

Clean Coal III Project: Blast Furnace Granular Coal Injection Project

Topical Report November 1997

Trial 2 Report - Blast Furnace Granular Coal Injection -Results with Higher Ash Coal

Work Performed Under Cooperative Agreement No.: DE-FC21-91MC27362

For

U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center Pittsburgh Site Pittsburgh, Pennsylvania

By Bethlehem Steel Corporation Bethlehem Pennsylvania

LIST OF TABLES

.

Table 1	Injection Coal Analysis
Table 2	Burns Harbor C Furnace - Summary of Operations
Table 3	Burns Harbor C Furnace Adjusted Coke Rate Comparison
Table 4	Burns Harbor C Furnace Adjusted Coke Rate Comparison
Table 5	Burns Harbor C Furnace Adjusted Coke Rate Comparison
Table 6	Burns Harbor C Furnae Sulfur Balance High Ash Coal Trial
	LIST OF FIGURES
Figure 1	LIST OF FIGURES Burns Harbor C & D Furnace - Adjusted Coke Rate
Figure 1 Figure 2	
e	Burns Harbor C & D Furnace - Adjusted Coke Rate
Figure 2	Burns Harbor C & D Furnace - Adjusted Coke Rate Burns Harbor C Furnace - Inwall Refractory Temperatures

APPENDICES

Appendix 1 Gaseous Stream Testing Results

•

Appendix 2 Wasterwater Monitoring Summaries

BLAST FURNACE GRANULATED COAL INJECTION RESULTS WITH HIGHER ASH COAL

INTRODUCTION

This report describes the second coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases:

> Phase I - Design Phase II - Construction Phase III - Operation

The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995.

A base period was established for C furnace in October 1996 to be used as a comparison period for the analysis of the operation during subsequent coal trials.

BACKGROUND

The granulated coal injection facility at the Burns Harbor Plant began operation in January 1995. Coal injection began on D furnace in mid-December 1994, primarily to test the coal grinding and preparation circuits. Significant operations began January 19, 1995 when coal was injected through four tuyeres at a total rate of 20 pounds/NTHM. Coal injection was initiated on C furnace on February 9, 1995 using four tuyeres at an overall rate of 25 pounds/NTHM. The remaining 24 tuyeres used natural gas injection at the same time. These conditions were maintained throughout February and March. Complete coal injection began on D furnace in April 1995 and on C in June 1995. Since that time an operational learning curve and the development of efficient operating practices with the granulated coal facility were completed. Currently, the coal injection rate on C furnace is about 270 pounds/NTHM and 200 pounds/NTHM on D furnace.

During the start of coal injection, the high volatile Sydney coal, was used on both furnaces for eight months. Subsequently, six different low volatile coal types were used on both furnaces for seven months. The low volatile coals performed well and led to the use of Virginia Pocahontas as the standard coal during 1996 and 1997.

The objective of the overall test program is to determine the effect of coal grind and coal type on blast furnace performance. The current trial was conducted to quantify the effect that ash content of the coal has on the blast furnace operation and the process economics.

BLAST FURNACE OPERATIONS

The Burns Harbor C furnace has been designated as the granulated coal test facility due, in large part, to the physical improvements made to the furnace during the 1994 reline. The furnace was enlarged slightly and the refractory cooling system was upgraded to a high density plate cooling configuration in the furnace stack region. This high density cooling was specifically designed to withstand the rigors of high coal injection rates and to provide for increased production capability.

Immediately prior to the higher ash trial period the operation was characterized by high production levels and a steady state for the major operating variables. During 1997 the operation has been run to achieve maximum furnace production rates. This is unlike most of 1996 when the primary focus was to maximize coal injection levels and achieve low furnace coke rates.

The trial began on May 28, 1997 and concluded June 23, 1997. The trial period is compared to three previous operating periods: a pre-trial period from May 1 - May 27, 1997, the October 1996 base period and a previously conducted study of coke replacement characteristics of low volatile coal is compared to this trial.

The important furnace operating conditions that are indicative of overall furnace performance were documented during the trial and compared to the three periods indicated above. In addition, extensive environmental stream testing of the closed water and gas cleaning systems, furnace refractory temperatures and furnace thermal loads are presented.

FURNACE TRIAL OPERATING CONDITIONS

Trial Coal Selection:

During the entire year of 1996 the injection coal used on both furnaces was the low volatile, high carbon content Buchanan/Virginia Pocahontas. The coal is designated by two names based on two different mine sites and the point of shipment to the plant. However, both coals are from the same seam and are very similar chemically.

The typical analysis of Virginia Pocahontas in October 1996 and the Buchanan coal used on the furnaces immediately prior to the trial period is shown in Table 1. For a trial that would assess ash content only, it was important to use a coal that varies only in ash so that there would be no confounding issues such as sulfur content or large differences in volatile matter. To achieve this the supplier of the Buchanan coal suggested that ash content could be increased at the mine site cleaning station if one of the usual coal cleaning steps was eliminated. Trials were run at the mine and subsequent coal analysis confirmed that the ash content could be increased with this method. The average analysis of the four train trial coal is also shown on Table 1. The trial coal is 2.4% higher in ash than the coal used for the October 1996 base and is 3.0% higher in ash than the coal used during the furnace period immediately prior to the trial. As demonstrated on Table 1, the three operating periods use coal that is significantly different only in ash content.

Also shown in Table 1 is the average size distribution of the final injection product coal during the trial period. The average size distribution satisfies the definition of granular coal; 100% is -4 Mesh, 98% is -7 Mesh and less than 30% is -200 Mesh.

C Furnace Operations:

The primary concern of the furnace operators, both before and during a blast furnace trial, is to maintain a consistent operation so that a valid comparative analysis of the trial variable can be made. Table 2 shows the operating results for the higher ash trial period on C furnace and the two operating periods that are used to make the comparative analysis.

Each of these periods is operationally similar: the amount of injected coal used during each period is about the same; the general blast conditions during the periods are comparable; the wind rates only vary from 135,370 SCFM to 137,000 SCFM; and blast pressure, top pressure and moisture additions are comparable.

General Trial Observations:

There were several operating variables that were of concern and were closely observed by the operators during the trial. Several of these parameters could have adversely affected furnace performance with the use of the high ash coal. However, the trial period confirmed that high coal ash, at the injection rate used, did not hinder furnace performance. This finding is based on data in Table 2 which shows the following:

- 1. Furnace permeability was not changed and a greater percentage of ash in the raceway did not have a deleterious effect.
- 2. Furnace blast pressure and wind volume were maintained at the base conditions during the trial.
- 3. Furnace production rates were up as delay periods declined during the trial.
- 4. Hot metal silicon and sulfur content and variability were comparable during all three periods

The primary change in the operation, as expected, was the increase in the blast furnace slag volume. The 461 pounds/NTHM slag volume during the trial is significantly higher than the 448 pounds/NTHM slag volume during the May 1 - May 27, 1997 period and the 424 pounds/NTHM during the October 1996 period. The general conclusion is that higher ash content in the injected coal can be adjusted for by the furnace operators and does not adversely affect overall furnace operations.

Furnace Coke Rate Results:

The primary reason for this coal trial was to determine the coke rate penalty to the blast furnace that results from the use of higher ash injection coal. In order to assess the comparative furnace coke rate during a trial, all of the blast furnace variables that affect the furnace coke rate that are different from the base must be adjusted for by using coke correction factors. The only variables that are not corrected or adjusted are those affected by the operating variable that is being assessed. After all of the operational coke differences between the base period and the trial period are accounted for, the remaining coke is attributed to the variable being studied. Since the higher ash coal causes an increase in the furnace slag volume and does contribute to higher furnace coke usage, we have not adjusted the coke for changes in the slag volume.

Three comparisons, using the above logic, were made to validate and substantiate the results of this trial. The high ash trial results were compared to the period immediately prior to the trial; the previously documented base period results from October 1996; and a previously completed study on the coke replacement characteristics of low volatile coals. The latter study was conducted using Burns Harbor C and D monthly average operating data for 1996 with low volatile coal. The detailed study was reported and documented in the 1996 Annual Report to DOE on the Blast Furnace Granular Coal Injection Project."

The results of the first comparison are shown in Table 3. The higher ash trial data has been adjusted to the comparison base period from May 1 - May 27,1997. The largest amount of coke that is adjusted for this comparison is seven pound which is attributable to the difference in the amount of injected coal between the periods. The conclusion from this table is that a three per cent increase in the injected coal ash causes a nine pound per NTHM increase in the furnace coke rate. This is the amount of carbon from the coke that is required on the furnace to replace the lower amount of carbon in the higher ash injected coal.

The values from the second comparative period are shown in Table 4. As with the previous analysis, only small adjustments are required to establish the overall corrected coke rate. This comparison substantiates the first results. The 2.4 per cent increase in coal ash from the October 1996 base period to the trial period results in a coke penalty of eight pounds per NTHM.

In Figure 1, the coal injection and furnace coke rates for the trial are compared with those on both C and D furnace during 1996. There was a coke rate increase on C furnace during the trial period at the coal and coke rates shown. The coke rate adjustments which include the trial data in this figure are documented in Table 5.

The blast furnace sulfur balance for the trial period is shown in Table 6. There is good closure for the sulfur input and output.

ENVIRONMENTAL TEST RESULTS

Gaseous Streams:

During the trial period three gas samples were obtained from the C furnace and analyzed by Mostardi Platt Associates, Inc. The results of the gas sampling are presented in Appendix 1. The sulfur reported in the gas samples were also used to complete the sulfur balance shown in Table 6.

Gas samples taken from the previous base trial period, October 1996, are very comparable to these results. As reported previously, the sulfur in the blast furnace gas was 3.1 grains/100 scf. During this trial the value was 2.5 grains/100 scf.

Wastewater Monitoring:

During the trial, monitoring of the Division's treated process water effluent (Monitoring Station 011) and the Division's combined effluent was conducted in accordance with the NPDES permit. In addition, internal monitoring of the Blast Furnace Recirculating Water System was performed weekly. All monitoring results at Station 011 and Outfall 001 were within the applicable limitations and/or expected ranges. There were no adverse affects on the Division's wastewater system that could be attributed to the granulated coal system during the month. Appendix 2 shows the monitoring results for the month.

FURNACE THERMAL CONDITIONS

The C furnace is equipped with a Thermal Monitor System consisting of two components: eight thermocouples embedded in the furnace refractory at each of four furnace elevations and an extensive system of thermocouples in the discharge water cooling system at five furnace elevations. The heat loss in the furnace is calculated for the various elevations from the water system thermocouples.

The inwall refractory temperatures for C furnace are shown from September 1996 through the trial period in Figure 2. The refractory temperatures at several elevations have not changed significantly during this time. Several elevations decreased slightly from higher values measured during February and March 1997.

The thermal load values, the calculated heat loss in BTU/HR/FT², were practically unchanged during the trial as compared to the three previous months of operation. Figure 3 shows the thermal load values from September 1996 through the high ash trial period.

During the trial period the operating personnel were running the C furnace for high productivity. Figure 4 shows the comparison between furnace coke rates during times when fuel rates were the primary concern, June 1996 - January 1997, and periods when high production is the goal. Although the injected coal rates are similar during both times, furnace coke rates are noticeably higher during the period when high productivity was desired. The primary conclusion from this chart is that, although higher ash coal requires more furnace coke, it does not have an adverse effect on production levels.

CONCLUSIONS

t

This coal trial demonstrated some important blast furnace operating considerations when using a high ash coal:

- There is a coke rate disadvantage of three pounds per NTHM for each one per cent increase of ash in the injection coal at an injection rate of 260 pounds per NTHM.
- Higher ash coal had no adverse effect on the furnace permeability.
- The productivity of the furnace was unaffected by the three percent increase in coal ash at the injection rate of 260 pounds per NTHM.
- Hot metal quality was unaffected by the increased ash content of the injection coal.

INJECTION COAL ANALYSIS BURNS HARBOR HIGH ASH COAL TRIAL

-

.

Coal	Va. Pocahontas October 1996	Buchanan 6 Trai <u>n Average Prior t</u> o Trial	High Ash Buchanan 4 <u>Train Trial Avera</u> ge
Volatile Matter, %	18.00	19.79	18.75
Sulfur, %	.78	.82	.75
Ash, %	5.30	4.72	7.70
Ultimate Analysis, %			
Carbon	87.10	87.04	84.32
Oxygen	1.23	1.94	2.24
Hydrogen	4.20	4.27	3.88
Nitrogen	1.21	1.21	1.12
Chlorine	.170	.140	.120
Total Moisture, %	5.30	6.77	6.46
GHV, BTU/lb (dry)	14974	15086	14425
Ash Analysis, %			
SiO2	41.50	32.39	41.69
AI2O3	23.58	22.76	23.33
CaO	7.36	10.10	8.27
MgO	1.69	2.05	1.75

C FURNACE PRODUCT COAL SIZING May 28 - June 23, 1997

		MEAN %	S.D. %
+4 Mesh		0	-
-4 Mesh	+8 Mesh	.3	.2
-8 Mesh	+16 Mesh	1.8	.9
-16 Mesh	+30 Mesh	7.4	2.5
-30 Mesh	+50 Mesh	15.1	1.5
-50 Mesh	+100 Mesh	27.0	3 .1
-100 Mesh	+200 Mesh	34.0	3 .1
-200 Mesh	+325 Mesh	13.6	3.0
-325 Mesh TOTAL		.8	.4

,

. .

BURNS HARBOR C FURNACE SUMMARY OF OPERATIONS

.

	HIGH ASH TEST May <u>28 - June 23,</u> 1997	LOW ASH BASE May <u>1 - May 27, 1</u> 997	PREVIOUS BASE October 1996
Prod, NTHM/d Rep	7437	7207	6943
Delays, Min/d	23	55	71
Coke Rate, lbs/NTHM	674	673	661
Nat. Gas Rate, lbs/NTHM		0	0
Inj. Coal Rate, Ibs/NTHM	262	269	264
Total Fuel Rate, Ibs/NTH	M 940	942	925
Burden %:			
Sinter	34.9	27.0	35.9
Pellets	64.9	72.8	63.8
Misc.	.2	.2	.3
BOF Slag Ibs/NTHM	0	53	.0
Bor oldg loontrillin	5	00	Ũ
Blast Conditions:			
Dry Air,SCFM	135,370	135,683	137,000
Blast Pressure, psig	38.3	38.2	38.8
Permeability	1.23	1.25	1.19
Oxygen in Wind, %	28.6	28.5	27.3
Temp, F	2012	2046	2067
Moist. Grs/SCF	20.7	20.4	19.8
Flame Temp, F	3953	4002	3841
Тор Тетр, F	199	195	226
Top Press, psig	16.6	17.0	16.9
Coke:			
H2O, %	5.0	4.9	5.0
Hot Metal, %:			
Silicon	.49	.51	.50
Standard Dev.	.097	.116	.128
Sulfur	.035	.040	.040
Standard Dev.	.012	.015	.014
Phos.	.073	.069	.072
Mn.	.46	.42	.43
Temp., F	2733	2741	2734
Slag, %:			
SiO2	36.21	36.08	36.54
AI2O3	9.91	9.43	9.63
CaO	39.40	38.86	39.03
MgO	11.32	12.03	11.62
Mn	.45	.42	.46
Sul	1.40	1.45	1.39
B/A	1.10	1.12	1.10
B/S	1.40	1.41	1.39
Volume, lbs/NTHM	461	448	424

.

.

BURNS HARBOR C FURNACE ADJUSTED COKE RATE COMPARISON

Coke Correction Variables:	BASE 5/ <u>1/97 - 5/27/</u> 97	HIGH ASH TRIAL 5/2 <u>8/97 - 6/23/</u> 97
Natural Gas, Ibs/NTHM Coke Correction, Ibs coke	0	5.0 +6.0
Injected Coal, Ibs/NTHM Coke Correction, Ibs coke	269	262 -7.0
Burden: Pellets, % Coke Correction, Ibs coke	72.8	64.9 +6.3
Sinter,% Coke Correction, lbs coke	27.0	34.9 +6.3
Wind Volume, SCFM Coke Correction, lbs coke	135,683	135,370 + <i>.</i> 3
Added Moisture, Grs./SCFM Wind Coke Correction, Ibs coke	20.4	20.7 9
Iron Silicon Content, % Coke Correction, Ibs coke	.51	.49 +2.0
Iron Sulfur Content, % Coke Correction, Ibs coke	.040	.035 -2.5
Iron Manganese Content, % Coke Correction, Ibs coke	.42	.46 -1.0
Coke Ash, % Coke Correction, Ibs coke	7.70	7.50 +4.0
Blast Temperature, F Coke Correction, Ibs coke	2046	2012 -5.1
TOTAL COKE CORRECTIONS: lbs.	coke BASE	+8.4
Reported Furnace Coke Rate, lbs/l	NTHM 673	674
Corrected Furnace Coke Rate, ibs	NTHM	682
Coke Rate Difference from the BA	SE	+ 9 Pounds of Coke/NTHM

, **,**

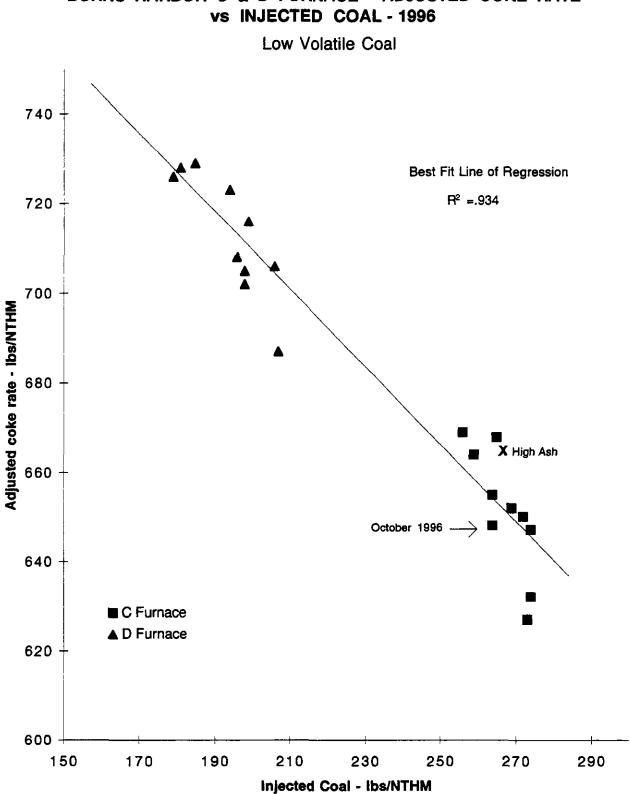
,

BURNS HARBOR C FURNACE ADJUSTED COKE RATE COMPARISON

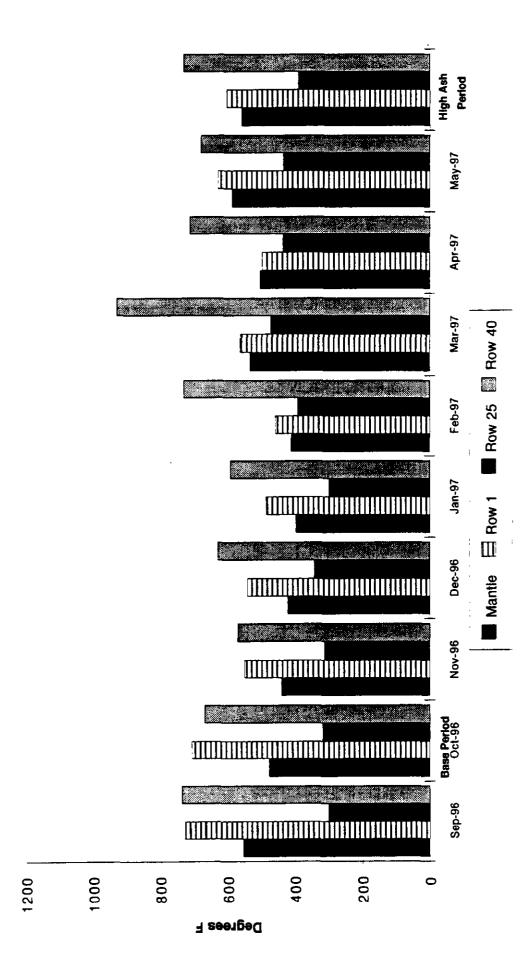
Coke Correction Variables:	BASE October 1996	HIGH ASH TRIAL 5/2 <u>8/97 - 6/23/</u> 97
Natural Gas, Ibs/NTHM Coke Correction, Ibs coke	0	5.0 +6.0
Injected Coal, ibs/NTHM Coke Correction, ibs coke	264	262 -2.0
Burden: Pellets, % Coke Correction, Ibs coke	63.8	64.9 9
Sinter,% Coke Correction, Ibs coke	35.9	34.9 8
Wind Volume, SCFM Coke Correction, Ibs coke	137,000	135,370 +1.7
Added Moisture, Grs./SCFM Wind Coke Correction, lbs coke	19.8	20.7 -2.6
Iron Silicon Content, % Coke Correction, Ibs coke	.50	.49 +1.0
Iron Sulfur Content, % Coke Correction, lbs coke	.040	.035 -2.5
Iron Manganese Content, % Coke Correction, Ibs coke	.43	.46 8
Coke Ash, % Coke Correction, lbs coke	7.70	7.50 +4.0
Blast Temperature, F Coke Correction, Ibs coke	2067	2012 -8.3
TOTAL COKE CORRECTIONS: lbs. co	ke BASE	-5.2
Reported Furnace Coke Rate, Ibs/NT	HM 661	674
Corrected Furnace Coke Rate, lbs/N	тнм	669
Coke Rate Difference from the BAS	E	+ 8 Pounds of Coke/NTHM

.

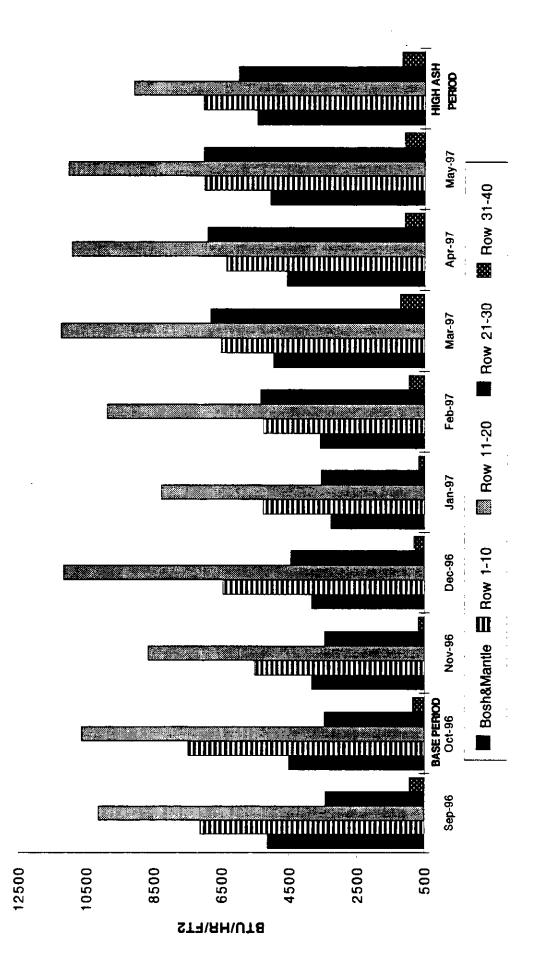
BURNS HARBOR C FURNACE ADJUSTED COKE RATE COMPARISON


Coke Correction Variables:	BASE FEBRUARY 1996	HIGH ASH TRIAL 5/ <u>28/97 - 6/23/</u> 97
Natural Gas, Ibs/NTHM Coke Correction, Ibs coke	1.0	4.0 +4.8
Injected Coal, Ibs/NTHM Coke Correction, Ibs coke	253	262 +9.0
Burden: Pellets, % Coke Correction, Ibs coke	67.7	64.9 +2.2
Sinter,% Coke Correction, lbs coke	32.1	34.9 +2.2
Wind Volume, SCFM Coke Correction, Ibs coke	145,300	135,370 +10.4
Added Moisture, Grs./SCFM Wind Coke Correction, Ibs coke	14.0	20.7 -19.4
Iron Silicon Content, % Coke Correction, lbs coke	.43	.49 -6.0
Iron Sulfur Content, % Coke Correction, Ibs coke	.044	.035 -4.5
Iron Manganese Content, % Coke Correction, lbs coke	.43	.46 8
Coke Ash, % Coke Correction, lbs coke	7.60	7.50 +2.0
Blast Temperature, F Coke Correction, Ibs coke	2075	2012 -9.4
TOTAL COKE CORRECTIONS: lbs. c	oke BASE	-9.5
Reported Furnace Coke Rate, Ibs/N	ТНМ	674
Corrected Furnace Coke Rate, Ibs/I	NTHM	664

, **'**


BURNS HARBOR C FURNACE SULFUR BALANCE

SULFUR INPUT:	5/28-6/23/97	_SULFUR OUTPUT:	5/28-6/23/97
Material;		Material;	
Furnace Coke, Sulfur Analysis	.71%	Blast Furnace Slag, Sulfur Analysis	1.40%
Tons Coke Used	70,461	Total Tons Produced	46,284
Tons Sulfur In	500.3	Tons Sulfur Out	648.0
Injected Coal,Sulfur Analysis	.75%	Blast Furnace Iron,Sulfur Analysis	.035%
Tons Coal Used	26,272	Total Tons Produced	200,799
Tons Sulfur In	197.0	Tons Sulfur Out	70.3
Sinter, Sulfur Analysis	.02%	Flue Dust,Sulfur Analysis	.34%
Tons Sinter Used	111,485	Total Tons Produced	893
Tons Sulfur In	22.3	Tons Sulfur Out	3.0
Pellets,Sulfur Analysis	.01%	Filter Cake,Sulfur Analysis	.38%
Tons Pellets Used	206,998	Total Tons Produced	2533
Tons Sulfur In	20.7	Tons Sulfur Out	9.6
Scrap,Sulfur Analysis	.13%	Top Gas, Sulfur Content	2.5grs/100SCF
Tons Scrap Used	2,183	Total Gas Produced, MMCF	100,125
Tons Sulfur In	2.8	Tons Sulfur Out	17.9
TOTAL TONS of SULFUR IN:	743.1	TOTAL TONS of SULFUR OUT:	748.8
		SULFUR OUT/SULFUR IN	1.007


FIGURE 1

BURNS HARBOR C & D FURNACE - ADJUSTED COKE RATE

BURNS HARBOR C FURNACE - INWALL REFRACTORY TEMPERATURES

BURNS HARBOR C FURNACE THERMAL LOADS

FIGURE 3

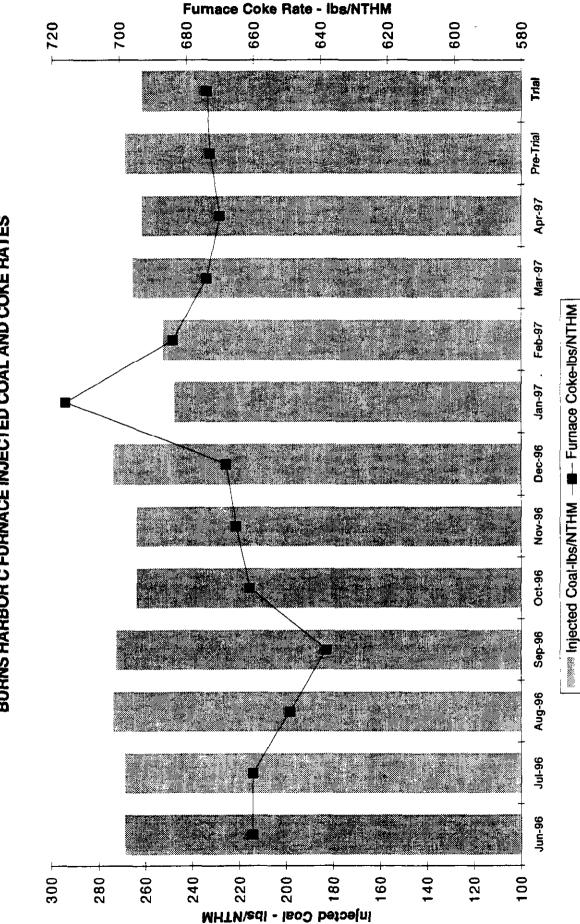
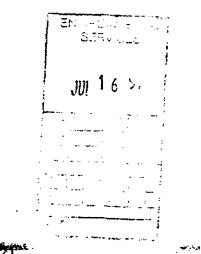


FIGURE 4

Blast Furnace Granulated Coal Injection Environmental Monitoring Report

,

Appendix 1 - Gaseous Stream Testing Results


.

A Full-Service Environmental Consulting Company 945 Oaklawn Avenue Elmhurst, Illinois 60126-1012 Phone 630-993-9000 Facsimile 630-993-9017

GAS ANALYSIS STUDY Performed For BETHLEHEM STEEL CORPORATION At The Burns Harbor Works Blast Furnace C Burns Harbor, Indiana June 12, 17 and 18, 1997

100 Mar 107

Copyright 1997
All rights reserved in
Mostardi-Platt Associates, Inc.

MOSTARDI PLATT PROJECT 72418 AND 72521** DATE SUBMITTED: JULY 11, 1997

Bethlehem Steel C-Blast Furnace Gas Test Results Burns Harbor, Indiana

						Total	Sulfur Content
Date Sampled	Time Sampled	Hydrogen (mol %)	CO ₂ (mol %)	O2 (mol %)	Carbon Monoxide (mol %)	(ppmv)	(as gr/100 scf)
06/12/97	1045	5.10	24.3	0.60	26.4	31.0	1.9
06/12/97	1230	5.29	25.0	0.60	25.6	36.3	2.3
06/12/97	1330	4.91	24.9	0.59	26.6	36.8	2.3
		<u> </u>		······································		·•	
06/17/97	0830	6.64	23.6	0.60	25.5	84.0	5.3
06/17/97	1050	6.68	23.6	0.64	25.5	36.6	2.3
06/17/97	1230	6.83	23.7	0.60	25.3	41.1	2.6
06/18/97	0820	4.89	24.7	0.61	25.7	30.0	1.9
06/18/97	1005	5.03	24.6	0.61	25.6	31.4	2.0
06/18/97	1210	4.92	24.6	0.61	26.0	30.0	1.9

Lab sheets are attached.

Project Summary

۱. ۲

> 72418 - June 12, 1997 BETHLEHEM STEEL BURNS HARBOR, IN SB

Project	Sample	Sample Point	Analyte
72418 72418 72418 72418 72418 72418 72418	001 001 002 002 003 003	C-BLAST FURN.T1 C-BLAST FURN.T1 C-BLAST FURN.T2 C-BLAST FURN.T2 C-BLAST FURN.T3 C-BLAST FURN.T3	Major Gas Components Trace Sulfur Compounds Major Gas Components Trace Sulfur Compounds Major Gas Components Trace Sulfur Compounds

Page 1

-

Project Summary

72521 BETHLEHEM STEEL 'C' BLAST FURNACE EAP

.

Project	Sample	Sample Point	Analyte
72521	001	"C"BLAST FRN.T1	Major Gas Components
72521	001	"C"BLAST FRN.T1	Trace Sulfur Compounds
72521	002	"C"BLAST FRN.T2	Major Gas Components
72521	002	"C"BLAST FRN.T2	Trace Sulfur Compounds
72521	003	"C"BLAST FRN.T3	Major Gas Components
72521	003	"C"BLAST FRN.T3	Trace Sulfur Compounds
72521	004	"C"BLAST FRN.T4	Major Gas Components
72521	004	"C"BLAST FRN.T4	Trace Sulfur Compounds
72521	005	"C"BLAST FRN.T5	Major Gas Components
72521	005	"C"BLAST FRN.T5	Trace Sulfur Compounds
72521	006	"C"BLAST FRN.T6	Major Gas Components
72521	006	"C"BLAST FRN.T6	Trace Sulfur Compounds

Page 1

-

-

· · · ·

6/23/97 IGT Log # : 9712431.XLS

-

_

Client Name: Mo	stardi-Platt A	ssociates	<u> </u>
IGT Sample Number: 971			
Sample Description: 724		est 1	6/12/07
Date Analyzed: 20-		Analyst: A	· •
Date Admyzed: 20-	/40-9/	Analyst: A	
Component	Mel %	Det. Limit	Weight %
Heim	D	0.001%	זא
Hydrogen	5_10%	0.04%	8.34%
Carbon Disside	24.3%	0.03%	34.99
Ethens		0.03%	
Eduanc		0.03%	
Oxygen/Argon	0.68%	0.03%	8.649
Nitrogen	43.6%	0.03%	39.9%
Mothane		0.03%	
Carbon Monoxide	26.4%	0.03%	24.2%
Ethyne		0.002%	
Propens		0.002%	
Proprac		0.002%	
Propadance		0.002%	
Рторуде		0.002%	
Butane		0.002%	
a Butane		0.002%	
1-Butene		0.002%	
Batone		0.002%	
Trans-2-Buttone		0.002%	
Cie-2-Button		0.002%	
1,3-Butadiene		0.002%	
eco-Peptane		0.001%	
Pentane		0.002%	
-Peotase		0.002%	
Pensence		0.002%	
Hexane Pha		0.002%	
Bydrogen Sulfide		0.0001%	
Carbonyl Sulfide	0.0031%	0.0001%	0.0061%
Unidentified		0.001%	
Water	ND	0.001%	N
Total	100.0%		100.8%
	perties per AST		
Temp. ("F)"	60.4	60.8 14.55	
Press. (psia)=	14.696	14.73	
Compressibility Factor [2] =	0.99902	0.99902	
Relative Dennity =	1.0571	1.0571	
Grow HV (DRY) =	102.2	102.5	
Grow HV (SAT.) =	100.4 99.4	100.7 99.6	
WILLS - Later -			
Wobbe Index = Net HV (Dry) =	98.7	99.0	

Notes: All blank values are below detection limit

ND - Not Determined

IGT Institute of Gas Technology

Analytical Report

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates

IGT Sample Number: 9712431

Sample Description: 72418-001 Tarl 6/12/57 Date Analyzed: 20-Jun-97 Analyst: AGJ

Component Name	PP	MV	Component Name	PPMV
Hydrogen Sulfide			Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide		31	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyi Mercaptan				
t-Butyl Mercaptan			Thiophane	
Dimethyl Sulfide			Individual Unidentified	
Methyl Ethyl Sulfide			Sulfur Compounds	
Diethyl Sulfide			(all as monosulfides)	
Di-t-Butyl Sulfide				
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0
i-Propyl n-Propyl Disulfide			Total Identified:	31.0
Di-n-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	31.0
Di-t-Butyl Disulfide			As Grains/100 SCF	1.9
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
	Notes:	Сотр	onent Detection Limit	
		l ppu	v for Hydrogen Sulfide	
		~ ~		10

0.2 ppmv for all other compounds per sulfur All blank values are below detection limit.

Analytical Report

6723/97 KT Log #: 9712432.XLS

Eardi-Platt A 432 8-002 T m-97 Mol % ND 5.29% 25.8% 8.66% 43.5%	C. Link Det. Link 0.001% 0.04% 0.03% 0.03% 0.03% 0.03%	
8-002 T 18-97 Mol % ND 5.39% 25.8% 8.68%	Anniyst: A Det. Limit 0.001% 0.04% 0.03% 0.03% 0.03% 0.03%	(GJ Watesh: % ND 0.35% 35.8%
Mai % ND \$.39% 25.8% 0.68%	Anniyst: A Det. Limit 0.001% 0.04% 0.03% 0.03% 0.03% 0.03%	(GJ Watesh: % ND 0.35% 35.8%
Mai % ND 5.39% 25.8%	Det. Limit 0.001% 0.04% 0.03% 0.03% 0.03%	Weight % ND 0.35% 35.8%
ND \$.29% 25.8%	0.001% 0.04% 0.03% 0.03% 0.03%	ND 0.35% 35.8%
5.29% 25.8%	0.04% 0.03% 0.03% 0.03% 0.03%	0.35% 35.8%
25.8% 8.68%	0.03% 0.03% 0.03% 0.03%	35.8%
8.68%	0.03% 0.03% 0.03%	
	0.03%	8.64%
	0.03%	
	-	<u> </u>
43.5%	6 Anna/	44
	0.03%	39.8%
	0.03%	
25.6%	0.03%	23.4%
	0.002%	
	0.002%	
	0.002%	
	0.002%	
	0.002%	
	0.002%	
	0.002%	
	0.002%	
	0.002%	
	0.002%	
	0.002%	
	0.002%	
		8.8004%
0.0033%	••••	0.9965%
	0.001%	ND
199.974		(99.9%)
-		
	0.0003% 0.0033% ND 100.0%	25.6% 0.03% 0.002% 0.001% 0

Notes: All blank values are below detection limit ND - Not Determined

Institute of Gas Technology 1700 South Mt, Prospect Rd. Des Plaines, IL 6001\$

IGT Institute of Gas Technology

,

IGT Institute of Gas Technology

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates IGT Sample Number: 9712432 Sample Description: 72418-002 TG+ 2 6/12/97 Date Analyzed: 20-Jun-97 Analyst: AGJ

Component Name	PP	MV	Component Name	PPMV
Hydrogen Sulfide		3.3	Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide		33	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
Dimethyl Sulfide			Individual Unidentified	
Methyl Ethyl Sulfide	·		Sulfur Compounds	
Diethyl Sulfide			(all as monosulfides)	
Di-t-Butyl Sulfide				
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0
i-Propyl n-Propyl Disulfide			Total Identified:	36.3
Di-n-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	36.3
Di-t-Butyl Disulfide			As Grains/100 SCF	2.3
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
	Notes:	Cor	nponent Detection Limit	
		1	new for Underson Sulfide	

1 ppmv for Hydrogen Sulfide

0.2 ppmv for all other compounds per sulfur

All blank values are below detection limit.

Analytical Report

-

Major Component Gas Analysis By Gas Chromatograph						
Client Name: Mostardl-Platt Associatus						
IGT Sample Number: 971	2433					
Sample Description: 724	113-003 7	~+ 3	6/12/5			
Date Analyzed: 20-		Analyst: A	(G)			
omponent	Mal *	Det. Limit	Weight %			
cium.	NĐ	0.001%	DN			
ydrogon.	4,91%	0.04%	1.32%			
rton Dioxide	24.9%	0.03%	35.6%			
lions -		0.03%				
bant .		0.03%				
types/Argen	8_59%	0.03%	1.62%			
	43.8%	0.03%	39.1%			
these		0.03%				
rbon Monazide	26.6%	0.03%	24.3%			
IYIDS		0.002%				
Ipane		0.002%				
Ipane		0.002%				
padione		0.002%				
, bia:		0.002%				
		0.002%				
Magac		0.002%				
uicas		0.002%				
		0.002%				
as-2-Buttac		0.002%				
-2-Butene		0.002%				
-Butaciene		0.002%				
Pentanc		0.001%				
intere -		0.002%				
colanc		0.002%				
		0.002%				
ane Plut		0.002%				
rogen Sulfde	0.0004%	0.0001%	8.9084%			
boayi Sulfide	8.8833%	0.0001%	1.0064%			
dentified		0.001%				
La	ND	0.001%	DN			
	100.0%		106.6%			
Calculated Real Gas Pro Testp. (*?)**	operties per AST 68.0	M D3588-91 68.8				
	14.696	i≪73				
Press. (pais)=	0.99900	1.99900				
ompromibility Factor (z) =	1.0621	1.0621				
Relative Density =	1.0521	1.0621 102.5				
Gross HV (DRY) =	102.3					
Gras HV (SAT.) =		100.5				
Wobbs index =	993	99.5				
Net HV (Dry) =	99.0	99.2				
Not HV (Sac.) =	97.2	9 7.5				

Notes: All blank values are below detection limit ND - Not Determined

.

.

IGT Institute of Gas Technology

•

.

Analytical Report

IGT Institute of Gas Technology

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates

IGT Sample Number: 9712433

Sample Description: 72418-003 6/12/57 T-5+3 Date Analyzed: 20-Jun-97 Analyst: AGJ

Component Name	PPN	٧V	Component Name	PPMV
Hydrogen Sulfide	<u> </u>	3.8	Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide		33	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
Dimethyl Sulfide			Individual Unidentified	
Methyl Ethyl Sulfide			Sulfur Compounds	
Diethyl Sulfide			(all as monosulfides)	
Di-t-Butyl Sulfide	·			
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0
i-Propyl n-Propyl Disulfide			Total Identified:	36.8
Di-n-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	36.8
Di-t-Butyl Disulfide			As Grains/100 SCF	2.3
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
	Notes:	Comp	onent Detection Limit	

0.2 ppmv for all other compounds per sulfur All blank values are below detection limit.

•

IGT Institute of Gas Technology

Analytical Report

7/10/97 IGT Log #: 9712551.mk

Major Component Gas And	lysis By Gas Cl	romstography
Client Name: Mostardi-P	att Associates.	ns.
IGT Sample Number: 9712551		
Sample Description: 72521-001	T-1	6/17/97
Date Analyzed: 23-Jun-97	Analyst:	AGJ

Component	Mai %	Det Limit	Weight %
Holium	םא	0.001%	סא
Hydrogen	6.64%	0.04%	8.44%
Carbon Dioxide	23.6%	0.03%	34.6%
Ethne		0.03%	
Ethanc		0.03%	
Oxygen/Argon	0.60%	0.03%	0.65%
Nitrogen	43.6%	0.03%	48.6%
Mittanc	8.64%	0.03%	0.62%
Carbon Monoxide	25.5%	0.03%	23.7%
Ediyac		0.002%	
Propune		0.002%	
Propens		0.002%	
Propadiene		0.002%	
Рторунс		0.002%	
i-Butane		0.002%	
n-Butane		0.002%	
i-Buttes		0.002%	
-Betenc		0.002%	
Trans-2-Butene		0.002%	
Cis-2-Butase		0.002%	
1,3-Butadiene		0.002%	
aco-Puestanc		0.001%	
Pealanc		0.002%	
n-Pentane		0.002%	
Pensenes		0.002%	
Herene Phie		0.002%	
Hydrogen Sullide	0.0044%	0.0001%	0.0058%
Carbonyi Sulfide	0.0040%	0.0001%	0.0050%
Unidentified		0.001%	
Water	ND	0.001%	ND
Tetal	100.0%		100.7%

Tomp. ("F)"	64.4	6.1			
Press. (pais)-	14.696	K 13			
Compromibility Factor (2) =	0.99907	0.99906			
Relative Density =	1.0394	1.0394			
Grass HV (DRY) =	104.8	105.1			
Gross HV (SAT.) -	103.0	103.3			
Wobbe Index =	102.5	103.1			
Net HV (Dry) =	100.3	100.5			
Not HV (Sel.) =	98.5	96.7			
· · · · · · · · · · · · · · · · · · ·		,			

Notes: All blank values are below detection limit

ND - Not Determined

.

7/10/97 **Analytical Report** IGT Institute of Gas Technology IGT Log # : 9712551.xis TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc. IGT Sample Number: 9712551 Sample Description: 72521-001 T++ 1 6/17/47 Date Analyzed: 23-Jun-97 Analyst: AGJ

Component Name	PP	MV	Component Name	PPMV
Hydrogen Sulfide		44	Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide		40	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	•
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
Dimethyl Sulfide			Individual Unidentified	
Methyl Ethyl Sulfide			Sulfur Compounds	
Diethyl Sulfide			(all as monosulfides)	
Di-t-Butyl Sulfide				
Dimethyl Disulfide				
Methyl Ethyl Disulfide Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0
i-Propyl n-Propyl Disulfide			Total Identified:	84.0
Di-n-Propyl Disulfide				64 .0
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	84.0
Di-t-Butyl Disulfide			As Grains/100 SCF	5.3
Dimethyl Trisulfide				C. S
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
-	Notes:	Con	nponent Detection Limit	
		1 m	my for Hydrogen Sulfide	

1 ppmv for Hydrogen Sulfide

0.2 ppmv for all other compounds per sulfur All blank values are below detection limit.

IGT Institute of Gas Technology

•

,

Analytical Report

7/10/97 KT Log # : 9712552.xk

Major Component Gas Analysis By Gas Chrometograph							
Client Name: Mostard-Platt Associates, Inc.							
IGT Sample Number: 97	12552						
Sample Description: 72	521-002 T	4+2	6/17/4				
Date Analyzed: 23		Analyst: A	, .				
Component	Mol %	Det. Lindt	Weight %				
laijum.	ND	0.001%	NC				
ly-drogen	6.68%	0.04%	0.45%				
nton Diazidu	23.6%	0.03%	34.5%				
(hane		0.03%					
the second s		0.03%					
xygsa/Argon	8.64%	0.03%	0.69%				
litrogen.	43.7%	0.03%	48.7%				
lettere		0.03%					
artean Monazide	25_5%	0.03%	23.7%				
thryse		0.002%					
ropane		0.002%					
Topane		0.002%					
ropadiene		0.002%					
орупс		0.002%					
hatanc		0.002%					
Butans		0.002%					
Bytane		0.002%					
Justema		0.002%					
uns-2-Butenc		0.002%					
n-2-Butene I-Butadiane		0.002%					
-Polizie		0.002%					
		0.001%					
restance Franktine		0.002%					
r emery.		0.002%					
cance Phas		0.002%					
drugen Sulfde		0.002%					
rbonyl Sulfac	8.8601% 8.8635%	0.0001% 0.0001%	8.0002%				
identified		0.001%	4.4471%				
	ND	0.001%	ND				
(a)	164.0%	v.v/178	THUR S				
Calculates Ran) Gas Pro	portios per AST?	C D3585-91					
Temp. ('T)-	68.8						
Press. (pais)=	14.6%	14,73					
ampromibility Factor (2) =	0.99907	0.99907					
Relative Density =	1.0389	1.0389					
Grow HV (DRY) =	104.5	104.8					
Grow HV (SAT.) =	102.7	103.0					
Wobbe Index =	102.6	102.8					
Net HV (Dry) =	100.0	100.2					
Net H'V (Set.) =	98.2	98.5					

ND - Not Determined

.

-

IGT Institute of Gas Technology

Analytical Report

ogy

7/10/97 IGT Log # : 9712552.xls

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: <u>Mostardi-Platt Associates. Inc.</u> IGT Sample Number: 9712552 Sample Description: 72521-002 Test 26 17 167 Date Analyzed: 23-Jun-97 Analyst: AGJ

Component Name	PP	MV	Component Name	PPMV
Hydrogen Sulfide		1.3	Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide		35	C2-Thiophenes	
Carbon Disulfide		0.2	C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
Dimethyl Sulfide			Individual Unidentified	
Methyl Ethyl Sulfide			Sulfur Compounds	
Diethyl Sulfide			(all as monosulfides)	
Di-t-Butyl Sulfide				
Dimethyl Disulfide				
Methyl Ethyl Disulfide Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	c
-Propyl n-Propyl Disulfide			Total Identified:	36.5
Di-n-Propyl Disulfide				
-Propyl t-Butyl Disulfide			Total Sulfur Content	
-Propyl t-Butyl Disulfide			As PPMV	36.6
Di-t-Butyl Disulfide			As Grains/100 SCF	2.3
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfice				
	Notes:	Соп	ponent Detection Limit	
			my for Hydrogen Sulfide	

0.2 ppmv for all other compounds per sulfur All blank values are below detection limit.

.

,

. ۰.

IGT Institute of Oas Technology

Analytical Report

7/10/97 IGT Log # : 9712553.sts

Majer Component Gas Analysis By Gas Chromatograph					
Clent Name: Mo		mociates. In	<u>c.</u>		
IGT Sample Number: 971	2553		. 1 1		
Sample Description: 725		5+ J	6/17/4		
Date Analyzed: 23-		Analyst: A	ſĠĴ		
emponent	Mot %	Det. Limit	Weight %		
diam.	ND	0.001%	ND		
veragen	6.83%	0.04%	0.46%		
rbon Dioxide	23.7%	0.03%	34.7%		
		0.03%			
		0.03%			
tygen/Argon	9,69%	0.03%	8.65%		
rogen	43.5%	0.03%	40.6%		
thans		0.03%			
rhen Monazide	25.3%	0.03%	23.6%		
iyne		6.002%			
opane		0.302%			
opeac		0.002%			
spadiene		0.002%			
FYTE		0.002%			
uizae		0.002%			
utanc		0.002%			
valape		0.002%			
illene no-2-Butane		0.002%			
-2-Bulance		0.002%			
-2-Duties Butadiene		0.002%			
-Pensing		0.001%			
		0.002%			
		0.002%			
in the second		6.002%			
and Plas		0.002%			
irogen Sulfide	8.0984%	0.0001%	0.0005%		
bonyl Sulfide	8.0937%	0.0001%	0.0074%		
dentified		0.001%			
	ND	0.001%	NE		
	166.1%		100.0%		
Calculated Real Gas Pro					
Temp. (*P)=	4.1	A.			
Pres. (psis)=	14.696	14.73			
omproveibility Pactor (z) +	0.99907	0.99906			
Relative Density =	1.0382	1.0382			
Gross HV (DRY) -	104.7	106.9			
Grees HV (SAT.) -	102.9	103.1			
Webbc Index =	102.8	103.0			
Net HV (Dry) =	100.0	100.3			
Net HV (Sal.) +	98.3	98 .5			

Notes: All blank values are below detection limit ND - Not Determined

.

.

IGT Institute of Gas Technology

Analytical Report

7/10/97 IGT Log # : 9712553.xls

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc. IGT Sample Number: 9712553

Sample Description: 72521-003 TC+ 3 6117 57

Date Analyzed: 23-Jun-97 Analyst: AGJ

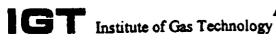
Component Name	PP	MV	Component Name	PPMV
Hydrogen Sulfide		4.1	Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide		37	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
Dimethyl Sulfide			Individual Unidentified	
Methyl Ethyl Sulfide			Sulfur Compounds	
Diethyl Sulfide			(all as monosulfides)	
Di-t-Butyi Sulfide				
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0
i-Propyl n-Propyl Disulfide			Total Identified:	41.1
Di-n-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Salfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	41.1
Di-t-Butyl Disulfide			As Grains/100 SCF	2.6
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
	Notes:	Соп	ponent Detection Limit	
		l pp	mv for Hydrogen Sulfide	

0.2 ppmv for all other compounds per sulfur All blank values are below detection limit.

-

IGT Institute of Gas Technology

Analytical Report


7/10/97 IGT Log # : 9712554.als

Major Componen			
Client Name: M		Associates, In	6
IGT Sample Number: 97	12554	~ · ·	1 1
Sample Description: 72	521-004	75+ 1	6/18/9
Date Analyzed: 23	-Jun-97	Analyst: A	loi .
Component	Mol %	Det. Link	Weight %
Heijan	ND	0.001%	ND
Hydrogan	4.89%	0.04%	6_32%
Carbon Diotede	34.7%	0.03%	35.4%
Libere		0.03%	
Ethane		0.03%	
Oxygen/Argon	0.61%	0.03%	0.65%
Nirogen	44,1%	0.03%	44.2%
Methane		0.03%	
Carbon Monoxide	25.7%	0.03%	23.4%
Ethryme		0.002%	
торанс		0.002%	
Propens		0.002%	
Propudiene		0.002%	
Topyne		0.002%	
Butanc		0.002%	
-Batanc		0.002%	
-Butenc		0.002%	
Butene		0.002%	
Trace-2-Butens		0.002%	
Cis-2-Butene		0.002%	
		0.002%	
Ho-Peniane Peniane		0.001%	
		0.002%	
- Peniane		0.002%	
Texans Pha		0.002%	
lydrogan Sulfide		0.002%	
arbonyl Sulfide	0.0030%	6.0001%	
Initestified	0.00.00 70	0.001%	0.0060%
Yater	ND	0.001%	ND
•LA	100.1%	0.00176	100.8%
Columbian Deal Con De-			
Calculated Real Gas Pro Tump. (T)*		64.6	
Pres. (peis)-	14.6%	14.73	
Compressibility Factor [2] -	0.99901	0.99901	
Relative Duraity =	1.0612	1.0612	
Gross HV (DRY) =	99.]	77. 4	
Green HV (SAT.) -	97.4	97.6	
Wobbe Index -	96.2	96.5	
Net HV (Dry) =	95.8	96.0	
Net HV (Set.) =	94.1	94.3	

Notes: All blank values are below detection limit ND - Not Determined

.

...

4

Analytical Report

7/10/97 IGT Log # : 9712554.xis

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc. IGT Sample Number: 9712554 Sample Description: 72521-004 Tat + 1 6/18/97 Date Analyzed: 23-Jun-97 Analyst: AGJ

Component Name	PP	MV	Component Name	PPMV
Hydrogen Sulfide			Thiophene	
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide		30	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
Dimethyl Sulfide			Individual Unidentified	
Methyl Ethyl Sulfide			Sulfur Compounds	
Diethyl Sulfide			(all as monosulfides)	
Di-t-Butyl Sulfide				
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0
-Propyl n-Propyl Disulfide			Total Identified:	30.0
Di-n-Propyl Disulfide				
-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	30.0
Di-t-Butyl Disulfide			As Grains/100 SCF	1.9
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
	Notes:	Con	aponent Detection Limit	
		I no	my for Wydrogen Sylfide	

I ppmv for Hydrogen Sulfide

0.2 ppmv for all other compounds per sulfur All blank values are below detection limit. IGT Institute of Gas Technology

. .

Analytical Report

7/10/97 IGT Log # : 9712555.sts

Major Component			
Chent Name: Mg		mociates. In	£
IGT Sample Number: 971	2555		
Sample Description: 725	21-085 1		
Date Analyzed: 23~	Jun-97	Analyst: A	GI
Component	Mai %	Det. Limit	Weight %
	ND	0.001%	ND
tydrogen	5.83%	0.04%	1_33%
Carbon Dioxide	24.6%	0.03%	35.3%
dene.		0.03%	
Ethane		0.03%	
Dayyee/Argon	0.61%	0.03%	8.64%
Nirogen	44.1%	0.03%	41.3%
(atheast		0.03%	
Carlson Monoxide	25.6%	0.03%	23.4%
Sthyne		0.002%	
ropane		0.002%	
Propens		0.002%	
Propadiant		0.002%	
торуна		0.002%	
-Balanc		0.002%	
Bulanc		0.002%	
-Buime		0.002%	
-Butans		0.002%	
Frans-2-Butane		0.002%	
En-2-Butana		0.002%	
.,3-Butadiene		0.002%	
Mo-Pentane		0.001%	
-Pastana		0.002%	
-Pastane		0.002%	
Panlamas		0.002%	
Hexans Phu		0.002%	
lydrogen Sulfide		0.0001%	
Carbonyl Suifide	8.0927%	0.0001%	8.8054%
Indentified		0.001%	
Water	ND	0.001%	ND
	140.5%		100.0%
Colculated Real Ges Pro			
Temp. (*?)*	61.1	61.0	
Press. (pais)*	14.696	14.73	
Compromibility Faster [2] -	0.99901	0.99901	
Relative Density =	1.0595	1.0595	
Grass HV (DRY) =	99.5	99.7	
Greet HV (SAT.) -	97.8	96.0	
Wobbe Index =	96.7	96.9	
Net HV (Dry) =	96.1	%3	
Net HV (Sat.) =	54,4	94.6	
Notes: All h	énik valaes erc b	ciow detection S	
	Not Determined		

•

÷

.

-

Analytical Report IGT Institute of Gas Technology

7/10/97 IGT Log # : 9712555.xls

TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: Mostardi-Platt Associates. Inc.

IGT Sample Number: 9712555

Sample Description: 72521-005 Tet 2 6/18/17

Date Analyzed: 23-Jun-97 Analyst: AGJ

Component Name	PPN	٧N	Component Name	PPMV
Hydrogen Sulfide			Thiophene	-i- <u>-</u>
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide		27	C2-Thiophenes	
Carbon Disulfide		2.2	C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercaptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
Dimethyl Sulfide			Individual Unidentified	
Methyl Ethyl Sulfide			Sulfur Compounds	
Diethyl Sulfide			(all as monosulfides)	
Di-t-Butyl Sulfide				
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0
i-Propyl n-Propyl Disulfide			Total Identified:	29.2
Di-n-Propyl Disulfide				
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	31.4
Di-t-Butyl Disulfide			As Grains/100 SCF	2.0
Dimethyl Trisulfide				
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
	Notes:	Co	mponent Detection Limit	
			pmv for Hydrogen Sulfide	

0.2 ppmv for all other compounds per sulfur

All blank values are below detection limit.

IGT Institute of Gas Technology

,

, · ·

]

ĺ

• • •

Analytical Report

7/10/97 KTT Log # : 9712556.xls

.

;

• •	unt Ges Analysis	•	
	Mostardi-Platt	spociates. In	
IGT Sample Number: Sample Description:	72521-886 1	z +3	6/18/97
Date Analyzed:		Analyst: /	VGJ ' '
Component	Mat %	Del. Limit	Weight %
Halitan	סא	0.001%	ND

Halitam	סא	0.001%	- Фи
Hydrogen	4.92%	0.04%	8.32%
Carbon Dioxide	24.6%	0.03%	35,3%
térm		0.03%	
Ethens		0.03%	
Oxygen/Argen	0.61%	0.03%	8.64%
Narogen	43.9%	0.03%	40.8%
Methane		0.03%	
Carbon Monoxide	24.0%	0.03%	23.7%
Edayas		0.002%	
Propane		0.002%	
Propers		0.002%	
Propediane		0.002%	
Ргоруна		0.002%	
Butane		0.902%	
a-Balanc		0.002%	
1-Buttene		0.002%	
-Butane		0.002%	
Traca-2-Butene		0.002%	
Cie-2-Branne		0.002%	
1,3-Butadiene		0.002%	
neo-Pantana		0.001%	
Panishe		0.002%	
-Pestane		0.002%	
Pananas		0.002%	
Hennes Plan		9.002%	
Hydrogan Sulfide		0.0001%	
Carbanyi Sulfide	8.8636%	0.0001%	0.0058%
Unidentified		0.001%	
Water	ND	0.001%	סא
Total	100.0%		100.0%
Calculated Real Gas Pre			
Temp. (*?)*	4.1	68.0	
Press. (pain)*	14.696	14.73	
Compremibility Factor [2] =	0.99901	0.99901	
Relative Density -	1.9605	1.0605	
Gross HV (DRY) =	100.2	100.5	
Gros HV (\$AT.) =	96.5	96.7	
Webbe index *	97.3	97.6	
Net HV (Dry) =	96.9	97.1	

Notar: All blank values are below detection limit ND - Not Determined

95.2

95.4

Net HV (Sal.) =

Analytical Report 7/10/97 IGT Log # : 9712556.xls TRACE SULFUR DETERMINATION BY GAS CHROMATOGRAPHY

Client Name: <u>Mostardi-Platt Associates. Inc.</u> IGT Sample Number: 9712556 Sample Description: 72521-006 TG+ 3 6/18/97 Date Analyzed: 23-Jun-97 Analyst: AGJ

Component Name	PP	MV	Component Name	PPMV
Hydrogen Sulfide	<u> </u>		Thiophene	······································
Sulfur Dioxide			C1-Thiophenes	
Carbonyl Sulfide		30	C2-Thiophenes	
Carbon Disulfide			C3-Thiophenes	
Methyl Mercaptan			Benzothiophene	
Ethyl Mercsptan			C1-Benzothiophenes	
i-Propyl Mercaptan			C2-Benzothiophenes	
n-Propyl Mercaptan				
t-Butyl Mercaptan			Thiophane	
Dimethyl Sulfide			Individual Unidentified	
Methyl Ethyl Sulfide			Sulfur Compounds	
Diethyl Sulfide			(all as monosulfides)	
Di-t-Butyl Sulfide				:
Dimethyl Disulfide				
Methyl Ethyl Disulfide				
Methyl i-Propyl Disulfide				
Diethyl Disulfide				
Methyl n-Propyl Disulfide				
Methyl t-Butyl Disulfide				
Ethyl i-Propyl Disulfide				
Ethyl n-Propyl Disulfide				
Ethyl t-Butyl Disulfide				
Di-i-Propyl Disulfide			Total Unidentified:	0
i-Propyl n-Propyl Disulfide			Total Identified:	30.0
Di-n-Propyl Disulfide				•
i-Propyl t-Butyl Disulfide			Total Sulfur Content	
n-Propyl t-Butyl Disulfide			As PPMV	30.0
Di-t-Butyl Disulfide			As Grains/100 SCF	1.9
Dimethyl Trisulfide				•••
Diethyl Trisulfide				
Di-t-Butyl Trisulfide				
	Notes:	Con	nponent Detection Limit	
			mv for Hydrogen Sulfide	
		• **		

Institute of Gus Technology 1700 South Mt. Prospect Rd. Des Plaines, IL 60018

0.2 ppmv for all other compounds per sulfur All blank values are below detection limit.

.

.

MOSTARDI-PLATT ASSOCIATES, INC.

Environmental Consultants

	R	ead Instructions on Reverse	Side B	efore Co		
		CHAIN-OF-CU	MODY	RECOR	Ð	e 11 E.
Project Nu		72418	Date	Results R	equired:	
Client: BE	THLEH	M STORE	TAT	(Assessm	ent Only)	
		NS HARBOR, IN	LAB	PO	Number:	
Project Suj	pervisor: 5	WART BURTON	Use Oniy	LIM	S Entry:	
Sample Number	Date Sampled	Sample Point Identification	# of Conts	Grab/ Comp	Analysis Requested	Sub Lab
001	6-12	C-BLAST FURNACE	1	10:41	& Major Compose	
C07	6-12	11	(12:30	<u> </u>	
003	6-2	l l	1	13:30	h	<u> </u>
			L			
) 				_
		· · · · · · · · · · · · · · · · · · ·				
					·	
					······	
						_ <u></u>
Delivered b	y:	Date/Time Processed 6, 13, 97 17 00	Ar	le	Date/Time Received by L 6/11/27 Chris 9 m for arush	2borztory: 6/16/97 1 2:00 9m
ecial Inst	ructions:	T/	ļi		7-7-7-	•

• •

vironmental Consultants

	R	ead Instruct						ompleting Form! RD	
Project 1	Number: 72	2521			T T	-		Lequired:	
Client:			1					ent Only)	يسمعه التجرير فالقدر
Plant/Lo	cation: 'C	hem Stre Blest	Forman				PO	Number:	
Project S	upervisor:	EP ·					LIN	IS Eatry:	
Sample Number	Date Sampled	Sample Poin	t Identification		# of Conts	r –	ab/ mp	Analysis Requested	Sub Lab
00/	6117/47	Blassferm	sue (es te	TI	1	6	5	Tapie Sulphur &	
00	- f - f - f - f - f - f - f - f - f - f	· · ·	105.55	- 2			1	MATORCINT	N/S
00	3 417/97	4	12425		1				
004		()	92 Jes		1	.			
	6/8/97	۲ <u>ر</u>	1005	2	1				
036	6/691	9	1210	24			/	∛	
	┦───┤			-+					
				-+					
	 	8:3		-+				<u></u>	
	┨╼╼╼╼╼┥┥	······································		-+			-+		.
	╂╍╍╍╍╌┦	10:	:30	-+-			-+		
		8:2		╶╌┨╸			\neg	<u></u>	
<u>,</u> <u></u>	├ ───┼	Q,2		+			-†		
			-;10	-†-			-+		-
	11						-†	<u></u>	
Delivered I S E ecial Insi	-	Date/) 6 . 20 9 ;		sed b	"LAN	h		Date/Time Received by	Laboratory:

.

a 🍯

P.32

Institute of Gas Technology LOGIN CHAIN OF CUSTODY REPORT (1n01) Jun 20 1997, 03:36 pm

Login Number: L97-1255 Account: MOSTARDI PLATT Mostardi Platt Associates, Inc. Project: MOST 97-1255

And a Stable August and a Studber of the Date of Date of Date of Date

L97-1255-1		72521-001	17-JUN-97	20-JUN-97	11-JUL-97
source: steel indu Gas S H2S F Gas S SLFRT Gas S SYNGA	stry PD G S	Hold:20- Hold:18-	JUN-97 JUN-97		
L97-1255-2	SAMPLE 7			20-JUN-97	11-JUL-97
Gas S H2S F Gas S SLFRT Gas S SYNGA	PD G S	Hold:20- Hold:18-	-JUN - 97 -JUN - 97		
L97-1255-3 source: steel indu	SAMPLE 7	72521-003	17-JUN-97	20- JUN- 97	11-JUL-97
Gas SH2SF	PD	Hold:20-	-JUN-97		
L97-1255-3 source: steel indu Gas S H2S F Gas S SLFRT Gas S SYNGA	ច ន	Hold:18.	JUN-97		
L97-1255-4 source: steel indu				20-JUN-97	11-JUL-97
source: steel indu Gas S H2S F Gas S SLFRT Gas S SYNGA	PD	Hold:21-	-JUN-97		
Gas S SUFRI Gas S SYNGA	S	ROID:13-	-00N-97		
L97-1255-5 source: steel indu				20-JUN-97	11-JUL-97
Source: steel indu Gas S H2S F Gas S SLFRT	PD	Hold:21-	JUN-97		
Gas S SLFRT Gas S SYNGA	G S	Hold:19-	JUN-97		
L97-1255-6 source: steel indu				20-JUN-97	11-JUL-97
Gas SH2SF	PD	Hold:21-	JUN-97		
Gas S SLFRT Gas S SYNGA	G	Hold:19-	JUN-97		
Miscell. S ZZ S&	Ĥ				

Page 1

Signature:

aland Date: ____7-10

ans

Jul-10-97 15:34

Purchase Order #: Company : Report Address :

Institute	of Gas	Technology
-----------	--------	------------

24-Jun-97	Analytical Report	Log # 971243.DOC
. · ·		
Purchase Order #: Company : Report Address :	18731 Mostardi-Platt Associates, Inc. 945 Oaklawn Avenue Elmhurst IL 60126	
Requestor :	Frank Jarke	
Work Description : Received Date :	Project #72418 gas samples 20-JUN-97	
Number of Samples :	three	
Sample Description :	See attached Chain of Custody Repor	rt

Disclaimer:

IG

Neither IGT nor any person acting on behalf of IGT assumes any liability with respect to the use of, or for damages resulting from the use of, any information presented in this report.

Submitted by :

ano

Alan G. Janos

847-768-0603

Institute of Gas Technology 1700 South Mt. Prospect Road Des Plaines, IL 60018-1804

Sherman Chao, Ph.D., (847) 768-0587 Associate Director, Chemical Research Services

Institute of Gas Technology LOGIN CHAIN OF CUSTODY REPORT (1n01) Jun 16 1997, 12:25 pm

Login Number: L97-1243 Account: MOSTARDI PLATT Mostardi Platt Associates, Inc Project: MOST 97-1243

Laboratory Client Collect Receive Due Sample Number Sample Number Date PR"Date

L97-1243-1 Gas Gas Gas Gas	SAMPLE S H2S FPD P LANDGAS2 C LANDGAS C SLFRTG	72418-001 12-JUN-97 Hold:15-JUN-97 Hold:13-JUN-97	16-JUN-97 07-JUL-97
L97-1243-2 Gas Gas Gas Gas	SAMPLE S H2S FPD P LANDGAS2 C LANDGAS C SLFRTG	72418-002 12-JUN-97 Hold:15-JUN-97 Hold:13-JUN-97	16-JUN-97 07-JUL-97
L97-1243-3 Gas Gas Gas Gas Miscell.	SAMPLE S H2S FPD P LANDGAS2 C LANDGAS C SLFRTG S ZZ S&H	72418-003 12-JUN-97 Hold:15-JUN-97 Hold:13-JUN-97	16-JUN-97 07-JUL-97

· · · · · · · · · · · · · · · · · · ·	
l	
Signature:	· · ·
Date:	·
	1 Signature: Date:

Institute of Gas Technology LOGIN CHAIN OF CUSTODY REPORT (1n01) Jun 16 1997, 12:25 pm

Login Number: L97-1243 Account: MOSTARDI PLATT Mostardi Platt Associates, Inc Project: MOST 97-1243

L97-1243-1 Gas Gas Gas Gas Gas	SH2 PLA C I	SAMPLE SFPD ANDGAS2 ANDGAS SLFRTG	001 Hold:15- Hold:13-	JUN-97	16-JUN-97	07-JUL-97
L97-1243-2 Gas Gas Gas Gas Gas	SH2 PLA CL	SAMPLE 25 FPD NDGAS2 LANDGAS SLFRTG	002 Hold:15- Hold:13-	JUN-97	16-JUN-97	07-JOL-97
L97-1243-3 Gas Gas Gas Gas Miscell.	PLA CL CS	SAMPLE S FPD NDGAS2 ANDGAS SLFRTG S S H	003 Hold:15- Hold:13-	JUN-97	16-JUN-97	07-JUL-97

Page 1		:	-
Signature:	. <u> </u>		
Date:	···.		

Institute of Gas Technology LOGIN CHAIN OF CUSTODY REPORT (1n01) Jun 16 1997, 12:25 pm

Login Number: L97-1243 Account: MOSTARDI PLATT Mostardi Platt Associates, Inc Project: MOST 97-1243

Gas Gas Gas	S H2S FPD P LANDGAS2 C LANDGAS C SLFRTG	72418-001 12-JUN-97 16-JUN- Hold:15-JUN-97 Hold:13-JUN-97	-97 <u>07-JUL-</u> 97
Gas Gas	SAMPLE S H2S FPD P LANDGAS2 C LANDGAS C SLFRTG	72418-002 12-JUN-97 16-JUN- Hold:15-JUN-97 Hold:13-JUN-97	97 07-JUL-97
Gas	S H2S FPD P LANDGAS2 C LANDGAS	72418-003 12-JUN-97 16-JUN- Hold:15-JUN-97 Hold:13-JUN-97	-97 07-JUL-97

Page 1			•
Signature:	· · ·	· · ·	
Date:		, 	. ·

Blast Furnace Granulated Coal Injection Environmental Monitoring Report •

. . .

Appendix 2 - Wastewater Monitoring Summaries

•

Bethlehem Steel Corporation Burns Harbor Division Outfall 001 Monitoring Summary

٠

э.

.

Sample Date 04/01/97	Flow (MGD) 133.9	Ammonia (as N) (mg/l) 0.42	Ammonia (as N) (Ib/day) 473.8	Cyanide (mg/l)	Cyanide (Ib/day)
04/02/97 04/03/97	141.0 137.6	0.34	384.7		
04/04/97	144.6	0.34	304.7		
04/05/97	144.0				
04/06/97	124.2	0.33	340.0	<0.005	0.00
04/07/97	131.9	0.00	0.0.0	-0.000	0.00
04/08/97	145.6	0.39	475.1		
04/09/97	131.0				
04/10/97	140.0	0.41	483.7		
04/11/97	145.5				
04/12/97	145.1				
04/13/97	126.2	0.42	442.3	<0.005	0.00
04/14/97	138.7				
04/15/97	142.1	0.57	673.5		
04/16/97	136.1				
04/17/97	130.8	0.36	389.7		
04/18/97	113.4				
04/19/97	84.6				
04/20/97	91.9	0.39	301.4	<0.005	0.00
04/21/97	115.2				
04/22/97	138.5	0.52	602.2		
04/23/97	139.8				
04/24/97	140.2	0.21	243.4		
04/25/97	159.2				
04/26/97	130.2				
04/27/97	123.3	0.22	227.4	<0.005	0.00
04/28/97	131.8				
04/29/97	141.2	0.38	450.1		
04/30/97	144.3				
Average	133.0	0.38	422.1	<0.005	0.00
Maximum	159.2	0.57	673.5	< 0.005	0.00
Minimum	84.6	0.21	227.4	<0.005	0.00

,

Bethlehem Steel Corporation Burns Harbor Division Outfall 001 Monitoring Summary

•

Sample Date 05/01/97	Flow (MGD) 143.2	Ammonia (as N) (mg/l) 0.29	Ammonia (as N) (Ib/day) 340.6	Cyanide (mg/l)	Cyanide (Ib/day)
	145.2	0.29	040.0		
05/02/97					
05/03/97	146.0	0.27	294.1	<0.005	0.00
05/04/97	132.5	0.21	234.1	-0.000	0.00
05/05/97	143.5	0.29	347.0		
05/06/97	144.9	0.29	547.0		
05/07/97	148.2 145.2	0.26	312.6		
05/08/97 05/09/97	145.2	0.20	512.0		
05/10/97	130.4				
05/11/97	139.4	0.26	297.8	<0.005	0.00
05/12/97	135.8	0.20	201.0	-0.000	0.00
05/13/97	144.8	0.27	325.0		
05/14/97	147.3	0,21	02010		
05/15/97	141.2	0.18	207.4		
05/16/97	154.0				
05/17/97	150.0				
05/18/97	130.2	0.20	217.3	<0.005	0.00
05/19/97	122.1				
05/20/97	150.0	0.41	510.7		
05/21/97	152.7				
05/22/97	147.6	0.38	465.6		
05/23/97	169.4				
05/24/97	150.7				
05/25/97	136.6	0.38	433.2	<0.005	0.00
05/26/97	150.9				
05/27/97	149.0	0.38	477.5		
05/28/97	158.4				
05/29/97	154.1	0.23	300.9		
05/30/97	145.9				
05/31/97	132.8				
Average	145.6	0.29	348.4	<0.005	0.00
Maximum	170.7	0.41	510.7	<0.005	0.00
Minimum	122.1	0.18	207.4	<0.005	0.00

Bethlehem Steel Corporation Burns Harbor Division Outfall 001 Monitoring Summary

. .

i.

Sample	Flow	Ammonia (as N)	Ammonia (as N)	Cyanide	Cyanide
Date	(MGD)	(mg/l)	(lb/day)	(mg/l)	(lb/day)
06/01/97	151.2	0.37	464.3	<0.005	0.00
06/02/97	128.9				
06/03/97	153.5	0.28	362.5		
06/04/97	148.0				
06/05/97	162.8	0.27	366.8		
06/06/97	165.2				
06/07/97	161.4				
06/08/97	141.9	0.34	402.6	<0.005	0.00
06/09/97	153.5				
06/10/97	159.9	0.30	401.6		
06/11/97	156.9				
06/12/97	166.8	0.36	503.9		
06/13/97	174.0				
06/14/97	157.8				
06/15/97	150.2	0.33	412.4	<0.005	0.00
06/16/97	191.8				
06/17/97	154.1	0.40	517.0		
06/18/97	162.0				
06/19/97	158.4	0.24	319.9		
06/20/97	166.4				
06/21/97	164.2				
06/22/97	150.9	0.21	269.5	<0.005	0.00
06/23/97	155.6				
06/24/97	159.2	0.33	443.7	<0.005	0.00
06/25/97	158.4				
06/26/97	162.8	0.33	452.4		
06/27/97	159.9				
06/28/97	157.5				
06/29/97	141.5	0.31	361.3	<0.005	0.00
06/30/97	164.0				
Average	158.0	0.31	406.0	<0.005	0.00
Maximum	191.8	0.40	517.0	<0.005	0.00
Minimum	128.9	0.21	269.5	<0.005	0.00

Bethlehem Steel Corporation Burns Harbor Division Monitoring Station 011 Monitoring Summary

•

-

Sample Date	Flow (MGD)	Ammonia (as N) (mg/l)	Ammonia (as N) (Ib/day)	Cyanide (mg/l)	Cyanide (lb/day)
04/01/97	66.3	0.54	296.6	<0.005	0.00
04/02/97	84.2				
04/03/97	73.1	0.40	245.8	<0.005	0.00
04/04/97	95.0				
04/05/97	65.8				
04/06/97	70.7	0.41	242.5	<0.005	0.00
04/07/97	83.7				
04/08/97	80.3	0.47	317.6	<0.005	0.00
04/09/97	77.9				
04/10/97	85.5	0.41	289.0	<0.005	0.00
04/11/97	79.6				
04/12/97	79.0				
04/13/97	59.9	0.54	271.9	<0.005	0.00
04/14/97	81.5				
04/15/07	81.8	0.79	535.9	<0.005	0.00
04/16/97	79.9				
04/17/97	60.9	0.64	324.2	<0.005	0.00
04/18/97	27.6				
04/19/97	17.8			• • • •	• • •
04/20/97	28.0	0.99	231.8	<0.005	0.00
04/21/97	31.1	4 07	047.0	-0.005	
04/22/97	69.2 78.5	1.07	617.3	<0.005	0.00
04/23/97	78.5	0.40	204 5	<0.00F	0.00
04/24/97 04/25/97	79.1 91.4	0.49	321.5	<0.005	0.00
04/25/97	67.5				
04/27/97	37.3	0.47	146.9	<0.005	0.00
04/28/97	29.8	0.47	140.5	-0.005	0.00
04/29/97	65.1	0.61	330.3	<0.005	0.00
04/30/97	81.8	0.01	000.0	-0.000	0.00
	01.0				
Average	67.0	0.60	320.9	<0.005	0.00
Maximum	95.0	1.07	617.3	< 0.005	0.00
Minimum	17.8	0.40	146.9	<0.005	0.00
	· · ·		+		

Bethlehem Steel Corporation Burns Harbor Division Monitoring Station 011 Monitoring Summary

•

-

Sample	Flow	Ammonia (as N)	Ammonia (as N)	Cyanide	Cyanide
Date	(MGD)	(mg/l)	(lb/day)	(mg/l)	(lb/day)
05/01/97	77.7	0.42	273.0	<0.005	0.00
05/02/97	75.6				
05/03/97	79.9				
05/04/97	79.2	0.39	256.4	<0.005	0.00
05/05/97	66.8				
05/06/97	78.6	0.43	282.7	<0.005	0.00
05/07/97	84.4				
05/08/97	75.6	0.39	246.0	<0.005	0.00
05/09/97	104.9				
05/10/97	64.3				
05/11/97	73.9	0.31	193.0	<0.005	0.00
05/12/97	39.8				
05/13/97	77.6	0.24	158.0	<0.005	0.00
05/14/97	83.2				
05/15/97	73.5	0.20	123.3	<0.005	0.00
05/16/97	85.8				
05/17/97	83.8				
05/18/97	30.0	0.37	91.9	<0.005	0.00
05/19/97	32.7				
05/20/97	75.8	0.64	406.1	<0.005	0.00
05/21/97	84.6				
05/22/97	82.2	0.32	222.3	<0.005	0.00
05/23/97	88.7				
05/24/97	73.5				
05/25/97	72.7	0.42	254.2	<0.005	0.00
05/26/97	67.0				
05/27/97	65.8	0.42	231.2	<0.005	0.00
05/28/97	88.7				
05/29/97	83.8	0.24	166.4	<0.005	0.00
05/30/97	83.4				
05/31/97	75.9				
Average	74.5	0.37	223.4	<0.005	0.00
Maximum	104.9	0.64	406.1	<0.005	0.00
Minimum	30.0	0.20	91.9	<0.005	0.00

. . .

Bethlehem Steel Corporation Burns Harbor Division Monitoring Station 011 Monitoring Summary

•

•

Sample Date 06/01/97	Flow (MGD) 86.4	Ammonia (as N) (mg/l) 0.29	Ammonia (as N) (Ib/day) 212.0	Cyanide (mg/l) <0.005	Cyanide (Ib/day) 0.00
06/02/97 06/03/97	59.3 81.7	0.36	246.1	<0.005	0.00
06/03/97	78.7	0.30	240.1	-0.000	0.00
06/05/97	84.9	0.38	271.4	<0.005	0.00
06/06/97	82.1	0.00			
06/07/97	80.1				
06/08/97	31.3	0.40	105.5	<0.005	0.00
06/09/97	50.3				
06/10/97	83.7	0.49	342.3	<0.005	0.00
06/11/97	70.0				
06/12/97	84.4	0.41	288.1	<0.005	0.00
06/13/97	91.9				
06/14/97	78.2				
06/1 5/97	74.5	0.51	319.6	<0.005	0.00
06/16/97	84.7				
06/17/97	62.1	0.47	244.1	<0.005	0.00
06/18/97	79.9				
06/19/97	69.8	0.26	149.7	<0.005	0.00
06/20/97	84.9				
06/21/97	84.3	• • •			
06/22/97	62.0	0.41	209.5	<0.005	0.00
06/23/97	57.4				
06/24/97	77.4	0.34	220.9	<0.005	0.00
06/25/97	82.5	0.04	040.0	<0.005	0.00
06/26/97	82.7	0.31	213.3	<0.005	0.00
06/27/97	86.8				
06/28/97	75.1 54.2	0.35	156.5	<0.005	0.00
06/29/97 06/30/97	54.2 86.2	0.35	150.5	-0.005	0.00
00/30/97	00.2				
Avg	74.9	0.38	229.1	<0.005	0.00
Max	91.9	0.51	342.3	<0.005	0.00
Min	31.3	0.26	105.5	<0.005	0.00

Bethlehem Steel Corporation Burns Harbor Division Blast Furnace Closed Water Pump Station Cold Well Monitoring Summary

Sample Date	Ammonia (as N) (mg/l)	Cyanide (mg/l)
04/01/97		
04/02/97	42.0	0.010
04/03/97		
04/04/97		
04/05/97		
04/06/97		
04/07/97		
04/08/97		
04/09/97	32.8	0.036
04/10/97		
04/11/97		
04/12/97		
04/13/97		
04/14/97		
04/15/97	47.0	0 500
04/16/97	47.9	0.538
04/17/97		
04/18/97		
04/19/97		
04/20/97		
04/21/97		
04/22/97	21.0	0.407
04/23/97	21.0	0.497
04/24/97		
04/25/97		
04/26/97		
04/27/97		
04/28/97		
04/29/97	27 3	0 171
04/30/97	37.3	0.171
Average	36.2	0.250
Maximum	47.9	0.538
Minimum	21.0	0.010

Bethlehem Steel Corporation Burns Harbor Division Blast Furnace Closed Water Pump Station Cold Well Monitoring Summary

Sample Date 05/01/97 05/02/97 05/03/97 05/04/97 05/05/97	Ammonia (as N) (mg/l)	Cyanide (mg/l)
05/06/97		
05/07/97	29.2	0.104
05/08/97		
05/09/97		
05/10/97		
05/11/97		
05/12/97		
05/13/97		
05/14/97	29.8	0.040
05/15/97		
05/16/97		
05/17/97		
05/18/97		
05/19/97		
05/20/97		
05/21/97	24.7	0.042
05/22/97		
05/2 3/ 97		
05/24/97		
05/25/97		
05/26/97		
05/27/97		
05/28/97	20.6	0.058
05/29/97		
05/30/97		
05/31/97		
Average	26.1	0.061
Maximum	29.8	0.104
Minimum	20.6	0.040

Bethlehem Steel Corporation Burns Harbor Division Blast Furnace Closed Water Pump Station Cold Well Monitoring Summary

-

,

Sample Date	Ammonia (as N) (mg/l)	Cyanide (mg/l)
06/01/97		
06/02/97		
06/03/97		
06/04/97	22.2	0.186
06/05/97		
06/06/97		
06/07/97		
06/08/97		
06/09/97		
06/10/97		
06/11/97	29.0	0.044
06/12/97		
06/13/97		
06/14/97		
06/15/97		
06/16/97		
06/17/97		
06/18/97	24.6	0.087
06/19/97		
06/20/97		
06/21/97		
06/22/97		
06/23/97		
06/24/97		
06/25/97	23.6	0.014
06/26/97		
06/27/97		
06/28/97		
06/29/97		
06/30/97		
Avg	24.9	0.083
Max	29.0	0.186
Min	22.2	0.014

,

- ·

-