MILLIKEN CLEAN COAL TECHNOLOGY DEMONSTRATION PROJECT

UNIT 1 LNCFS LEVEL 3 AND UNIT 2 BASELINE TEST PROGRAM RESULTS

FINAL REPORT

Prepared By

CONSOL Inc. Research and Development 4000 Brownsville Road Library, PA 15129-9566

<u>Principal Investigators</u> Jamal B. Mereb Robert M. Statnick

> <u>Subcontractor</u> Energy Systems Associates 1840 Gateway Three Pittsburgh, PA 15222

> > Prepared For

U.S. Department of Energy 'lliken Clean Coal Technology Demonstration Project DE-FC22-93PC92642

Electric Power Research Institute 3412 Hillview Avenue P.O. Box 10412 Palo Alto, CA 94303 <u>Principal Investigator</u> Sandy S. Chang

New York State Electric

& Gas Corporation

Kirkwood Industrial Park

Binghamton, NY 13902-5224

Corporate Drive

P.O. Box 5224

New York State Electric & Gas Corporation Corporate Drive Kirkwood Industrial Park P.O. Box 5224 Binghamton, NY 13902-5224

Empire State Electric Energy Research Corporation 1515 Broadway, 43rd Floor New York, NY 10036-5701

December 1996

CONSOL Inc. Research and Development 4000 Brownsville Road Library, PA 15129-9566

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

This report was prepared by the organization(s) named below as an account of work sponsored or cosponsored by NYSEG (New York State Electric & Gas Corporation). Neither NYSEG, nor any of the organization(s) listed below, nor any person acting on behalf of any of them:

- (A) Makes any warranty or representation whatsoever, express or implied, (1) with respect to the use of any information, apparatus, method, process or similar item disclosed in this report, including merchantability and fitness for a particular purpose; or (2) that such use does not infringe on or interfere with privately owned rights, including any party's intellectual property; or (3) that this report is suitable to any particular user's circumstance; or
- (B) Assumes any responsibility for any damages or other liability whatsoever (including any consequential damages, even if NYSEG or any NYSEG representative has been advised of the possibility of such damages) resulting from your selection or use of this report or any information, apparatus, method, process or similar item disclosed in this report.
- (C) Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

ORGANIZATION(S) THAT COFUNDED THIS REPORT:

New York State Electric & Gas Corporation Corporate Drive, Kirkwood Industrial Park P.O. Box 5224 Binghamton, NY 13902-5224 Attn: James J. Harvilla

Electric Power Research Institute 3412 Hillview Avenue P.O. Box 10412 Palo Alto, CA 94303 Attn: Richard Rhudy

Empire State Electric Energy Research Corporation 1515 Broadway, 43rd Floor New York, NY 10036-5701 Attn: Debra Dimeo US Department of Energy FETC P.O. Box 10940 Pittsburgh, PA 15129-9566 Attn: James Watts

CONSOL, Inc. Research & Development 4000 Brownsville Road Library, PA 15129-9566 Attn: Robert Statnick

NYS Energy Research and Development Authority Two Rockefeller Plaza Albany, NY 12223 Attn: Joseph H. Sayer

ORDERING INFORMATION

For information about ordering this report, contact James J. Harvilla, Project Manager, New York State Electric & Gas Corporation, Corporate Drive, Kirkwood Industrial Park, P.O. Box 5224, Binghamton, NY 13902-5224, (607) 762-8630.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contribution of the following personnel: Mr. T. Hohn, Mr. K. Mooney and Mr. D. Stafford of New York State Electric & Gas Corporation; Mr. J. Fish of Pozzolanic International Inc.; Mr. R. M. Meeder of Energy Systems Associates; and Dr. M. F. Abbott, Mr. N. J. DeIuliis, Mr. M. S. DeVito, Mr. D. C. McCoy, Dr. D. G. Nichols, and Mr. D. J. Pazuchanics of CONSOL Inc.

The authors also thank Mr. K. D. Zammit of Electric Power Research Institute and Mr. R. R. Hardman of Southern Company Services Inc. for sharing their experience and knowledge on low- NO_x burner retrofit.

TABLE OF CONTENTS

ABSTRACT	
SUMMARY	
Introduction	1
Objective	1
Discussion Unit 2 Baseline Diagnostic Test Program Unit 1 Post-Retrofit Diagnostic Test Program Long-Term Test Program Validation Test Program Performance Evaluation	1 1 2 4 4 5
SECTION ONE: INTRODUCTION	
1.1 Objectives	6
1.2 Background 1.2.1 Comparison of Milliken Units 1 and 2 NO _x Emiss	ions 7
1.3 Unit 2 Baseline and Unit 1 Post-Retrofit Diagnostic	Tests 8
1.4 Long-Term, Validation and Performance Testing	8
SECTION TWO: UNIT 2 BASELINE DIAGNOSTIC TESTS	
2.1 Experimental Design	9
2.2 Experimental Plan 2.2.1 Measurements	10 10
 2.3 Results and Discussion 2.3.1 Experimental Error 2.3.2 Experimental Results 2.3.3 Effects of Fuel Air Flow and Burner Tilt 2.3.4 Effects of Mill Pattern 2.3.5 Effects of Boiler Load and Excess O₂ 2.3.6 Variations of NO_x Emissions and LOI 2.3.7 Predictive Correlations for NO_x Emissions and I 	10 11 11 11 12 12 12 13 LOI 13
2.4 Conclusions	13

TABLE OF CONTENTS (CONT.)

.

SECTIO	ON THREE: UNIT 1 POST-RETROFIT DIAGNOSTIC TESTS	
3.1	Experimental Design	31
3.2	Experimental Plan 3.2.1 Measurements	32 32
3.3	Results and Discussion 3.3.1 Data Evaluation 3.3.2 Experimental Error 3.3.3 Experimental Results 3.3.4 Effects of Combustion Air Distribution and Burner Tilt 3.3.5 Effects of Mill Pattern 3.3.6 Effects of Boiler Load and Excess O_2 3.3.7 Variations of NO _x Emissions and LOI 3.3.8 Predictive Correlations for NO _x Emissions and LOI	33 34 35 35 36 36 37 38
3.4	Conclusions	38
SECTIO	ON FOUR: LNCFS-3 SYSTEM START-UP, INSTALLATION COSTS AND FUEL DUCT BALANCING TESTS	
4.1	LNCFS-3 System Start-Up	66
4.2	LNCFS-3 Installation Costs 4.2.1 Capital Costs	66 66
4.3	Unit 2 Baseline Pulverized Coal Balancing Tests 4.3.1 Full Boiler Load Test - Four Mills in Service 4.3.2 Intermediate Boiler Load Test - Top Three Mills in Service	67 67 67
4.4	Unit 1 Post-Retrofit Pulverized Coal Balancing Tests 4.4.1 Full Boiler Load Test - Four Mills in Service	68 68
SECTIO	ON FIVE: LONG-TERM, VALIDATION AND PERFORMANCE TESTING	
5.1	Long-Term Testing	69
5.2	Validation Test Programs 5.2.1 Unit 2 Baseline Validation Test Program 5.2.2 Unit 1 LNCFS-3 Validation Test Program	70 70 70
5.3	LNCFS-3 Performance Evaluation 5.3.1 NO _x Control 5.3.2 Boiler Efficiency	72 72 73

LIST OF TABLES

Page

1.1	Milliken Pre-Retrofit Unit 2 and Post-Retrofit Unit 1 Description	6
2.1	Unit 2 Baseline Tests - Parameter Settings	15
2.2	Unit 2 Baseline Tests - Statistical Designs	16
2.3	Unit 2 Baseline Tests - Test Conditions	17
2.4	Unit 2 Baseline Tests - Coal and Ash Analyses	18
2.5	Unit 2 Baseline Tests - Test Results	19
2.6	Unit 2 Baseline Tests - Experimental Error Calculations	20
2.7	Unit 2 Baseline Tests - Reduced Data Matrix	21
2.8	Unit 2 Baseline Tests - NO_x and LOI Correlations	22
3.1	Unit 1 Post-Retrofit Tests - Parameter Settings	41
3.2	Unit 1 Post-Retrofit Tests - Design A, Full Boiler Load Tests	42
3.3	Unit 1 Post-Retrofit Tests – Design B, Mill Pattern Tests	43
3.4	Unit 1 Post-Retrofit Tests - Design C, Variable Boiler Load Tests	44
3.5	Unit 1 Post-Retrofit Tests - Test Description	45
3.6	Unit 1 Post-Retrofit Tests - Experimental Test Conditions	46
3.7	Unit 1 Post-Retrofit Tests - Gas Stratification Data	47
3.8	Unit 1 Post-Retrofit Tests - Fly Ash Analyses	48
3.9	Unit 1 Post-Retrofit Tests - Coal Analyses	49
3.10	Unit 1 Post-Retrofit Tests - Gas Analyses Data	50
3.11	Unit 1 Post-Retrofit Tests - Test Parameters	51

3.12 Unit 1 Post-Retrofit Tests - Experimental Error Calculations 53

LIST OF TABLES (CONT.)

3.13	Unit 1 Post-Retrofit Tests - Reduced Data Matrix	54
3.14	Unit 1 Post-Retrofit Tests - NO_x and LOI Correlations	55
4.1	Milliken Unit 1 Retrofit Costs	67
5.1	Long-Term NO _x Emissions	74
5.2	Unit 2 Baseline Validation Test Results	75
5.3	Unit 1 LNCFS-3 Validation Test Results	76
5.4	LNCFS-3 Impact on NO _x Emissions	77
5.5	LNCFS-3 Impact on Boiler Efficiency	78

.

LIST OF FIGURES

		•
2.1	Effect of Fuel Air Flow – Milliken Unit 2, 140 MW, 3% O_2	23
2.2	Effect of Burner Tilt – Milliken Unit 2, 140 MW, 3% 0_2	24
2.3	Effect of Mill Pattern - Milliken Unit 2, 4% O_2	25
2.4	Effect of Excess Air - Milliken Unit 2, Parameter: Boiler Load	26
2.5	Effect of Boiler Load - Milliken Unit 2, Parameter: %O ₂	27
2.6	Effect of Excess Air - Milliken Unit 2, 140 MW	28
2.7	LOI Variation With NO $_{\rm x}$ - Milliken Unit 2, 140 MW	29
2.8	Predicted vs. Measured NO, Emission, Milliken Unit 2, Dec. 93 Baseline Tests	30
2.9	Predicted vs. Measured LOI, Milliken Unit 2, Dec. 93 Baseline Tests	30
3.1	Effect of Burner Tilt - Milliken Unit 1, Main and SOFA Tilts	56
3.2	Effect of SOFA Yaw - Milliken Unit 1, SOFA Yaw	57
3.3	Effect of Air Distribution - Milliken #1, SOFA/CCOFA Split, Coal Air	58
3.4	Effect of Mill Pattern	59
3.5	Effect of Excess Air - Milliken Unit 1, Parameter: Boiler Load	60
3.6	Effect of Boiler Load - Milliken Unit 1, Parameter: %O ₂	61
3.7	Effect of Excess Air - Milliken Unit 1, Parameter: Mill rpm	62
3.8	Effect of Coal Fineness, 3.3% O ₂ - Milliken Unit 1, Parameter: Boiler Load	63
3.9	Effect of Coal Fineness, 120 MW - Milliken Unit 1, Parameter: O_2	64

Page

LIST OF FIGURES (CONT.)

Page

3.10	Predicted Millike	vs. Measured NO _x Emission, n Unit 1, 3-94 Post-Retrofit Test	65
3.11	Predicted Millike	vs. Measured LOI, n Unit 1, 3-94 Post-Retrofit Test	65
5.1	Long-Term	Gas Emissions	79
5.2	Effect of Unit 2	Excess Air - Baseline Validation Test, 140 MW	80
5.3	Effect of Unit 2	Boiler Load – Baseline Validation Test, 4% O₂	81
5.4	Effect of Unit 1	Excess Air - LNCFS-3 Validation Test, 145 MW	82
5.5	Effect of Unit 1	Mill rpm - LNCFS-3 Validation Test	83
5.6	Effect of Unit 1	Boiler Load - LNCFS-3 Validation Test, $3.5\% O_2$	84
5.7	Comparing	Short-Term NO _x Emissions at 145-150 MW	85
5.8	Comparing	Long-Term NO _x Emissions at 145-150 MW	86

ABBREVIATIONS

ABB CE	Asea Brown Boveri Combustion Engineering
Btu	British Thermal Units
CCOFA	Close-Coupled Over-Fire Air
CEM	Continuous Emissions Monitor
CFR	Code of Federal Regulations
C0	Carbon Monoxide
CO ₂	Carbon Dioxide
EPA	U.S. Environmental Protection Agency
ESA	Energy Systems Associates
ESP	Electrostatic Precipitator
kW	Kilowatts
1b	Pounds
LNCFS	Low-NO _x Concentric Firing System
LOI	Loss-on-Ignition
MM	Million
MW	Megawatts
NO	Nitric Oxide
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides, NO + NO_2
NSPS	New Source Performance Standard
NYSEG	New York State Electric and Gas Corporation
0 ₂	Oxygen
PA	Primary Air
ppm	Parts Per Million
r²	Regression Correlation Coefficient
rp m	Revolutions Per Minute
scf	Standard Cubic Feet
SO ₂	Sulfur Dioxide
SOFA	Separated Over-Fire Air
tph	Tons Per Hour
UARG	Utility Air Regulatory Group
WDPF	Westinghouse Data Acquisition System

ABSTRACT

The effectiveness of Low-NO_x Concentric Firing System Level 3 (LNCFS-3) burner retrofit to reduce NO_x emissions while maintaining high combustion efficiency and acceptable fly ash loss-on-ignition (LOI) was evaluated in the NYSEG Milliken Units 1 and 2 tangentially-fired boilers, each rated at 150 MW net and burning a high volatile (37%-38% dry), medium sulfur (1.6%-2.0% dry) Pittsburgh Seam coal. The NO_x reduction achieved by Unit 1 LNCFS-3 retrofit was assessed based on Unit 2 baseline measurements. Pre-retrofit data showed relatively small differences in NO_x emissions between the two units.

Four test programs were conducted on each unit: diagnostic, long-term, validation and performance. The diagnostic tests were short term (2-4 hours), assessing the impact of operating variables on NO_x emissions and LOI. The variables included boiler load, excess air, coal air flow, burner tilt and reduced load mill pattern. In LNCFS-3, additional variables were tested, including mill classifier speed and overfire air parameters (flow, tilt and yaw). The long-term (60-70 days) tests estimated the achievable annual NO_x emissions. The validation tests re-assessed the impact of the most significant operating variables following long-term testing. These variables were boiler load, excess air and for LNCFS-3 only, mill classifier speed. The performance tests assessed the overall impact of the low-NO_x burner retrofit on NO_x emissions, fly ash LOI, CO emissions and boiler efficiency.

The achievable annual NO_x emissions, estimated using long-term measurements, were 0.61 lb/MM Btu for Unit 2 baseline and 0.39 lb/MM Btu for Unit 1 LNCFS-3.

Limited success was achieved in reproducing the diagnostic test results during the validation test programs because of the difficulty in reproducing the diagnostic test conditions. For example, control of overfire air during the LNCFS-3 diagnostic tests was limited, producing full boiler load LOI above 4%. The limitations were relaxed during the validation tests, producing 0.7%-1.7% (absolute) lower LOI, with a minor effect on NO_x emissions.

At full boiler load (145-150 MW) and 3.0%-3.5% economizer O_2 , the LNCFS-3 burner lowered NO_x emissions from a baseline of 0.64 lb/MM Btu to 0.39 lb/MM Btu (39% reduction). At 80-90 MW boiler load and 4.3%-5.0% economizer O_2 , the LNCFS-3 burner lowered NO_x emissions from a baseline of 0.58 lb/MM Btu to 0.41 lb/MM Btu (29% reduction). With the LNCFS-3 burner, fly ash LOI below 4% was maintained, and CO emissions did not increase.

The boiler efficiency was 89.3%-89.6% for baseline and 88.3%-88.5% for LNCFS-3. A lower LNCFS-3 boiler efficiency than baseline was attributed to higher postretrofit flue gas 0_2 and higher stack temperatures which accompanied the air heater retrofit. When LNCFS-3 and baseline were compared at similar flue gas temperatures and compositions, estimated LNCFS-3 boiler efficiency was 0.2%(absolute) higher than baseline.

SUMMARY

Introduction

This report presents the results of Milliken Unit 2 baseline and Unit 1 Low-NO_x Concentric Firing System Level 3 (LNCFS-3) test programs. Four test programs were conducted on each unit, including diagnostic, long-term, validation, and performance evaluation. The diagnostic tests were short-term (2-4 hours) statistically designed parametric tests in which the effects of selected process variables on NO_x emissions and fly ash Loss-on-Ignition (LOI) were evaluated. The long-term tests involved 60-70 days of data collection to estimate the achievable annual NO_x emissions. The validation tests were similar to the diagnostic tests in which the effects of selected variables were re-evaluated following the long-term tests. The performance tests evaluated the impact of the LNCFS-3 burner retrofit on boiler performance.

Milliken Units 1 and 2 are rated at 160 MW gross (150 MW net) each. Pre-retrofit data showed that NO_x emissions differences between the two units were small. Unit 2 baseline test results were used to assess the NO_x emissions reduction achieved by Unit 1 LNCFS-3 retrofit while maintaining high combustion efficiency and acceptable fly ash LOI. The coal used was a high volatile (37%-38% dry volatile matter), medium sulfur (1.6%-2.0% dry sulfur) Pittsburgh Seam coal.

Objective

The objective of this study is to evaluate the effectiveness of the LNCFS-3 burner retrofit to reduce NO_x emissions in the NYSEG Milliken Units 1 and 2 tangentially-fired boilers.

Discussion

The results of the diagnostic (Unit 2 baseline and Unit 1 post-retrofit), longterm, validation, and performance evaluation test programs are discussed below.

Unit 2 Baseline Diagnostic Test Program

The Milliken Unit 2 baseline diagnostic test program, conducted during December 6-15, 1993, evaluated the effects of boiler load, excess O_z , coal air flow, burner tilt, and reduced load mill patterns on NO_x emissions and LOI. The following conclusions were reached:

- 1. Both NO_x and LOI results showed good reproducibility. Uncertainties at 95% confidence were \pm 0.016 lb NO_x/MM Btu and \pm 0.30% LOI. NO₂ was not measured, and reported NO_x measurements were the sum of both NO and NO₂.
- 2. Changing fuel air damper position had a significant effect on LOI and a minor effect on NO_x emissions. Increasing fuel air damper position from 2 to 4 increased LOI by 0.5%. The minimum and maximum fuel air damper positions were 1 and 5, respectively.

- 3. Variation in burner tilt affected NO_x emissions, but not LOI. Changing burner tilt from ± 15° to 0° increased NO_x emissions 0.04 lb/MM Btu.
- 4. At reduced boiler loads (110 MW and lower), taking the top burner elevation out of service reduced NO_x emissions, but made it difficult to maintain steam temperatures.
- 5. Higher excess O_2 levels (measured at economizer outlet) increased NO_x emissions and reduced LOI. The results showed that the impact of excess air on NO_x emissions was reduced at lower boiler loads.
- 6. Higher boiler loads increased NO_x emissions and reduced LOI at the same excess O_2 level.
- 7. Lower NO_x emissions corresponded to higher LOI. Predictive correlations for NO_x emissions and LOI were derived:

1b NO_x/MM Btu = 0.34 - 0.036*02 + 0.0009*MW*02 - 0.00017*(TILT)² $r^{2}=91\%$ % LOI = - 1.2 + 9.4/02 + 0.25*AIR - 0.024*(MW-140) $r^{2}=84\%$ where 02 is excess 0 measured at the economizer outlet MW is

where O2 is excess O_2 measured at the economizer outlet, MW is boiler load in MW net, TILT is burner tilt in degrees, and AIR is coal air damper position.

8. The short-term, baseline tests indicated that NO_x emissions could be reduced to about 0.54 lb/MM Btu at 140 MW, while maintaining salable fly ash.

Unit 1 Post-Retrofit Diagnostic Test Program

The Milliken Unit 1 post-retrofit diagnostic test program, conducted during March 22-31, 1994, evaluated the effects of boiler load, excess O_2 , mill classifier speed, combustion air distribution (SOFA flow, CCOFA flow and coal air flow), burner settings (burner tilt, SOFA tilt and SOFA yaw), and mill patterns on NO_x emissions and LOI. The following conclusions were reached:

- 1. The post-retrofit tests had a greater level of uncertainty in NO_x emissions and about the same level of uncertainty in LOI, compared to the baseline tests. Uncertainties at 95% confidence were \pm 0.027 lb NO_x/MM Btu and \pm 0.35% LOI.
- 2. Gas stratification across the two ducts at the economizer outlet was minor.
- 3. NO₂ concentrations measured at the economizer outlet were 1-2 ppm.
- 4. CO variation was not considered in this study because of the low concentrations measured at the economizer outlet (9-23 ppm).

- 5. Increasing burner tilt below the horizontal position (0°) was estimated to reduce NO_x emissions by 0.007 lb/MM Btu and to reduce LOI by 0.16% per degree change at full boiler load. The impact of burner tilt on main steam temperature limited changes in the burner tilt.
- 6. Changes in SOFA tilt produced no significant changes in either NO_x emissions or LOI. SOFA yaw changes (relative to the fuel firing angle) did not significantly change NO_x emissions, and increased LOI. The effect on LOI could not be determined with certainty because SOFA yaw changes were accompanied by changes in burner tilt, and the two effects could not be separated. No significant changes in steam temperatures were detected.
- 7. Greater air staging (air flow through SOFA and CCOFA ports) reduced NO_x emissions and increased LOI. Changes in SOFA damper position had a greater effect on NO_x emissions than changes in CCOFA damper position. The effect on LOI was not statistically significant when the effects of other parameters, such as burner tilt, were accounted for.
- 8. Taking the upper elevation burners out of service reduced both NO_x emissions and LOI, but the effect was greater on NO_x emissions.
- 9. Higher excess 0, increased NO, emissions and reduced LOI.
- 10. In general, higher boiler loads increased both $\rm NO_x$ emissions and LOI.
- 11. Higher mill classifier speeds reduced both NO_x emissions and LOI, but the effect on LOI was more dramatic.
- 12. The post-retrofit relationship between NO_x and LOI was more complex than the pre-retrofit relationship because of greater sensitivity of the low- NO_x configuration to process variables and coal properties. Fluctuations in coal ash and/or moisture contents had a dramatic effect on LOI and a minor effect on NO_x emissions.
- 13. Predictive correlations for NO_x emissions and LOI were derived:
 - 1b NO_/MM Btu = $0.12 + 0.08*02 + 0.00003*(MW-120)^2 r^2=84\%$ 0.00093*(RPM-93) + 0.007*TILT
 - % LOI = 8.1 1.08*02 + 0.032*(MW-120) $r^2=69\%$ 0.062*(RPM-93) + 0.155*TILT

where O2 is excess O_2 measured at the economizer outlet, MW is net MW boiler load, TILT is burner tilt in degrees from the horizontal, and RPM is mill classifier speed.

14. The short-term, post-retrofit LNCFS-3 test program indicated that NO_x emissions could potentially be reduced to about 0.35 lb/MM Btu

at full boiler load, while maintaining salable fly ash.

15. The low-NO_x burner retrofit reduced NO_x emissions from a baseline level of 0.64 lb/MM Btu to a post-retrofit level of 0.39 lb/MM Btu, corresponding to a reduction of about 39%, while maintaining LOI below 4%. The NO_x values were based on short-term test averages and will be verified during the 51-day long-term test. NYSEG believes LNCFS-3 burner retrofit is a cost-effective technology to comply with Title IV of the 1990 Clean Air Act Amendments. To date, burner operations are acceptable.

Long-Term Test Program

The achievable annual NO_x emissions were estimated using long-term (60-70 days) CEM measurements. Specifically:

- 1. The achievable annual NO_x emissions for Unit 2 baseline were 0.614 lb/MM Btu, with a 95% confidence level of ± 0.023 lb/MM Btu.
- 2. The achievable annual NO_x emissions for Unit 1 LNCFS-3 were 0.390 lb/MM Btu, with a 95% confidence level of ± 0.003 lb/MM Btu.

Validation Test Program

The validation test programs were conducted after the completion of the long-term tests. The purpose of validation tests was to re-evaluate the effects of selected operating parameters on NO_x emissions and LOI and to verify the diagnostic test results. The validation test results were compared to predictions based on the correlations derived from the diagnostic test results. The test parameters for Unit 2 baseline were economizer O_2 and boiler load. The test parameters for Unit 1 LNCFS-3 were economizer O_2 , coal fineness and boiler load. The following conclusions were reached:

- 1. For Unit 2 baseline, satisfactory predictions were obtained for both NO_x emissions and LOI at full boiler load (140-150 MW), but not at reduced boiler loads. Full boiler load differences between measurements and predictions were less than 0.03 lb NO_x/MM Btu and less than 0.3% (absolute) LOI. The larger differences in reduced boiler load test results were caused by differences in mill operations.
- 2. For Unit 1 LNCFS-3, satisfactory predictions were obtained for NO_x emissions at full boiler load (145-150 MW). However, predictions for NO_x emissions at reduced boiler loads and all predictions for LOI (full and reduced boiler loads) were not satisfactory. At full boiler load, differences between measured and predicted NO_x emissions were less than 0.036 lb/MM Btu, and measured LOI was consistently lower (0.7%-1.7% absolute) than predicted. Full boiler load differences between measurements and predictions are explained as follows. The diagnostic test conditions produced full boiler load LOI above 4% and were not repeated during the validation test program. The modified operations had a minor effect on NO_x

emissions and a significant effect on LOI. LOI correlations should be adjusted to account for this difference.

Performance Evaluation

The LNCFS-3 performance evaluation included the impact of the LNCFS-3 system on NO, emissions, boiler efficiency, fly ash LOI and CO emissions. Specifically:

- 1. At full boiler load (145-150 MW) and 3.0%-3.5% economizer O_2 , the LNCFS-3 system lowered NO_x emissions from a baseline 0.64 lb/MM Btu to 0.39 lb/MM Btu (39% reduction). At 80-90 MW boiler load and 4.3%-5.0% economizer O_2 , the LNCFS-3 system lowered NO_x emissions from a baseline of 0.58 lb/MM Btu to 0.41 lb/MM Btu (29% reduction).
- 2. The boiler efficiency was 89.3%-89.6% for baseline and 88.3%-88.5% for the LNCFS-3 system. The LNCFS-3 boiler efficiency was lower than baseline because of higher post-retrofit flue gas O_2 levels and higher stack temperatures which accompanied the air heater retrofit. When the LNCFS-3 system and the baseline were compared at similar flue gas temperatures and compositions, the estimated LNCFS-3 boiler efficiency was 0.2% (absolute) higher than baseline.
- 3. With the LNCFS-3 system, fly ash LOI below 4% was maintained, and CO emissions did not increase.

SECTION ONE INTRODUCTION

1.1 Objectives

The Unit 2 baseline and Unit 1 post-retrofit diagnostic tests were conducted as part of the Low-NO_x Concentric Firing System Level 3 (LNCFS-3) evaluation program of the NYSEG Milliken Clean Coal Technology IV Demonstration Project. The overall objective of the LNCFS-3 evaluation program is to demonstrate the effectiveness of the low-NO_x burner retrofit in reducing NO_x emissions in the NYSEG Milliken Units 1 and 2 tangentially-fired boilers, each rated at 160 MW gross. Specifically, the twofold objectives of the diagnostic tests are:

- 1. Determine the Effect of Operating Parameters on NO_x and Loss-on-Ignition (LOI): The parameters for the baseline tests included boiler load, excess O_2 measured at the economizer outlet, coal air damper position, burner tilt, and reduced load mill patterns. The parameters for the LNCFS-3 tests included boiler load, excess O_2 measured at the economizer outlet, mill classifier speed as a measure of coal fineness, combustion air distribution (SOFA flow, CCOFA flow and coal air flow), burner settings (burner tilt, SOFA tilt and SOFA yaw), and mill patterns.
- 2. Establish Operating Conditions for Long-Term Testing: Long-term test results will be used to determine the achievable annual NO, emissions and to assess the performance of the retrofit LNCFS-3 burners for Units 1 and 2, using Unit 2 test results as a baseline.

1.2 Background

The Milliken pre-retrofit Unit 2 and post-retrofit Unit 1 are described in Table 1.1.

TABI	TABLE 1.1 - MILLIKEN PRE-RETROFIT UNIT 2 AND POST-RETROFIT UNIT 1 DESCRIPTION				
		Pre-Retrofit Unit 2	Post-Retrofit Unit 1		
Mills	- Type	CE RB613	Riley Stoker MPS150		
	- Quantity	4	4		
	- Performance	33,500 lb/h at 57 HGI Coal	36,800 lb/h at 57 HGI Coal		
Classifiers	- Type	Static	Dynamic, Riley Stoker SLS		
	- Quantity	4	4		
	- Performance	70% -200 Mesh	93% -200 Mesh		
PA Fans	- Type	None, Exhausters With Mills	Centrifuged Design, Buffalo Forge		
	- Quantity		4		
	- Performance		65,000 lb/h Hot Air		
Feeders	- Type	Volumetric, Variable Stroke Drive	Gravimetric, Stock Equipment		
	- Quantity	4	4		
	- Performance	Normal Feed at High Load	20 tons/h		
Burners	- Type	CE TV Type, Vertical Adjustable	ABB CE LNCFS-3		

The LNCFS-3 configuration is expected to reduce NO_x emissions from pre-retrofit levels of 0.56-0.60 lb/MM Btu (at full boiler load and 3%-4% excess O_2) to a design goal of 0.37 lb/MM Btu, while maintaining LOI below the 4% limit required to market the fly ash. The burner retrofit was implemented on Unit 1 during the summer of 1993 and the retrofit on Unit 2 is in progress. The Unit 1 retrofit was accompanied by an upgrade of the ESP and the installation of new coal mills. Two additional burner modifications were required to reduce problems caused by flame attachment to the nozzles. NO_x emissions guarantees were met in January of 1994.

1.2.1 Comparison of Milliken Units 1 and 2 NO, Emissions

The original plan was to conduct baseline and post-retrofit testing on the same unit. However, there was not sufficient time to conduct Unit 1 baseline testing prior to its retrofit. Consequently, the option of conducting baseline testing on Unit 2 and post-retrofit testing on Unit 1 to evaluate the effectiveness of the low-NO_x burner retrofit was examined. Unit 2 retrofit was scheduled approximately one year after that of Unit 1. A comparison of Units 1 and 2 NO_x emissions was conducted using data from short-term tests (1-3 hours) and longterm measurements (60 days).

Short-term NO_x emissions data were obtained from 1-3 hour tests performed on Unit 1 during August of 1991 and on Unit 2 during December of 1991. The tests were conducted by Performance Testing Services of ABB CE to determine pre-retrofit NO_x levels and to estimate the potential of LNCFS-3 retrofit in reducing NO_x emissions. At 3.5% excess O₂ measured at the economizer outlet, NO_x emissions were estimated at 0.57-0.60 lb/MM Btu at full load (150 MW net generation) and 0.41-0.44 lb/MM Btu at half load. Differences in NO_x emissions between the two units were estimated at less than 0.03 lb/MM Btu. These differences were small relative to variations in NO_x emissions due to changes in excess air, boiler load and burner tilt. However, the interpretations of the short-term tests were limited because of the short duration of the tests (1-3 hours each) and the small number of tests (17 tests), and required verification using long-term data.

Comparison of NO_x emissions from Milliken Units 1 and 2 was also performed using 60 days of continuous emissions monitoring (CEM) and boiler load data. The data were collected during August and September of 1992. NO_x emissions for both units were between 0.64 and 0.68 lb/MM Btu at an average boiler load of 133 MW and 3.5%-4.5% excess O₂ measured at the economizer outlet. The average difference between the two units 30-day rolling averages was 0.024 lb NO_x/MM Btu, with uncertainty of ± 0.005 lb NO_x/MM Btu at 95% confidence. Differences in NO_x emissions between the two units were again shown to be less than 0.03 lb/MM Btu, in agreement with the analysis of short-term tests. Consequently, conducting baseline NO_x emissions testing on Unit 2 for comparison with post LNCFS-3 retrofit testing on Unit 1 was an acceptable option.

The diagnostic tests were statistically designed parametric tests in which the effects of selected process variables on NO_x emissions and LOI were evaluated.

1.3 Unit 1 Baseline and Unit 2 Post-Retrofit Diagnostic Tests

Unit 1 baseline and Unit 2 post-retrofit diagnostic tests were designed to provide short-term, parametric data to determine the effects of several boiler operating variables on NO_x emissions and LOI. The results of these two test programs are discussed in Sections 2 and 3, respectively. A discussion of the LNCFS-3 system start-up, installation costs and fuel duct balancing tests is presented in Section 4.

1.4 Long-Term, Validation and Performance Testing

Long-term testing was conducted following the completion of the diagnostic test programs and involved 60-70 days of data collection to estimate the achievable annual NO_x emissions. The validation tests were similar to the diagnostic tests and re-evaluated the effects of selected process variables following the completion of long-term testing. The performance evaluation tests evaluated the impact of the LNCFS-3 burner retrofit on boiler performance, including NO_x and CO emissions, fly ash LOI and boiler efficiency. The results of these test programs are discussed in Section 5.

SECTION TWO UNIT 2 BASELINE DIAGNOSTIC TESTS

2.1 Experimental Design

Statistically designed baseline diagnostic tests were conducted to examine the effects of boiler load, excess O_2 , fuel air flow, burner tilt, and reduced-load mill pattern on NO_x emissions and LOI. The experimental parameter settings are listed in Table 2.1. A high setting of 5% excess O_2 at the economizer outlet was possible at boiler loads of 110 MW and 80 MW, but not at 140 MW because of limited fan capacity and a high value of 4% excess O_2 was used instead.

Each Milliken unit has four elevations of burners, with one coal mill per elevation. Full boiler load required all burners to be in service. Therefore, only the mill pattern with all four mills in service was tested at full load. Alternate mill patterns could be tested at reduced loads, as described in Table 2.1. At intermediate boiler load (110 MW) with three mills in service, four patterns were possible, of which two were tested. At low boiler load (80 MW) with two mills in service, six patterns were possible, of which two were tested. Mill patterns were classified as normal (normal operation at Milliken) when the burners at the lowest elevations were either taken out of service or the coal flow was minimized. Alternate mill patterns were tested in which the burners at the highest elevations were either taken out of service or the coal flow was minimized. Alternate mill patterns were tested for comparison with normal mill patterns, and might not necessarily constitute satisfactory boiler operating conditions.

The baseline test design consisted of three experimental blocks, as seen in Table 2.2. Tests marked by asterisks were replicated to allow independent estimates of the experimental error, and some tests were common to more than one block. The three experimental designs were:

- 1. Design A, Full Boiler Load Tests: These tests were conducted at 140 MW to examine the effects of three independent variables: excess O_2 measured at the economizer outlet, fuel air damper position and burner tilt. The design consisted of a two-level factorial (Tests 1-8) to estimate linear effects, and additional tests to estimate quadratic effects (Tests 9-15). The entire set is known as a Central Composite Design.
- 2. <u>Design B. Mill Pattern Tests</u>: This set consisted of four tests to compare different mill patterns at reduced boiler loads (Table 2.1).
- 3. <u>Design C. Variable Boiler Load Tests</u>: This design consisted of 15 tests, corresponding to a full three-level factorial with respect to variations in boiler load and excess O_2 measured at the economizer outlet.

2.2 Experimental Plan

The baseline diagnostic tests were conducted on Unit 2 between December 6 and 15 of 1993. A total of 30 tests were conducted, each typically 3-4 hours long. A description of the tests is presented in Table 2.3. All reduced boiler load tests were conducted between December 6 and 11. A primary consideration was given to maintaining reliable boiler operation and power generation. Thus, when a set of conditions could not maintain the required steam conditions, the test was terminated as soon as sufficient data were collected.

2.2.1 <u>Measurements</u>

The plant O_2 probe was used to monitor excess O_2 concentrations at the economizer outlet. The plant CEM system was used to measure CO_2 , NO_x and SO_2 concentrations at the stack. The system included a non-dispersive infrared CO_2 analyzer, a chemiluminescent NO_x analyzer, and a pulsed fluorescent SO_2 analyzer. A low flow dilution probe was used and no additional conditioning was required. The CEM system passed the Relative Accuracy Test, and was calibrated daily.

Typically, 1.5-2 hours of stack CEM data (collected as 15-minute averages) at steady state conditions were averaged for each test. Steady state behavior was assumed when small changes in NO_x measurements occurred with time (less than 3 ppm change in the hourly average), and typically occurred within 1-2 hours after test conditions were set.

Fly ash was sampled from the ash transport pipe for 30-60 minutes during sequential unloading of the ash from the hoppers to the silo. The sampled ash was subsequently mixed and 4-8 ounces were extracted for moisture, carbon and ash analyses. Daily coal samples were collected and analyzed for moisture, proximate and ultimate compositions, and heating value. The coal and ash analyses are presented in Table 2.4.

2.3 Results and Discussion

A total of 30 baseline tests were conducted, including 7 replicates. Test results are presented in Table 2.5. CO concentrations measured at the economizer outlet were 0-13 ppm for all the tests. Variation in CO was not a consideration in this study.

 NO_x emissions in 1b/MM Btu were calculated according to EPA Method 19 (40 CFR 60 Appendix A, 1993) using measured NO_x and CO_2 stack compositions, and calculated EPA F_c factors as:

 $1b NO_x/MM Btu = 1.194x10^{-7} 1b NO_x/scf_{flue gas} * ppm NO_x * F_c * 100/%CO_2.$

Where F_e is scf CO₂ per MM Btu, calculated as:

 $F_{c} = 0.321 \times 10^{6} * \% C_{coel} / (Btu/lb)_{coel}$

The EPA tabulated F_e value for bituminous coal is 1800. The calculated values used in this study varied between 1780 and 1816 (Table 2.5).

LOI was defined as the percentage of combustibles in the fly ash, calculated as:

 $LOI = 100 - \% Ash_{fiy ash, dry}$.

2.3.1 Experimental Error

Seven replicated tests were used to estimate the standard deviation of the experimental error (σ_{error}) and the uncertainty in measurement (confidence level), for both NO_x emissions and LOI, as seen in Table 2.6. Calculated σ_{error} values for NO_x and LOI were 0.024 lb/MM Btu and 0.44%, respectively. The uncertainty in measurement is $\pm t \star \sigma / N$, where N is the number of replicated tests, and t is a tabulated statistical parameter depending on the degrees of freedom and the desired confidence level. For 7 degrees of freedom and 95% confidence (t = 2.365), the confidence intervals were NO_x \pm 0.016 lb/MM Btu and LOI \pm 0.30%. Differences between replicated tests for NO_x emissions and LOI averaged 0.024 lb/MM Btu and 0.62%, respectively.

2.3.2 Experimental Results

Replicated results were averaged and the data matrix is presented in Table 2.7. Analysis of the data focussed on variations in NO_x emissions and LOI with respect to changes in the independent variables, namely, boiler load, excess O_2 , fuel air flow, and burner tilt (Designs A and C). The effect of mill pattern on NO_x emissions and LOI at reduced loads (110 MW and 80 MW) was also examined (Design B).

Analysis of the test matrix showed that for Designs A and C, there was a strong correlation between NO_x emissions and LOI, and as expected, an inverse relationship was shown (negative correlation coefficient). For Design A, O₂ exhibited strong correlations with both NO_x and LOI. For Design C, boiler load/O₂ interaction factor (MW*O₂) exhibited strong correlations with both NO_x emissions and LOI.

2.3.3 Effects of Fuel Air Flow and Burner Tilt

The tests of Design A (Table 2.7) examined the effects of fuel air flow and burner tilt on NO_x emissions and LOI at 140 MW boiler load. Excess O_2 was also a variable in this design, but its effect is discussed in more detail in the analysis of Design C where greater variability of excess O_2 was possible.

Regression analyses were used to identify the statistically significant factors affecting NO_x emissions and LOI, starting with a complete quadratic model with respect to the three variables of Design A (fuel air flow, burner tilt and excess O₂). The final correlations for Design A are shown in Table 2.8. AIR is fuel air damper position, TILT is burner tilt in degrees and O2 is excess O₂ measured at the economizer outlet. NO_x variation was directly proportional to linear changes in O₂ (O2), and to quadratic changes in burner tilt (TILT*TILT). LOI variation was directly proportional to both linear and quadratic changes in excess O₂ (O2 and O2*O2), and to linear changes in fuel air damper position (AIR). As discussed later in the derivation of predictive correlations, LOI was correlated with the inverse O₂ factor (1/O2) instead of two quadratic excess O₂ factors (O2 and O2*O2).

Variations in NO_x emissions and LOI with fuel air flow and burner tilt at 3% excess O₂ are shown in Figures 2.1 and 2.2, respectively. Figure 2.1 shows that an increase in fuel air damper position (more air flow) reduced NO_x emissions and increased LOI, but the effect was more significant for LOI. Figure 2.2 shows that changes in burner tilt had a quadratic effect on NO_x emissions and almost no effect on LOI. The highest NO_x emissions were observed at an angle close to zero (horizontal position). These observations are consistent with regression results.

2.3.4 Effects of Mill Pattern

Figure 2.3 is a graphical presentation of Design B (Table 2.7) test results in which two mill patterns at reduced boiler loads (80 MW and 110 MW) were compared at 4% excess O_2 , fuel air damper position at 3, and burner tilt at 0. Mi11 patterns, in which the highest elevation burners were taken out of service, produced lower NO, emissions than patterns in which the lowest elevation burners were taken out of service (normal operation at Milliken). This can be attributed to air staging effects in which partial combustion occurs when the lower elevation burners are in service, and combustion is completed as air is added at the higher elevations with the burners out of service (zero or minimum coal At 80 MW boiler load, the operators had difficulty maintaining steam flow). temperatures when the highest elevation burners were taken out of service. In general, mill patterns that reduced NO_x emissions increased LOI. However, the effect on LOI can only be viewed qualitatively because of the small number of tests and the uncertainty in LOI measurement.

2.3.5 Effects of Boiler Load and Excess O₂

The tests of Design C (Table 2.7) examined the effects of boiler load and excess O_2 on NO_x emissions and LOI. Fuel air damper position was set at 3, and the burners were in the horizontal position.

Regression analyses were used to identify the statistically significant factors affecting NO_x emissions and LOI, starting with a complete quadratic model with respect to the two variables of Design C (boiler load and excess O₂). The final correlations for Design C are shown in Table 2.8. MW is boiler load and O2 is excess O₂ measured at the economizer outlet. NO_x emissions variation was directly proportional to linear changes in O₂ (O2), and to the interaction term between O₂ and boiler load (MW*O2). LOI variation was directly proportional to the interaction term between O₂ and boiler load (MW*O2). Again, in the derivation of a predictive correlation, LOI correlation MW*O2 was replaced by a simpler correlation with MW and 1/O2.

The effects of excess O_2 (measured at the economizer outlet) on NO_x emissions and LOI at the three tested boiler loads are shown in Figure 2.4. The same data are presented again in Figure 2.5, with respect to variations in boiler load at three excess O_2 levels. As expected, NO_x emissions increased and LOI decreased with increasing excess O_2 levels which corresponded to higher excess air levels. The impact of excess air on NO_x emissions was reduced at lower boiler loads. Higher boiler loads increased NO_x emissions and reduced LOI, most likely due to higher temperatures and improved fuel/air mixing in the firebox.

2.3.6 Variations of NO, Emissions and LOI

Variations in NO_x emissions and LOI with excess O₂ at 140 MW boiler load are shown in Figure 2.6. Excess O₂ was the most significant parameter affecting both NO_x emissions and LOI. The scatter of the data points was in part due to experimental variation and in part due to the effects of variables of secondary importance, including fuel air flow and burner tilt. The relationship between LOI and NO_x emissions is shown in Figure 2.7, and is approximated by the following linear relationship:

 $LOI = 11 - 14 * NO_x$.

Where LOI is in % and NO_x is in 1b NO_x/MM Btu.

2.3.7 Predictive Correlations for NO, Emissions and LOI

Two important factors were considered in the development of correlations from the baseline data: the statistical significance of the predictors, and the simplicity of the correlations. Therefore, when satisfactory results were obtained using only main effects, more complex terms were not included. For example, LOI variation with excess O_2 could be better described by the inverse O_2 factor (1/O2) than with the quadratic O_2 factor (02*O2). Two correlations (one for NO_x, another for LOI) were derived for each Design A and another two were derived for Design C (Table 2.8). The correlations were combined to generate a single correlation for NO_x emissions and another for LOI by taking the better correlation (higher r^2) as a base and including the factors that were not accounted for from the other correlation:

1b NO_/MM Btu = $0.34 - 0.036*02 + 0.0009*MW*02 - 0.00017*(TILT)^2$ $r^2=91\%$

% LOI = $-1.2 + 9.4/02 + 0.25 \times AIR - 0.024 \times (MW - 140)$ $r^2 = 84\%$

where O2 is excess O_2 measured at the economizer outlet, MW is boiler load in MW net, TILT is burner tilt in degrees, and AIR is fuel air damper position.

Comparisons of measured and predicted NO_x emissions and LOI based on the two derived correlations are presented in Figures 2.8 and 2.9, respectively.

2.4 Conclusions

The Milliken Unit 2 baseline diagnostic tests conducted during December of 1993 were analyzed to determine the effects of boiler load, fuel air flow, excess O_2 , burner tilt, and reduced-load mill pattern on NO_x emissions and LOI. The following conclusions were reached:

- 1. The average difference between replicated tests was 0.024 lb NO $_{\star}/MM$ Btu and 0.62% LOI. The uncertainty at 95% confidence, was ± 0.016 lb NO $_{\star}/MM$ Btu and ± 0.30% LOI.
- 2. Changing fuel air damper position had a significant effect on LOI and a minor effect on NO_x emissions. Increasing fuel air damper position from 2 to 4 increased LOI 0.5%. The minimum and maximum

(100% air flow) fuel air damper positions were 1 and 5, respectively.

- 3. Variation in burner tilt had a quadratic effect on NO_x emissions and no significant effect on LOI. Changing burner tilt from \pm 15° to 0° increased NO_x emissions 0.04 lb/MM Btu.
- 4. At reduced boiler loads (110 MW and lower), taking the top burners out of service instead of the bottom burners (normal operation at Milliken) reduced NO_x emissions, but made it difficult to maintain steam temperatures.
- 5. Increasing excess O_2 increased NO_x emissions and reduced LOI. The impact of excess air on NO_x emissions was reduced at lower boiler loads.
- 6. At the same excess O_2 level, higher boiler loads increased NO_x emissions and reduced LOI, most likely due to higher temperatures and improved fuel/air mixing in the firebox.
- 7. Lower NO_x emissions corresponded to higher LOI. The variation at 140 MW boiler loads was approximated by a linear relationship as:

 $LOI = 11 - 14 * NO_{v}$.

- 8. The following predictive correlations for NO_x emissions and LOI were derived for normal operation of Unit 2:
 - $\frac{16 \text{ NO}}{0.0009 \text{ MW} \times 02} 0.036 \times 02 + r^2 = 91\%$

% LOI = -1.2 + 9.4/02 + 0.25 * AIR - 0.024 * (MW-140) $r^2 = 84\%$

where O2 is excess O_2 measured at the economizer outlet, MW is boiler load in MW net, TILT is burner tilt in degrees, and AIR is fuel air damper position.

9. The short-term, baseline tests indicated that NO_x emissions could be reduced to about 0.54 lb/MM Btu at 140 MW, while maintaining salable fly ash.

TABLE 2.1 - UNIT 2 BASELINE TESTS - PARAMETER SETTINGS

	Parameter	Low	Mid	<u>High</u>
1.	Boiler Load, MW Net Generation	80	110	140
2.	Economizer O2, % (Full Load) Economizer O2, % (Reduced Load)	2 3	3 4	4 5
3.	Fuel Air Flow, Damper Opening	2	3	4
4.	Burner Tilt, Degrees	-15	0	+15

5. Mill Patterns - Reduced Boiler Loads Only:

.

X	Coal Flow On Coal Flow Off c	or Minimum
Burner	<u>Pattern (3 Mill</u>	s) - 110 MW
<u>Elevation</u>	<u>Normal</u>	<u>Alternate</u>
B2	Ŷ	x
A3 B4	X -	X X
	Dattorn (2 Mill	(c) . 90 MU

	Fallern (2 Mill	<u>5) - OU MM</u>
Burner <u>Elevation</u>	Normal	Alternate
A1	<u> </u>	-
B2	X	-
A3	-	Х
B4	-	Х

The minimum and maximum (100% air flow) fuel air damper positions were 1 and 5, respectively.

TABLE 2.2 - UNIT 2 BASELINE TESTS - STATISTICAL DESIGNS

<u>Design A:</u>	<u>Full Boil</u> 140 MW, N	<mark>er Load 1</mark> ormal Mil	<u>ests</u> 1 Pattern			
No. 1 2 3 4 5 6 7 8 * 9 *10 11 12 13 14 *15	O2 Fundamental Point 4 4 4 4 2 2 2 2 2 2 3 3 3 3	el Air sition 4 2 2 4 4 2 3 3 4 2 3 3 3 3 3 3 3 3 3	Burner Tilt 15 -15 15 -15 15 -15 15 -15 0 0 0 15 -15 0			
<u>Design B:</u>	<u>Mill Patt</u> 4% 02, Fu	<u>ern Tests</u> el Air at	3, Burner	Tilt at O		
<u>No.</u> * 1 2 * 3 4	<u>Boiler Loa</u> 110 110 80 80	d <u>Mi</u> No A1 No A1	<u>]] Pattern</u> rmal ternate rmal ternate			
<u>Design C:</u>	<u>Variable</u> Normal Mi	<u>Boiler Lo</u> 11 Patter	n; Fuel Air	• at 3, and	Burner Tilt	at O
<u>No.</u> <u>B</u> * 1 * 2	<u>piler Load</u> 140 140	<u>02</u> 4 3				

* 1	140	4
* 2	140	3
* 3	140	- 2
4	110	5
* 5	110	4
6	110	3
7	80	5
* 8	80	- 4
9	80	3

* Replicated Tests

Tests A9, A10, and A15 are the same as Tests C1, C3, and C2. Tests B1 and B3 are the same as Tests C5 and C8.

TABLE 2.3 - UNIT 2 BASELINE TESTS - TEST CONDITIONS

.

No		<u>Data C</u>	ollect	Load MW	02 %	Fuel	Tilt	Desi	gn N	lo.
<u>NO.</u>		Start	<u>Liiu</u>	<u></u>	_/0_	<u></u>	uey	<u> 366</u>	Idui	<u>e c</u>
1	12-06-93	1900	2100	140	3.0	3	0	A15		C2
2	12-06-93	2300	30	110	3.1	3	0			C6
3	12-07-93	400	600	80	3.5	3	0			C9
4	12-07-93	900	1145	140	4.0	2	-15	A 4		
5	12-07-93	1400	1530	140	4.0	2	15	Α3		
6	12-07 -9 3	2315	100	110	4.2	3	0		B2	
7	12-08-93	400	600	80	5.0	3	0			C7
8	12-08-93	900	1200	140	2.1	4	-15	A 6		
9	12-08-93	1300	1430	140	2.9	4	0	A11		
10	12-10-93	2200	2400	110	4.0	3	0		B1	С5
11	12-11-93	300	430	80	4.0	3	0		B3	63
12	12-11-93	1600	1800	140	1.9	2	-15	A 8		
13	12-10-93	1700	1900	140	3.9	3	0	A 9		C1
14	12-10-93	1000	1200	110	4.0	3	0		B1	C5
15	12-10-93	300	530	80	3.9	3	0		B4	
16	12-11 -9 3	1000	1200	140	3.0	3	0	A15		C2
17	12-11-93	1300	1500	140	2.9	3	15	A13		
18	12-10-93	1300	1500	110	4.7	3	0			C4
19	12-10-93	600	730	80	4.2	3	0		B3	C8
20	12-15-93	600	700	140	3.9	3	0	A 9		C1
21	12-13-93	1630	1830	140	1.9	3	0	A10		С3
22	12-14-93	100	300	140	2.0	4	15	A 5		
23	12-13-93	2100	2230	140	4.0	4	-15	A 2		
24	12-14-93	400	600	140	3.0	3	-15	A14		
25	12-14-93	1000	1115	140	2.1	3	0	A10		СЗ
26	12-14-93	1300	1430	140	3.0	3	0	A15		C2
27	12-14-93	1600	1745	140	2.1	-2	15	A 7		
28	12-14-93	2100	2230	140	3.9	4	15	A 1		
29	12-15-93	000	200	140	2.9	3	0	A15		C2
30	12-15-93	300	430	140	2.9	2	0	A12		

TABLE 2.4 - UNIT 2 BASELINE TESTS - COAL AND ASH ANALYSES

		Fly /	<u>Ash Ana</u>	yses_
	Date Coal	Drv	Drv	100-%Ash
No	Analysis	%Ash	%0	%I 0 T
<u>no.</u>	<u>Alla 17313</u>	<u>////311</u>		<u>/0L.01</u>
	10/00/00	07 00	0.14	0 00
1	12/06/93	97.38	2.14	2.02
2	12/06/93	95.98	3.13	4.02
3	12/07/93	96.57	2.62	3.43
4	12/07/93	98.37	1.26	1.63
5	12/07/93	97.95	1.81	2.05
6	12/07/93	97 29	2 02	2 71
7	12/09/03	96 54	2 21	3 46
6	12/00/93	90.34	2.21	2.70
ð	12/08/93	90.24	2.43	3.70
9	12/08/93	97.04	2.44	2.96
10	12/10/93	96.71	1.41	3.29
11	12/11/93	96.92	2.23	3.08
12	12/11/93	95.60	3.84	4.40
13	12/10/93	97.54	1.68	2.46
14	12/10/93	97.26	1.80	2.74
15	12/10/93	95.64	3.28	4.36
16	12/11/93	97 73	1 75	2 27
17	12/11/02	97.06	2 44	2 01
10	12/11/33	97.00	1 60	2.34
10	12/10/93	97.03	1.00	2.1/
19	12/10/93	96.26	3.07	3.74
20	12/15/93	97.94	1.70	2.06
21	12/13/93	95.00	4.51	5.00
22	12/14/93	94.88	4.54	5.12
23	12/13/93	98,13	1.76	1.87
24	12/14/93	97.22	2.49	2.78
25	12/14/93	96 18	3 44	3 82
26	12/14/03	97 47	2 28	2 53
27	12/17/33	06 61	2.20	2.00
21	12/14/93	90.01	3.13	3.39
28	12/14/93	97.80	1.82	2.14
29	12/15/93	97.13	2.28	2.87
30	12/15/93	97.88	1.78	2.12

Coal Analyses: Moisture, Btu, Proximate, Ultimate

Date	As Det <u>%H20</u>	Dry %VM	Dry <u>Btu</u>	Dry %C	Dry <u>%H</u>	Dry <u>%N</u>	Dry <u>%S</u>	Dry <u>%Ash</u>	Dry %0
12/06/93	1.86	37.76	13918	77.39	5.20	1.61	1.93	7.43	6.44
12/07/93	2.33	37.25	13821	76.97	5.14	1.52	1.97	8.41	5.99
12/08/93	2.25	37.72	13946	77.42	5.20	1.61	1.92	7.54	6.31
12/10/93	2.13	38.03	13965	77.86	5.22	1.44	1.87	7.43	6.18
12/11/93	2.11	38.10	13945	77.71	5.21	1.64	1.92	7.63	5.89
12/13/93	1.79	38.43	13905	77.09	5.20	1.54	2.04	7.87	6.26
12/14/93	1.72	38.21	13921	78.74	5.11	1.48	1.99	7.75	4.93
12/15/93	1.86	37.75	13894	77.78	5.12	1.41	2.08	7.99	5.62

TABLE 2.5 - UNIT 2 BASELINE TESTS - TEST RESULTS

	<u>S</u>	<u>tack ci</u>	<u>EM</u>	Econ				
	C02	S02	NOx	02	EPA	NOx	S02	100-%Ash
<u>No.</u>	<u>%</u>	_ppm	ppm	<u>%</u>	<u> Fc </u>	<u>lb/MM_Btu</u>	<u>16/MM Bt</u>	<u>u %LOI</u>
1	11.5	1053	329	3.0	1785	0.610	2.713	2.62
2	11.4	1065	293	3.1	1785	0.548	2.768	4.02
3	11.6	1117	243	3.5	1788	0.447	2.858	3.43
4	11.2	1021	331	4.0	1788	0.631	2.705	1.63
5	11.1	1082	317	4.0	1788	0.610	2.893	2.05
6	11.1	1038	210	4.2	1788	0.404	2.775	2.71
7	11.0	995	263	5.0	1782	0.509	2.676	3.46
8	12.9	1174	292	2.1	1782	0.482	2.692	3.76
9	11.9	1097	325	2.9	1782	0.581	2.727	2.96
10	10.7	897	302	4.0	1790	0.603	2.491	3.29
11	10.8	916	246	4.0	1789	0.486	2.519	3.08
12	12.6	1036	296	1.9	1789	0.502	2.442	4.40
13	10.8	918	334	3.9	1790	0.661	2.525	2.46
14	10.8	936	308	4.0	1790	0.609	2.575	2.74
15	10.7	925	166	3.9	1790	0.332	2.568	4.36
16	11.8	999	318	3.0	1789	0.576	2.514	2.27
17	11.8	988	297	2.9	1789	0.538	2.486	2.94
18	10.3	864	313	4.7	1790	0.649	2.492	2.17
19	10.3	899	237	4.2	1790	0.492	2.593	3.74
20	10.8	820	342	3.9	1780	0.673	2.243	2.06
21	12.6	1174	286	1.9	1780	0.482	2.753	5.00
22	12.3	950	263	2.0	1816	0.464	2.328	5.12
23	11.0	970	329	4.0	1780	0.636	2.605	1.87
24	11.5	1088	312	3.0	1816	0.588	2.851	2.78
25	12.3	990	313	2.1	1816	0.552	2.426	3.82
26	11.6	840	336	3.0	1816	0.628	2.183	2.53
27	12.1	917	286	2.1	1816	0.512	2.284	3.39
28	10.8	873	325	3.9	1816	0.652	2.436	2.14
29	11.6	870	328	2.9	1797	0.607	2.237	2.87
30	11.5	836	327	2.9	1797	0.610	2.169	2.12

		NO	<u>, Measu</u>	rements	<u>, 16/MM_Bt</u>	<u>u</u>	<u> </u>
<u>Replicates</u>	_1	2		4	SS	<u>DF</u>	<u> </u> d
13, 20	0.661	0.673			0.000072	1	0.012
21, 25	0.482	0.552			0.002404	1	0.069
1 , 16 26, 29	0.610	0.576	0.628	0.607	0.001416	3	0.027
10, 14	0.603	0.609			0.000020	1	0.006
11, 19	0.486	0.492			0.000014	1	0.005
		L	<u>OI Meas</u>	urement	S		

<u>Repl</u>	<u>icates</u>	_1_	_2_	3_	4	<u>SS</u>	DF	<u> d </u>
13,	20	2.46	2.06			0.0800	1	0.40
21,	25	5.00	3.82			0.6962	1	1.18
1 , 26,	16 29	2.62	2.27	2.53	2.87	0.1841	3	0.32
10,	14	3.29	2.74			0.1513	1	0.55
11,	19	3.08	3.74			0.2178	1	0.66

		NO <u>.</u> <u>16/MM_Btu</u>	LOI _%_
SS = Sum of Squares = $\Sigma (y_i - y_{avg})$	SS _{overali}	0.003926	1.3293
DF = Degrees of Freedom = No. Replicates - 1	DFoverall	7	7
σ = Standard Deviation = $\sqrt{(SS_{overall}/DF_{overall})}$	σ	0.024	0.436
95% CI = 95% Confidence Interval = t*o//N	95% CI	0.016	0.298
<pre> d = Absolute Difference Between Replicates</pre>	d _{avg}	0.024	0.621

TABLE 2.7 - UNIT 2 BASELINE TESTS - REDUCED DATA MATRIX

	MW	02	AIR	TILT	NOx	LOI
		_%		<u>Deq</u>	<u>16/MM_Btu</u>	_%
<u>Design A:</u>						
1	140	3.9	4	15	0.652	2.14
2	140	4.0	4	-15	0.636	1.87
3	140	4.0	2	15	0.610	2.05
4	140	4.0	2	-15	0.631	1.63
5	140	2.0	4	15	0.464	5.12
6	140	2.1	4	-15	0.482	3.75
/	140	2.1	2	15	0.512	3.39
8	140	1.9	2	-15	0.502	4.40
9 10	140	3.9	3	0	0.007	2.20
10	140	2.0	3	0	0.51/	9.41
12	140	2.5	2	ň	0.581	2.30
12	140	2.5	2	15	0.538	2.12
14	140	3.0	3	-15	0.588	2.78
15	140	3.0	3	¹⁰	0.605	2.57
<u>Design B:</u>			•			
1	110	4 0	2	0	0 606	3 02
2	110	4 2	3	õ	0 404	2 71
3	80	4.1	3	ŏ	0.489	3.41
4	80	3.9	3	Õ	0.332	4.36
<u>Design C:</u>						
1	140	3.9	3	0	0.667	2.26
2	140	3.0	3	ŏ	0.605	2.57
3	140	2.0	3	0	0.517	4.41
4	110	4.7	3	0	0.649	2.17
5	110 .	4.0	3	0	0.606	3.02
6	110	3.1	3	0	0.548	4.02
7	80	5.0	3	0	0.509	3.46
8	80	4.1	3	0	0.489	3.41
9	80	3.5	3	0	0.447	3.43

MW = Net Boiler Load in Megawatts

02 = %02 at Economizer Outlet

AIR = Fuel Air Damper Position : 1 is Minimum, 5 is Maximum

TILT = Burner Tilt in Degrees

TABLE 2.8 - UNIT 2 BASELINE TESTS - NO, AND LOI CORRELATIONS

FINAL CORRELATIONS, SET A:

NOX = 0.379 + 0.0738 02 - 0.000170 TILT*TILT

Predictor	Coef	Stdev	t-ratio	p
Constant	0.37899	0.01981	19.13	0.000
02	0.073814	0.006105	12.09	0.000
TILT*TILT	-0.00016974	0.00004573	-3.71	0.003

s = 0.01878 R-sq = 92.9% R-sq(adj) = 91.7%

LOI = -1.19 + 9.40 (1/02) + 0.245 AIR

Predictor	Coef	Stdev	t-ratio	р
Constant	-1.1866	0.4666	-2.54	0.026
(1/02)	9.4046	0.8749	10.75	0.000
ĂĬŔ	0.2447	0.1084	2.26	0.043

s = 0.3429 R-sq = 90.9% R-sq(adj) = 89.4%

FINAL CORRELATIONS, SET C:

NOX = 0.336 - 0.0355 O2 + 0.000899 MW*02

Predictor	Coef	Stdev	t-ratio	p
Constant	0.33599	0.02703	12.43	0.000
02	-0.035459	0.007356	-4.82	0.003
MW*02	0.00089917	0.00007020	12.81	0.000

s = 0.01616 R-sq = 96.6% R-sq(adj) = 95.4%

LOI = 3.21 + 9.05 (1/02) - 0.0240 MW

Predictor	Coef	Stdev	t-ratio	р
Constant	3.2149	0.5923	5.43	0.002
(1/02)	9.048	1.793	5.05	0.002
ŇŴ	-0.023992	0.006267	-3.83	0.009

s = 0.3776 R-sq = 81.7% R-sq(adj) = 75.6%

22

FIGURE 2.1 - Effect of Fuel Air Flow -Milliken Unit 2, 140 MW, 3% O₂

Fuel Air Damper Position

FIGURE 2.2 - Effect of Burner Tilt -Milliken Unit 2, 140 MW, 3% O₂

FIGURE 2.3 - Effect of Mill Pattern -Milliken Unit 2, 4% O₂

Boiler Load, MW

FIGURE 2.4 - Effect of Excess Air -Milliken Unit 2, Parameter: Boiler Load

Economizer O₂, %

FIGURE 2.5 - Effect of Boiler Load -Milliken Unit 2, Parameter: %O₂

Boiler Load, MW

FIGURE 2.6 - Effect of Excess Air -Milliken Unit 2, 140 MW

Economizer O₂, %

FIGURE 2.7 - LOI Variation with NO $_{\rm x}$ - Milliken Unit 2, 140 MW

 NO_x Emissions, Ib/MM Btu

Measured LOI, %

SECTION THREE UNIT 1 POST-RETROFIT DIAGNOSTIC TESTS

3.1 Experimental Design

The statistically designed LNCFS-3 diagnostic test program examined the effects of boiler load, excess O_2 , mill classifier speed, combustion air distribution (SOFA flow, CCOFA flow and coal air flow), burner settings (burner tilt, SOFA tilt and SOFA yaw), and mill load patterns on NO_x emissions and LOI. The experimental parameter settings are listed in Table 3.1. A high setting of 4.3% excess O_2 at the economizer outlet at 148 MW boiler load was limited by fan capacity. Direct measurements of combustion air flows (SOFA, CCOFA and coal air) were not possible, and qualitative designations of minimum, baseline and maximum were used for the following three parameters: SOFA/CCOFA ratio, SOFA+CCOFA flow and coal air flow.

New coal mills were installed on Unit 1, one for each of the four elevations of burners. The new coal mills made it possible to test mill patterns at full load with one mill out of service, in addition to the normal operational mode with all mills in service. This option was not available for baseline testing on Unit 2 with the older coal mills, where operation at boiler loads above 135 MW required all four mills. Four configurations were possible by taking one mill out of service, as described in Table 3.1. Operation at reduced boiler loads (120 MW and 90 MW) required only three mills in service, with the lowest mill taken out of service for normal operation at Milliken. Alternate (other than normal) mill patterns at 90 MW and mill patterns with only two mills in service were not tested because of expected problems with flame stability and the coal mills tripping.

The post-retrofit test design consisted of three experimental blocks, as described in Tables 3.2, 3.3 and 3.4. Tests marked by asterisks were replicated to allow an independent estimate of the experimental error, and some tests were common to more than one design. The three experimental designs were:

- 1. Design A, Full Boiler Load Tests (Table 3.2): These 17 tests were conducted at 148 MW to examine positive and negative variations in each parameter from baseline settings. The tests provided a measure of the relative contribution of the parameters to variations in NO_x emissions and LOI. The independent parameters were excess O_2 , burner tilt, SOFA tilt, SOFA yaw, SOFA/CCOFA ratio, SOFA+CCOFA flow, coal air flow and mill classifier speed.
- <u>Design B, Mill Pattern Tests (Table 3.3)</u>: This set consisted of 8 tests operated with one mill out of service, including 4 possible mill patterns at 148 MW (Tests 1-4) and 4 possible mill patterns at 120 MW (Tests 5-8).
- 3. <u>Design C. Variable Boiler Load Tests (Table 3.4</u>): This design included 19 tests, with the most significant parameters affecting NO_x emissions and LOI as the independent variables, namely, boiler load, excess O_2 and mill classifier speed. The design consisted of

a full three-level factorial with respect to variations in boiler load and excess O_2 (Tests 1-9) at a typical mill classifier setting of 93 rpm, with additional tests (Tests 10-19) to evaluate the effect of variations in mill classifier speed. A full quadratic model with respect to the independent variables could be derived from these tests.

3.2 Experimental Plan

The LNCFS-3 diagnostic tests were conducted on Unit 1 between March 22 and 31 of 1994. A total of 52 tests were conducted, each typically 2-3 hours long. The tests are described in Table 3.5, and the experimental conditions are presented in Table 3.6. In general, tests at 120 MW and 90 MW boiler loads were conducted between 9 p.m. and 6 a.m. A primary consideration was given to maintaining reliable boiler operation and power generation. When a set of test conditions could not maintain the required steam conditions, the test was terminated as soon as sufficient data was collected.

3.2.1 <u>Measurements</u>

Two CEM systems were used for the LNCFS-3 diagnostic tests. One system, designated as the ESA system, was operated at the economizer outlet. The other system was the plant stack CEM.

The ESA CEM system was used to measure O_2 , CO, CO_2 , and NO_x concentrations at the economizer outlet. The system included an electrochemical O_2 analyzer, nondispersive infrared CO and CO_2 analyzers, and a chemiluminescent NO_x/NO analyzer. It allowed multi-point monitoring of emissions at 36 sampling locations (18 per duct), available as individual point measurements or as a composite. The flows at the sampling locations were individually measured and controlled. Individual point measurements were made for selected tests (Tests 7, 8, 11, and 12) to determine the extent of gas stratification at the economizer outlet and to detect burner balancing problems. Concentration measurements across the duct (Table 3.7) indicated that gas stratification at the economizer outlet was minor. Composite measurements were made for all the tests.

The sampled gases were conditioned by removing moisture before reaching the flow indicators and the gaseous analyzers. This sampling method reduced the overall NO_x measurement accuracy due to the loss of some NO₂ in the water condensate. NO₂ concentrations were estimated at 1-2 ppm, corresponding to less than 1% of NO levels. This was verified experimentally by measuring NO₂ under baseline conditions (Test 47) using a second sampling system consisting of 3 probes with heated lines and a moisture freeze-out system so that the gas sample was either heated or dry at all locations before reaching the analyzer. NO_x and NO measurements were indistinguishable, supporting the initial estimate of 1-2 ppm NO₂, calculated as the difference between NO_x and NO concentrations.

The ESA CEM data were collected every 10 seconds, averaged and recorded every 10 minutes. Certification of this system was performed prior to testing, including Relative Accuracy Test. An instrument error check was performed twice daily using zero, mid and high span gases, according to EPA Protocol 1. A system bias check was performed weekly using zero and mid span gases.

The plant O_2 probe was used to monitor O_2 concentrations at the economizer outlet. The plant CEM system was used to measure CO_2 , NO_x and SO_2 concentrations at the stack. The system included a non-dispersive infrared CO_2 analyzer, a chemiluminescent NO_x analyzer, and a pulsed fluorescent SO_2 analyzer. A low flow dilution probe was used and no additional conditioning was required. The CEM system passed the Relative Accuracy Test, and was calibrated daily.

Process and CEM data were acquired using the plant Westinghouse data acquisition system (WDPF). Typically, 1-2 hours of test data at steady state conditions were averaged for each test. Steady state conditions for a test were assumed when small changes in NO_x measurements occurred with time (less than 3 ppm change in the hourly average), and typically occurred within 1-2 hours after test conditions were set.

Fly ash was sampled from the ash transport pipe during unloading of the first ESP hopper ("C" hopper) to the ash silo. For tests at 148 MW, a cyclone was used to collect a second fly ash sample from the ash transport pipe for 30-60 minutes during sequential unloading of all ash hoppers to the silo, and then extracting a 4-8 ounce sample. The ash samples were subsequently analyzed for moisture, carbon and ash contents, as presented in Table 3.8.

Daily coal samples were collected and analyzed for moisture, proximate and ultimate compositions, and heating value, as presented in Table 3.9.

3.3 Results and Discussion

A total of 52 post-retrofit diagnostic tests were conducted, including 6 replicates. Gas analyses and test process data are presented in Tables 3.10 and 3.11, respectively. CO measurements at the economizer outlet (ESA CEM system) were 9-23 ppm for all the tests. Thus, CO variation was not a consideration in this study.

The calculation of NO_x emissions in lb/MM Btu from measured NO_x concentrations depends on the availability of CEM and coal analysis data according to EPA Method 19 (40 CFR 60 Appendix A, 1993). The calculations are presented below:

 NO_x emissions are calculated using CO_2 measurements as:

1b NO₂/MM Btu = 1.194×10^{-7} 1b NO₂/scf_{flue get} * ppm NO₂ * F_c * 100/%CO₂.

Where F_c is scf CO₂ per MM Btu. A tabulated value for F_c is used, or it can be calculated from coal analysis data as:

 $F_{c} = 0.321 \times 10^{6} \text{ %} C_{coal} / (Btu/lb)_{coal}$

The EPA tabulated F_c value for bituminous coal is 1800. The calculated F_c values (Table 3.9) varied between 1788 and 1817, differing by less than 1% from the tabulated value.

 NO_x emissions are calculated using O_2 measurements as:

 $1b NO_x/MM Btu = 1.194 \times 10^{-7} 1b NO_x/scf_{flue gas} * ppm NO_x * F_d * 20.9/(20.9-\%O_2).$

Where F_d is scf dry gas per MM Btu. A tabulated value for F_d is used, or it can be calculated from coal analysis data as:

 $F_{d} = 10^{6} \times (3.64 \times H_{coal} + 1.53 \times C_{coal} + 0.57 \times S_{coal} + 0.14 \times N_{coal} - 0.46 \times O_{coal}) / (Btu/lb)_{coal}.$

The EPA tabulated F_d value for bituminous coal is 9780.

LOI was defined as the percentage of combustibles in the fly ash, calculated as:

 $LOI = 100 - \% Ash_{fly ash, dry}$

3.3.1 Data Evaluation

Two sources of CEM data (economizer outlet and stack) were available, and two ash samples were collected for tests at 148 MW boiler load. Furthermore, NO_x emissions could be calculated using different data sets. Therefore, a comparative evaluation of the different data sets was conducted.

 NO_x emissions data in 1b/MM Btu at the stack (calculated from the tabulated F_c value, and measured NO_x and CO_2 concentrations) were extracted at one-minute intervals from the plant data acquisition system and averaged for each test. The data set was consistent with NO_x emissions calculated from 15-minute averages of CO_2 and NO_x plant CEM measurements (similar data reduction procedure to the Unit 2 baseline tests).

Two ash samples were collected for tests at 148 MW boiler load (Table 3.8), one during unloading of the first ESP hopper (referred to as "C" hopper ash), and a second sample during sequential unloading of all ash hoppers (referred to as cyclone collected ash). Only "C" hopper samples were collected for all the tests (except Test 16). Typically, LOI checks at the plant are performed on ash collected during unloading of the first ESP hopper. The two ash samples were collected at 148 MW boiler load to compare LOI of cyclone collected ash to that of "C" hopper ash. The carbon in the ash was related to LOI as:

Cyclone Collected Ash	$LOI = 1.056 * % C_{mb} + 0.57$	$r^2 = 81.5\%, n = 30$
-----------------------	---------------------------------	------------------------

"C" Hopper Ash: $LOI = 1.043 * C_{mh} + 0.21$ $r^2 = 99.6\%$, n = 51

Cyclone collected ash typically had 0.5%-2.0% higher LOI than "C" hopper ash, with an average difference of 1.2%. The "C" hopper ash data were used in analyzing the results.

3.3.2 Experimental Error

Six replicated tests were used to estimate the standard deviation of the experimental error (σ_{error}) and the uncertainty in measurement (confidence level), for both NO_x emissions and LOI, as seen in Table 3.12. Calculated σ_{error} values for NO_x emissions and LOI were 0.035 lb/MM Btu and 0.45%, respectively. The uncertainty in measurement is $\pm t \star \sigma / N$, where N is the number of replicated tests, and t is a tabulated statistical parameter depending on the degrees of freedom and the desired confidence level. For 6 degrees of freedom and 95% confidence (t = 2.447), the confidence intervals were NO_x \pm 0.027 lb/MM Btu and

LOI \pm 0.35%. Differences between replicated tests for NO_x and LOI averaged 0.044 lb/MM Btu and 0.6%, respectively. The uncertainty in measuring LOI for the post-retrofit tests was comparable to that for the baseline tests. However, the uncertainty in measuring NO_x was significantly greater for the post-retrofit tests than for the baseline tests, mostly likely due to the sensitivity of NO_x emissions to a larger number of parameters in a low-NO_x configuration.

3.3.3 Experimental Results

Replicated results were averaged and the reduced data matrix is presented in Table 3.13. Analysis of the data focused on the effect of the independent variables on NO_x emissions and LOI. The independent parameters were boiler load, excess O₂, burner tilt, SOFA tilt, SOFA yaw, SOFA/CCOFA ratio, SOFA+CCOFA flow, coal air flow and mill classifier speed. The effect of mill load pattern on NO_x emissions and LOI was also examined (Design B).

Analysis of the test results of Designs A and C showed that, in general, LOI increased as NO_x emissions decreased. However, weak correlation coefficients were obtained, suggesting a more complex relationship between NO_x and LOI, relative to that observed in baseline testing. For Design A, burner tilt exhibited strong correlations with both NO_x emissions and LOI. For Design C, O_2 exhibited strong correlations with both NO_x emissions and LOI.

3.3.4 Effects of Combustion Air Distribution and Burner Tilt

The tests of Design A (Table 3.13) examined the effects of burner tilt, SOFA tilt, SOFA yaw, SOFA/CCOFA ratio, SOFA+CCOFA flow, and coal air flow on NO_x emissions and LOI at 148 MW boiler load. Excess O_2 and mill classifier speed were also variables in this design, but their effects are discussed in more detail in the analysis of Design C where greater variability of these two parameters was possible.

Regression analyses were used to identify the statistically significant factors affecting NO_x emissions and LOI, starting with a linear model with respect to the eight independent variables of Design A. The final correlations for Design A are shown in Table 3.14. O2 is excess O_2 measured at the economizer outlet, S refers to SOFA flow, C refers to CCOFA flow, and TILT is burner tilt in degrees. Four variables had significant effects on NO_x emissions, namely, excess O_2 , burner tilt, SOFA/CCOFA ratio, and SOFA+CCOFA flow. Each exhibited about the same level of significance. Only burner tilt had a clearly significant effect on LOI.

Variations in NO_x emissions and LOI with burner tilt settings (burner tilt and SOFA tilt) and SOFA yaw at 148 MW are shown in Figures 3.1 and 3.2, respectively. Other parameters were set at baseline conditions. Figure 3.1 shows that lowering the burner tilt below the horizontal reduced both NO_x emissions and LOI, possibly because of greater residence time in the burner zone, whereas changes in SOFA tilt produced no significant effects. Figure 3.2 shows that higher SOFA yaw angles in the positive or negative direction relative to the fuel firing angle increased LOI and produced minor changes in NO_x emissions. The effect of SOFA yaw on LOI is inconsistent with regression results. Automatic variation in burner tilt (control algorithm) was required to maintain main steam temperature. Consequently, a change in SOFA yaw was accompanied by a change in burner tilt

(Table 3.13), and the two effects could not be separated. Thus, the impact of SOFA yaw changes on LOI (Figure 3.2) could not be determined with certainty.

Figure 3.3 shows the effect of combustion air distribution on NO_x emissions and LOI. Qualitative designations were used for the different levels of SOFA/CCOFA ratio, SOFA+CCOFA flow and coal air flow, since a quantitative measure of these variables was not available. As expected, higher SOFA/CCOFA ratios and higher SOFA+CCOFA flows reduced NO_x emissions and increased LOI because of greater staging of the combustion air. Regression results suggested that the effect of these two parameters was mainly on NO_x emissions. Again, automatic variation in burner tilt (control algorithm) was required to maintain main steam temperature. Therefore, changes in over-fire air flows (SOFA and/or CCOFA flows) were accompanied by changes in burner tilt (Table 3.13), and the two effects could not be separated. Changes in coal air produced small changes in both NO_x emissions and LOI (Figure 3.3).

3.3.5 Effects of Mill Pattern

Figure 3.4 is a graphical presentation of the test results of Design B (Table 3.13) in which four mill load patterns were tested with three mills in service at both 148 MW and 120 MW boiler loads. Other parameters were set at baseline conditions. A mill bias parameter B, was used, defined as the distance between the center of mass of the coal flow and the center of the burner zone divided by half the length of the burner zone. This is the same parameter used by Levy, et al., ("NO_x Control and Performance Optimization Through Boiler Fine-Tuning," paper presented at the 1993 Joint Symposium on Stationary Combustion NO_x Control, Miami Beach, Florida, May 24-27, 1993). This parameter is a measure of the vertical distribution of the coal input into the boiler with respect to the center of the burner zone. It is calculated using measured coal feed rates in tons per hour (tph) through the individual mills (A1, B2, A3, and B4) as:

$$B = (tph_{A1} + tph_{B2}/3 - tph_{A3}/3 - tph_{B4}) / tph_{total}$$

The tested mill patterns and the corresponding β values are shown in Table 3.3. The results shown in Figure 3.4 indicate a strong effect of mill load pattern on both NO_x emissions and LOI. Lower NO_x emissions and lower LOI were obtained at negative β which corresponded to the upper mills being out of service, with more effective air staging results. Partial combustion accompanied by low NO_x emissions occurs when the lower mills are in service, and combustion is completed as air is added without the coal when a mill at a higher elevation is out of service.

3.3.6 Effects of Boiler Load and Excess 0,

The tests of Design C (Table 3.13) examined the effects of the three most significant parameters affecting NO_x emissions and LOI, namely, boiler load, excess O_2 and mill classifier speed. Other parameters were set at baseline conditions.

Regression analyses were used to identify the statistically significant factors affecting NO_x emissions and LOI, starting with a complete quadratic model with respect to the three independent variables of Design C (boiler load, excess O_2 ,

and mill classifier speed). The final correlations for Design C are shown in Table 3.14. O2 is excess O_2 measured at the economizer outlet, MW is net boiler load, and RPM is mill classifier speed. Except for a dependence of NO_x emissions on quadratic changes in boiler load, quadratic effects and two-parameter interaction effects were not statistically significant. NO_x emissions were directly proportional to linear changes in excess O_2 and mill classifier speed. LOI was directly proportional to linear changes in excess O_2 , boiler load and mill classifier speed.

The effects of excess O_2 on NO_x emissions and LOI at the three tested boiler loads (148 MW, 120 MW and 90 MW) are shown in Figure 3.5. As expected, NO_x emissions increased and LOI decreased at higher excess O_2 levels which corresponded to greater excess air. The effects of boiler load changes on NO_x emissions and fly ash LOI, shown in Figure 3.6, were due to two opposing effects. Reduced boiler loads corresponded to lower boiler peak temperatures, and greater overall air/fuel separation (due to air flow through burners taken out of service, without coal flow), which reduced NO_x emissions and increased LOI. Furthermore, at reduced boiler loads, the SOFA air flows and SOFA fractions (of the overall combustion air flow) were lower, which increased NO_x emissions and reduced LOI. The overall effect of boiler load changes (Figure 3.5) was an increase in LOI with increasing boiler load and a quadratic change in NO_x emissions with minimum values obtained at intermediate boiler loads.

The effects of excess O_2 on NO_x emissions and LOI at various mill classifier speeds (72 rpm, 93 rpm and 108 rpm) at 148 MW and 120 MW are shown in Figure 3.7. As expected, higher mill classifier speeds reduced both NO_x emissions and LOI, with a more significant effect on LOI. Higher classifier speeds corresponded to higher pulverized coal fineness.

The results of Design C are presented again in Figures 3.8 and 3.9, showing variations in NO_x emissions and LOI with respect to mill classifier speed at fixed excess O_2 (3.3% nominal) and two boiler loads (Figure 3.8), and at different excess O_2 levels (3.0%, 3.4% and 4.5% nominal) at 120 MW (Figure 3.9). The trends seen in Figures 3.8 and 3.9 are consistent with the observations described earlier.

3.3.7 <u>Variations of NO_x Emissions and LOI</u>

The post-retrofit test results were used to identify conditions that would reduce NO_x emissions while maintaining acceptable unit performance, including salable fly ash, with emphasis on full boiler load (148 MW). Excess O₂ was a significant parameter affecting both NO_x emissions and LOI. This parameter is typically used to select a suitable trade-off between decreasing NO_x emissions and increasing LOI as excess air is reduced. However, the post-retrofit relationship between NO_x emissions and LOI was more complex than the pre-retrofit relationship where a simple inverse relationship was observed. This was attributed to greater sensitivity of post-retrofit NO_x emissions and LOI to process variables, including coal properties, coal fineness and burner tilt.

During the post-retrofit testing, the fly ash LOI was generally above 4% at full boiler load. However, coal composition is an uncontrolled parameter that would greatly affect LOI. Specifically, an increase in ash and/or moisture contents

of the coal would decrease LOI, and might be a determining factor in maintaining fly ash LOI below 4%. After the diagnostic tests were completed, the impacts of moisture and ash contents of the coal on flame ignition and LOI were examined. Consequently, a coal with higher ash and higher moisture contents (relative to the coal burned during the post-retrofit tests) was specified, which produced acceptable LOI (below 4%) and acceptable flame ignition point

Increasing mill classifier speed and increasing burner tilt position below the horizontal (negative angles) reduced both NO_x emissions and LOI.

Greater air staging reduced NO_x emissions, with greater sensitivity to changes in SOFA rather than CCOFA. Greater air staging also increased LOI, but the effect was not statistically significant when the effects of other parameters, such as burner tilt, were accounted for.

3.3.8 Predictive Correlations for NO, Emissions and LOI

One set of correlations (one for NO_x and another for LOI) was derived from Design A and another set was derived from Design C, as shown in Table 3.14. The correlations were combined to generate a single correlation for NO_x emissions and another for LOI by taking the correlation of Design C and adding the factors that were not accounted for from the correlation of Design A. As discussed earlier, typical air staging settings would not be used for long-term operation, and thus, air staging parameters (SOFA/CCOFA and SOFA+CCOFA) were not included in the final correlations. Thus, burner tilt was the only factor that was extracted from the correlation of Design A for both NO_x emissions and LOI. The following correlations were obtained:

1b NO_x/MM Btu = 0.12 + 0.08*02 + 0.00003*(MW-120)² - $r^2=84\%$ 0.00093*(RPM-93) + 0.007*TILT

% LOI = 8.1 - 1.08*02 + 0.032*(MW-120) - 0.062*(RPM-93) + 0.155*TILT $r^2=69\%$

where O2 is excess O_2 measured at the economizer outlet, MW is net boiler load, TILT is burner tilt in degrees from the horizontal, and RPM is mill classifier speed.

Comparisons of measured and predicted NO_x emissions and LOI based on the two derived correlations are presented in Figures 3.10 and 3.11, respectively.

3.4 Conclusions

The Unit 1 post-retrofit diagnostic tests conducted during March of 1994 were analyzed to determine the effects of boiler load, excess O_2 , mill classifier speed, combustion air distribution (SOFA flow, CCOFA flow and coal air flow), burner settings (burner tilt, SOFA tilt and SOFA yaw), and mill load patterns on NO_x emissions and LOI. The following conclusions were reached.

1. The average difference between replicated tests was 0.044 lb NO_/MM Btu and 0.6% LOI. The uncertainty at 95% confidence was \pm 0.027 lb NO_/MM Btu and \pm 0.35% LOI. The reproducibility in NO_ emissions had greater uncertainty for the post-retrofit tests than that for the baseline tests because of NO_x sensitivity to a larger number of parameters in the low-NO_x configuration. The uncertainty in measuring LOI was about the same for the post-retrofit and the baseline tests.

- 2. Concentration measurements across the two ducts at the economizer outlet showed minor gas stratification.
- 3. NO_x and NO measurements (in ppm) at the economizer outlet were indistinguishable. NO_2 concentrations, calculated as the difference between NO_x and NO, were estimated at 1-2 ppm.
- 4. CO was not a consideration in this study, because its concentration at the economizer outlet was always low, varying between 9 ppm and 23 ppm.
- 5. Increasing burner tilt below the horizontal position reduced NO_x emissions by 0.007 lb/MM Btu per degree change and reduced LOI by 0.16% per degree change.
- 6. Changes in SOFA tilt produced no significant changes in either NO_x emissions or LOI. SOFA yaw changes (relative to the fuel firing angle) did not significantly change NO_x emissions, and increased LOI. The effect on LOI could not be determined with certainty because SOFA yaw changes were accompanied by changes in burner tilt, and the two effects could not be separated.
- 7. Greater air staging reduced NO_x emissions, with greater sensitivity to changes in SOFA rather than CCOFA. Greater air staging also increased LOI, but the effect was not statistically significant when the effects of other parameters, such as burner tilt, were accounted for.
- 8. Taking the upper elevation burners out of service reduced both NO_x emissions and LOI because of more effective air staging. The effect was greater on NO_x emissions. The effect can be quantified if a mill bias parameter is used (see Section 3.3.5).
- 9. Higher excess O_2 increased NO_x emissions and reduced LOI (see Item 13).
- 10. In general, higher boiler loads increased both NO_x emissions and LOI (see Item 13).
- 11. Higher mill classifier speeds (finer coal) reduced both NO_x emissions and LOI, with a more dramatic effect on LOI (see Item 13).
- 12. The post-retrofit relationship between NO_x and LOI was more complex than the simple trade-off that was observed in baseline testing where NO_x emissions decreased and LOI increased as excess air was reduced. This was attributed to greater sensitivity of the low- NO_x

configuration to process variables, including coal properties. Higher ash and/or moisture coal contents would reduce LOI, with a minor effect on NO_x emissions.

- 13. The following predictive correlations for NO_x emissions and LOI were derived for normal operation of Unit 1:
 - 1b NO_/MM Btu = $0.12 + 0.08*02 + 0.00003*(MW-120)^2 r^2=84\%$ 0.00093*(RPM-93) + 0.007*TILT
 - % LOI = 8.1 1.08*02 + 0.032*(MW-120) r²=69% 0.062*(RPM-93) + 0.155*TILT

where O2 is excess O_2 measured at the economizer outlet, MW is net MW boiler load, TILT is burner tilt in degrees from the horizontal, and RPM is mill classifier speed.

- 14. During several short-term tests, NO_x emissions were below 0.37 lb/MM Btu. However, fly ash LOI at full boiler load was generally above 4% during the LNCFS-3 optimization test period. After the optimization test program was completed, a series of tests firing coals with higher ash and/or higher moisture contents than the coal burned during the optimization test period achieved less than 4% LOI. The current practice is to operate with optimized LNCFS-3 burner settings and fire a nominal 13,000 Btu/lb (as fired) coal.
- 15. The short-term, post-retrofit LNCFS-3 test program indicated that NO_x emissions could potentially be reduced to about 0.35 lb/MM Btu at full boiler load, while maintaining salable fly ash.
- 16. The low-NO_x burner retrofit reduced NO_x emissions from a baseline level of 0.64 lb/MM Btu to a post-retrofit level of 0.39 lb/MM Btu, corresponding to a reduction of about 39%, while maintaining LOI below 4%. The NO_x values were based on short-term test averages and will be verified during the 51-day long-term test. NYSEG believes LNCFS-3 burner retrofit is a cost-effective technology to comply with Title IV of the 1990 Clean Air Act Amendments. To date, burner operations are acceptable.

TABLE 3.1 - UNIT 1 POST-RETROFIT TESTS - PARAMETER SETTINGS

	Parameter	Low	Mid	<u>High</u>
1.	Boiler Load, MW Net Generation	90	120	148
2.	Economizer O2, % (148 MW) Economizer O2, % (120 MW) Economizer O2, % (90 MW)	2.8 3.0 3.1	3.3 3.4 3.9	4.3 4.5 4.9
3.	Burner Tilt, Degrees From Horizontal	-10	0	10
4.	SOFA Tilt, Degrees From Horizontal	-10	5	10
5.	SOFA Yaw, Degrees From Firing Angle	-12	0	12
6.	SOFA/CCOFA Ratio -1 Minimum SOFA, Maximum CCOFA 0 Baseline 1 Maximum SOFA Minimum CCOFA	-1	0	1
7.	SOFA+CCOFA Flow -1 Minimum SOFA+CCOFA 0 Baseline 1 Maximum SOFA+CCOFA	-1	0	1
8.	Coal Air Flow -1 Minimum Coal Air, 35% Open Damper O Baseline 1 Maximum Coal Air, 100% Open Damper	-1	0	1
9.	Mill Classifier Speed, rpm	70	93	110
10	. Mill Patterns: X Coal Flow On - Coal Flow Off			
	BurnerMill Pattern (3 Mills)Elevation1234A1XX-XB2XX-XA3X-XXB4-XXX			

Normal Mill Pattern:

Full Load, All Elevations in Service Reduced Load, Pattern 1 TABLE 3.2 - UNIT 1 POST-RETROFIT TESTS - DESIGN A, FULL BOILER LOAD TESTS

Test <u>No.</u>	ECON 02 <u>%</u>	MAIN TILT <u>deg</u>	SOFA TILT <u>deg</u>	SOFA YAW deg	SOFA/ CCOFA <u>RATIO</u>	SOFA+ CCOFA <u>FLOW</u>	COAL AIR <u>FLOW</u>	MILL CLASS m
* 1	3.3	0	5	0	Mid	Mid	Mid	93
* 2	4.3	0	5	0	Mid	Mid	Mid	93
* 3	2.8	0	5	0	Mid	Mid	Mid	93
4	3.3	+10	5	0	Mid	Mid	Mid	93
5	3.3	-10	5	0	Mid	Mid	Mid	93
6	3.3	0	+10	0	Mid	Mid	Mid	93
7	3.3	0	-10	0	Mid	Mid	Mid	93
8	3.3	0	5	+12	Mid	Mid	Mid	93
9	3.3	0	5	-12	Mid	Mid	Mid	93
10	3.3	0	5	0	High	Mid	Mid	93
11	3.3	0	5	0	Low	Mid	Mid	93
12	3.3	0	5	0	Mid	Hiah	Mid	93
13	3.3	0	5	0	Mid	Low	Mid	93
14	3.3	0	5	Ō	Mid	Mid	High	93
15	3.3	Ó	5	Ō	Mid	Mid	Low	93
16	3.3	Ō	5	Ō	Mid	Mid	Mid	110
17	3.3	Ō	5	Ō	Mid	Mid	Mid	70

Boiler Load at 148 MW, With All Burner Elevations in Service

* Replicated Tests

TABLE 3.3 - UNIT 1 POST-RETROFIT TESTS - DESIGN B, MILL PATTERN TESTS

	<u>No.</u>	LOAD NET <u>MW</u>	MILL PATTERN <u>No.</u>	MILL BIAS <u>PARAMETER(B⁺)</u>
	1	148	1	0.250
	2	148	2	0.083
	3	148	3	-0.083
	4	148	4	-0.250
*	5	120	1	0.250
	6	120	2	0.083
	7	120	3	-0.083
	8	120	4	-0.250

Mill Patterns: X Coal Flow On - Coal Flow Off

Burner	<u>Mill</u>	Pattern	(3	<u>Mills)</u>
<u>Elevation</u>	1	2	_3	4
A1	X	X	X	-
B2	X	X	-	X
A3	X	-	X	Х
B4	-	X	X	Х

Normal Mill Pattern: Full Load, All Elevations in Service Reduced Load, Pattern 1

- * Replicated Tests
- $+ \beta = (tph_{A1} + tph_{B2}/3 tph_{A3}/3 tph_{B4}) / tph_{total}$

TABLE 3.4 - UNIT 1 POST-RETROFIT TESTS - DESIGN C, VARIABLE BOILER LOAD TESTS

<u>No.</u>	LOAD NET <u>MW</u>	ECON 02 <u>%</u>	MILL CLASS <u>rpm</u>
*# 1	148	4.3	93
*# 2	148	3.3	93
*# 3	148	2.8	93
4	120	4.5	93
*+ 5	120	3.4	93
6	120	3.0	93
7	90	4.9	93
8	90	3.9	93
9	90	3.1	93
#10	148	3.3	110
11	90	3.9	110
12	120	4.5	110
13	120	3.0	110
14	120	3.4	110
#15	148	3.3	70
16	90	3.9	70
17	120	4.5	70
18	120	3.0	70
19	120	3.4	70

Other Settings: O Burner Tilt, 5 SOFA Tilt, O SOFA Yaw, Auto Damper Positions

* Replicated Tests

Tests C2, C1, C3, C10, C15 are the same as Tests A1, A2, A3, A16, A17.

+ Test C5 is the same as Test B5.

11 03/21/94 14:00-16:00 Full Base time Dverfire Air (SOFA+CCOFA) 12.52 2 03/22/94 17:00-19:00 Full Base time Dverfire Air (SOFA+CCOFA) A12 2 03/22/94 17:00-19:00 Full Base time Dverfire Air (SOFA+CCOFA) A12 3 03/22/94 03:00-05:15 Mid High O2 (4.5%) C 4 5 03/23/94 03:00-05:15 Mid High O2 (4.5%) C 4 6 03/23/94 12:00-01:00 Full High O2 (4.5%) C 4 7 03/23/94 12:45-16:45 Full High O2 (4.5%) A 3, C 3 9 03/23/94 12:40-22:30 Low Low O2 (3.0%) C 9 12 03/24/94 03:30-05:00 Low High O2 (5.0%) C 7 13 03/24/94 13:45-17:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 9 C 7 14 03/24/94 13:45-17:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 9 C 7 13 03/24/94 13:45-17:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 8 C 9 10 03/24/94 13:45-17:00	Test	t <u>Data</u>	Collection	Boiler	Description of the Test	Design	No.
2 03/22/94 22:30-00:00 Mid Baseline B5, C 5 4 03/23/94 02:30-00:00 Mid High D2 (4:5%) C 4 5 03/23/94 02:30-00:00 Mid Mide D2 (2:5%) C 4 5 03/23/94 02:00-11:00 Full Minimum Overfire Air (SDFA+CCOFA) A13 7 03/23/94 14:45-16:45 Full Low O2 (2:7%) A 3, C 3 9 03/23/94 18:00-19:15 Full High O2 (4:3%) C 9 10 03/23/94 18:00-19:15 Full High O2 (5:0%) C 7 10 03/24/94 10:45-02:30 Low Low O2 (3:0%) C 9 C 7 12 03/24/94 12:30-14:00 Full SOFA Yaws From Top 12 -12 -12 Deg A 9 A 3 14 03/24/94 12:30-14:00 Full SOFA Yaws From Top 0 -6 -12 Deg A 8 15 03/25/94 01:30-03:00 Mid Mid Hill A3 Off B 6 B 7 16 03/25/94 03:00-16:15 Full High Fine (110 rpm) Mid 02 (3:4%) C 14 10 03/25	$\frac{n0.}{1}$	03/22/94	14:00-16:00	Full	Baseline	A 1,	C 2
3 03/22/94 01:13-02:00 Hid High O2 (4.5%) C4 5 03/23/94 01:100 Full Minimu Overfire Air (SOFA+CCOFA) A13 7 03/23/94 12:00-14:00 Full High O2 (4.3%) A2, C1 8 03/23/94 14:45-16:45 Full High O2 (4.3%) A2, C1 8 03/23/94 14:45-16:45 Full High O2 (2.7%) A3, C3 9 03/23/94 12:10-14:00 Full High O2 (5.0%) C9 C7 13 03/24/94 03:30-05:00 Low Low O2 (3.0%) C7 C7 C7 13 03/24/94 12:03-14:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 9 A8 16 03/24/94 12:45-17:00 Full SOFA Yaws From Top 0 -6 -12 Deg A8 16 03/25/94 01:30-03:00 Mid Mill A1 0ff B B 7 17 03/25/94 03:30-10:85 Full Low Cal Air (35% Open) A14 20 03/25/94 03:30-10:85 Full High Fine (110 rpm) Mid 02 (3.4%) C14	2	03/22/94	17:00-19:00	Full Mid	Maximum Overfire Air (SOFA+CCOFA)	A12	CΕ
5 03/23/94 03:30-05:15 Mid Low O2 (2.8%) C 6 7 03/23/94 12:00-14:00 Full High O2 (4.3%) A A 2.7 8 03/23/94 12:00-14:00 Full High O2 (2.7%) A 3.7 C 9 03/23/94 18:00-19:15 Full High SOFA Tilt (+10 deg) A 6 10 03/23/94 22:15-00:00 Low Wo22 (3.0%) C 9 12 03/24/94 03:30-05:00 Low Wo22 (3.0%) C 9 12 03/24/94 12:45-17:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 9 14 03/24/94 15:45-17:00 Full SOFA Yaws From Top 0 -6 -12 Deg 7 15 03/24/94 12:30-03:00 Mid Mill Al Off B 8 8 10 03/25/94 04:00-05:30 Mid Mill Al Off B 8 10 10:2:34% C14 10:32:5/94 10:0:13:0 Mill Al Off 13:5 03/2:1:5:4:5:4:0 Mid<	4	03/23/94	01:15-02:30	Mid	High 02 (4.5%)	сз, С4	5
6 03/23/94 12:00-14:00 Full Hinnum Overfire Air (SUFA+LCUFA) A13 7 03/23/94 12:00-14:00 Full High 02 (4:3%) A 3, C 3 9 03/23/94 18:00-19:15 Full High SOFA Tilt (+10 deg) A 6 10 03/23/94 18:00-19:15 Full High SOFA Tilt (+10 deg) A 6 10 03/23/94 02:40-00:00 Low Low 02 (3.0%) C 9 12 03/24/94 04:45-02:30 Low Low 02 (3.0%) C 7 13 03/24/94 12:30-14:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 8 5 14 03/24/94 12:45-17:00 Full SOFA Yaws From Top 10 -6 -12 Deg A 8 15 03/24/94 12:30-00:00 Mid Mill B2 Off B 6 16 03/25/94 01:30-03:00 Mid Mill B2 Off B 8 19 03/25/94 01:00-05:30 Hid High Fine (110 rpm) Mid 02 (3.3%) A16, C10 12 03/26/94 12:15-16:45 Mid Maximum Overfire Air (SOFA+COFA) B 5, C 5 13 03/26/94 12:15-16:45 Mid Maximum Overfire Air (SOFA+COFA) C 2 13	5	03/23/94	03:30-05:15	Mid	Low 02 (2.8%)	C 6	
1 03/23/94 14:45-16:45 Full Low 02 (2:7%) A 3, C 3 9 03/23/94 14:45-16:45 Full Low 02 (3:7%) A 6 10 03/23/94 21:50-00:00 Low Baseline C 8 11 03/24/94 03:30-05:00 Low Low 02 (3:0%) C 9 12 03/24/94 03:30-05:00 Low Low 02 (3:0%) C 9 13 03/24/94 12:30-14:00 Full SOFA Yaws From Top -12 -12 -02 Deg A 9 14 03/24/94 12:45-17:00 Full SOFA Yaws From Top 0 -6 -12 Deg B 7 15 03/24/94 12:45-17:00 Full SOFA Yaws From Top 0 -6 -12 Deg B 7 16 03/25/94 03:00-03:00 Mid Mill A3 Off B 6 18 03/25/94 09:30-10:45 Full High Coal Air (100% Open) A14 21 03/25/94 12:00-13:30 Full High Fine (110 rpm) Mid 02 (3:3%) A16, C10 22 03/26/94 12:01-14:00 Mid Low Fine (10 rpm) Mid 02 (3:4%) C14 23/25/94 12:01-14:00 Mid Low Fine (10 rpm) Mid 02 (3:4%) C14 23/25/94 12:01-14:00 High Fine (110 rpm) High 02 (4:3%) A2; C 1	67	03/23/94 03/23/94	09:00-11:00	FU11 Fu11	High 02 (4 3%)	A13 A 2	C I
9 03/23/94 22:15-00:00 Low Baseline C 8 10 03/23/94 22:15-00:00 Low Baseline C 9 12 03/24/94 03:30-05:00 Low Low O2 (3.0%) C 9 13 03/24/94 13:0-14:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 9 14 03/24/94 15:45-17:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 8 15 03/24/94 17:45-19:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 8 16 03/24/94 17:45-19:00 Mid Mill A3 Off B 8 17 03/25/94 01:30-03:00 Mid Mill A3 Off B 8 19 03/25/94 09:30-10:45 Full Low Coal Air (35% Open) A14 21 03/25/94 09:30-10:45 Full Low Coal Air (35% Open) A14 21 03/25/94 15:00-16:15 Full High Fine (110 rpm) Mid 02 (3.3%) A16, C10 22 03/26/94 15:15-16:15 Full High Fine (110 rpm) Mid 02 (3.4%) C19 24 03/26/94 15:15-16:45 Mid Maximum Overfire Air (SOFA+CCOFA) 25 03/26/94 15:15-16:45 Mid Maximum Overfire Air (SOFA+CCOFA) 26 03/27/94 16:00-17:00 Full Baseline B 5, C 5 26 03/27/94 16:00-17:00 Full High Fine (110 rpm) Hid 02 (4.3%) 21 03/28/94 09:30-11:00 Mid Baseline B 5, C 5 26 03/27/94 16:00-17:00 Full High Fine (110 rpm) High 02 (4.3%) 21 03/28/94 15:15-16:45 Mid Maximum SOFA, Minimum CCOFA A1, C 2 27 03/27/94 16:00-17:00 Full Low SOFA Tilt (-10 deg) A 7 29 03/28/94 12:30-14:00 Full High Fine (110 rpm) High 02 (4.3%) 21 03/28/94 12:30-14:00 Full Maximum SOFA, Minimum CCOFA A10 23 03/29/94 15:45-17:00 Full Naximum SOFA, Minimum CCOFA A10 23 03/29/94 12:30-14:30 Full Mill A3 Off B 3 26 03/29/94 12:30-10:00 Low SOFA Yaws From Top +12 +12 +12 Deg 28 03/30/94 02:00-03:00 Low SOFA Yaws From Top +12 -12 -12 Deg 29 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 -12 -12 Deg 39 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 +12 +12 Deg 30 03/29/94 12:30-10:00 Hill Mill A3 Off B 3 30 03/29/94 12:30-10:00 Full Mill A3 Off 30 03/29/94 01:5-00:30 Low SOFA Yaws From Top +12 +12 +12 Deg 39 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 -12 -12 Deg 30 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 -12 -12 Deg 30 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 -12 -12 Deg 30 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 -12 -	8	03/23/94	14:45-16:45	Full	Low 02 (2.7%)	3,	Č 3
10 03/22/94 02:15-00:00 Low Baseline C 8 12 03/24/94 03:30-05:00 Low High 02 (5:0%) C 7 13 03/24/94 12:30-14:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 9 14 03/24/94 12:30-14:00 Full SOFA Yaws From Top 0 -6 -12 Deg A 8 15 03/24/94 11:30-03:00 Mid Mill B2 Off B 7 17 03/25/94 01:30-03:00 Mid Mill A3 Off B 8 10 03/25/94 01:30-03:00 Mid Mill A1 Off B 8 10 03/25/94 09:30-10:45 Full High Coal Air (100% Open) A15 20 03/25/94 09:30-11:00 Mid High Fine (110 rpm) Mid 02 (3.4%) C14 11 03/226/94 12:5-16:45 Mid Maximum Overfire Air (SOFA+CCOFA) B 5, C 5 23/226/94 12:5-16:45 Mid Baseline A 1, C 2 A 2, C 1 24 03/226/94 15:5-16:45 Mid Baseline A 1, C 2 A 2, C 1 25 03/	9	03/23/94	18:00-19:15	Full	High SOFA Tilt (+10 deg)	A 6	
11 03/21/91 03:10:05:00 Low High O2 (5.0%) C 7 13 03/24/94 12:30-14:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 9 14 03/24/94 12:30-14:00 Full SOFA Yaws From Top 0 -6 -12 Deg A 8 15 03/24/94 17:45-19:00 Full SOFA Yaws From Top 0 -6 -12 Deg B 7 16 03/25/94 01:30-03:00 Mid Mill B2 Off B 6 18 03/25/94 01:30-03:00 Mid Mill A1 Off B 6 19 03/25/94 01:30-03:00 Mid Mill A1 Off B 6 20 03/25/94 01:30-016:15 Full High Fine (110 rpm) Mid 02 (3.3%) A15, C10 21 03/25/94 12:50-16:15 Full High Fine (110 rpm) Mid 02 (3.4%) C14 23 03/26/94 12:15-16:45 Mid Maximum Overfire Air (SOFA+CCOFA) B 5, C 5 25 03/22/94 11:15-16:45 Mid Baseline A 1, C 2 C 1 26 03/27/94 11:40-15:00 Full High Fine (110 rpm) High O2 (4.3%) A 2, C 1	10	03/23/94	22:15-00:00	LOW	Baseline Low 02 (3.0%)	6 3	
13 03/24/94 12:30-14:00 Full SOFA Yaws From Top -12 -12 -12 Deg A 8 14 03/24/94 15:45-17:00 Full SOFA Yaws From Top +12 +6 D Deg A 8 15 03/24/94 17:45-19:00 Full SOFA Yaws From Top 0 -6 -12 Deg 16 03/25/94 02:30-03:00 Mid Mill A3 Off B 6 18 03/25/94 02:00-13:30 Full Low Coal Air (35% Open) A15 20 03/25/94 12:00-13:30 Full High Fine (110 rpm Mid 02 (3.4%) C14 21 03/26/94 12:15-14:00 Mid Low Fine (70 rpm Mid 02 (3.4%) C14 21 03/26/94 12:15-14:00 Mid Low Fine (70 rpm Mid 02 (3.4%) C19 24 03/26/94 12:15-16:45 Mid Maximum Overfire Air (SOFA+CCOFA) B 5, C 5 26 03/27/94 11:45-13:00 Full High C2 (4.3%) A 2, C 1 27 03/28/94 09:30-11:00 Full Low SOFA Tilt (-10 deg) A 7 29 03/28/94 12:15-17:00 Full Maximum SOFA, Maximum COFA A10 20 03/28/94 12:30-14:30 Full Milh A1 Off B 2 20 03	12	03/24/94	03:30-05:00	Low	High 02 (5.0%)	Č Ž	
14 03/24/94 15:45-17:00 Full SUFA Yaws From Top 0 -6 -12 Deg 15 03/24/94 22:30-00:00 Mid Mill Mill B2 Off B7 16 03/25/94 01:30-03:00 Mid Mill Mill A1 Off B6 B7 17 03/25/94 01:30-03:00 Mid Mill A1 Off B6 B7 03/25/94 09:30-10:45 Full Low Coal Air (100% Open) A14 21 03/26/94 12:00-13:30 Full High Fine (110 rpm) Mid 02 (3.4%) C14 23 03/26/94 12:15-14:00 Mid High Fine (110 rpm) Mid 02 (3.4%) C19 24 03/26/94 12:15-14:00 Mid Maximum Overfire Air (SOFA+CCOFA) B5 C 5 25 03/26/94 12:15-16:45 Mid Maximum Overfire Air (10 deg) A 7 A 2; C 1 26 03/28/94 17:45-19:00 Full High Fine (110 rpm) High 02 (4.3%) A 2; C 1 27 03/28/94 12:45-14:15 Full Low Fine (70 rpm) H	13	03/24/94	12:30-14:00	<u>Fu]]</u>	SOFA Yaws From Top -12 -12 -12 Deg	A 9	
13 03/24/94 12:30-00:00 Mid Mill B2 Off B7 17 03/25/94 01:30-03:00 Mid Mill A3 Off B6 18 03/25/94 09:30-10:45 Full Low Coal Air (35% Open) A15 20 03/25/94 12:00-13:30 Full High Coal Air (100% Open) A14 21 03/25/94 15:00-16:15 Full High Fine (110 rpm) Mid 02 (3.3%) A16, C10 22 03/26/94 09:30-11:00 Mid High Fine (110 rpm) Mid 02 (3.4%) C14 23 03/26/94 12:15-16:45 Mid Maximum Overfire Air (SOFA+CCFA) E5 24 03/26/94 12:15-16:00 Full Baseline A 1, C 2 23/27/94 14:00-15:00 Full High Fine (110 rpm) High 02 (4.3%) A 2, C 1 29 03/28/94 12:15-17:00 Full Maximum SOFA, Minimum CCFA A10 30 03/28/94 12:15-17:00 Full Mill B2 Off B 3 30 03/29/94 09:30-11:00 Full Mill B2 Off B 3 30 03/29/94 12:30-14:	14	03/24/94	15:45-17:00	Full 5	SOFA Yaws From Top +12 +6 0 Deg		
17 03/25/94 01:30-03:00 Mid Mill Al Off B 6 18 03/25/94 04:00-05:30 Mid Mill Al Off B 8 19 03/25/94 12:00-13:30 Full Low Coal Air (35% Open) A15 20 03/25/94 12:00-16:15 Full High Fine (110 rpm) Mid 02 (3.3%) A16, C10 21 03/26/94 19:30-11:00 Mid Low Fine (70 rpm) Mid 02 (3.4%) C14 23 03/26/94 12:15-16:45 Mid Maximum Overfire Air (SOFA+CCOFA) B 5, C 5 24 03/26/94 17:30-19:00 Mid Baseline A 1, C 2 27 03/27/94 11:40-15:00 Full Baseline A 2, C 1 28 03/27/94 16:00-17:00 Full Low Fine (70 rpm) High 02 (4.3%) A 2, C 1 20 03/28/94 09:30-11:00 Full Low Fine (110 rpm) Low 02 (2.8%) 103/28/94 30 03/28/94 12:30-14:30 Full Minimum SOFA, Maximum COFA A11 31 03/29/94 12:30-14:30 Full Minimum SOFA, Maximum COFA A11 <td< td=""><td>16</td><td>03/24/94</td><td>22:30-00:00</td><td>Mid</td><td>Mill B2 Off</td><td>87</td><td></td></td<>	16	03/24/94	22:30-00:00	Mid	Mill B2 Off	87	
18 03/25/94 04:00-05:30 Mid Mill Al Off B 8 19 03/25/94 09:30-10:45 Full Low Coal Air (35% Open) A15 20 03/25/94 12:00-13:30 Full High Coal Air (100% Open) A14 21 03/25/94 12:00-16:15 Full High Fine (110 rpm) Mid 02 (3.3%) A16, C10 20 03/26/94 12:15-14:00 Mid Low Fine (70 rpm) Mid 02 (3.4%) C19 24 03/26/94 12:15-16:45 Mid Maximum Overfire Air (SOFA+CCOFA) E 25 03/26/94 11:15-16:45 Mid Baseline A 1, C 2 27 03/27/94 14:00-15:00 Full Baseline A 1, C 2 27 03/28/94 09:30-11:00 Full Low SOFA Tilt (-10 deg) A 7 29 03/28/94 12:45-14:15 Full High Fine (110 rpm) Low 02 (2.8%) A10 30 03/28/94 12:45-14:15 Full Minimum SOFA, Maximum CCOFA A11 30 03/28/94 12:45-14:15 Full Mil Mill A3 Off B 3 31 03	17	03/25/94	01:30-03:00	Mid	Mill A3 Off	B 6	
19 03/25/94 12:00-13:30 Full High Coal Air (100% Open) A14 21 03/25/94 15:00-16:15 Full High Fine (110 rpm) Mid O2 (3.3%) A16, C10 22 03/26/94 09:30-11:00 Mid High Fine (110 rpm) Mid O2 (3.4%) C14 23 03/26/94 12:15-14:00 Mid Low Fine (70 rpm) Mid O2 (3.4%) C19 24 03/26/94 15:15-16:45 Mid Maximum Overfire Air (SOFA+CCOFA) B5, C 5 25 03/27/94 14:40-15:00 Full Baseline A 1, C 2 27 03/27/94 16:00-17:00 Full Low SOFA Tilt (-10 deg) A 7 29 03/28/94 12:45-14:15 Full High Fine (110 rpm) Low 02 (2.3%) 30 03/28/94 12:45-14:15 Full High Fine (110 rpm) Low 02 (2.3%) 31 03/28/94 12:15-17:00 Full Maximum SOFA, Maximum CCOFA A11 30 03/29/94 12:30-14:30 Full Minimum SOFA, Maximum CCOFA A11 30 03/29/94 12:30-14:30 Full Mill A1 Off B 2 36	18	03/25/94	04:00-05:30	Mid	Mill Al Off Low Coal Air (25% Open)	B 8	
21 03/25/94 15:00-16:15 Full High Fine (110 rpm) Mid 02 (3.3%) A16, C10 22 03/26/94 09:30-11:00 Mid High Fine (110 rpm) Mid 02 (3.4%) C14 23 03/26/94 12:15-14:00 Mid Low Fine (70 rpm) Mid 02 (3.4%) C19 24 03/26/94 15:15-16:45 Mid Maximum Overfire Air (SOFA+CCOFA) B5 C 5 25 03/27/94 11:45-13:00 Full Baseline A 1, C 2 C 1 27 03/27/94 16:00-17:00 Full High Fine (110 rpm) High O2 (4.3%) A 2, C 1 28 03/28/94 09:30-11:00 Full Low SOFA Tilt (-10 deg) A 7 20 03/28/94 15:15-17:00 Full Maximum SOFA, Maximum CCOFA A10 30 03/29/94 12:45-14:15 Full Minimum SOFA, Maximum CCOFA A11 30 03/29/94 12:30-14:30 Full Mill A3 Off B 2 30 03/29/94 12:30-14:30 Full Mill A3 Off B 2 30 03/29/94 12:30	20	03/25/94	12:00-13:30	Full	High Coal Air (100% Open)	A13	
22 03/26/94 09:30-11:00 Mid High Fine (110 rpm) Mid 02 (3.4%) C14 23 03/26/94 12:15-14:00 Mid Low Fine (70 rpm) Mid 02 (3.4%) C19 24 03/26/94 17:30-19:00 Mid Baseline Baseline Baseline Baseline A 1, C 2 25 03/27/94 11:45-13:00 Full High 02 (4.3%) A 2, C 1 A 3, C 2 28 03/27/94 16:00-17:00 Full High Fine (110 rpm) High 02 (4.3%) A 2, C 1 28 03/28/94 09:30-11:00 Full High Fine (110 rpm) Low 02 (2.8%) A 7 31 03/28/94 15:15-17:00 Full Maximum SOFA, Minimum CCOFA A10 32 03/28/94 17:45-19:15 Full Minimum SOFA, Maximum CCOFA A11 33 03/29/94 12:30-14:30 Full Mill A1 Off B 3 34 03/29/94 15:45-17:00 Full Mill A1 Off B 1 37 03/29/94 18:30-19:30 Full Mill A3 Off B 2 38 03/29/94 18:30-19:30 Full Mill B2 Off B 1 37 03/29/94 18:30-19:30 Full Mill A1 Off B 1<	21	03/25/94	15:00-16:15	Full	High Fine (110 rpm) Mid 02 (3.3%)	A16,	C10
23 03/26/94 12:15-14:00 Hid Low rine (rorph) Hid 02 (3.%) C13 24 03/26/94 17:30-19:00 Mid Baseline B 5, C 5 25 03/27/94 11:45-13:00 Full Baseline A 1, C 2 27 03/27/94 11:45-13:00 Full High 02 (4.3%) A 2, C 1 28 03/27/94 16:00-17:00 Full Low SOFA Tilt (-10 deg) A 7 29 03/28/94 09:30-11:00 Full Low Fine (70 rpm) High 02 (4.3%) A 10 30 03/28/94 12:45-14:15 Full High Fine (110 rpm) Low 02 (2.8%) A11 31 03/28/94 12:45-14:15 Full Minimum SOFA, Maximum CCOFA A10 32 03/28/94 12:30-14:30 Full Minimum SOFA, Maximum CCOFA A11 33 03/29/94 12:30-14:30 Full Mill A1 Off B 4 40 03/28/94 12:30-14:30 Full Mill B2 Off B 1 37 03/29/94 03:30-00:00 Low SOFA Yaws From Top +12 +12 +12 Deg B 1 38	22	03/26/94	09:30-11:00	Mid	High Fine (110 rpm) Mid 02 (3.4%)		
25 03/26/94 17:30-19:00 Mid Baseline A 1, C 2 26 03/27/94 14:00-15:00 Full Baseline A 2, C 1 27 03/27/94 14:00-15:00 Full High 02 (4.3%) A 2, C 1 29 03/28/94 09:30-11:00 Full Low SOFA Tilt (-10 deg) A 7 29 03/28/94 12:45-14:15 Full High Fine (110 rpm) Low 02 (2.8%) 31 03/28/94 15:15-17:00 Full Maximum SOFA, Maximum CCOFA A10 20 03/28/94 17:45-19:15 Full Minimum CCOFA A11 33 03/29/94 09:30-11:00 Full Mill A1 Off B 4 34 03/29/94 12:30-14:30 Full Mill A3 Off B 2 36 03/29/94 12:30-10:00 Low SOFA Yaws From Top +12 +12 +12 Deg B 1 37 03/29/94 23:30-00:00 Low SOFA Yaws From Top +12 o -12 Deg C13 38 03/30/94 02:00-03:00 Low SOFA Yaws From Top +12 (0.4:5%) C12 40 03/29/94 03:15-04:00	24	03/26/94	15:15-16:45	Mid	Maximum Overfire Air (SOFA+CCOFA)	019	
26 03/27/94 11:45-13:00 Full Baseline A 1, C 2 27 03/27/94 14:00-15:00 Full High 02 (4.3%) A 2, C 1 28 03/27/94 16:00-17:00 Full Low SOFA Tilt (-10 deg) A 7 29 03/28/94 09:30-11:00 Full Low Sine (70 rpm) High 02 (4.3%) 30 03/28/94 12:45-14:15 Full High Fine (110 rpm) Low 02 (2.8%) 31 03/28/94 15:15-17:00 Full Maximum SOFA, Maximum CCOFA A11 33 03/29/94 09:30-11:00 Full Mill A1 Off B 4 34 03/29/94 17:45-19:15 Full Mill A3 Off B 2 36 03/29/94 18:30-19:30 Full Mill A3 Off B 1 37 03/29/94 23:30-00:00 Low SOFA Yaws From Top -12 -12 -12 Deg B 1 38 03/30/94 02:00-03:00 Low SOFA Yaws From Top -12 -12 -0 Deg 39 03/30/94 01:00-01:30 Low SOFA Yaws From Top -12 -12 -0 Deg 30 03/29/94	25	03/26/94	17:30-19:00	Mid	Baseline	B 5,	C 5
27 03/27/94 16:00-17:00 Full Low SOFA Tilt (-10 deg) A 7 29 03/28/94 09:30-11:00 Full Low Fine (70 rpm) High 02 (4.3%) 30 03/28/94 12:45-14:15 Full High Fine (110 rpm) Low 02 (2.8%) 31 03/28/94 15:15-17:00 Full Maximum SOFA, Minimum CCOFA A10 32 03/28/94 17:45-19:15 Full Minimum SOFA, Maximum CCOFA A11 33 03/29/94 12:30-14:30 Full Minimum SOFA, Maximum CCOFA B 4 34 03/29/94 12:30-14:30 Full Mill A1 Off B 2 36 03/29/94 18:30-19:30 Full Mill B2 Off B 3 35 03/29/94 18:30-19:30 Full Mill B2 Off B 1 37 03/29/94 18:30-19:30 Full Mill B4 Off B 1 37 03/29/94 11:50-03:00 Low SOFA Yaws From Top +12 +12 +12 Deg B 1 38 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 0 -12 Deg C17 40 03/29/94 01:15-02:30 Mid Lo	26	$\frac{03}{27}\frac{94}{94}$	11:45-13:00		Baseline High 02 (1 2%)	A 1,	C Z
29 03/28/94 09:30-11:00 Full Low Fine (70 rpm) High 02 (4.3%) 30 03/28/94 12:45-14:15 Full High Fine (110 rpm) Low 02 (2.8%) 31 03/28/94 15:15-17:00 Full Maximum SOFA, Minimum CCOFA A10 32 03/28/94 17:45-19:15 Full Minimum SOFA, Maximum CCOFA A11 30 03/29/94 09:30-11:00 Full Mill A1 Off B 4 34 03/29/94 12:30-14:30 Full Mill B2 Off B 3 35 03/29/94 15:45-17:00 Full Mill B4 Off B 1 37 03/29/94 23:30-00:00 Low SOFA Yaws From Top +12 +12 +12 Deg B 1 38 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 o -12 Deg B 1 30 03/29/94 01:10-01:30 Low SOFA Yaws From Top +12 o -12 Deg C17 41 03/29/94 01:15-02:30 Mid Low Fine (70 rpm) High 02 (4.5%) C17 C13 42 03/29/94 05:10-06:15 Mid Low Fine (70 rpm) Mid 02 (3.0%) C18 C14 43 03/	28	03/27/94	16:00-17:00	Full	Low SOFA Tilt (-10 deg)	A 7	C I
30 03/28/94 12:45-14:15 Full High Fine (110 rpm) Low 02 (2.8%) 31 03/28/94 15:15-17:00 Full Maximum SOFA, Minimum CCOFA A10 32 03/28/94 17:45-19:15 Full Minimum SOFA, Maximum CCOFA A11 33 03/29/94 09:30-11:00 Full Mill A1 Off B 4 34 03/29/94 15:45-17:00 Full Mill B2 Off B 3 35 03/29/94 15:45-17:00 Full Mill B4 Off B 1 37 03/29/94 18:30-19:30 Full Mill B4 Off B 1 37 03/29/94 23:30-00:00 Low SOFA Yaws From Top +12 +12 +12 Deg B 1 38 03/30/94 02:00-03:00 Low SOFA Yaws From Top +12 -12 -12 Deg B 1 39 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 0 -12 Deg C17 40 03/28/94 02:00-03:00 High Fine (110 rpm) Low 02 (3.0%) C13 C13 41 03/29/94 03:15-04:00 Mid Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 43 03/29/94 03:15-10:45	29	03/28/94	09:30-11:00	Full	Low Fine (70 rpm) High 02 (4.3%)		
31 03/28/94 17:45-19:15 Full Maximum SOFA, Maximum CCOFA A11 32 03/29/94 17:45-19:15 Full Minimum SOFA, Maximum CCOFA A11 33 03/29/94 12:30-14:30 Full Mill A1 Off B 4 34 03/29/94 12:30-14:30 Full Mill B2 Off B 3 35 03/29/94 18:30-19:30 Full Mill B4 Off B 1 37 03/29/94 23:30-00:00 Low SOFA Yaws From Top +12 +12 +12 Deg B 3 38 03/094 01:00-01:30 Low SOFA Yaws From Top +12 -12 -12 Deg B 1 30 03/28/94 22:30-23:30 Mid High Fine (110 rpm) Low 02 (3.0%) C13 41 03/29/94 01:15-02:30 Mid Low Fine (70 rpm) High 02 (4.5%) C17 42 03/29/94 03:15-04:00 Mid Low Fine (70 rpm) Low 02 (3.0%) C13 43 03/29/94 03:15-04:00 Mid Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 44 03/30/94 12:15-13:45 Full Low Fine (70 rpm) Mid 02 (3.3%) A17, C15	30	03/28/94	12:45-14:15	Full	High Fine (110 rpm) Low 02 (2.8%)	A10	
33 03/29/94 09:30-11:00 Full Mill Al Off B 4 34 03/29/94 12:30-14:30 Full Mill B2 Off B 3 35 03/29/94 15:45-17:00 Full Mill A3 Off B 2 36 03/29/94 18:30-19:30 Full Mill A4 Off B 1 37 03/29/94 23:30-00:00 Low SOFA Yaws From Top +12 +12 +12 Deg B 1 37 03/30/94 02:00-03:00 Low SOFA Yaws From Top -12 -2 -2 Deg B 1 39 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 0 -12 Deg C13 40 03/28/94 22:30-23:30 Mid High Fine (110 rpm) Low 02 (3.0%) C13 41 03/29/94 01:15-02:30 Mid Low Fine (70 rpm) High 02 (4.5%) C17 42 03/29/94 03:15-04:00 Mid Low Fine (110 rpm) Mid 02 (3.3%) A17, C15 43 03/29/94 05:00-06:15 Mid High Burner Tilt (+10 deg) A 4 46 03/30/94 12:15-13:45 Full Low Burner Tilt (-10 deg) A 5 47	32	03/28/94	17:45-19:15	Full	Minimum SOFA, Maximum CCOFA	A10 A11	
34 03/29/94 12:30-14:30 Full Mill B2 Off B 3 35 03/29/94 15:45-17:00 Full Mill A3 Off B 2 36 03/29/94 18:30-19:30 Full Mill B4 Off B 1 37 03/29/94 23:30-00:00 Low SOFA Yaws From Top +12 +12 +12 Deg B 1 38 03/30/94 02:00-03:00 Low SOFA Yaws From Top -12 -12 Deg B 1 39 03/30/94 02:00-03:00 Low SOFA Yaws From Top +12 0 -12 Deg C13 40 03/28/94 22:30-23:30 Mid High Fine (110 rpm) Low 02 (3.0%) C13 41 03/29/94 03:15-04:00 Mid Low Fine (70 rpm) Low 02 (3.0%) C18 43 03/29/94 05:00-06:15 Mid High Fine (110 rpm) High 02 (4.5%) C12 44 03/30/94 09:15-10:45 Full Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 45 03/30/94 12:15-13:45 Full Low Burner Tilt (+10 deg) A 4 46 03/30/94 12:15-03:30 Low High Fine (110 rpm) Mid 02	33	03/29/94	09:30-11:00	Full	Mill Al Off	B 4	
35 03/29/94 13:45-17:00 Full Mill A3 Off B 1 36 03/29/94 18:30-19:30 Full Mill B4 Off B 1 37 03/29/94 23:30-00:00 Low SOFA Yaws From Top +12 +12 +12 Deg B 38 03/30/94 02:00-03:00 Low SOFA Yaws From Top -12 -12 Deg B 39 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 0 -12 Deg 40 03/28/94 22:30-23:30 Mid High Fine (110 rpm) Low 02 (3.0%) C13 41 03/29/94 01:15-02:30 Mid Low Fine (70 rpm) Low 02 (3.0%) C18 42 03/29/94 03:15-04:00 Mid Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 43 03/30/94 09:15-10:45 Full Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 44 03/30/94 12:15-13:45 Full Low Burner Tilt (+10 deg) A 4 46 03/30/94 15:30-16:30 Full Baseline A 1, C 2 48 03/30/94 23:15-00:30 Low Low Fine (70 rpm) Mid 02 (3.9%) C16 50 03/31/94 04:30-06:00 Low Maximum Overfire Air (SOFA+CCOFA) A 1, C 2 50 <td>34</td> <td>03/29/94</td> <td>12:30-14:30</td> <td>Full</td> <td>Mill B2 Off Mill A2 Off</td> <td>B 3</td> <td></td>	34	03/29/94	12:30-14:30	Full	Mill B2 Off Mill A2 Off	B 3	
37 03/29/94 23:30-00:00 Low SOFA Yaws From Top +12 +12 +12 Deg 38 03/30/94 02:00-03:00 Low SOFA Yaws From Top -12 -12 -12 Deg 39 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 0 -12 Deg 40 03/28/94 22:30-23:30 Mid High Fine (110 rpm) Low 02 (3.0%) C13 41 03/29/94 01:15-02:30 Mid Low Fine (70 rpm) High 02 (4.5%) C17 42 03/29/94 03:15-04:00 Mid Low Fine (70 rpm) Low 02 (3.0%) C18 43 03/29/94 05:00-06:15 Mid High Fine (110 rpm) High 02 (4.5%) C12 44 03/30/94 09:15-10:45 Full Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 45 03/30/94 12:15-13:45 Full Low Burner Tilt (+10 deg) A 4 46 03/30/94 17:45-19:30 Full Low Burner Tilt (-10 deg) A 5 47 03/30/94 15:30-16:30 Full Baseline A 1, C 2 48 03/30/94 23:15-00:30 Low High Fine (110 rpm) Mid 02 (3.9%) C11 49 <td< td=""><td>36</td><td>03/29/94</td><td>18:30-19:30</td><td>Full</td><td>Mill B4 Off</td><td>B 1</td><td></td></td<>	36	03/29/94	18:30-19:30	Full	Mill B4 Off	B 1	
38 03/30/94 02:00-03:00 Low SOFA Yaws From Top -12 -12 -12 Deg 39 03/30/94 01:00-01:30 Low SOFA Yaws From Top +12 0 -12 Deg 40 03/28/94 22:30-23:30 Mid High Fine (110 rpm) Low 02 (3.0%) C13 41 03/29/94 01:15-02:30 Mid Low Fine (70 rpm) High 02 (4.5%) C17 42 03/29/94 03:15-04:00 Mid Low Fine (70 rpm) Low 02 (3.0%) C18 43 03/29/94 05:00-06:15 Mid High Fine (110 rpm) High 02 (4.5%) C12 44 03/30/94 09:15-10:45 Full Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 45 03/30/94 12:15-13:45 Full Low Burner Tilt (+10 deg) A 4 46 03/30/94 17:45-19:30 Full Low Burner Tilt (-10 deg) A 5 47 03/30/94 15:30-16:30 Full Baseline A 1, C 2 48 03/30/94 23:15-00:30 Low Low Fine (70 rpm) Mid 02 (3.9%) C16 50 03/31/94 02:15-03:30 Low Low Fine (70 rpm) Mid 02 (3.9%) C16	37	03/29/94	23:30-00:00	Low	SOFA Yaws From Top +12 +12 +12 Deg		
39 03/28/94 22:30-23:30 Mid High Fine (110 rpm) Low 02 (3.0%) C13 41 03/29/94 01:15-02:30 Mid Low Fine (70 rpm) High 02 (4.5%) C17 42 03/29/94 03:15-04:00 Mid Low Fine (70 rpm) Low 02 (3.0%) C18 43 03/29/94 05:00-06:15 Mid High Fine (110 rpm) High 02 (4.5%) C12 44 03/30/94 09:15-10:45 Full Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 45 03/30/94 12:15-13:45 Full Low Burner Tilt (+10 deg) A 4 46 03/30/94 15:30-16:30 Full Low Burner Tilt (-10 deg) A 5 47 03/30/94 15:30-16:30 Full Baseline A 1, C 2 48 03/30/94 23:15-00:30 Low Low Fine (70 rpm) Mid 02 (3.9%) C16 50 03/31/94 02:15-03:30 Low Maximum Overfire Air (SOFA+CCOFA) A 1, C 2 51 03/31/94 08:15-10:00 Full Baseline A 1, C 2 52 03/31/94 10:30-12:00 Full Low 02 (2.7%) A 3, C 3	38	03/30/94	02:00-03:00	Low	SOFA Yaws From Top -12 -12 -12 Deg		
41 03/29/94 01:15-02:30 Mid Low Fine 70 rpm High 02 (4.5%) C17 42 03/29/94 03:15-04:00 Mid Low Fine 70 rpm Low 02 (3.0%) C18 43 03/29/94 05:00-06:15 Mid Low Fine (10 rpm) High 02 (4.5%) C12 44 03/30/94 09:15-10:45 Full Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 45 03/30/94 09:15-10:45 Full Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 45 03/30/94 12:15-13:45 Full High Burner Tilt (+10 deg) A 4 46 03/30/94 15:30-16:30 Full Low Baseline A 1, C 2 48 03/30/94 23:15-00:30 Low Low Fine (70 rpm) Mid 02 (3.9%) C16 50 03/31/94 02:15-03:30 <td< td=""><td>40</td><td>03/28/94</td><td>22:30-23:30</td><td>Mid</td><td>High Fine (110 rpm) Low 02 (3.0%)</td><td>C13</td><td></td></td<>	40	03/28/94	22:30-23:30	Mid	High Fine (110 rpm) Low 02 (3.0%)	C13	
42 $03/29/94$ $03:15-04:00$ MidLow Fine (70 rpm) Low 02 (3.0%)C1843 $03/29/94$ $05:00-06:15$ MidHigh Fine (110 rpm) High 02 (4.5%)C1244 $03/30/94$ $09:15-10:45$ FullLow Fine (70 rpm) Mid 02 (3.3%)A17, C1545 $03/30/94$ $12:15-13:45$ FullHigh Burner Tilt (+10 deg)A 446 $03/30/94$ $17:45-19:30$ FullLow Burner Tilt (-10 deg)A 547 $03/30/94$ $15:30-16:30$ FullBaselineA 1, C 248 $03/30/94$ $23:15-00:30$ LowHigh Fine (110 rpm) Mid 02 (3.9%)C1149 $03/31/94$ $02:15-03:30$ LowLow Fine (70 rpm) Mid 02 (3.9%)C1650 $03/31/94$ $04:30-06:00$ LowMaximum Overfire Air (SOFA+CCOFA)A 1, C 251 $03/31/94$ $08:15-10:00$ FullBaselineA 1, C 252 $03/31/94$ $10:30-12:00$ FullLow 02 (2.7%)A 3, C 3	41	03/29/94	01:15-02:30	Mid	Low Fine (70 rpm) High 02 (4.5%)	C17	
43 03/30/94 09:15-10:45 Full Low Fine (110 rpm) Mid 02 (4.5%) C12 44 03/30/94 09:15-10:45 Full Low Fine (70 rpm) Mid 02 (3.3%) A17, C15 45 03/30/94 12:15-13:45 Full High Burner Tilt (+10 deg) A 4 46 03/30/94 17:45-19:30 Full Low Burner Tilt (-10 deg) A 5 47 03/30/94 15:30-16:30 Full Baseline A 1, C 2 48 03/30/94 23:15-00:30 Low High Fine (110 rpm) Mid 02 (3.9%) C11 49 03/31/94 02:15-03:30 Low Low Fine (70 rpm) Mid 02 (3.9%) C16 50 03/31/94 04:30-06:00 Low Maximum Overfire Air (SOFA+CCOFA) A 1, C 2 51 03/31/94 08:15-10:00 Full Baseline A 1, C 2 52 03/31/94 10:30-12:00 Full Low 02 (2.7%) A 3, C 3	42	03/29/94	03:15-04:00	Mid	Low Fine (70 rpm) Low 02 (3.0%)	C18	
4503/30/9412:15-13:45FullHigh Burner Tilt (+10 deg)A 44603/30/9417:45-19:30FullLow Burner Tilt (-10 deg)A 54703/30/9415:30-16:30FullBaselineA 1, C 24803/30/9423:15-00:30LowHigh Fine (110 rpm) Mid 02 (3.9%)Cl14903/31/9402:15-03:30LowLowFine (70 rpm) Mid 02 (3.9%)Cl65003/31/9404:30-06:00LowMaximum Overfire Air (SOFA+CCOFA)A 1, C 25103/31/9408:15-10:00FullBaselineA 1, C 25203/31/9410:30-12:00FullLow 02 (2.7%)A 3, C 3	44	03/30/94	09:15-10:45	Full	Low Fine (70 rpm) Mid 02 (3.3%)	A17.	C15
46 03/30/94 17:45-19:30 Full Low Burner Tilt (-10 deg) A 5 47 03/30/94 15:30-16:30 Full Baseline A 1, C 2 48 03/30/94 23:15-00:30 Low High Fine (110 rpm) Mid 02 (3.9%) C11 49 03/31/94 02:15-03:30 Low Low Fine (70 rpm) Mid 02 (3.9%) C16 50 03/31/94 04:30-06:00 Low Maximum Overfire Air (SOFA+CCOFA) A 1, C 2 51 03/31/94 08:15-10:00 Full Baseline A 1, C 2 52 03/31/94 10:30-12:00 Full Low 02 (2.7%) A 3, C 3	45	03/30/94	12:15-13:45	Full	High Burner Tilt (+10 deg)	A 4	
47 03/30/94 13:30-10:30 rull baserine A 1, C 2 48 03/30/94 23:15-00:30 Low High Fine (110 rpm) Mid 02 (3.9%) C11 49 03/31/94 02:15-03:30 Low Low Fine (70 rpm) Mid 02 (3.9%) C16 50 03/31/94 04:30-06:00 Low Maximum Overfire Air (SOFA+CCOFA) A 1, C 2 51 03/31/94 08:15-10:00 Full Baseline A 1, C 2 52 03/31/94 10:30-12:00 Full Low 02 (2.7%) A 3, C 3	46	03/30/94	17:45-19:30	Full	Low Burner Tilt (-10 deg)	A 5	c 2
4903/31/9402:15-03:30LowLowFine (70 rpm) Mid02 (3.9%)C165003/31/9404:30-06:00LowMaximum Overfire Air (SOFA+CCOFA)5103/31/9408:15-10:00FullBaselineA 1, C 25203/31/9410:30-12:00FullLow 02 (2.7%)A 3, C 3	48	03/30/94	23:15-00:30	Low	High Fine (110 rpm) Mid 02 (3.9%)		U 2
5003/31/9404:30-06:00LowMaximum Overfire Air (SOFA+CCOFA)5103/31/9408:15-10:00FullBaselineA 1, C 25203/31/9410:30-12:00FullLow 02(2.7%)A 3, C 3	49	03/31/94	02:15-03:30	Low	Low Fine (70 rpm) Mid 02 (3.9%)	C16	
52 03/31/94 10:30-12:00 Full Low 02 (2.7%) A 3, C 3	50 51	03/31/94	04:30-06:00 08·15-10·00	LOW Full	Maximum Overfire Air (SOFA+CCOFA) Baseline	Δ 1	C 2
	52	03/31/94	10:30-12:00	Full	Low 02 (2.7%)	A 3,	čΞ

TABLE 3.6 - UNIT 1 POST-RETROFIT TESTS - EXPERIMENTAL TEST CONDITIONS

Test <u>No.</u> 1 2 3 4 5 6 7 8 9	LOAD NET <u>MW</u> 148 148 121 121 120 148 147 149 149	ECON 02 % 3.32 3.29 3.41 4.46 2.78 3.29 4.30 2.71 3.26	MAIN TILT <u>deq</u> -1 -1 -1 0 0 8 8 5 1	SOFA TILT <u>deq</u> 5 5 5 6 5 14 13 10 9	SOFA YAW <u>deq</u> 0 0 0 0 0 0 0 0 0	SOFA/ CCOFA RATIO 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SOFA+ CCOFA FLOW 0 1 0 0 0 -1 0 0 0 0	COAL AIR FLOW 0 0 0 0 0 0 0 0 0 0 0	MILL CLASS <u>rpm</u> 93 93 94 93 94 93 92 92 92
10 11 12 13 14 15 16 17 18 19 20 21 22 23	93 92 91 148 148 149 121 124 119 148 147 149 123	3.91 3.10 4.90 3.29 3.26 3.23 3.43 3.39 3.31 3.39 3.31 3.39 3.31 3.30 3.31 3.33	23197586800036	7 7 14 C 12 C 13 12 12 5 5 8 11	0 0 0mb1 omb2 omb3 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90 90 93 93 92 94 94 95 93 93 108 107 74
225 2222 2222 2223 3323 333333333333333	122 121 149 148 150 145 147 146 147 146 149 151 147	3.42 3.44 3.34 4.26 3.27 4.26 3.34 3.30 3.31 3.30 3.31 3.27 3.81	760002-21-5-10004	12 11 3 -10 6 3 6 0 5 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000	95 96 93 93 93 72 108 93 93 100 100 99 100
3390 412 444 45 47 490 12 52	93 92 93 121 120 119 121 147 150 149 90 91 149 149	3.90 3.86 3.03 4.52 4.39 3.28 3.35 3.35 3.35 3.35 4.00 3.79 3.32	-14 -3 -3 -7 -0 20 -10 -0	9894162811113555 55	omb2 omb3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	91 92 91 108 73 77 106 72 92 93 93 108 72 91 93 93

46

DATA
STRATIFICATION
GAS
I
TESTS
ST-RETROFIT
2
TINU -
TABLE

	Test	7.			Test	÷.			Test	1:			Test	12:		
	Ful	l Loa	d, High	02	Full	Load	1. Low (02	Low	Load,	Low 0	2	Low	Load,	High	02
	%	mdd	%	mqq	*	mdd	%	mdd	*	mqq	%	bpm	%	mdd	%	mdd
Probe	02	3	<u>C02</u>	NOX	60	3	<u>c02</u>	XON	02	3	<u>C02</u>	XON	6	8	<u>c02</u>	NOX
0	7.65	10	11.65	265	5.19	14	13.79	246	5.31	6	13.76	253	7.16	თ	12.09	291
1	5.68	12	13.33	323	3.58	17	14.99	260	4.15	11	14.70	270	5.98	10	13.12	313
2	6.63	15	12.52	288	4.88	19	13.93	233	4.54	11	14.34	270	6.06	10	13.04	309
ო	6.33	12	12.76	294	3.76	15	14.85	253	4.33	10	14.52	273	6.18	თ	12.95	306
4	5.47	14	13.47	306	3.87	18	14.82	262	4.09	12	14.67	278	6.02	10	13.02	309
S	5.05	15	13.78	309	3.66	18	14.94	262	3.91	12	14.82	279	5.66	11	13.31	312
9	5.55	12	13.38	284	3.74	15	14.91	264	4.25	œ	14.53	277	6.08	თ	12.99	314
7	5.25	13	13.62	294	3.68	16	14.89	269	3.76	6	14.88	279	5.76	ნ	13.26	319
æ	5.17	14	13.65	296	3.60	17	14.98	260	3.70	11	14.95	274	5.78	თ	13.22	322
6	5.78	13	13.16	286	3.72	15	14.90	257	4.35	10	14.42	276	5.96	ω	13.04	317
10	5.05	13	13.76	294	3.44	16	15.06	259	3.89	10	14.76	281	5.96	ω	13.07	321
11	5.31	13	13.53	295	3.89	16	14.77	259	4.15	10	14.59	279	6.02	თ	12.99	325
12	5.96	12	13.04	289	3.89	14	14.73	247	4.52	10	14.31	278	6.23	ω	12.84	312
13	5.03	13	13.72	300	3.09	16	15.35	265	3.78	10	14.85	289	5.66	თ	13.30	330
14	5.33	12	13.50	302	3.15	17	15.26	259	4.03	10	14.72	284	5.76	ω	13.22	334
15	6.31	12	12.69	275	4.25	19	14.39	238	5.43	6	13.70	258	6.51	ω	12.60	310
16	5.74	15	13.16	283	3.52	23	14.96	248	4.70	11	14.36	278	5.90	10	13.11	320
17	6.00	16	12.94	284	3.54	3 6	14.96	245	4.72	11	14.35	272	6.00	σ	12.98	317
Numbor	s	I	Dvoh		tion of		vorimor	101+10	•							

Number = Probe Location at Economizer Outlet: P = Utility Port Location

North (B) Duct

South (A) Duct

٩

Δ

۵

۵.

15

2 <u>7</u> 4

10 6 4

8 ~ 9 4

7 4 M 4

۵

۲

٩

-04

47

TABLE 3.8 - UNIT 1 POST-RETROFIT TESTS - FLY ASH ANALYSES

	<u>Cyclon</u>	<u>e Colle</u>	<u>cted Ash</u>	ESP	<u>Hopper</u>	<u>"C" Ash</u>
Test	Dry	Dry 1	00-%Ash	Dry	Dry 1	00-%Ash
<u>Nọ.</u>	<u>%C</u>	<u>%ASN</u>		<u>%C</u>	<u>%Asn</u>	
1	5.34	93.82	5.18	4.24	95.44	4.50
2	4./8	94.79	5.21	4.35	95.18	4.82
3				4.30	95.14	4.80
4				4 24	J/.UJ 05 22	2.93
5	4 60	04 25	5 65	9.34	93.23	4.//
7	4.00	74. 33 05 10	J.03 A 02	3.30	05 24	3.3/
/	4.10	95.10	4.02	4.JZ E 02	JJ.24 02 75	4.70
0	6 06	31.30	6 70	1.05	05 10	0.2J
10	0.00	33.30	0.70	2 94	95.19	3 31
11				3 77	95 81	4 19
12				2.29	97.45	2 55
13	5.12	93.25	6.75	4.66	94.84	5.16
14	6.59	92.58	7.42	6.46	93.00	7.00
15	6.90	92.10	7.90	•••••		
16				4.37	95.31	4.69
17				4.80	94.73	5.27
18				5.36	94.12	5.88
19	4.90	94.51	5.49	2.96	96.77	3.23
20	6.18	92.91	7.09	3.15	96.67	3.33
21	4.07	95.07	4.93	4.42	95.32	4.68
22	3.95	95.57	4.43	3.00	96.70	3.30
23	6.53	92.68	7.32	5.83	93.81	6.19
24	5.61	93.78	6.22	5.66	94.18	5.82
25	5.22	94.03	5.97	5.36	94.20	5.80
26	5.83	93.59	6.41	4.60	94.94	5.06
27	5.03	94.10	5.90	3.70	95.96	4.04
28	4.65	94.93	5.07	4.30	95.25	4.75
29	6.33	92.4/	7.53	5.30	94.21	5.79
30	6.23	93.12	6.88	3.53	96.03	3.9/
31	5./8	93.40	0.54	4.58	94.98	5.02
32	3.82	95.80	4.20	2.19	9/./2	2.28
33	5.00	94.28	5.72	4./8	94.80	5.20
34	5.5/	93.35	0.00	5.43	94.13	5.8/
35	5.30	94.32	5.00	5.44	94.19	5.81
27	3.40	33.30	0.10	2 52	95.10	0.90
32				3.02	90.00	3 65
30				3.55	96.07	3.03
40				2 9	96 70	3.35
41				4 30	95 21	4 79
42				5 84	93 66	6 34
43				2.16	97.56	2.44
44	6.52	92.24	7.76	6.55	92.97	7.03
45	5.63	92.70	7.30	6.16	93.44	6.56
46				4.04	95.49	4.51
47	4.56	92.90	7.10	4.29	95.18	4.82
48				2.36	97.28	2.72
49				2.09	97.60	2.40
50				1.79	97.91	2.09
51				3.68	95.90	4.10
52				5.66	93.94	6.06

TABLE 3.9 - UNIT 1 POST-RETROFIT TESTS - COAL ANALYSES

_Date	As Det	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	EPA Fc
	<u>%H20</u>	%VM	<u>Btu</u>	%C	<u>%H</u>	%N	%S	<u>%Ash</u>	_%O_	<u>Factor</u>
03/22/94	1.69	37.38	14057	78.69	5.17	1.59	1.65	6.85	6.05	1797
03/23/94	1.71	37.57	14081	78.83	5.22	1.39	1.66	6.36	6.54	1797
03/24/94	1.56	38.08	14073	78.40	5.14	1.48	1.55	6.30	7.13	1788
03/25/94	1.59	37.71	14113	79.04	5.21	1.37	1.61	6.11	6.66	1798
03/26/94	1.58	37.71	13948	77.95	5.12	1.40	1.63	7.02	6.88	1794
03/27/94	1.62	37.35	13817	77.15	5.08	1.42	1.61	7.85	6.89	1792
03/28/94	1.68	38.17	14041	78.46	5.16	1.46	1.61	6.72	6.59	1794
03/29/94	1.61	38.05	14045	78.80	5.22	1.35	1.58	6.52	6.53	1801
03/30/94	1.77	37.78	14052	78.87	5.17	1.35	1.52	6.52	6.57	1802
03/31/94	1.73	37.30	13966	79.05	5.16	1.34	1.62	6.97	5.86	1817

Coal Analyses: Moisture, Btu, Proximate, Ultimate

TABLE 3.10 - UNIT 1 POST-RETROFIT TESTS - GAS ANALYSES DATA

	ECON	Energy	Syst	ems Ass	ociates	Milli	ken P	lant	CEM's	
Test	02	02	CO	C02	NOX	<u>CO2</u>	NOX	S02	WDPF I	NOX
<u>No.</u>	<u>%</u>	<u>%</u>	ppm	<u>%</u>	ppm	<u>%</u>	<u>ppm</u>	ppm	<u>16/MM</u>	<u>Btu</u>
1	3.32	4.31	19	14.30	251	11.70	221	842	0.401	
2	3.29	4.45	23	14.11	213	11.5/	201	050	0.340	
3 A	3.41 4 46	5.93	g	13 01	230	10 96	232	791	0.372	
5	2 78	3 41	14	15 07	227	11.93	190	851	0 340	
ĕ	3.29	4.49	īż	14.16	346	11.60	306	824	0.564	
7	4.30	5.55	14	13.44	291	10.92	257	771	0.503	
8	2.71	3.66	19	14.98	247	12.30	218	868	0.380	
9	3.26	4.41	14	14.42	261	11.69	227	819	0.418	
10	3.91	5.17	10	13.96	273	10.87	225	770	0.445	
11	3.10	4.31	10	14.59	204	11.30	261	805	0.415	
12	4.90	0.00	10	13.05	3U/ 274	10.34	201	934	0.009	
14	3.25	4.57	14	14.24	260	11 70	226	839	0 414	
15	3.23	4.40	15	14.38	251	11.53	219	832	0.404	
16	3.43	4.72	īī	13.97	281	11.08	242	789	0.468	
17	3.40	3.98	11	14.55	266	11.33	226	814	0.425	
18	3.39	3.48	18	14.98	231	11.58	196	835	0.360	
19	3.31	4.75	9	14.02	256	11.41	223	823	0.414	
20	3.29	4.40	11	14.07	200	11.82	212	849	0.401	
22	3.30	4.32	11	14.35	242	11.50	216	886	0.370	
23	3.43	4.42	14	14.33	275	11.39	244	886	0.456	
24	3.42	4.55	ĪŚ	14.26	204	11.20	180	885	0.344	
25	3.44	4.08	15	14.62	259	11.48	229	886	0.424	
26	3.34	4.51	16	13.96	267	11.31	240	798	0.459	
27	4.26	5.66	16	13.00	294	10.62	266	737	0.535	
28	3.21	5.91	1/	14.50	254	11.70	228	831	0.414	
30	9.20	3 00	16	14 64	232	12 11	195	815	0.510	
31	3.34	4.58	18	14.14	184	11.64	170	827	0.315	
32	3.30	4.42	15	14.36	268	11.75	249	825	0.451	
33	3.39	4.32	16	14.43	207	11.61	186	795	0.341	
34	3.31	4.42	17	14.31	227	11.66	206	788	0.377	
35	3.27	4.15	20	14.65	245	11.85	218	816	0.392	
35	3.29	4.1/	1/	14./1	220	11.8/	204	828	0.308	
3/	3.81	4.00	15	14.23	282	11 00	203	790	0.514	
20	3.90	4.92	15	14 19	289	10.93	255	790	0.497	
40	3.03	4.00	14	14.81	206	11.85	186	811	0.337	
41	4.52	5.57	15	13.58	278	10.83	256	757	0.505	
42	3.12	4.11	14	14.71	219	11.88	203	825	0.358	
43	4.39	5.44	13	13.71	253	10.94	229	728	0.448	
44	3.28	4.35	15	14.56	248	11.78	227	870	0.410	
45	3.33	4.32	13	14.55	2/9	11.85	200	851	0.401	
40	3.33	4.24	12	14.3/	205	11.00	223	859	0.330	
48	3.95	4.85	13	14.07	264	10.91	238	774	0.466	
49	4.00	4.78	13	14.09	269	10.91	239	823	0.472	
50	3.79	4.96	11	13.93	235	10.70	208	768	0.414	
51	3.32	4.05	16	14.56	225	12.01	204	883	0.366	
52	2.75	3.59	18	14.81	216	12.36	195	900	0.337	

TABLE 3.11 - UNIT 1 POST-RETROFIT TESTS - TEST PARAMETERS

5	FA	LOW		14	14	თ	ω	1	9	6	ი	9	6	ი	6	6	б	6	ი	σ	σ	6	6	δ	13	14	Π	10	σ	δ	6	9	ഗ
Ope	cco	dŊ	1 1 1	53	61	50	50	49	37	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	58	59	64	50	50	50	50	46	45
S. %		LOW		53	56	42	42	42	11	50	50	49	41	41	42	50	50	49	42	43	42	49	49	50	43	44	59	43	50	50	50	49	ß
mper	SOFA	MID	 	38	48	35	34	34	12	35	34	34	28	ო	ო	35	35	35	35	35	35	35	35	35	43	45	49	35	35	35	35	36	37
Da		ЧD	! ! !	12	18	2	ო	4	7	ი	б	თ	2	ო	ო	ნ	6	ω	2	ო	m	6	ω	ი	4	ი	19	m	10	10	10	12	13
leat	am	L.	1 1 1	1002	1005	1003	1002	1004	266	993	1005	1004	979	942	961	1004	1000	1005	1001	997	166	1003	697	966	1005	992	1004	1004	1004	1004	1006	1007	1005
Reh	Ste	psig	1 	448	449	355	356	353	452	450	453	453	269	270	267	451	449	451	356	368	351	448	447	453	363	350	359	358	453	450	457	437	447
	m	kpph	1 1 1	1055	1057	838	839	831	1063	1059	1064	1065	631	636	625	1060	1058	1060	840	868	833	1054	1052	1066	856	829	846	845	1066	1058	1074	1027	1045
	Stea	psig	8 1 1	1838	1838	1826	1826	1825	1839	1838	1839	1839	1816	1816	1816	1838	1838	1838	1825	1829	1825	1837	1837	1838	1827	1824	1826	1826	1839	1838	1839	1836	1837
~	Main	ш	1 2 1	1002	1005	1006	1005	1005	994	997	1001	1003	1000	972	979	1000	1001	1004	1005	1005	1004	1005	266	1000	1005	666	1005	1005	1005	1005	1004	1005	993
Air HTF	Outlet	Ŀ	 	311	311	297	299	303	309	308	307	307	293	297	292	312	311	311	291	291	298	310	308	308	298	297	298	299	309	307	312	307	309
Gross	Load	MW	1	151	151	123	124	123	152	151	152	152	96	95	94	151	151	152	124	127	122	151	150	151	126	121	125	124	152	151	153	147	150
	Now	L	1 1 1	295	296	279	282	284	312	366	293	291	276	274	273	297	297	296	276	273	278	292	316	337	280	278	278	279	293	294	296	292	291
Stack	Gas F	scfm	1 1 1	406	406	339	354	332	410	308	392	402	288	265	297	401	397	400	356	357	344	397	364	314	350	344	351	347	419	433	399	413	399
Sec	Air	kpph	1 1 1	936	947	753	812	728	948	1026	914	949	615	569	639	949	950	951	795	785	739	944	928	926	765	744	779	755	968	1063	942	977	910
١٢٧	2	L.		158	157	157	157	157	157	158	158	157	157	157	157	159	159	159	158	162	160	159	159	159	157	156	157	157	158	158	158	158	158
Prima	Air	kpph	1 1 1	221	224	225	223	223	223	221	221	219	209	209	209	217	216	214	224	223	225	223	222	221	232	235	235	235	218	219	224	223	220
Coal	Feed	tph	1	51	50	41	40	39	52	52	51	51	32	33	33	51	50	49	42	43	42	52	53	51	41	42	42	43	51	51	51	49	48
	Test	No		-	~	ო	ব	ഹ	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

TABLE 3.11 (Continued)

n.)FA	LOW	:	6	95	01	10	10	10	10	δ	6	10	10	10	10	ω	ω	8	8	2	ഹ	8	ω	7
0D6	22	Ч	:	ω	<u> 9</u> 8	49	49	48	48	26	29	28	50	50	50	50	49	49	48	49	50	52	93	49	49
`S, %		LOW	ł	73	7	49	49	49	50	41	42	41	42	42	42	43	49	4 9	49	50	21	24	34	52	53
mper	SOFA	MID		73	7	35	35	34	34	28	29	29	35	34	34	34	34	34	34	34	27	27	9	36	37
Da		Ч	1 1 1	48	9	σ	ω	ω	7	2	m	m	4	4	4	S	6	ω	9	7	~	4	S	12	13
neat	am	LL.	1 1 1	1001	1004	1004	1003	1002	995	998	995	995	1004	1006	066	1006	966	1008	995	1006	969	993	966	1003	1002
Rel	Ste	psig	1 	442	446	44]	451	459	447	268	267	268	357	353	351	357	448	456	455	455	263	261	262	450	445
	m	kpph	1 1 1	1038	1051	1039	1062	1081	1051	630	626	627	842	832	833	841	1054	1071	1068	1069	618	612	612	1059	1048
	1 Stea	psig	 	1837	1837	1836	1838	1840	1837	1815	1815	1815	1826	1824	1824	1826	1838	1839	1839	1839	1815	1815	1816	1838	1837
~	Mair	LL-	F 1 1	1000	1005	1002	1003	1002	993	1006	1004	1004	1003	1003	1004	1003	666	1003	992	1000	166	1003	1003	1002	1001
Air HTF	Outlet	4-	6 8 1	309	310	300	301	303	301	293	294	294	296	295	293	293	310	312	311	310	296	290	293	311	312
Gross	Load	MM	1 4 1 1	149	150	149	152	154	150	96	96	95	124	123	122	124	150	153	152	153	93	94	94	151	150
	low	L		293	293	286	286	289	286	275	276	275	278	277	276	277	293	295	293	294	276	271	272	292	293
Stack	Gas F	scfm	1 1 1	404	402	398	402	404	400	286	290	285	341	356	341	371	405	404	405	403	280	276	277	396	391
Sec	Air	kpph	1 1 1	941	942	929	952	953	924	597	590	595	748	817	748	818	927	937	935	946	580	571	581	916	889
Iry		۱ <u>ـ</u> ـ	1 1 1	158	157	157	156	159	156	157	156	156	157	157	157	156	155	155	156	155	152	152	152	157	157
Prima	Air	kpph	 	226	221	243	247	240	249	217	217	219	232	236	240	233	229	225	221	225	208	209	212	224	223
Coal	Feed	tph	1	52	50	52	52	50	51	33	34	34	42	43	44	44	53	50	50	52	33	34	35	50	52
	Test	No	1	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52

TABLE 3.12 -	UNIT	POST-RETROFIT	TESTS -	EXPERIMENTAL	ERROR	CALCULATIONS

		<u> </u>	1	<u>10, Me</u>	asure	ments, 1	<u>b/MM</u>	Bti	1			
<u>Replicat</u>	<u>es</u>	_1	2	3			<u></u> SS		<u>DF</u>	_ <u> d </u> _		
7, 27		0.503	0.53	5			0.00	01	1	0.032		
8, 52		0.380	0.337	7			0.00	01	1	0.043		
1, 26 47, 51		0.401	0.459	9 0.4	08 0	0.366	0.00	04	3	0.047		
3, 25		0.372	0.424	ŧ			0.00	01	1	0.052		
				LOIM	easur	<u>rements</u>						
Replicat	<u>es</u>	_1_	_2_	3_	4	<u>SS</u>	<u>DF</u>	10	<u>1</u>			
7, 27		4.76	4.04			0.259	1	0.3	72			
8, 52		6.25	6.06			0.018	1	0.3	19			
1, 26 47, 51		4.56	5.06	4.82	4.10	0.507	3	0.!	52			
3, 25		4.86	5.80			0.442	1	0.9	94			
											NO _x <u>1b/MM_Btu</u>	L0I _%_
SS = Su	m of	f Squar	res = X	E (y _i ·	y _{avg})		S:	Sover	ali	0.007	1.226
DF = De	gree	es of I	Freedon	n = No	. Rep	olicates	-1	DI	over	الد	6	6

σ =	Standard Deviation = $\sqrt{(SS_{overall}/DF_{overall})}$	σ	0.035	0.452
95%	CI = 95% Confidence Interval = t* <i>o/</i> //N	95% CI	0.027	0.350
d	= Absolute Difference Between Replicates	d	0.044	0.593

TABLE 3.13 - UNIT 1 POST-RETROFIT TESTS - REDUCED DATA MATRIX

<u>No.</u>	LOAD NET <u>MW</u>	ECON 02 _%	MAIN TILT <u>deg</u>	SOFA TILT <u>deg</u>	SOFA YAW <u>deg</u>	SOFA/ CCOFA <u>RATIO</u>	SOFA+ CCOFA <u>FLOW</u>	COAL AIR <u>FLOW</u>	MILL CLASS <u>rpm</u>	WDPF NOx 1b/MM Bt	LOI <u>%</u>
Desig 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	n A: 149 148 148 150 149 149 149 149 148 148 147 148 147 148 147	3.33 4.28 2.73 3.35 3.26 3.27 3.26 3.27 3.26 3.29 3.34 3.29 3.30 3.29 3.29 3.30 3.29 3.30 3.28	-04 36 -7107915-180003	4 8 1 9 -10 12 14 0 5 14 5 5 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93 93 92 93 93 93 93 93 93 93 93 93 93 93 93	0.409 0.519 0.358 0.461 0.336 0.418 0.414 0.414 0.443 0.315 0.451 0.346 0.564 0.564 0.401 0.376 0.410	4.63 4.40 6.16 6.56 4.51 4.81 4.75 7.00 5.16 5.02 2.28 4.82 3.97 3.33 3.23 4.68 7.03
<u>Desig</u> 1 2 3 4 5 6 7 8	<u>n B:</u> 147 151 149 146 121 124 121 119	3.29 3.27 3.31 3.39 3.43 3.40 3.43 3.39	0 0 -1 3 6 8 8	6 6 5 8 12 13 12	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	100 99 100 100 95 94 94 95	0.368 0.392 0.377 0.341 0.398 0.425 0.468 0.360	6.90 5.81 5.20 5.33 5.27 4.69 5.88
Desig 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	n C: 148 149 148 121 121 120 91 93 92 149 90 121 123 147 90 120 129 129 119	4.28 3.33 2.73 4.46 3.43 2.78 4.90 3.91 3.10 3.95 4.39 3.03 3.43 3.43 3.43 3.28 4.00 4.52 3.12 3.43	4030301230231330406	848685777512488316 11	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	93 93 93 95 94 90 90 108 108 108 106 108 107 72 73 77 74	0.519 0.409 0.358 0.451 0.398 0.340 0.539 0.445 0.415 0.466 0.448 0.337 0.401 0.401 0.472 0.505 0.358 0.456	4.40 4.63 6.16 2.95 5.33 4.77 2.55 3.31 4.68 2.72 3.30 7.03 2.40 4.79 6.34 6.19

TABLE 3.14 - UNIT 1 POST-RETROFIT TESTS - NO, AND LOI CORRELATIONS

FINAL CORRELATIONS, SET A:

NOX = 0.0811 - 0.0771 (S+C) + 0.0967 02 - 0.0912 (S/C) + 0.00710 TILTPredictor Coef Stdev t-ratio p Constant 0.08108 0.06273 1.29 0.221 -4.72 0.000 -0.07706 0.01634 (S+C)5.14 0.000 02 0.09672 0.01883 (S/C)-0.09123 0.01566 -5.83 0.000 5.07 0.001399 0.000 TILT 0.007097 R-sq = 91.4% R-sq(adj) = 88.5%s = 0.02133LOI = 4.58 + 0.155 TILTPredictor Coef Stdev t-ratio 0.000 Constant 4.5784 0.3015 15.18 TILT 0.15541 0.06732 2.31 0.036 R-sq(adj) = 21.3%s = 1.149R-sq = 26.2%FINAL CORRELATIONS, SET C: NOX = 0.118 + 0.0805 O2 + 0.000031 (MW-120) * (MW-120) - 0.000929 (RPM-93)t-ratio Predictor Coef Stdev D 4.02 Constant 0.11796 0.02932 0.001 0.007901 10.18 0.000 02 0.080456 2.58 (MW-120)2 0.00003088 0.00001196 0.021 -2.36 0.032 (RPM-93) -0.0009290 0.0003936 R-sq(adj) = 87.1%R-sq = 89.3%s = 0.02120LOI = 8.11 - 1.08 02 + 0.0318 (MW-120) - 0.0624 (RPM-93)Predictor Coef Stdev t-ratio 0.000 7.94 Constant 8.110 1.021 0.001 -1.0756 0.2764 -3.89 02 0.002 (MW - 120)0.031809 0.008263 3.85 0.01300 -4.80 0.000 (RPM-93) -0.06238 s = 0.6988R-sa = 80.7% R-sq(adj) = 76.8%

FIGURE 3.1 - Effect of Burner Tilt -Milliken Unit 1, Main and SOFA Tilts

Burner Tilt, Degrees

FIGURE 3.3 - Effect of Air Distribution-Milliken #1: SOFA/CCOFA Split, Coal Air

Combustion Air Distribution

FIGURE 3.4 - Effect of Mill Pattern -B=(A1+B2/3-A3/3-B4)_{tph}/TOTAL_{tph}

FIGURE 3.5 - Effect of Excess Air -Milliken Unit 1, Parameter: Boiler Load

Economizer O₂, %

FIGURE 3.6 - Effect of Boiler Load -Milliken Unit 1, Parameter: %O₂

Boiler Load, MW

FIGURE 3.7 - Effect of Excess Air -Milliken Unit 1, Parameter: Mill rpm

Mill Classifier Speed, rpm

Mill Classifier Speed, rpm

Measured LOI, %

SECTION FOUR LNCFS-3 SYSTEM START-UP, INSTALLATION COSTS AND FUEL DUCT BALANCING TESTS

4.1 LNCFS-3 System Start-Up

The post-retrofit design fuel pipe velocity based on coal specifications supplied by NYSEG was 75-85 ft/s, compared to a pre-retrofit velocity of about 100 ft/s. The post-retrofit fuel pipe velocity range achieved satisfactory transport of the coal without particle fallout in the fuel pipe, while maintaining the desired primary air-to-fuel ratio.

After the burner system was placed in operation, flame attachment to the burner coal bucket was observed. To reduce the problem, the coal nozzle diameter was reduced to increase the fuel velocity and move the ignition point away from the coal bucket. This action did not correct the problem due to turbulence within the coal bucket. The design of the coal bucket was changed to eliminate the turbulence. The combination of the higher fuel velocity and redesigned coal bucket permitted burner operation with the ignition point between two to four feet from the face of the coal bucket.

4.2 LNCFS-3 Installation Costs

The economic impacts of a low-NO_x burner retrofit consist of the capital costs for the burner installation, changes in annual operating and maintenance costs, and lost generation charges. In the interim report, only the capital costs will be reported. After one year of operation, the annual operating and maintenance costs will be estimated.

4.2.1 <u>Capital Costs</u>

The capital costs are shown by category for Milliken Unit 1 in Table 4.1. The installation cost includes the replacement of four wind boxes, the installation of four new SOFA ports and SOFA ducts, field piping modifications, and wiring of the damper drives. The total capital cost is about \$4.0 million or \$26.56/kW. The expected range for LNCFS-3 capital costs is \$15-25/kW.

Wind box and duct work installation required asbestos removal. The wind boxes were rigged and installed from outside the boiler, requiring only temporary removal of some structural steel. The turbine overhaul was completed during the scheduled retrofit outage. During the outage, the following subsystems were replaced: burners, coal mills, ESP upgrades, and a new electronic control system. An LNCFS-3 retrofit should require about an eight week outage.

TABLE 4.1 - MILLIKEN UN	IT 1 RETROFIT COSTS
Category	Cost
Material Supply	\$1,744,659
Installation Labor	\$1,364,027
ABB CE Engineering	\$729,000°
NYSEG Engineering	\$146,800
Total	\$3,984,364
Cost Per kW	\$26.56/kW
The Unit 1 ABB CE Engine 1. The Unit 2 ABB CE Engine because identical burners and 2.	ering costs are for Unit gineering costs are zero s are installed in Units 1

4.3 Unit 2 Baseline Pulverized Coal Balancing Tests

The SMG 10 probe was used to determine the fuel and air split among the four burner elevations and among the four corners of the fire box. The mill balance tests were conducted at 140 MW and 115 MW boiler loads, corresponding to Unit 2 baseline diagnostic Tests 2 and 14, respectively.

4.3.1 Full Boiler Load Test - Four Mills in Service

The mill balance measurements at 140 MW boiler load with four mills in service were performed during Unit 2 baseline diagnostic Test 2. An evaluation of the coal flow distribution among the four elevations showed that the flow to each of the top three mills was within $\pm 1.5\%$ of the average coal flow. The flow through the bottom mill was 15% higher than the average, corresponding to about 2.5 tons per hour higher coal flow than the other mills. Coal flows among the four corners were within $\pm 4.0\%$ of the average coal flow. Comparing the coal flows through the 16 individual ducts showed that 15 flows were within $\pm 10\%$ of the average. The flow though duct B1 of the top mill was 15.4\% below the mill average.

4.3.2 Intermediate Boiler Load Test - Top Three Mills in Service

The mill balance measurements at 115 MW boiler load with the top three burner elevations in service were performed during Unit 2 baseline diagnostic Test 14. An evaluation of the coal flow distribution among the three elevations showed that the flows were within $\pm 3.6\%$ of the average coal flow. Coal flows among the four corners were within $\pm 9.5\%$ of the average coal flow. Comparing the coal flows through the 16 individual ducts again showed that the flow though duct B1 of the top mill was 13.2\% below the mill average. The other flows were within $\pm 10\%$ of the average.

4.4 Unit 1 Post-Retrofit Pulverized Coal Balancing Tests

The SMG 10 probe was used to determine the fuel and air split among the four burner elevations and among the four corners of the fire box. The mill balance tests were conducted at 148 MW boiler load during Unit 1 post-retrofit diagnostic Test 1. Measurements at reduced boiler loads were not made due to problems with the test equipment. The air seal could not be properly made between the SMG 10 probe and the coal pipe. Consequently, the coal dust was sprayed over the boiler floor and testing was discontinued.

4.4.1 Full Boiler Load Test - Four Mills in Service

The mill balance measurements at full boiler load of 148 MW with four burner elevations in service were performed during Unit 1 post-retrofit diagnostic Test 1. The coal flows to the four mills were within $\pm 11.5\%$ of the average coal flow. At each elevation, the coal flows to the four corners were within $\pm 9.0\%$ of the average coal flow.

SECTION FIVE LONG-TERM, VALIDATION AND PERFORMANCE TESTING

5.1 Long-Term Testing

The purpose of the long-term test is to estimate the achievable annual NO_x emissions and to determine NO_x reductions due to the LNCFS-3 retrofit. The achievable annual emissions are estimated using CEM data collected over 51 days, which is a minimum time requirement to adequately describe the time dependence of the data. This was demonstrated in a statistical evaluation of long-term CEM data conducted by The Control Technology Committee of the Utility Air Regulatory Group (UARG).

The long-term tests were conducted on pre-retrofit Unit 2 (baseline) and postretrofit (LNCFS-3) Unit 1 under operating conditions that maintained salable fly ash (LOI less than 4%) and reliable boiler operation. The tests met the UARG minimum requirement of 51 days of CEM measurements. The long-term measurements for Unit 2 were collected for 71 days between March 22 and May 31, 1994. The fuel air damper position was 3 (an intermediate setting between minimum and maximum positions of 1 and 5, respectively) and the wind box tilt position was automatic, typically varying between $+10^{\circ}$ and $+15^{\circ}$. The long-term measurements for Unit 1 were collected for 59 days between May 23 and July 20, 1994. The mill classifier speed varied between 104 and 106 rpm and the wind box tilt position was automatic, typically varying between -6° and $+2^{\circ}$.

The long-term data were collected as 15-minute averages and were subsequently combined into hourly averages. The data were grouped by boiler load range in increments of 5 MW, and averaged for each group as shown in Table 5.1. The variations of both NO_x emissions and economizer O₂ with boiler load are shown in Figure 5.1. At the same boiler load, baseline and post-retrofit economizer O₂ level were generally different. Consequently, direct comparison of baseline and post-retrofit NO_x emissions (Table 5.1 and Figure 5.1) can be misleading. Further analysis of the data was necessary to estimate NO_x reductions due to the LNCFS-3 retrofit as is further discussed.

The achievable annual NO_x emissions were calculated based on 30-day rolling averages obtained from the long-term CEM data. A 30-day rolling average is obtained by averaging 30 continuous daily averages following the initial 30-day lapse and rolling the average from day to day. The daily averages were calculated from the hourly averages. The achievable annual NO_x emissions for pre-retrofit (baseline) Unit 2 was 0.614 lb/MM Btu with an uncertainty of \pm 0.023 lb/MM Btu at 95% confidence. That corresponded to 134 MW boiler load and 3.11% O₂ at the economizer outlet. The achievable annual NO_x emissions for post-retrofit (LNCFS-3) Unit 1 was 0.390 lb/MM Btu with an uncertainty of \pm 0.003 lb/MM Btu at 95% confidence. That corresponded to 134 MW boiler load and 3.72% O₂ at the economizer outlet. The LNCFS-3 burner system achieved 36% NO_x reduction. However, direct comparison of baseline and post-retrofit NO_x emissions can be misleading, since the corresponding economizer O₂ levels were different. Further evaluation of the long-term data to calculate NO_x reductions at the same economizer O₂ levels is discussed in Section 5.3.1 evaluating the performance of the low-NO_x burner retrofit.

5.2 Validation Test Programs

The validation test programs are limited tests of the diagnostic test conditions. The effects of the dominant parameters affecting NO_x emissions and LOI (based on the diagnostic test results) were re-evaluated. The validation tests were conducted following the completion of the long-term tests. The objective of these tests is to validate the previous results, to characterize any changes that might have occurred during the long-term tests, and to test the predictive correlations derived from the diagnostic tests.

5.2.1 Unit 2 Baseline Validation Test Program

The dominant parameters affecting NO_x emissions and LOI in the Unit 2 baseline diagnostic test program were excess O₂ and boiler load. Five validation tests were conducted during May 22-23, 1994, during which the economizer O₂ was varied between 2% and 4% and the boiler load was varied between 80 MW and 145 MW. The test results are presented in Table 5.2. The mill patterns used during the validation test program were the same as those used during the diagnostic test program (normal operation as listed in Table 2.1), with the exception of Validation Test 1 (80 MW boiler load). The test condition could not be maintained with two mills in service (as in the diagnostic 80 MW tests) and was conducted with three mills in service (mill B4 out of service).

Comparisons between measured and predicted NO_x emissions and LOI as a function of economizer O_2 at 140 MW and as a function of boiler load at 4% economizer O_2 for the baseline validation tests are presented in Figures 5.2 and 5.3, respectively. The predictions are based on the diagnostic test program correlations (Section 2.3.7). At 128-143 MW boiler load, there are good agreements between measured and predicted NO, emissions and LOI at various economizer 0, levels (see Figure 5.2). The differences between measurements and predictions were less than 0.03 lb/MM Btu for NO_x emissions and less than 0.3% (absolute) for LOI, which were within the experimental uncertainties of \pm 0.016 1b NO_/MM Btu (0.032 1b/MM Btu difference) and \pm 0.30% LOI (0.6% difference) at 95% confidence (Section 2.3.1). The differences between measurements and predictions increased with decreasing boiler load (see Figure 5.3). The poor prediction at 80 MW was partially due to the difficulty in repeating the diagnostic test program mill pattern with two mills (A3 and B4) out of service (see Table 2.1). The validation test at 80 MW was conducted with only one mill (B4) out of service.

5.2.2 Unit 1 LNCFS-3 Validation Test Program

The dominant parameters affecting NO₂ emissions and LOI in the Unit 1 LNCFS-3 diagnostic test program were excess O_2 , mill classifier speed and boiler load. Eight validation tests were conducted during October 17-19, 1995, during which the economizer O_2 was varied between 2.8% and 4.3%, the mill classifier speed was varied between 70 and 110 rpm, and the boiler load was varied between 90 MW and 150 MW. The test results are presented in Table 5.3.

There were several operations and LNCFS-3 control differences between the validation and the diagnostic test programs, including mill patterns, the control of CCOFA and SOFA air flows and the changes associated with reducing the boiler

During the validation test program, coal mill B2 mechanical problems load. limited its use. Consequently, only Tests 4, 5 and 6 were conducted with all four mills in service. The remaining tests were conducted with mill B2 out of service. Furthermore, during the validation test program, greater control of air staging (two CCOFA and three SOFA air flows) was possible (compared to the diagnostic test program). This operation achieved LOI below 4% at full boiler load, which was not possible during the diagnostic test program. Specifically, the air staging ports were operated with the two CCOFA ports fully open and the upper two SOFA ports fully closed, thus limiting the air staging control to the lowest SOFA port to achieve the desired LOI. In addition, the control algorithm used during the diagnostic test program made it difficult to separate the effects of boiler load and air staging, since a drop in boiler load was accompanied by reductions in SOFA air flows. This association between changes in boiler load and air staging was significantly reduced during the validation test program. This was a consequence of the additional control of air staging which achieved LOI below 4%.

Comparisons between measured and predicted NO₂ emissions and LOI as a function of economizer 0, at full boiler load (145-150 MW), as a function of mill classifier speed at full boiler load, and as a function of boiler load are presented in Figures 5.4, 5.5 and 5.6, respectively. The predictions are based on the diagnostic test correlations (Section 3.3.8). At full boiler load, there were good agreements between measured and predicted NO_x emissions at various economizer O_2 levels and at various mill classifier speed settings (Figures 5.4 and 5.5, respectively). The differences between measured and predicted NO, emissions were less than 0.036 lb/MM Btu, which were within the experimental uncertainty of ± 0.027 lb NO_/MM Btu (0.054 lb/MM Btu difference) at 95% confidence (Section 3.3.2). However, measured LOI values were 0.7%-1.7% (absolute) lower than predicted. These differences are attributed to the operation of the air staging ports (CCOFA ports fully open and using only the lowest SOFA port) during the validation test program which corresponded to longer furnace residence times (compared to the diagnostic test program). Longer coal particle residence times under the high temperatures in the furnace enhance carbon burnout and reduce LOI.

The discrepancy between measured and predicted LOI as a function of economizer O_2 levels (Figure 5.4) was attributed to the operation of the staging ports (as discussed earlier) and to the different mill patterns used (compared to the diagnostic test program). The predictions were based on the diagnostic test results in which all four mills were in service, whereas the validation tests were conducted with three mills in service (B2 out of service).

At reduced boiler loads (120 MW and 90 MW), measured NO_x emissions were lower than predicted and measured LOI values were higher than predicted (see Figure 5.6). The predictions are based on the diagnostic test correlations (Section 3.3.8), and the measured values are the validation test results. The discrepancy between measurements and predictions were attributed to the effects associated with boiler load changes, which differed between the diagnostic and the validation test programs. Specifically, during the diagnostic test program, a drop in boiler load was accompanied by lower SOFA air flows. The reduction in air staging with lower SOFA air flows would favor higher NO_x emissions and lower LOI, whereas the reduction in boiler load might have the opposite effect on NO_x and LOI because of lower furnace temperatures. This association between changes in boiler load and air staging was significantly reduced during the validation tests so that mainly the effect of boiler load was observed.

5.3 LNCFS-3 Performance Evaluation

The LNCFS-3 performance evaluation included the NO_x control effectiveness and the impact of the LNCFS-3 system on the boiler efficiency. The LNCFS-3 system did not increase fly ash LOI and did not increase CO emissions. For both baseline and the LNCFS-3 system, LOI values were less than 4% and measured CO concentrations were less than 25 ppm.

5.3.1 <u>NO, Control</u>

The NO_x reduction capability of the LNCFS-3 system was evaluated during the short-term diagnostic test programs (2-4 hours each) and the long-term test program (60-70 days). In both cases, Unit 2 baseline and Unit 1 LNCFS-3 test results were compared.

The variations of NO_x emissions and LOI with economizer O_2 for Unit 2 baseline and Unit 1 LNCFS-3 diagnostic tests at full boiler load (140-150 MW) are presented in Figure 5.7. The LNCFS-3 test results include tests where the overfire air (SOFA and CCOFA) flows and mill classifier speeds were similar. At the same economizer O_2 level, the scatter of the data was partly due to experimental variation and partly due to the variation of other parameters, such as burner tilt. During the diagnostic test programs, the LNCFS-3 system lowered NO, emissions 0.15-0.22 lb/MM Btu and increased LOI 2.4%-3.2% (absolute). A simple inverse relationship was observed between baseline NO₂ emissions and LOI, which could be approximated by a linear function (Section 2.3.6). The post-retrofit relationship between NO, emissions and LOI was more complex because of greater sensitivity to operating parameters (Section 3.3.7). An example is the burner tilt which had a significant effect on NO_x emissions and a minor effect on LOI during baseline testing, and significant effects on both NO, emissions and LOI during LNCFS-3 testing. Increasing the LNCFS-3 burner tilts below the horizontal (negative tilt) was effective in reducing both NO, emissions and LOI, but also had an impact on the main steam temperature. It should be emphasized that during the LNCFS-3 diagnostic test program, LOI was generally above 4% at full boiler load and better control of the air staging (CCOFA and SOFA air flows) was necessary to lower the LOI below 4%. Consequently, the effectiveness of the LNCFS-3 burner retrofit was evaluated using the long-term data.

The long-term test program (60-70 days) was used to evaluate the effectiveness of the LNCFS-3 system in reducing NO_x emissions. The long-term hourly averaged Unit 2 baseline and Unit 1 LNCFS-3 data at full boiler load (145-150 MW) were grouped by economizer O₂ range and averaged for each group as shown in Table 5.4. The long-term NO_x emissions data at full boiler load as a function of economizer O₂ are shown in Figure 5.8. At low boiler load (80-90 MW), the long-term data were treated in a similar fashion, but only one economizer O₂ range (4.3%-5.0%) was included because of the relatively small number of data (less than 50). At full boiler load (145-150 MW) and at 3.0%-3.5% economizer O₂, the LNCFS-3 system lowered NO_x emissions from a baseline 0.64 lb/MM Btu to 0.39 lb/MM Btu, corresponding to 39% reduction. At 80-90 MW boiler load and at 4.3%-5.0% economizer O_2 , the LNCFS-3 system lowered NO_x emissions from a baseline of 0.58 lb/MM Btu to 0.41 lb/MM Btu, corresponding to 29% reduction. The effectiveness of the LNCFS-3 system was lower at reduced boiler load.

In summary, following the LNCFS-3 burner retrofit, NO, emissions below 0.4 lb/MM Btu could be achieved, while maintaining marketable fly ash (LOI less than 4%). To date, burner operations are acceptable.

5.3.2 Boiler Efficiency

The impact of the low-NO, burner retrofit on boiler efficiency was estimated at full boiler load (140-150 MW). Three baseline boiler performance tests were conducted on Unit 2 between April 18 and 20, 1994. After installing the LNCFS-3 system, two boiler performance tests were conducted on Unit 1 on October 21, 1995. The test data and the boiler efficiency results (calculations based on ASME Abbreviated Efficiency Test) are presented in Table 5.5. The baseline boiler efficiency was between 89.3% and 89.6%. The LNCFS-3 boiler efficiency was between 88.3% and 88.5%. The reduction in LNCFS-3 boiler efficiency relative to baseline was attributed to higher post-retrofit flue gas 0, levels and higher stack temperatures relative to baseline. Unit 1 air heater was retrofitted with new air heater baskets and seals. The cause of the elevated air heater flue gas exit temperatures is under investigation. The LNCFS-3 stack temperatures were 21-31 *F higher than baseline, which resulted in 0.8% (absolute) lower boiler efficiency. Furthermore, the LNCFS-3 system corresponded to higher excess 0_2 levels than baseline, which resulted in 0.4% (absolute) lower boiler efficiency. Consequently, if the flue gas exit temperatures and the flue gas O_2 concentrations were the same for the LNCFS-3 system and the baseline, LNCFS-3 boiler efficiency 0.2% (absolute) higher than baseline would be expected.

Load Range	No. Hourly	Load	02	NOx	σ NOx
<u>MW</u>	<u>Averages</u>	MW	_%	<u>lb/MM Btu</u>	<u>lb/MM_Btu</u>
<u>Unit 2 Basel</u>	ine				
78-84	96	81	4.72	0.573	0.052
85-89	27	87	4.60	0.537	0.063
90-94	23	92	4.47	0.579	0.039
95-99	22	97	3.90	0.575	0.044
100-104	22	102	3.61	0.565	0.033
105-109	27	107	3.52	0.587	0.036
110-114	96	112	3.47	0.586	0.037
115-119	57	117	3.29	0.573	0.033
120-124	37	122	3.10	0.583	0.033
125-129	45	127	2.92	0.580	0.037
130-134	58	132	2.96	0.591	0.040
135-139	76	138	2.89	0.610	0.038
140-144	277	143	2.84	0.621	0.042
145-151	760	147	2.74	0.628	0.039
<u>Unit 1 Post-</u>	Retrofit				
77-84	36	81	4.73	0.413	0.082
85-89	33	87	4.66	0.400	0.051
90-94	27	92	4.22	0.399	0.021
95-99	34	96	4.15	0.397	0.022
100-104	26	101	3.92	0.421	0.113
105-109	19	108	3.98	0.405	0.118
110-114	105	112	3.87	0.391	0.046
115-119	90	117	3.87	0.390	0.034
120-124	64	121	3.74	0.384	0.020
125-129	41	127	3.72	0.391	0.029
130-134	100	131	3.66	0.384	0.026
135-139	97	137	3.61	0.385	0.032
140-144	117	142	3.63	0.389	0.022
145-150	563	147	3.62	0.390	0.026

TABLE 5.1 - LONG-TERM NO_x EMISSIONS

 σ = Standard Deviation

TABLE 5.2 - UNIT 2 BASELINE VALIDATION TEST RESULTS

								STACK	CEM
Test			Mi11	Load	02	Fuel	Tilt	C02	NOx
<u>No.</u>	<u>Date</u>	Time	<u>Out</u>	<u>_MW_</u>	<u>%</u>	<u>Air</u>	<u>deg</u>	_%	ppm
1	05/22/94	12:30-14:30	B4	81	4.0	3	14	10.23	244
2	05/22/94	18:00-20:00	B4	105	3.7	3	14	10.71	269
3	05/23/94	11:00-12:30	-	143	3.0	3	0	11.30	309
4	05/23/94	16:30-18:30	-	143	2.0	3	10	11.84	277
5	05/23/94	20:00-22:00	-	128	4.1	3	13	10.41	302

Test	Measured NOx	Predicted NOx	Measured LOI	Predicted LOI
<u>No.</u>	<u>1b/MM_Btu</u>	<u>lb/MM_Btu</u>	_%	_%
1	0.513	0.454	1.48	3.32
2	0.540	0.523	2.28	2.93
3	0.588	0.618	2.92	2.61
4	0.503	0.508	4.30	4.18
5	0.623	0.636	2.27	2.13

Coal Analysis: Dry Basis

DATE	VM %	Btu	C%	H %	N %	S <u>%</u>	Ash %	0 <u>%</u>	As Det H20
05/22/94	38.03	13944	78.50	4.94	1.47	2.00	7.19	5.90	1.71
05/23/94	37.88	13946	78.10	5.04	1.48	1.97	7.25	6.16	1.80

TABLE 5.3 - UNIT 1 LNCFS-3 VALIDATION TEST RESULTS

							Burner	<u>r Tilt</u>		Damp	ers,	% Op	en
Test	t		Mi11	Load	02	Mi11	Main	SOFA		SOF	٩	00	OFA
<u>No.</u>	<u> Date </u>	<u> </u>	<u> Out</u>	MW	<u>%</u>	<u>rpm</u>	Deg	<u>Deq</u>	<u>Up</u>	Mid	Low	Up	Low
1	10/17/95	12:00-13:00	B2	145	2.84	95	-7	-2	3	1	80	100	100
2	10/17/95	15:00-17:00	B2	145	3.49	95	-7	-2	3	1	80	100	100
3	10/17/95	18:00-20:00	B2	144	4.27	95	-7	-2	3	1	80	100	100
4	10/18/95	11:00-13:00	-	146	3.51	110	-7	-2	3	1	81	100	100
5	10/18/95	14:00-16:00	-	147	3.50	95	-7	-2	3	1	81	100	100
6	10/18/95	17:00-19:00	-	147	3.49	69	~7	-2	3	1	81	100	100
7	10/19/95	01:00-03:00	B2	121	3.53	95	-7	-2	3	1	81	100	100
8	10/19/95	04:00-06:00	B 2	91	3.79	95	~ 5	0	3	1	81	100	100

Test <u>No.</u>	Measured NOx <u>1b/MM_Btu</u>	Predicted NOx <u>1b/MM_Btu</u>	Measured LOI _%	Predicted LOI <u>%</u>
1	0.351	0.315	3.63	4.64
2	0.386	0.367	2.96	3.93
3	0.436	0.428	2.38	3.04
4	0.357	0.356	2.11	2.98
5	0.370	0.370	2.20	3.96
6	0.378	0.395	3.94	5.58
7	0.320	0.351	3.75	3.10
8	0.310	0.413	2.52	2.19

Coal Analysis: Dry Basis

DATE	VM %	Btu	C%	H %	N 	S _%	Ash %	0 As	Det H2O %	Total H2O %
10/17/94	38.95	14010	79.02	5.14	1.57	1.85	7.05	5.36	1.75	6.96
10/18/94	39.15	14020	78.64	5.16	1.59	1.88	7.06	5.68	1.65	6.27
10/19/94	38.50	13990	78.87	5.04	1.58	1.86	7.23	5.43	1.67	6.39

02 <u>%</u>	Range	No. Hourly Averages	Load <u>MW</u>	02 _ <u>%</u>	NOx <u>1b/MM Btu</u>	σ' NOx <u>lb/MM_Btu</u>
<u>Unit</u>	2 Baseli	ine at 145-1	50 MW	<u> </u>		
2.5-2 2.7 2.8 2.9 3.0-3 3.2-3	.6 .1 .3	190 134 110 68 97 41	146 146 146 146 147 147	2.56 2.70 2.80 2.90 3.05 3.26	0.623 0.628 0.635 0.639 0.638 0.642	0.039 0.035 0.034 0.038 0.043 0.039
Unit	<u>1 Post-F</u>	<u>Retrofit at</u>	145-150 MW			
3.2-3 3.4-3 3.6 3.7-3 Unit	.3 .5 .8 2 Baseli	60 82 223 149 ine at 80-90	147 147 147 147 147	3.30 3.43 3.61 3.78	0.391 0.388 0.389 0.392	0.016 0.041 0.022 0.028
4.3-5	.0	47	84	4.66	0.578	0.065
<u>Unit</u>	<u>1 Post-F</u>	Retrofit at	80-90 MW	-,		
4.3-5	.0	39	85	4.74	0.410	0.050
<u>Effec</u>	tiveness	s of LNCFS-3	Retrofit i	<u>n Reduci</u>	ing NOx Emis	sions:
Reduc	tion at	145-150 MW	and 3.0-3.59	% 02	= 39.0	1%
Reduc	tion at	80-90 MW	and 4.3-5.09	\$ 02	= 29.0	%

 σ = Standard Deviation

TABLE 5.5 - LNCFS-3 IMPACT ON BOILER EFFICIENCY

		Unit 2 Basel	L J N	Unit 1 INCES-3		
Test:	1	2	3	1	2	
Measured Data			·····			
Gas Temp at ESP Inlet, *F	264	266	258	289	287	
<u>Flue Gas: % Volume</u>						
C02	12.5	12.4	12.4	11.7	11.3	
02	/.0	/.1	/.1	/.6	8.0	
N2	80.5	80.5	80.5	80.7	80.7	
NL	00.3	00.5	00.5	00.7	00.7	
<u>Coal Analysis (dry)</u>						
% Carbon	77.89	77.86	77.85	78.78	78.78	
% Nitrogon	5.25 1 55	5.25 1 52	5.24	4.98	4.98	
% Sulfur	1.55	1.55	1.43	1.57	1.57	
% Oxygen	6.42	6.41	6.44	5.36	5.36	
% Ash	7.15	7.11	7.21	7.39	7.39	
% Volatile Matter	37.35	37.49	37.27	38.49	38.49	
Btu/lb	13934	13955	13949	13970	13970	
Moisture (wet)	7.00	7.00	7.00	7.80	7.80	
Ash Analysis						
% Ash	96.03	94.61	95.59	96.29	96.51	
% Carbon	3.43	4.85	3.84	2.99	3.01	
% Sulfur	0.34	0.34	0.37	0.43	0.33	
Calculated Data, Basis of 1 lb as	s-fired F	uel				
Dry Refuse. 1b	0.069	0.069	0.070	0.070	0.070	
Carbon Burnout, 1b	0.72	0.72	0.72	0.72	0.72	
Dry Gas, 1b	14.697	14.791	14.802	15.708	16.238	
Heat Losses, %						
1 Dry Gas	5 01	5 09	4 87	6 12	6 26	
2. Moisture in Fuel	0.61	0.61	0.61	0.69	0.69	
3. Hydrogen in Fuel	3.84	3.83	3.82	3.67	3.66	
4. Flue Gas CO	0.00	0.00	0.00	0.00	0.00	
5. unburned combustible	0.26	0.38	0.30	0.24	0.24	
6. Radiation	0.21	0.21	0.21	0.21	0.21	
/. Moisture in Air	0.12	0.12	0.12	0.12	0.12	
o. Unimeasured Losses	0.50	0.50	0.50	0.50	0.50	
Efficiency, %	89.45	89.26	89.57	88.46	88.31	

Boiler Load, MW

FIGURE 5.2 - Effect of Excess Air -Unit 2 Baseline Validation Test, 140 MW

Economizer O₂, %

FIGURE 5.3 - Effect of Boiler Load -

Boiler Load, MW

Economizer O₂, %

Mill Classifier Speed, rpm

FIGURE 5.6 - Effect of Boiler Load -Unit 1 LNCFS-3 Validation Test, 3.5% O2

Boiler Load, MW

Figure 5.7 - Comparing Short-Term NO_x Emissions at 145-150 MW

Economizer O₂, %

Figure 5.8 - Comparing Long-Term NO_x Emissions at 145-150 MW

Economizer O_2 , %