 84634-009 Date Analyzed: 12/2/98 Analyst: RJB

•

.

•

onent Name	Mole %	Wt %	Component Name	Mole %	Wt %
ilane	BDL	Sec	Parafins		
ant	BDL	SvnGas	Hexanes	BDL	BDL
ine	BDL	Daia	Heptanes	BDL	BDL
			2.2. +- Trimethylpentane	BDL	BDL
			Octanes	BDL	BDL
lkanes			Nonanes	BDL	BDL
cntane	BDL	BDL	Decanes	BDL	BDL
cvclopentane	BDL	BDL	Undecanes	BDL	BDL
exane	BDL	BDL	Dodecanes	BDL	BDL
cyclohexane	BDL	BDL	Tridecanes	BDL	BDL
•			Tetradecanes	BDL	BDL
tics			Pentadecanes	BDL	BDL
c	0.0001%	0.0003%	Hexadecanes	BDL	BDL
:	BDL	BDL	Heptadecanes	BDL	BDL
nzene	BDL	BDL	Octadecanes	BDL	BDL
ne	BDL	BDL	Nonadecanes	BDL	BDL
e	BDL	BDL	Eicosanes +	BDL	BDL
	BDL	BDL			
c	BDL	BDL			
zenes	BDL	BDL			
alene	BDL	BDL			
hthaienes	BDL	BDL			
hthalenes	BDL	BDL			
	Total from Cvcl	opentane to Eicos	anes +	0.0001%	0.0003%

: BDL = below detection limit (0.0001 mole %).

I

.

.

.

.

Major Component	Gas Analysis	By Gas Ch	romatography
Client Name:]	Mostardi-Plat	t Associate	<u>s. inc.</u>
IGT Sample Number: 9	8148706		
Sample Description: 8	4634-011		
Dete trefordi	1/17 70/08	A maiwet	a 10
Date Analyzeu:	1/1/+20/90	Analysi:	
Component	Mol %	Det. Limit	Weight %
Hetium	N.D.	0.001%	N.D.
Hydrogen	3.05%	0.04%	0.20%
Carbon Dioxide	21,1%	0.03%	30.3%
Ethene		0.03%	
Ethane		0.03%	
Oxygen/Argon	0.58%	0.03%	0.61%
Nitrogen	54,3%	0.03%	49.7%
Methane		0.03%	
Carbon Monoxide	21,0%	0.03%	19.2%
Ethyne		0.002%	
Propene		0.002%	
Propene		0.002%	
Propadiene		0.002%	
Propyne		0.002%	
i-Butane		0.002%	
n-Butane		0.002%	
l-Butene		0.002%	
i-Butene		0.002%	
Trans-2-Butene		0.002%	
Cis-2-Butene		0.002%	
1.3-Butadiene		0.002%	
neo-Pentane		0.001%	
i-Pentane		0.002%	
n-Pentane		0.002%	
Pentenes		0.002%	
Hexane Plus		0 002%	
Hydrogen Sulfide		0.0001%	
Carbonyl Sulfide	0.00204%	0.0000256	0.00400%
Unidentified		0.03%	
Water	<u>N.D.</u>	0.001%	<u>N.D.</u>
Total	100.0%		100.0%
Culculated Real Gas Prop	erties per ASTM	1 D3588-91	
Temp. (*F)=	60.0	60.0	
Press. (psia)=	[4.6 <mark>96</mark>	14.73	
Compressibility Factor [z] =	0.99913	0,99913	
Relative Density =	1.0576	1.0576	
Gross HV (DRY) =	77.8	78.0	
Gross HV (SAT.) =	76.4	76.6	
Wobbe Index =	75.6	75.8	
Net HV (Drv) =	75.7	75.9	

Notes: All blank values are below detection limit N.D. - Not Determined

74.6

74.4

Net HV (SaL) =

.

.

.

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc.

IGT Sample Number: 98148706

Sample Description: 84634-011 Date Analyzed: 11/17-20/98 Analyst: RJB

Component Name	PPM	EV	Component Name	PPMV
Hydrogen Sulfide			Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide	20	0.4	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyi Mercaptan				
t-Butyl Mercaptan			Thiophane	
			Thiophenol	
Dimethyl Sulfide				
Methyl Ethyl Sulfide			Individual Unidentified	
Diethyl Sulfide			Sulfur Compounds	
Di-t-Butyl Sulfide			(ail as monosuifides)	
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0.00
i-Propyl n-Propyl Disulfide			Total Identified:	20.4
Di-n-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	20.4
Di-t-Butyl Disulfide			As Grains/100 SCF	1.28
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				•
	Notes:	Comp	onent Detection Limit:	
		lppn	iv for Hydrogen Sulfide	
		0.1 pr	omy for all other compounds p	er sulfur

.

Sample Number: 98148706 mple Description: 84634-011 Date Analyzed: 12/1/98 Analyst: RJB

-

•

onent Name	Moie %	Wt %	Component Name	Mole %	Wt %
anč	BDL	Sec	Paraffins		
ne	BDL	SynGas	Hexanes	BDL	BDL
ю	BDL	Data	Heptanes	BDL	BDL
			2.2,4-Trimethylpentane	BDL	BDL
			Octanes	BDL	BDL
kanes			Nonanes	BDL	BDL
ntane	BDL	BDL	Decanes	BDL	BDL
yclopentane	BDL	BDL	Undecanes	BDL	BDL
xane	BDL	BDL	Dodecanes	BDL	BDL
yclohexane	BDL	BDL	Tridecanes	BDL	BDL
			Tetradecanes	BDL	BDL
ies			Pentadecanes	BDL	BDL
;	BDL	BDL	Hexadecanes	BDL	BDL
	BDL	BDL	Heptadecanes	BDL	BDL
izene	BDL	BDL	Octadecanes	BDL	BDL
ic	BDL	BDL	Nonadecanes	BDL	BDL
e	BDL	BDL	Eicosanes +	BDL	BDL
	BDL	BDL			
•	BDL	BDL			
enes	BDL	BDL			
lene	BDL	BDL			
nthalenes	BDL	BDL			
nthalenes	BDL	BDL			
	Total from Cycle	opentane to Eicos	anes	BDL	BDL

.

BDL = below detection limit (0.0001 mole %).

Blast Furnace Granulated Coal Injection Environmental Monitoring Report

,

Appendix II – Wastewater Monitoring Summaries

Bethlehem Steel Corporation Burns Harbor Division Outfall 001 Monitoring Summary

-

Sample	Flow	Ammonia (as N)	Ammonia (as N)	Cyanide	Cyanide
Date	(MGD)	(mg/l)	(lb/day)	(mg/l)	(lb/day)
10/01/98	141.2	0.12	146		
10/02/98	144.5				
10/03/98	142.4				
10/04/98	104.4	0.30	264	<0.005	0.00
10/05/98	129.8				
10/06/98	125.7	0.42	441		
10/07/98	122.6				
10/08/98	121.1	0.25	253		
10/09/98	127.5				
10/10/98	95.5				
10/11/98	85.5	0.33	238	<0.005	0.00
10/12/98	115.8				
10/13/98	124.7	0.41	424		
10/14/98	120.5				
10/15/98	134.4	0.27	307		
10/16/98	123.4				
10/17/98	104.9				
10/18/98	95.0	0.22	173	<0.005	0.00
10/19/98	101.9				
10/20/98	112.4	0.34	321		
10/21/98	106.7				
10/22/98	109.0	0.28	252		
10/23/98	104.9				
10/24/98	93.2				
10/25/98	72 .7	0.39	239	<0.005	0.00
10/26/98	118.2				
10/27/98	127.3	0.44	462		
10/28/98	130.3				
10/29/98	152.7	0.47	603		
10/30/98	143.7				
10/31/98	115.9				
Average	117.7	0.33	317.0	<0.005	0.00
Maximum	152.7	0.47	602.7	<0.005	0.00
Minimum	72.7	0.12	146.1	<0.005	0.00

Bethlehem Steel Corporation Burns Harbor Division Outfall 001 Monitoring Summary

12

Sample	Flow	Ammonia (as N)	Ammonia (as N)	Cyanide	Cyanide
Date	(MGD)	(mg/l)	(lb/day)	(mg/l)	(lb/day)
11/01/98	92.2	0.15	114	<0.005	0.00
11/02/98	113.2				
11/03/98	120.7	0.23	230		
11/04/98	119.2				
11/05/98	113.9	0.20	186		
11/06/98	105.7				
11/07/98	105.7				
11/08/98	73.0	0.17	102	<0.005	0.00
11/09/98	123.8				
11/10/98	116.3	0.33	319		
11/11/98	113.8				
11/12/98	121.8	0.27	273		
11/13/98	121.8				
11/14/98	108. 4				
11/15/98	99.6	0.30	245	<0.005	0.00
11/16/98	121.7				
11/17/98	118.2	0.22	215		
11/18/98	116.4				
11/19/98	114.7	0.20	195		
11/20/98	140.0				
11/21/98	91.0				
11/22/98	51.8	0.40	174	<0.005	0.00
11/23/98	52.6				
11/24/98	56.5	0.47	219		
11/25/98	60.5				
11/26/98	59.8	0.30	147		
11/27/98	89.8				
11/28/98	74.4				
11/29/98	79.3	0.31	202	<0.005	0.00
11/30/98	117.4				
Average	99.8	0.27	201 7	<0.005	0 00
Maximum	140.0	0.47	319.3	<0.005	0.00
Minimum	51.8	0.15	101.7	<0.005	0.00
Bethlehem Steel Corporation Burns Harbor Division Outfall 001 Monitoring Summary

-

Sample	Flow	Ammonia (as N)	Ammonia (as N)	Cyanide	Cyanide
Date	(MGD)	(mg/l)	(lb/day)	(mg/l)	(lb/day)
12/01/98	114.2	0.26	245		
12/02/98	115.1				
12/03/98	114.0	0.27	254		
12/04/98	120.0				
12/05/98	113.7				
12/06/98	112.7	0.28	265	<0.005	0.00
12/07/98	125.0				
12/08/98	129.9	0.33	361		
12/09/98	131.8				
12/10/98	131.5	0.30	334		
12/11/98	144.3				
12/12/98	113.9				
12/13/98	102.0	0.38	323	<0.005	0.00
12/14/98	126.4				
12/15/98	126.3	0.34	360		
12/16/98	135.7				
12/17/98	125.1	0.27	283		
12/18/98	138.0				
12/19/98	131.6				
12/20/98	112.8	0.17	159	<0.005	0.00
12/21/98	130.0				
12/22/98	124.3	0.29	303		
12/23/98	136.0	0.21	237		
12/24/98	89.0				
12/25/98	108.3				
12/26/98	131.5				
12/27/98	117.0	0.25	248	<0.005	0.00
12/28/98	126.3				
12/29/98	126.8	0.36	379		
12/30/98	127.3	0.35	369		
12/31/98	116.1				
Average	122 5	0.29	294.2	<0.005	0 00
Maximum	144.3	0.38	378.8	<0.005	0.00
Minimum	89.0	0.17	159.1	<0.005	0.00

Bethlehem Steel Corporation Burns Harbor Division Monitoring Station 011 Monitoring Summary

ه در

Sample	Flow	Ammonia (as N)	Ammonia (as N)	Cyanide	Cyanide
Date	(MGD)	(mg/l)	(lb/day)	(mg/l)	(lb/day)
10/01/98	97.4	0.30	240	<0.005	0.00
10/02/98	95.3				
10/03/98	93.2				
10/04/98	49 .1	0.68	279	<0.005	0.00
10/05/98	76.0				
10/06/98	96.5	0.42	337	0.006	4.83
10/07/98	98.7				
10/08/98	92.9	0.33	258	<0.005	0.00
10/09/98	103.8				
10/10/98	60.1				
10/11/98	46.7	0.75	290	<0.005	0.00
10/12/98	76.4				
10/13/98	98.9	0.50	410	<0.005	0.00
10/14/98	97.9				
10/15/98	98.1	0.43	353	<0.005	0.00
10/16/98	96.5				
10/17/98	58.0				
10/18/98	44.5	0.58	216	0.005	1.86
10/19/98	79.2				
10/20/98	97.0	0.38	305	<0.005	0.00
10/21/98	94.2				
10/22/98	95.9	0.37	295	<0.005	0.00
10/23/98	92.9				
10/24/98	64.3	0.04			
10/25/98	45.7	0.94	360	<0.005	0.00
10/26/98	84.9	0.40	074		
10/2//98	96.2	0.46	371	<0.005	0.00
10/28/98	97.0	0.44	054	.0.005	~ ~~
10/29/98	90.0	0.44	351	<0.005	0.00
10/30/98	98.3				
10/31/98	77.0				
Average	83.8	0.51	312.6	0.001	0.51
Maximum	103.8	0.94	410.2	0.007	4.83
Minimum	44.5	0.30	215.8	<0.005	0.00

Bethlehem Steel Corporation Burns Harbor Division Monitoring Station 011 Monitoring Summary

-

Sample	Flow	Ammonia (as N)	Ammonia (as N)	Cyanide	Cyanide
Date	(MGD)	(mg/l)	(ib/day)	(mg/l)	(lb/day)
11/01/98	41.4	0.56	195	<0.005	0.00
11/02/98	81.4				
11/03/98	97.3	0.43	352	<0.005	0.00
11/04/98	98.2				
11/05/98	94.0	0.42	333	<0.005	0.00
11/06/98	101.6				
11/07/98	59.1				
11/08/98	43.4	0.77	279	<0.005	0.00
11/09/98	80.0				
11/1 0/98	95.5	0.52	416	<0.005	0.00
11/11/98	95.0				
11/1 2/9 8	101.2	0.48	401	<0.005	0.00
11/13/98	105.0				
11/1 4/9 8	78.2				
11/15/98	80.9	0.48	325	<0.005	0.00
11/16/98	95.2				
11/17/98	95.9	0.37	294	<0.005	0.00
11/18/98	89.8				
11/19/98	94.3	0.34	269	0.007	5.51
11/20/98	96.4				
11/21/98	73.5				
11/22/98	47.2	0.63	248	<0.005	0.00
11/23/98	50.0				
11/24/98	50.0	0.44	185	0.008	3.34
11/25/98	42.5				
11/26/98	37.8	0.46	146	<0.005	0.00
11/27/98	45.8				
11/28/98	43.8				
11/29/98	44.0	0.61	225	<0.005	0.00
11/30/98	77.3				
Average	74.5	0.50	282.1	0.001	0.68
Maximum	105.0	0.77	416.0	0.008	5.51
Minimum	37.8	0.34	146.4	<0.005	0.00

Monitor

Sample	Flow	Am
Date	(MGD)	
12/01/98	90.8	
12/02/98	96.0	
12/03/98	88.1	
12/04/98	97 7	

., ¢

Bethlehem Steel Corporation Burns Harbor Division Blast Furnace Closed Water Pump Station Cold Well Monitoring Summary

.

Sample Date 10/01/98 10/02/98 10/03/98 10/04/98	Ammonia (as N) (mg/l)	Cyanide (mg/l)
10/06/98		
10/07/98	38.20	0.330
10/08/98		
10/09/98		
10/10/98		
10/11/98		
10/12/98		
10/13/98		
10/14/98	46.00	0.009
10/15/98		
10/16/98		
10/17/98		
10/10/90		
10/20/98		
10/21/98	52 60	0.014
10/22/98	01.00	0.011
10/23/98		
10/24/98		
10/25/98		
10/26/98		
10/27/98	40.80	0.011
10/28/98		
10/29/98		
10/30/98		
10/31/98		
Average	44.4	0.091
Maximum	52.6	0.330
Minimum	38.2	0.009

Bethlehem Steel Corporation Burns Harbor Division Blast Furnace Closed Water Pump Station Cold Well Monitoring Summary

.

к. •

.

Sample	Ammonia (as N)	Cyanide
Date	(mg/l)	(mg/l)
11/01/98		
11/02/98		
11/03/98		
11/04/98	46.50	0.022
11/05/98		
11/06/98		
11/07/98		
11/08/98		
11/09/98		
11/10/98		
11/11/98	40.60	0.010
11/12/98		
11/13/98		
11/14/98		
11/15/98		
11/16/98		
11/17/98		
11/18/98	37.40	<0.005
11/19/98		
11/20/98		
11/21/98		
11/22/98		
11/23/98		
11/24/98		
11/25/98	35.60	0.021
11/26/98		
11/27/98		
11/28/98		
11/29/98		
11/30/98		
Verane	40.0	0.013
Maximum	46.5	0.022
Minimum	35.6	< 0.005

,

Bethlehem Steel Corporation Burns Harbor Division Blast Furnace Closed Water Pump Station Cold Well Monitoring Summary

-

Sample	Ammonia (as N)	Cyanide
Date	(mg/l)	(mg/l)
12/01/98		
12/02/98	32.50	0.010
12/03/98		
12/04/98		
12/05/98		
12/06/98		
12/07/98		
12/08/98		
12/09/98	48 .10	0.229
12/10/98		
12/11/98		
12/12/98		
12/13/98		
12/14/98		
12/15/98		
12/16/98	36.80	0.025
12/17/98		
12/18/98		
12/19/98		
12/20/98		
12/21/98		
12/22/98		
12/23/98	34.70	0.021
12/24/98		
12/25/98		
12/26/98		
12/27/98		
12/28/98		
12/29/98		
12/30/98	25.90	0.028
12/31/98		
Average	35.6	0.063
Maximum	48.1	0.229
Minimum	25. 9	0.010