INTEGRATED DRY NOx/SO2 EMISSIONS CONTROL SYSTEM

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix G

.

CALCULATION PRCEDURES

.

.

.

A CALCULATION PROCEDURES

During the course of the test program, a number of parameters had to be calculated in order to characterize the dry sorbent processes, humidification process and SNCR process. These key calculations are included in this appendix and include:

•	Flue Gas Flow Rate :		$Q_{^{f}\!g}$	(dscfm)
•	SNCR Process	:	N/NO	(molar basis)
•	Dry Sodium Injection	:	2Na/S	(molar basis)
•	Dry Calcium Injection	:	Ca/S	(molar basis)
•	Duct Humidification	:	ΔT_{app}	(adiabatic approach to saturation)

The methodology and procedures used for these calculations are documented below.

A.1 Flue Gas Flow Rate

As part of the particulate measurements, the moisture content was measured and an EPA Method 1 and 2 traverse of velocity made at the air heater exit locations. The results of the measurements was a dry flue gas flow rate measured at an O_2 concentration of 4.6% and load of 100 MWe of 220,000 dscfm. To calculate the flue gas flow rate at other loads and O_2 levels, the following relationship was used:

$$Q(L,O_2) = 220,000 \left(\frac{L}{100}\right) \left(\frac{20.9 - 4.6}{20.9 - O_2}\right) (NHR)$$
 (1)

NHR = normalized function accounting for a change in plant net heat rate with load. L = load, MWe.

 O_2 = measured O_2 at the economizer exit, % dry.

The NHR function was calculated from the following PNHR data measured by PSCo in 1988.

Load Net MWe	PHNR Btu/Kwhr
35.2	11640
45.3	11270
70.7	10710
79.7	10610
94.8	10450
112.9	10570

The above heat rate data was normalized to 100 MWe and curve fit:

$$NHR = 2.342 \times 10^{-5} (Load) - 4.91 \times 10^{-3} (Load) + 1.255$$
(2)

Equation 1 along with Equation 2 were used throughout the test program to determine the SNCR parameters N/NO molar ratio, dry sodium normalized stoichiometric ratio, 2Na/S, and the dry calcium parameters Ca/S molar ratio.

Late in the test program, PSCo installed a flue gas flow rate monitor as required by the 1990 Clean Air Act Amendments. Following certification of the flue gas flow rate monitor, flue gas flow rate data was collected and compared to the algorithm using load, O_2 and the normalized heat rate. The average ratio of the measured flue gas flow rate to calculated flue gas flow rate was 1.05 with a standard duration of 4.3%.

A.2 Dry Sodium Injection 2Na/S

To form sodium sulfate (Na₂ SO₄) two moles of sodium are needed to react with one mole of SO₂. To characterize the amount of sodium injected, the "normalized stoichiometric" ratio, or 2Na/S ratio was used. The 2Na/S molar ratio was calculated using the following quantities:

 m_{Na} = sodium sorbent feedrate, lb/min.

 X_{so} , = measured inlet SO₂ level, ppm wet.

$X_{H,O}$ = measured inlet H ₂ O level,	%.
--	----

- X_{O_2} = measured inlet O_2 level, % wet.
- Q_{fg} = flue gas flow rate, calculated as described above, scfm dry.
- Y_{Na} = mass fraction of sodium in the sorbent (sodium bicarbonate: 0.274; sodium sesquicarbonate: 0.297).
- MW_{na} = molecular weight of sodium, 22.99.

$$N_v$$
 = normal molar density, 0.002635 moles/ft³, P = 14.7 psia, T = 60°F.

$$\frac{2 \text{ Na}}{\text{S}} = \frac{\frac{1}{\text{m}_{Na}} Y_{\text{Na}} \left(1 - \text{H}_2 \text{O} / 100\right)}{2 Q_{fg} N_v X_{\text{SO}_2} \left(1 \times 10^{-6}\right) \text{M}_{\text{Na}}}$$
(3)

A.3 Calcium Injection Ca/S

The dry calcium injection rate is characterized as the molar ratio of calcium to sulfur since one mole of calcium reacts with one mole of SO_2 to form calcium sulfate (Ca SO_4). The Ca/S ratio was calculated as follows:

- m_{Ca} = calcium hydroxide feedrate, lb/min.
- X_{SO_2} = measured inlet SO₂ level, ppm wet.
- $X_{H,O}$ = measured inlet H₂O level, %.
- Q_{fg} = calculated flue gas flow rate, scfm dry.

 Y_{CaO} = calcium oxide content of the calcium hydroxide, 0.68.

 MW_{CaO} = molecular weight of calcium oxide, 56.

 $N_v = --$ normal molar density, 0.002635 moles/ft³ @ P = 14.7 psia, T = 60°F.

$$\frac{Ca}{S} = \frac{m_{Ca}}{Q_{fg}} \frac{Y_{CaO}}{N_v} \frac{(1 - H_2O/100)}{(1 \times 10^{-6})} \frac{MW_{CaO}}{MW_{CaO}}$$
(4)

A.4 SNCR N/NO Ratio

The SNCR ratio is characterized by the molar ratio of moles of nitrogen in the injected SNCR chemical to the moles of NO in the flue gas. This quantity was calculated using the following quantities (the procedure shown below is for urea).

- Q_{urea} = urea solution injection rate, gpm.
- C_{urea} = concentration of urea in solution, gm-urea/gm-solution.
- X_{NO} = measured inlet NO level at the economizer probe, ppm
- $\rho_{\rm H_2O}$ = density of water, 8.34 lb/gal.
- sg = specific gravity of the urea solution.
- Q_{fg} = calculated flue gas flow rate, scfm dry.
- $MW_{urea} = molecular weight of urea, NH₂ CO NH₂, 60.$

 $N_v = normal molecular density, 0.002635 moles/ft³.$

$$\frac{N}{NO} = \frac{Q_{urea} C_{urea} (sg) \rho_{H2O} 2}{MW_{urea} Q_{fg} N_{v} X_{NO} (1 \times 10^{-6})}$$
(5)

where the factor of 2 in the above equation accounts for the two moles of nitrogen per mole of urea.

A.5 Approach Temperature to Adiabatic Saturation

During the duct humidification tests, the key parameter used to characterize the humidification process was the approach to adiabatic saturation temperature. Ideally, this could be determined by measuring the wet bulb and dry bulb temperature in the duct. However, as the test program progressed, it became apparent that the thermocouple grid downstream of the humidification nozzles, and just at the entrance to the FFDC, was not providing an accurate dry bulb temperature. The thermocouples would collect a deposit of wet or damp ash and sorbent, resulting in a reading that was lower than the actual dry bulb temperature. To provide a

supplemental way to determine the approach to saturation temperature, an energy balance was performed on the duct, and the approach temperature calculated.

The energy balance was done as shown in the figure below.

Final Report, Volume 2

$$w_2 - w_1 = \frac{Q_{H_2O} \rho_{H_2O}}{C_{P_{fg}}}$$
(7)

$$w_{1} = \frac{X'_{H_{2}O_{1}}}{1 - X'_{H_{2}O_{1}}} \times \frac{MW_{H_{2}O}}{MW_{flue gas}}$$
(8)

taking the enthalpy of the dry flue gas as $h_a = Cp T$, the dry bulb temperature after the injected water has evaporated is given by

$$T_{2} = T_{a1} + \frac{w_{1}h_{v_{1}} + (w_{2} - w_{1})h_{\ell_{1}} - w_{2}h_{v_{2}}}{Cp}$$
(9)

To solve for T_2 the following parameters were curve fit from the steam tables over a temperature range from 100-300°F

saturation pressure :
$$P_v$$
 (psia) = 20.73 + 0.4512T - 0.003298T² + $(9.215x20^{-6})T^3$ (10)

enthalpy of water vapor :
$$h_{y} = (Btu / lb)1056.9 + 0.51198T - 0.0003398T^2$$
 (11)

enthalpy of liquid water :
$$h_{\ell}(Btu / lb) = -33.119 + 1.007T$$
 (12)

latent heat of vaporization :
$$h_{fg}(Btu / lb) = 1087.0 - 0.4621T - 4.177 \times 10^{-4} T^2$$
 (13)

The above equation was solved iteratively on a spreadsheet since hv_2 is a function of T_2 . Once the dry bulb temperature T_2 was found, the wet bulb temperature was found by mathematically increasing the amount of water vapor injected until the calculated partial pressure of water vapor in the duct was equal to the saturation pressure and a relative humidity of unity, for this calculation the atmospheric pressure was taken as $P_{atm} = 12.25$ psig

$$RH = \frac{\left(X_{H_2O_2}\right)_2 P_{atm}}{P_v}$$
(14)

$$X_{H_{2}O_{2}} = \frac{w_{2} \left(MW_{fg} / MW_{H_{2}O} \right)}{1 + w_{2} \left(MW_{fg} / MW_{H_{2}O} \right)}$$
(15)

Project Performance and Economics

Table A.5-1 shows a sample calculation in the spreadsheet format. In the calculation $T_2(guess)$ is changed until it matches T_{2calc} . Then the water injection rate Q_{H_2O} is changed until the relative humidity is 100% (R-Hum). For the case shown in Table A.5-1 this corresponds to a water injection rate of 69.1 gpm which results in T_2 of 117°F; this is the wet bulb temperature. The approach temperature can then be calculated. For instance assume for the 80 MW case shown in Table A.5-1 that the water injection rate was, $Q_{H_2O} = 54$ gpm.

 $T_2 (dry bulb) = 151^{\circ}F$ $T_{wb} = 117^{\circ}F$ $\Delta T_{App} = 151 - 117 = 34^{\circ}F$

HUMIE	DIFICAT	ION CAL	CULAT	ION								
LOAD		8	0 MW				Hat with	ы л Г			1	
O2econ	dry		5.85%					IV I				
T1w/oH	120		281°F	(02	2)1w: 5	5.40					Ha2+	w2Hv
TI(wate	з г)		64°E	(H2	201:	8.27	(w2-21)H	11'				
	-)		04 1	、								
								L			J	
H2O ec	oncak		8.29%	(0	2)Id: :	5.89						
Q-H2O	w1	w2	T2calc	T2gues s	(H2O)2	R- HUM	P(H2O)	Pv	wlHvl	w2-w1	(W2- W1)HI	w2Hv2
10.0	0.0542	0.0600	256	256	9.09	3.4	1.11	33.14	63.67	0.0058	0.1809	69.95
20.0	0.0542	0.0658	231	231	9.88	5.7	1.21	21.15	63.67	0.0115	0.3617	76.11
30.0	0.0542	0.0716	207	207	10.66	10.0	1.31	13.05	63.67	0.0173	0.5426	82.17
40.0	0.0542	0.0773	183	183	11.42	17.7	1.40	7.89	63.67	0.0231	0.7234	88.09
54.0	0.0542	0.0854	151	151	12.56	39.1	1.53	3.91	63.67	0.0312	0.9766	96.21
60.0	0.0542	0.0889	137	137	12.90	54.6	1.58	2.89	63.67	0.0346	1.0852	99.60
70.0	0.0542	0.0946	115	115	13.63	107.7	1.67	1.55	63.67	0.0404	1.2660	105.18
80.0	0.0542	0.1004	93	93	14.34	1404.1	1.76	0.13	63.67	0.0462	1.4469	110.62
90.0	0.0542	0.1062	72	72	15.04	-95.1	1.84	-1.94	63.67	0.0520	1.6277	115.96
69.1	0.0542	0.0941	117	117	13.56	99.8	1.66	1.66	63.67	0.0399	1.2497	104.68
55.0	0.0542	0.0860	148	148	12.53	41.2	1.54	3.73	63.67	0.0318	0.9947	96.76
56.0	0.0542	0.0866	146	146	12.61	43.6	1.54	3.54	63.67	0.0323	1.0128	97.34
57.0	0.0542	0.0871	144	144	12.68	46.2	1.55	3.37	63.67	0.0329	1.0309	97.91
58.0	0.0542	0.0877	141	141	12.76	48.9	1.56	3.20	63.67	0.0335	1.0490	98.49

 Table A.5-1.
 Sample Calculation of the Dry Bulb and Wet Bulb Temperatures with Duct Humidification

· . --

.

·

.

; ; **** *****

· ·

.

.

.

·

· .

, · · ·

INTEGRATED DRY NOx/SO2 EMISSIONS CONTROL SYSTEM

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix H

AIR TOXICS SUMMARY SECTION

FOR

CALCIUM-BASED DRY SORBENT INJECTION SYSTEM RETROFIT

IV. Summary of Air Toxics Monitoring Results

A total of 21 potential air toxics was measured at Arapahoe 4 with the calcium-based DSI system operating. Table 7 lists the air toxics that were sampled during the calcium-based DSI testing. Table 8 compares the target air toxics measured during each of the four test series. This report presents baseline dioxin data and air toxics data for the calcium-based DSI system.

Refer to the other three

Trace Metals	Arsenic Cadmium Copper Mercury Selenium Calcium Barium Chromium	Lead Molybdenum Phosphorous Beryllium Cobalt Manganese Nickel Vanadium
	Calcium	Sodium
Anions ¹	Chloride Fluoride	Sulfate

1. Elemental precursors of these anions measured in the fuel (Cl, F, S).

Table 7: Target Compounds for Calcium-Based DSI System

environmental monitoring reports for more information on the other tests conducted.

Sampling of the baseline dioxins was conducted on October 11, 12, and 13, 1993. The air toxics tests for the calcium-based DSI system were conducted on October 19 and 20, 1993. No sampling occurred during sootblowing operations.

				Test Pe	riod		
Target	Compounds	Low-NOx SNCR		Low-NOx SNCR Calcium-Based DSI		Based DSI	Sodium-
		Combustion	Baseline ³	SNCR	Baseline	Sodium	Based DSI
Trace Metals		×x		x		x	x
Acid-Forming Anions		x		x		x	x
Volatile Organic	Benzene/toluene	x	x				
Compounds	Formaldehyde	x					
Semi-Volatile	РАН	x					
Organic Compounds	PCDD/PCDF		x ²		x		
Solid Particulate		x		x		x	x
Radio Nuclides		x					
Trace Metals	Total/hexavalent chromium		x				
Speciation	Mercury		x				
Nitrogen Compounds		x		x			
HHV. Ultimate/ Proximate Analysis		x	x	x	x	x	x
Loss-On- Ignition		x		x		x	x

1. Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF).

2. Due to anomalous contamination of native 2.3.7.8.PCDD/PCDF isomers in the method blanks, samples, and archived resin, the results of these tests are invalid and were repeated during the calcium-based DSI test period.

3. Some baseline tests were repeated in the SNCR test period.

Table 8: Target Compounds

PSCC contracted with Carnot, Inc. of Tustin, California to complete the air toxics work at Arapahoe Unit 4. Fossil Energy Research Corp. of Laguna Hills,

California provided some assistance at the site and with data collection. Table 9 lists the laboratories used to analyze the collected samples.

Analysis	Laboratory	Location
Solid particulate	Carnot, Inc	Tustin, CA
Chloride and sulfate (as necessary for confirmation)	Carnot, Inc	Tustin, CA
Acid-forming anions	Curtis and Tompkins	Berkeley, CA
Trace metals	Curtis and Tompkins	Berkeley, CA
Semi-volatile organic compounds	Zenon Environmental Laboratories	Burlington, Ontario, Canada
LOI for ash	Commercial Testing and Engineering	Denver, CO
Trace metals and anions analysis of fuel and ash	Curtis and Tompkins	Berkeley, CA
Coal preparation and ultimate analysis, including anions	Commercial Testing and Engineering	Denver, CO
Neutron activation analysis	Massachusetts Institute of Technology	Cambridge, MA
Coal preparation	A.J. Edmonds	Long Beach, CA
Ash preparation and anion analysis	Commercial Testing and Engineering	Denver, CO
Ash preparation	Carnot	Tustin, CA

 Table 9:
 Laboratories for Air Toxics Analyses

The Environmental Monitoring Plan (EMP) addendum for air toxics includes details on the method used to determine the total mass flow of the air toxics. In addition to the measured concentrations of the air toxics in the sample, mass flows of the solid and gas are required. Table 10 lists the mass flowrates for the flue gas and the solids used to determine the mass flow of the toxics. The actual flue-gas flowrate is used for each of the trace metal, particulate matter, and anion tests. The flue-gas flowrates for the VOC and cyanide tests were from the major test conducted concurrently. The existing plant equipment was used to measure the coal flow. The measured particulate loading and flue-gas flowrate was used to calculate the flowrate of the fly ash and the stack ash. The coal input and the fly ash flowrates were used to calculate the bottom ash flowrate.

Stream	Test	Location	Test 1	Test 2	Test 3
	T a Manha	Inlet	271,100	279,700	276,300
	Trace Metals	Outlet	279,200	288,700	279,700
	Particulate	Inlet	252,500	263,000	272.700
Flue Gas Flow	Matter	Outlet	260,000	268,900	275.900
Rate (DSCFM)	A	Inlet	252,500	263,000	272,700
	Anions	Outlet	260,000	268,900	275,900
	Dioxins and	Iniet	232,600	199,100	225,200
	Furans	Outlet	234,900	204,700	206,900
	Coal Flow (lb/h)		101,800	105,400	104,300
	Fly Ash Flow (lb/h)		8,359	8,351	7,474
Bo	tion Ash Flow (lb/l	a)	3,638	3,889	4.593
Т	'otal Ash Flow (lb/h))	11,997	12,240	12,067
S	tack Ash Flow (ib/h))	4.2	1.6	1.4

Table 10: Stream Mass Flow Data

Table 11 lists the average operating conditions of Arapahoe Unit 4 during the calcium and baseline air toxics testing. All three baseline dioxin tests were conducted at 75 Mwe. A problem occurred on the first day of testing that limited load to 75MWe. The problem was corrected the following day but the remaining tests were conducted at the same load to provide three replicate tests. Figure 1 shows a simplified diagram of the unit and shows the five different sample locations. Gaseous samples were obtained at the inlet and the outlet of the FFDC. Solid samples of unpulverized coal, bottom ash, and fly ash were also obtained. This section lists the results of the air toxics testing. For details on the methods used for sampling, analysis, and quality assurance, see the *Environmental Monitoring Plan Addendum for Air Toxics Monitoring*, dated July 1993.

Ξ

	D	Ba	seline Dio	xins	Calcium-I	Based DSI	Air Toxics
ļ		1	2	3	1	2	3
Unit le	oad (MW, net) ³	76	75	75	112	112	112
	Air(lb/h)	753,000	705,000	716,000	976,000	995,000	1,028,000
Input	Coai (lb/h)	67,600	68,900	72.200	101,800	105,400	104.300
Stear	n flow (lb/h)	638,000	632,000	630,000	959,000	966,000	966.000
	Injection rate (lb/min)				51.5	52.4	51.7
	Ca/S				2.06	2.07	2.10
DSI	Sorbent feeder output (A/B) ⁴				56%/68%	57%/69%	56%/68%
	Humidification water (gpm)				70.9	66.8	72.8
	%O ₂ ¹ , dry	7.70%	7.24%	7.34%	6.11%	6.25%	6.32%
FFDC	CO (ppmd) ²	14.0	19.2	13.2	71.7	231	212
outlet	NO (ppmd) ²	216	194	196	225	221	225
	SO , (ppmd) ²	308	308	307	280	283	262

 From Carnot's portable O₂ that sampled at each sample point.
 From a single point Altech CEM system located in the FFDC outlet duct.
 The "B" ID fan was off line for the first baseline test. To maintain consistent operating conditions, the remaining tests were operated at 75 MW.

4. Indicates level of operation of "A" and "B" DSI feed systems.

Table 11: Average Operating Conditions and Continuous Emissions Data

Table 12 lists the methods used during this sampling program that differ from the EMP.

A. Uncertainty Analysis

In the tables that follow, a value for uncertainty expressed as a percentage is provided for all data. The calculation method used is based upon ANSI/ASME PTC 19.1-1985, "Measurement of Uncertainty." The uncertainty is based on a 95% confidence interval for the mass emissions for the target species but is expressed as a percentage so that it may be applied to other units. A very important part of the method is assigning an estimated bias error for the major

[Species	EMP Specified Method	Method Used
FFDC Inlet	Arsenic Cadmium Chromium	EPA SW 846-7060 (GFAA) EPA SW 846-7131 (ICP) EPA SW 846-7191 (GFAA)	EPA SW 846-6010 (ICP) EPA SW 846-6010 (ICP) EPA SW 846-6010 (ICP)
FFDC Outlet	Arsenic Cadmium Chromium	EPA SW 846-7060 (GFAA) EPA SW 846-7131 (ICP) EPA SW 846-7191 (GFAA)	EPA SW 846-6010 (ICP) EPA SW 846-6010 (ICP) EPA SW 846-6010 (ICP)
Fucl	Arsenic Barium Chlorine Sultate Cadmium Mercury Selenium Chromium Lead Calcium Sodium Manganese Vanadium	EPA SW 846-7060 (GFAA) EPA SW 846-6010 (ICP) ASTM D-4208 & ISP EPA SW 846-300-IC EPA SW 846-7131 (ICP) EPA SW 846-7131 (ICP) EPA SW 846-7470 (CVAA) EPA SW 846-740 (GFAA) EPA SW 846-7191 (GFAA) EPA SW 846-6010 (ICP) EPA SW 846-6010 (ICP) EPA SW 846-6010 (ICP) EPA SW 846-6010 (ICP)	INAA EPA SW 846-6010 (ICP with EPA3050 digestion) INAA ASTM D4239 & LECO SC-132 INAA INAA INAA EPA SW846-6010 (ICP-AES) EPA SW846-6010 (ICP-AES) EPA SW846-6010 (ICP with EPA3050 digestion) EPA SW 846-6010 (ICP with EPA3050 digestion) INAA INAA
Flyash/ Bottom Ash	Barium Beryllium Cadmium Chromium Cobalt Copper Manganese Mercury Molybdenum Nickel Phosphorus Vanadium Calcium Sodiam Fluoride Sulfate	EPA SW 846-6010 (ICP) EPA SW 846-6010 (ICP)	EPA SW 846-7060 ICP-AES EPA SW 846-7060 (ICP with EPA3050 digestion) EPA SW 846-7060 (ICP with EPA3050 digestion)

 Table 12:
 Test Methods
 Different from EMP (TBD)

variables. The value presented represents only an approximation of the uncertainty as not all bias errors may be estimated. The uncertainty is also not a measure of long-term trace-species emissions for this boiler, but only the uncertainty for the specific test period. It was assumed that the samples are a normal population distribution. Table 13 summarizes the bias values used to determine uncertainties.

Location	Particle Collection ¹	Flowrate ²	Fuel Flowrate ³	Fly Ash Flowrate ⁴	Bottom Ash Flow Rate ⁴
Inlet	15%	0%	0%	15%	15%
Outlet	0%	0%	N/A	N/A	N/A

1. Bias based on difference between pitot and heat rate flowrates.

No bias estimated as measured inle⁺ measured outlet, and calculated flow agreed within +-5%
 No bias estimated as calculated flue gas flow agreed with measured outlet flow.
 Bias equals the inlet particle collection bias.

Table 13: Summary of Bias Values Used for Uncertainty Calculations

B. Treatment of Non-Detectable Measurements

Many of the target species for which a measurement was attempted were not found using the specified sampling and analytical techniques. If a measurement for a target species was not found, the value that could have been measured (i.e. the detection limit) if the trace emissions were present are reported. The "nondetects" are shown as less than the detection limit. The difficulty occurs when averaging various samples of which some or all of the measurements are below the detection limit. The following summarizes the two cases:

• All values below detection limit: The arithmetic average of the detection limit is shown with a "<" sign to indicate that the trace species is less than the reported average detection limit. For example, if a species was not found and the method provided a detection limit of 0.45, the values is reported as < 0.45. Some, but not all, values below detection limit: The value of all measurements above the detection limit are averaged with one-half of the detection limit. For example, if three measurements of 10, 8, and <6 are found, the average would be (10+8+6/2)/3 or 7. Note that no "<" sign is used in these reported averages even though some of the values are below the detection limit. If the average calculated with this method is less than the greatest detection limit; the largest detection limit is reported and a "<" symbol is used. For example, if values of 6, <4, and <2 were reported, the average would be reported as <4 and not (6+4/2+2/2)/3 or 3.</p>

C. Treatment of Blank Values

Three different types of blanks were used as part of the air toxics testing quality assurance (QA) program. The QA program included field blanks, reagent blanks, and laboratory preparation blanks.

Field blanks are samples obtained by assembling a complete sample train at the test site using the same procedures as when obtaining the actual sample. The sample train is then leak checked and disassembled to recover and analyze the sample. Field blanks are not used to "correct" the data generally but are used to provide an indication of the quality of the sample.

Reagent blanks consist of samples of the reagent and/or filters that are collected at the site. Analysis of these samples show if any of the results were caused by existing levels of the trace species in the material used to collect or recover the sample. If measurable values of the trace species are found, the data is usually corrected by subtracting the value measured in the reagent.

Laboratory reagent blanks consist of samples of the chemicals used during the measurement analysis. If measurable values of the trace species are found, the

data is usually corrected by subtracting the value measured in the reagent. Any measurable values in the laboratory reagent may be caused by initial trace species in the chemicals or by the analytical procedures.

In the tables that follow the value of the field blank is shown for reference, but none of the data has been changed due to these measurements. If a measurement has a value near the field blank measurement, there may be some question as to the accuracy of the data and the reported value may NOT be source related. A separate column lists a blank correction percentage for all trace species that were corrected due to either a reagent or laboratory reagent blank. This is an average percentage calculated as follows:

% blank correct =
$$\frac{\sum \left(\frac{blank \ value}{sample \ value}\right)}{number \ of \ samples} \approx 100$$

For example, if three samples contained 10, 5, and 4 mg/kg of a trace species and the reagent blank was 2 mg/kg, the blank correction would be:

blank correction =
$$\left(\frac{2}{10} + \frac{2}{5} + \frac{2}{4}\right) \approx \frac{100}{3} = 37\%$$

Thus, on average, the actual value measured was 37% higher than the value reported in the table. If the blank correction is reported as 0%, no blank correction was calculated and the reported value was the measured value. Note that in most cases a high blank correction value does not mean that the data is inaccurate. If a sample was contaminated with a trace species due to a filter, and the filter was analyzed and the data corrected, it is likely that the data is meaningful.

D. Gaseous Species Monitoring

This section reports the trace metal, acid-forming anion, and FFDC efficiency from the air toxics testing of the calcium-based DSI system. In addition, it reports the furan and dioxin data from the baseline tests.

Trace Metals

Table 14 lists the gaseous trace metal emissions for the calcium-based DSI test period. Although calcium and sodium are neither trace metals or air toxics, Table 14 also lists their results. At the FFDC inlet, all 15 trace metals, calcium, and sodium were reported above their detection limits.

Previous air toxics test series at Arapahoe reported a wide unexplained variation of barium, calcium, and sodium in various solid streams between different test methods. Curtis and Tompkins, the laboratory completing the analysis, investigated and discovered a problem with the ASTM D3683 ashing/acid digestion method of sample preparation. Coal samples were prepared according to ASTM D3683 and also EPA method 3050. The EPA method does not require ashing or digestion using HF acid. A comparison of the data with the two different digestion methods for both the calcium and sodium injection program compared to INAA is shown in Table 15. This data suggests that ASTM D3683 (that uses HF acid digestion) may have a significant low bias. The EPA 3050 method provides better precision between replicates and better accuracy when compared to INAA which does not require sample digestion.

				FFDC Inlet						-	FDC Out	ct		
Trace Metals	Test	Tesi 2	Test 3	۸v <u>ę</u> .	Uncert.	Fæld Blank	Blank Correct ¹	Test 1	Тсы 2	Tesi 3	Avg.	Инсепт.	Field Blank	Blank Correct
		hg/	(Nm ³		*	µg/Nan ³	P 6		√/3n	(m)		٢٩	(IIIN/3h	ور
Arsenic ³	27	28	61	25	50	0.14	1.4L	0.070	0.24	< 0.070	0.12	239	0.074	
Barium 2.3.6	16	353	730	542	443	0.80	0.JR	1.7	1.7	0.14	1.2	061	0.14	50)R
Beryllium	01	21	11	12	23	< 0.035	0.0	< 0.027	<0.027	< 0.028	< 0.027	29	< 0.027	0.0
Cadmium	5.0	4.8	5.2	5.0	17	< 0.089	0.0	< 0.070	0.48	< 0.070	0.18	349	< 0,069	0.0
Chromium ³	62	95	81	80	55	0.26	1.5R	0.14	0.14	0.68	0.32	244	0.14	75R
Cobalt	43	8	70	68	88	< 0.35	0.0	<0.27	< 0.27	< 0.28	< 0.27	29	< 0.27	0.0
Copper	632	322	234	396	132	1.0	0.2R	0.70	0.53	0.33	0.52	68	0.12	47R
Lead	11	601	61	70	139	0.083	0.4R	0.29	1.1	0.05	0.48	288	0.079	42R
Manganese	146	125	140	137	25	0.18	0.2R	1.2	0.21	0.84	0.74	163	0.14	26R
Mercury	4.4	5.0	3.4	4.3	20	0.12	0.0	0.33	0.19	0.27	0.26	6.3	0.31	0,0
Mulybdenum ³	21	43	34	33	83	3.2	15.9R	0.27	0.27	0.28	0.27	4.2	0.27	AUT
Nickel ³	36	22	11	25	100	0.77	4.1R	0.27	0.27	0.28	0.27	4.2	0.27	42R
Selenium 4	50	. 103	3	72	96	< 0.89	0.0	<0.070	0.11	< 0.070	<0.070	88	< 0.069	0.0
Phosphorus	20.300	16,100	12,500	16,300	62	<8.9	0.02L	<1.4	< I.4	<1.4	<1.4	29	3.6	0.0
Vanadium	190	319	232	247	68	<0.18	0.0	< 0.14	< 0.14	< 0.14	< 0.14	29	<0.14	0.0
Calcium 2.5.6	1,170	06 >	0%6'1	1,560	320	8.9	2R	143	151	102	132 -	50	8.9	11K
Sodium 3.5.6	4,920	2.570	2,380	3,290	108	8.9	2R	7.5	34	7.0	16	237	77	75R

* < * indicates that the quantity measured was less than the detection limit thus the detection limit is shown Nute:

1. "R" indicates reagent blank correction. "L" indicates laboratory blank correction.

Tests Ba #1-Out and Ca #2-In not included in averages.

Subtracting reagent blank lowered result below the detection for Ar #1-Out; Ba #3-Out; Cr #1-, 2-Out; Mb #1-, 2-, 3-Out; Ni #1-, 2-, 3-Out; and Na 3-Out.

Average calculated by dividing non-detects in half was less than highest non-detect, so highest non-detect used for average.

5. Results included, even though neither trace metals nor air toxics.

Values for these metals at the FFDC inlet are reported but believed to be invalid due to a problem with sample preparation (see text). ġ.

Table 14: Trace Metal Emission Results for Calcium-Based DSI System

21

	Reagent	D3683 mg/Kg	E3050 mg/Kg	INAA mg/Kg
Barium	sodium	5,976	24,390	33,122
	calcium	6,670	17,447	28,925
Calcium	sodium	122,740	213,404	NP
	calcium	78,917	204,879	NP
Sodium	sodium	14,843	64,322	105,096
	calcium	31,849	27,423	46,099

Table 15: Comparison of Alternate Digestion Methods with INAA

EPA method 29, multi-metals method, also uses HF acid for digestion of solid matter collected in the sample train. Due to the potential negative bias that may be caused with HF acid, all data collected for barium, calcium, and sodium from the solid samples using Method 29 are believed invalid and are presented for information only. Table 16 compares the inlet fuel levels to the values measured at the FFDC inlet determined from the Method 29 test using HF digestion. Note the very large discrepancy in the inlet values. It is believed that the fuel values are more accurate and that the FFDC inlet values for the three elements presented are invalid. They are shown in this table only to note the large variation that was believed due to the HF digestion techniques. Note that the

inlet values are based on a large amount of particulate matter that is present at the FFDC inlet. Due to the very low particulate at the FFDC outlet, the possible interference with HF digestion is not believed to significantly affect the outlet data. While the fly ash and coal samples could be re-analyzed after the discovery of the possible HF interference, it was not possible to re-analyze the Method 29 train.

	Fuel 1b/10 ¹² Btu	FFDC Inlet lb/10 ¹² Bru	Percent Difference
barium	17,400	431	3,937%
calcium	205,000	1,240	16,432%
sodium	27,400	2,580	962%

Table 16: Comparison of fuel vs FFDC Inlet Measurements

Uncertainties for copper, lead, and nickel were 100% and greater. The wide spread between the replicate tests caused the high uncertainty for these three elements. A review of the data logs and sample methods did not reveal any errors that could explain the differences.

The FFDC outlet trace metal emissions were very low with many at or near their detection limit. The high uncertainty values are due mainly to a wide variation of replicate tests. Due to the very low measured emissions, the reagent or laboratory blank corrections were also relatively high for many elements.

<u>Anions</u>

Anions were measured from both the front (solid/liquid phase) and the back-half (gaseous phase) of each particulate train. As expected, the majority of all anions occur in the gaseous phase. Results of the testing are presented in Table 17.

At the FFDC inlet, the sample-train measured 465 ppm of gaseous sulfate and the CEM measured 460 ppm of SO_2 . The gaseous fraction represents SO_2 plus any SO_3 in the vapor phase. The sample-train measured 3 ppm of solid-phase sulfate at the FFDC inlet, representing sulfuric acid mist and solid-phase sulfate present at the 250°F filter temperature. At the FFDC outlet, the sample-train measured 287 ppm of gaseous sulfate and the CEM measured 275 ppm of SO_2 .

					HDC Julet						(HI)	X Oudet			
Acid Pormi	ng Anions	Tesi 1	Test 2	Test 3	Avg.	Илсеп.	Field Blank	Blank Correct	Тсы 1	Test 2	Test 3	Avg.	Uncert.	Field Blank	Blank Correct
			udd	3		ž	windd	%		vuidd	2		٤٩	muldt	ود
	Total	0.59	0.75	0.64	0.66	36	V/N		0.25	0.32	0:30	0.29	33	N/N	
(CI ⁻)	Gaseous	0.56	0.72	0.61	0.63				0.24	0.30	0.29	0.28			
	Solid	0.035	0.034	0.031	0.033			0	< 0.017	0.020	0.012	< 0.017			=
ī	Total	8.5	11	-	10	RE	N/A		0.12	0.58	<0.06	0.24	293	V/V	
Fluorine (F_)	Gascous	8.2	10	н	9.6				0.09	0.54	<0.06	0.22			
	Solid	0.23	0.50	0.35	0.36			0	0.034	0.039	0.019	0.031			0
	Total	455	477	474	469	17	V/V		302	297	262	287	15	V/N	
Sulfate (SO , ⁻²)	Gaseous	452	474	470	465				302	297	262	287			
	Solid	2.9	3.1	3.3	3.1			R	0.068	0.015	0.019	0.034			J2R

1. "<" indicates that the quantity measured was less than the detection limit thus the detection limit is shown.

2. "R" indicates reagent blank correction. "L" indicates laboratory blank correction.

3. Sulid fraction consists of filter and front-half rinse.

4. Gascous fraction consists of hicarbonate/carbonate and 3% peruxide tinses.

Table 17: Acid-Forming Anion Emission Results for Calcium-Based DSI System

Baseline Dioxin and Furan Emissions

Table 18 lists the gaseous polychlorinated dibenzo-P-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) emissions at the FFDC inlet and outlet. Note that sampling and analysis techniques were optimized to lower detection limits to an average 10 times lower than that of normal dioxin and furan tests.

All dioxins and furans were measured near or below their detection limits. At the FFDC outlet, OCDD and 23478 PeCDF were the only individual isomers detected in all three samples. However, these isomers were also detected in the field blank, so their detected levels may not be entirely source related.

In Table 18, the column headed by "EPA Equiv." lists the EPA toxic equivalent for each specie. These values can be used for comparing risk and are used in the establishment of emission limits for municipal solid waste (MSW) incinerators. These equivalent values were calculated by multiplying the average actual emission of a specie by its EPA risk factor.

The total emissions of EPA equivalent toxics at the FFDC inlet was 0.0015 ng/Nm³ and consisted of 0.0008 ng/Nm³ of detected species and 0.0007 ng/Nm³ of nondetects. Thus, 47% of the total EPA equivalent at the inlet of the FFDC was due to nondetects. The total emissions of EPA equivalent toxics at the FFDC outlet was 0.0014 ng/Nm³ and consisted of 0.0003 ng/Nm³ of detected species and 0.0012 ng/Nm³ of nondetects. Thus, the nondetects at the outlet relate to 86% of the total EPA equivalent toxics. For comparison, well controlled MSW incinerators typically have on the order of 1 ng/Nm³ of equivalent toxic emissions, three orders of magnitude higher than Arapahoe Unit 4.

				TIDC Inlet							FFDC Oute	-		
PCDD/PCDF	Test 1	Test 2	Tesi 3	Ave.	Опсен.	Field Blank	EPA Equív.	Test I	Tesi 2	Test 3	Avg.	Uncert.	Piekl Blank	EPA Fquiv.
		N/Bu	Г		ž	ng/N	۰ ۱		¶/gu	lm J		೭೪	N/đu	- -
2378-TCDD ^{1,2}	<0.0006	0.0006	0.0006	0.0005	95	< 0.0006	0.0005	0.0006	< 0.0004	< 0.0005	< 0.0005	11	<0.000.0 >	0.0005
12378 PeCDD	< 0.0006	0.0002	< 0.0004	< 0.0006	78	< 0.0006	0.0003	<0.0007	< 0.0005	< 0.0005	< 0.0005	87	<0.0005	0.0003
123478 HxCDD ²	< 0.0007	0.0007	0.0007	0.0006	88	< 0.0008	0.0001	0.0007	<0.0007	0.0006	0.0006	96	< 0.0012	0.0001
123678 HxCDD ¹	< 0.0004	0.0002	< 0.003	< 0.0004	48	< 0.0005	0.000.0	< 0.0004	< 0.0004	< 0.0002	<0.0003	K 3	< 0.00017	O CKKN
123789 HxCDD	< 0.0006	< 0.0002	< 0.0004	< 0.0004	108	<0.0017	0000.0	< 0.000.0 >	<0.0006	< 0.0003	< 0.0005	88	0100.0>	0 0000
1234678 HpCDD 1.2	< 0.0008	0.0004	0.0004	0.0004	43	< 0.0008	0.000	0.0010	<0.0006	< 0.0004	< 0.0006	136	< 0.0005	0,000
OCDD	< 0.0011	0.0037	0.0020	0.0021	161	90000	0.000	0.0042	0.0012	0.0008	0.0021	225	0100.0	0000.0
2378 TCDF	<0.0020	< 0.0011	< 0.0013	< 0.0014	16	< 0.0018	0.0001	< 0.0022	< 0.0018	< 0.0018	< 0.0020	36	<0.0011	0,0002
12378 PeCDF	< 0.0005	< 0.0002	0.0002	< 0.0005	92	< 0.0005	0.000	< 0.0004	< 0.0002	< 0.0001	< 0.0002	127	<0.0003	00000
23478 PeCDF	0.0005	0.0004	0.004	0.0004	42	< 0.0005	0.0002	0.0005	0.0004	0.0004	1000.0	(17	0.0004	0.000
123478 IIxCDF	<0.0006	< 0.0002	< 0.0004	< 0.0014	126	< 0.0004	0.000	0.0004	<0.004	< 0.0002	< 0.0004	7.5	<0.0004	(NKH).()
123678 HxCDF	< 0.0004	<0.0002	< 0.0003	< 0.0003	89	< 0.0002	0.0000	< 0.0003	<0.0003	< 0.0001	< 0.0002	104	<0.0004	0,000
234678 HxCDF	< 0.0007	< 0.003	< 0.0004	< 0.0005	101	< 0.0004	0.000	< 0.0004	< 0.0004	< 0.0002	< 0.0003	96	<0.0004	(MMH) ()
123789 11xCDF	< 0.0007	< 0.004	< 0.0004	<0.0005	107	< 0.0004	0.001	< 0.0004	< 0.0005	< 0.0002	< 0.0004	95	<0.0005	0.0000
1234678 HpCDF	<0.0004	<0.0003	< 0.0003	< 0.0004	45	< 0.0007	0.0000	< 0.0005	< 0.003	< 0.0002	< 0.0004	901	100010>	(HKK) ()
1234789 HpCDF	<0.0006	< 0.0005	< 0.0005	< 0.0005	Ŧ	< 0.0010	0.000.0	< 0.0008	< 0.0005	< 0.0004	<0.0005	103	<0.000.0>	0.0000
OCDF	< 0.0006	< 0.0004	< 0.(K)(6	< 0.0005	51	0100.0>	0.0000	< 0.0006	< 0.0008	< 0.0005	< 0.0006	67	< 0.0006	0 (КИК)
Total TCDD 1.2	< 0.0006	0.0006	0.0006	0.0005	95	< 0.0006	:	0.0006	< 0.0004	< 0.0005	< 0.0005	74	<0.0005	:
Total PeCDD ¹	<0.0006	0.0002	< 0.0005	< 0.0006	79	< 0.0006	1	< 0.0007	< 0.0005	< 0.0005	< 0.0006	50	<0.0005	1
Total HACDD	<0.0005	0.0008	0.0005	0.0005	251	< 0.0006	1	0.000	< 0.0005	0.0004	0.0005	167	6000.0>	;
Total HpCDD 1.2	< 0.0008	0.0004	0.0004	0.0004	43	< 0.0008	:	0.0010	<0.0006	< 0.0005	< 0.0006	611	<0.0005	;
Total TCDF	0.0019	0.0023	0.0028	0.0023	4	0.0019	:	0.0019	0.0016	0.0015	0.0017	26	0.0014	:
Total PeCDF	0.0011	0.0007	0.0014	0.0011	80	< 0.0005	:	0.0011	0.0007	0.0007	0.0008	68	0.0004	:
Total HxCDF	< 0.0006	0.0003	< 0.0004	< 0.0006	69	< 0.0006	1	0.0004	< 0.0004	< 0.0004	< 0.0004	28	< 0.0004	:
Total HpCDF	< 0.0005	< 0.004	< 0.0014	< 0.0014	4	< 0.0008	;	<0.0006	< 0.0004	< 0.001	< 0.0005	۲3	<0.0005	;
Total	0.0119	0.0144	0.0137	0.0133	72	:	0.0015 ³	0.0185	0.0104	0.003	0.0127	1001	:	¢ 1100 0

"< "indicates detection limit and that species was not detected."

1. By convention, the calculated mean cannot be smaller than the largest detection limit value. When this happens, the mean is reported as not detected below highest detection limit.

Detection limits varied by sample, a straight average with non-detects divided by two was taken, highest non-detect rule was decried inappropriate.
 Total EPA toxic equivalent (2, 3, 7, 8, TCDD Equivalent)

Baseline Polychlorinated Dibenzo-P-Dioxin (PCDD) and Polychlorinated Dibenzofuran (PCDF) Emissions Table 18:

27

FFDC Efficiency

Table 19 shows the FFDC removal efficiency for trace metals, anions, calcium, and sodium. The FFDC did not affect flue gas concentrations of PCDDs or PCDFs. The FFDC averaged 98.6% removal efficiency for trace metals and 99.95% for particulates.

The FFDC's removal efficiency for mercury was 93.7%, significantly higher than was obtained in previous testing without calcium injection with humidification. Fly ash unburned carbon during this testing averaged 11.21%. Water was also injected into the flue gas to improve calcium utilization. The water injection cooled the flue gas to approximately 150°F. It is believed that the combination of low flue gas temperature and high unburned carbon in the fly ash allowed the higher than expected mercury removal.

As was discussed in the trace metals section, sodium, calcium, and barium are believed to be severely biased low. Thus the data for these three elements is presented for informational purposes but the relative numbers are considered invalid.

The combination of the FFDC with calcium injection with humidification obtained significant removal of the acid-forming anions. Removal of both chloride and fluoride were 55.1% and 97.5% respectively. The removals are comparable to previous testing with urea injection but are significantly higher than the original baseline which were 10% for chloride and 20% for fluorides. SO_2 removal during the test was approximately 37% due to the calcium and humidification system.

Specie	s	Inlet	Outlet	FFDC Removal
Trace M	etals	1b/10 ⁻¹² Btu	1b/10 ⁻¹² Btu	%
Arsenic		20	0.09	99.5
Barium ²		431	0.94	99.8
Beryllium		9.5	< 0.02	> 99.8
Cadmium		3.9	0.15	96.2
Chromium		63	0.26	99.6
Cobalt		53	< 0.22	>99.6
Copper		310	0.42	99.9
Lead		55	0.38	99.3
Manganese		108	0.59	99.4
Mercury		3.4	0.21	93.7
Molybdenum		26	0.22	99.1
Nickel		19	0.22	98.9
Selenium		57	< 0.06	>99.9
Phosphorus		12,800	<1.1	> 99.99
Vanadium		194	<0.11	>99.9
Calcium ^{1,2}		1,240	106	91.4
Sodium ^{1,2}		2,580	13	99 <i>.</i> 5
Average				98.6
Total Particulate		4.27 lb/MMBtu	0.0021 lb/MMBtu	99.95%
Acid-Forming	Anions	lb/10 ¹² Btu	1b/10 ¹² Btu	%
Chloride (Cl)	Solid	41	<21	>48.9
j j	Gas	784	353	54.9
	Total	825	371	55.1
Fluoride (F)	Solid	241	21	91.3
	Gas	6,460	150	97.7
	Total	6,700	167	97.5
Sulfate	Solid	10,600	115	98.9
	Gas	1.57(10 ን	9.89(10 ³)	37.1
	Total	1.58(10 ን	9.90(10 ⁵)	37.5

NOTES:

"<"indicates that the quantity measured was less than the detection limit; thus the detection limit is shown.

"> "indicates that the percentage removal is based on a detection limit so the expected minimum removal rate.

1. Included even though neither trace metals or air toxics.

2. Values for these metals are reported but are believed invalid due to a problem with sample preparation. (see text) Table 19: FFDC Removal Efficiency (Calcium-Based DSI Test Period)

E. Solids Stream Monitoring

Calcium-Based Sorbent Analysis

Table 20 lists the trace metal and anion analysis results for the calcium-based sorbent (calcium hydroxide) and humidification water. Although calcium and sodium are neither trace metals nor air toxics, Table 20 also lists them.

The humidification water contained negligible amounts of trace metals but significant amounts of calcium, sodium, and acid-forming anions. The total mass input of air toxics due to the sorbent and water added to the process was insignificant in comparison to the amounts in the coal. Notable exceptions were molybdenum and chloride. The sorbent water contained 41% of the total mass input of molybdenum and 46% of the input chlorides. Other air toxics that were input due to the sorbent and water were much lower and ranged from 0 to 10% of those input from other sources on a mass basis.

	Calcium	Sorbent	
Element	Test 22	Blank Correct	Sorbent H ₂ O
	mg/kg	%	μg/L
Arsenic	<1.2	0	< 5.0
Barium	9.0	0	34
Beryllium	< 0.49	0	< 2.0
Cadmium	< 1.2	0	< 5.0
Chromium ^t	5.1	0	< 10
Cobalt	<4.9	0	< 20
Copper	5.3	0	< 5.0
Lead	< 0.73	0	< 3.0
Manganese ¹	45	22.4	< 10
Mercury	< 0.091	0	< 0.20
Molybdenum	6.2	0	25
Nickel ¹	5.3	0	< 20
Selenium	< 61	U	< 250
Phosphorous	195	0	< 100
Vanadium	7.9	0	< 10
Calcium	NP	0	27.000
Sodium	NP	0	17.000
Chloride	< 5.0	0	22.973
Fluonde	34	0	960
Sulfate	170	0	104.350

1. Prep blank levels were higher than the sample values, so the samples were not blank corrected.

 Table 20:
 Air Toxics Analysis of Hydrated

 Lime
 Image: Contract of the second second

Coal Analysis

Previous air toxics testing at Arapahoe has shown the importance of obtaining representative solid samples. This is a difficult task due to the scale and current equipment. Coal sample procedures were modified and the ASTM D2234 collection method was followed more closely during the sodium- and calcium-based DSI test periods than during the low-NO_x combustion and SNCR test periods. In addition, the ASTM D2013 preparation method was followed during the sodium- and calcium-based DSI test periods. For barium, lead, calcium, and sodium, EPA Method 3050 was used for coal digestion instead of ASTM D3683.

For many trace metal data points, there were two or three sets of results. On average, there were three sets of data with some having as many as six sets. For example, one point had results from:

- Curtis & Tompkins analysis using conventional digestion.
- Curtis & Tompkins analysis using EPA 3050 digestion.
- Standard Laboratory's analysis.
- Curtis & Tompkins triplicate analysis using conventional digestion.
- Curtis & Tompkins triplicate analysis using EPA 3050 digestion.
- INAA.

Except for a few cases, the results from these different sources did not agree. Ideally, if the data for one element from one set was consistent with expected levels and other process streams, then the data for elements within the same data set processed by the same lab and method would also be consistent. Unfortunately, a common bias for a data set could not be found. Therefore, the use of a particular data set depended solely on its agreement with levels determined in other input and output streams from the same test program.

For the low-NO_x combustion and SNCR test periods, INAA was selected as the analytical technique most likely to produce representative data sets for arsenic, barium, mercury, selenium, and chloride because INAA:

- Could achieve lower detection limits for arsenic, mercury, selenium, and chloride.
- Results for barium agreed with USGS and Cyprus Yampa Valley coal data. ICP-AES results were biased low.

Since INAA is not a proven analytical technique for trace metal analysis of coal, it was not chosen to analyze an element unless there was a clear technical justification to discard the conventional data.

For the coal samples from the sodium- and calcium-based DSI test periods, INAA was the only technique used to analyze arsenic, mercury, selenium, and chloride. With the use of EPA 3050 digestion technique for barium, the ICP-AES analysis results for barium are no longer severely biased and are now consistent with expected levels. For sodium-based DSI test, the conventional analytical results for cadmium, chromium, manganese, and vanadium were considered as qualitative and discarded.

Table 21 lists the analysis of the coal for trace metals and acid-forming anions. Although calcium and sodium are neither trace metals nor air toxics, Table 21 also lists them. All trace metals were detected in each replicate. Most elements show relatively good precision (uncertainty less than 100%). A single high nickel reading caused uncertainty of 120%. While high the nickel readings are in the range expected for this coal.
			Base Tes	t Mcthixl					Z	VV		
Trace Metals	Test 1	Test 2	Test 3	Avg.	Ивсеп.	Blank Correct	Test 1	Test 2	Test 3	Avg.	Uncert.	Blank Correct
		gm	'kg			20		đu	/kg		υ`	
Arsenic ²	dN	đz	٩N	NP	٩N	0	0.54	81.0	0.51	0.51	7	9
Barium ¹	30	173	174	192	42	0	285	347	325	916	25	0
Beryllium	0.37	0.28	0.41	0.35	46	0						
Cadmium ^{2,3}	0.12	< 0.10	<0.12	< 0.11	;	0	0.05	0.08	0.047	0.048	86	5
Chronium	2.6	1.9	2.9	2.5	52	0	1.7	1.6	2.1	1.8	66	0
Cobalt	<u>.</u>	0.8	0.1	1.0	()()	0	0.81	0.91	0.82	0.85	17	0
Copper	5.2	3.4	4.5	4.4	53	0						
Lead ^t	3.4	3.1	3.8	3.4	24	0						
Manganese	14	=	23	16	101	•	6.7	7.8	8.4	7.6	28	
Mercury ²	ďN	đN	đ	ЧN	NP	0	0.024	0.035	0:030	0:030	46	0
Molybdenum	0.52	0.32	0.42	0.42	09	0	6.0	0.8	0.9	0.9	14	÷
Nickel	2.4	0.9	4.1	1.6	120	0						
Selenium ²	dN	đN	ď	NP	ЧN	0	62.1	1.37	1.14	1.27	22	0
Phosphorus	450	338	376	388	37	0						
Vanadium	7.5	4.5	6.7	6.2	3	0	5.9	4.7	7.2	5.9	51	
Calcium 1.4	2,390	2,280	2,110	2,260	16	• 0						
Sodium 1.4	432	265	211	302	95	0	496	475	554	508	20	=
Anions		'âm	/kg			%		au	/kg		6.	
Chloride (CL) ⁽²⁾	;	1	;	1	1	0	13	25	61	61	78	5
Fluorine (F)	08	70	70	73	07	0		_				
Sulfate	17,400	18,000	17,100	17,500	16	Э						
<pre>- 'indicates that the</pre>	: quantity me	asured was le	iss than the de	tection limit t	hus die	1. Analysis	performed a	fier an EPA	3050 digestion	(acid only).		

detection limit is shown.

"NP" indicates not performed.

All values are reported on an as-received basis for the coal.

Table 21: Trace Metals Analysis of Coal

£

2. INAA results were used for these trace species rather than the trave method.

Cadmium average less than highest nondetect and reported as such.
 Included even though neither are trace metals or air toxics.

<u>Fly Ash</u>

Table 22 lists the results for the fly ash and bottom ash from the calcium-based DSI test period. Although calcium and sodium are neither trace metals nor air toxics, Table 22 also lists them. Cadmium is the only element reported below its detection limit. The results for barium, calcium, and sodium from Test-1 were not used in the average. The combination of EPA 3050 digestion and ICP-AES analysis is used only for these three elements, therefore a problem with the digestion or ICP analysis may have affected these results. The conventional digestion of the sodium sample for Test-1 also yielded a value an order of magnitude higher than the other samples. This suggests that EPA 3050 digestion failed to dissolve the entire samples of barium and calcium and that the sodium sample was contaminated. Test-3 for sodium appears to be negatively biased when compared with output stream levels.

Matrix effects and certain digestion techniques make the analysis of selenium very difficult. Selenium is by far the most problematic of potential air toxics elements to analyze. With the discovery that hydrofluoric (HF) acid was interfering with GFAA, ash samples were re-analyzed using EPA 3050 digestion. This method eliminated the need for diluting the ash samples to minimize interference as well as most of the questionable results and high detection limits. However, the ash results for selenium obtained with EPA 3050 digestion from the sodium- and calcium-based DSI test periods are not consistent with expected levels. Despite high detection limits and poor precision, the conventional ash results for selenium agree, on average, with expected values and are used in the mass balance.

Bottom Ash

Overall, sample preparation does not appear to have biased the results of the bottom ash. The average results for arsenic, cadmium, mercury, and molybdenum were below the detection limit. Except for selenium and sodium, the replicates show good agreement. As with the fly ash, the conventional digestion methods used to analyze selenium often produce spurious data points. Also, since bottom ash levels of sulfate contribute less than 1% of the total sulfate stream, the spread in the sulfate results is considered negligible.

- ---

			ottom Ash/SI	uice Water ⁷					La la	Ash		
	Tex 1	Test 2	Test J	Avę.	Uncert.	Blank Correct	Test 1	Test 2	Test J	Avę.	ปหะะณ.	Blank Correct
Trace Metals		l/gm	3:			2		/âu	kg			
Arsenic	<1.2	≮ 1.3	<1.2	<1.2	40	0	5.9	3.7	3.3	[.‡	81	=
Barium	906	1.100	1,000	000,1	29	0	580	1,100	066	1,045	Ē	•
Beryllium	3.9	3.6	3.8	3.8	27	0	3.7	2.9	2.7	3.1	37	0
Cadmium ⁴	<1.1>	<<	· <1.1	<1.1	40	0	<1.1>	<1.3	<1.4	с. I >	7	0
Chromium	23	20	23	22	27	0	27	20	20	22	20	0
Cobalt	15	14	16	15	29	0	16	14	13	14	27	0
Copper ⁵	120	47	49	72	16	9	42	47	C‡	7	33	0
Lead	23	22	21	22	28	0	45	29	30	35	89	9
Manganese	001	83	180	121	111	0	150	96	100	115	89	•
Mercury	< 0.020	< 0.020	< 0.020	< 0.020	44	0	0.15	0.32	0.27	0.25	- 16	0
Molyblenum 4	4.5	<4.3	<3.9	<4.3	37	0	4.6	7.8	7.5	6.6	20	0
Nickel	15	13	61	9	44	0	17	91	10	14	(6)	0
Selenium ³	Ţ,	. 23	< 9.7	=	233	0	8	(1>	2.8	=	K†1	0
Phosphorus	5,100	5,900	5,900	5,630	11	0	3,900	4.600	4,300	4,270	ដ	0
Vanadium	49	50	5	51	28	0	57	46	45	40	E	0
Calcium 1.6	19,700	23,700	21,400	21,600	28		22,000	000'091	150,000	155,500	26	
Sodium ^{1,6}	1,320	1,370	1,310	1,340	33		63,000	2,600	1,700	2,150	27	
Acid-Forming Anions		/Jun	50		5			mg/	88		<u>र</u> ू	
Chloride as Cl	24Ò	262	214	238	29	0	120	82	72	16	72	0
Fluoride as F ^{- (2)}	6.9	6.2	5.1	6.1	34	0	001.1	13	72	1.100	N/N	0
Sulfate	186	260	1.680	710	797	¢	66,500	49.4(X)	59,900	58,6603	33	•
<pre>'< "indicates that the quar</pre>	nity measured	was less than	the detection	1 limit; thus 1	the detection	limit is show	п. 5. /	I-Bottom Asl	ı was higher I	than fuct input	and not used	in average.
1. Replicates for #1-Fly /	Ash fur Ba, C	a, and S not u	sed in average	e, since not c	onsistent with	h expected va	lues. 6. Ir	kcluded even (hough neither	r are trace me	tals nor air too	iics.
. FI results for #2- and	#3-Fly Ash no	ot used in ave	rage because	of incomplete	water extrac	ction.	7. T	race metals re	sults from be	Morn ash solid	I fraction only	For
8. Since detection limits v	ried by sam	sle, hìghest nu	n-detect not t	used for aver	age.		R 1	aíons, Ca, and	Na, solid an	d liquid fractio	ens analyzed se	parately
 Highest non-detect use 	d for bottom	asli average.					a 3	or comment prrections	моронолан	y by weight a	lier slunce wate	r plank

Table 22: Air Toxics Analysis of Ash for Calcium-Based DSI

F. Mass Balance Results

Mass balances are an important quality check on toxics emissions data. Using different sample and analytical techniques to measure toxics in both gaseous and solid forms is difficult. Mass balances provide a quick means for determining how well various analytical methods agree. The low absolute quantities of the measured materials, however, makes the occurrence of a 100% mass balance very unlikely.

There are three major sources of potential error in the mass balance: operating conditions, analytical difficulties, and sample collection and handling. Since Arapahoe Unit 4 operated at or near steady-state conditions and the daily tests show that the same coal was fired throughout the tests, operating conditions are not likely to contribute any significant sources of error. Analytical difficulties usually only affect the results of individual replicates or species, so they are considered with each species. Normally, analytical difficulties outweigh sampling problems. On a utility coal-fired unit, however, obtaining representative samples from process streams flowing at thousands of pounds per hour adds a major source of potential error. It should also be noted that uncertainties only represent consistency, not accuracy.

In addition, recent findings from other Department of Energy (DOE) sponsored programs indicate that the sample digestion methods of EPA Method 29 are not effective for large quantities of ash and introduce a 20 to 60% negative bias. The difficulty of finding a correct digestion method and the need for different digestion methods for different elements casts doubt on the validity of the sample preparation procedures of both EPA Method 29 and the ASTM methods which use only one digestion method for all elements.

Only compounds dependent on the fuel inputs can be balanced. Since semivolatile organic compounds depend on combustion parameters, they cannot be balanced. The boiler/FFDC mass balance uses the coal and calcium-based sorbent as its inputs and the bottom ash, fly ash, and FFDC outlet as its outputs. The boiler mass balance uses the coal for its only input and the FFDC inlet and the bottom ash as its outputs. For the sorbent results, nondetects are treated as zeroes if the detection limit is greater than 25% of the fuel input (selenium, for instance) or if the element is not expected to exist in the sorbent (arsenic and mercury, for example).

Table 23 shows the mass balance results for the calcium-based DSI test period. Based on fuel-input and fly ash levels, the FFDC results for mercury appear to be positively biased. For the boiler/FFDC balance, most species were in the range of 69 to 130%, except for barium, cobalt, and phosphorous. The following may have affected the results for these elements:

- Since the fuel input for barium is considered accurate, the barium levels in the ash are considered negatively biased by 30 to 40%.
- The fuel input for cobalt appears to be biased low.
- Since previous tests produced good closure for phosphorous, the phosphorous levels in the sorbent may be biased low. The phosphorous levels in the bottom ash, however, are higher than those in previous tests, so these values may also be causing the poor closure results.

	Іпр	uts	Intermediate		Outputs		Mass B	alance
Species	Fuel	DSI ¹ (Calcium)	FFDC Inict	Bottom Ash	Fly Ash	FFDC Outlet	Boiler/ FFDC ²	Boiler ²
Trace Metals	lb/10	¹² Btu	lb/10 ¹² Bru	1	Ib/10 ¹² Btu		57	
Arsenic ³	47	< 3.4	20	<4.4	30	Q.093	75	52
Banum	17.400	26	NV	3,580	7,300	0.94	62	
Beryllium	32	< 1.4	9.5	13	22	< 0.022	105	72
Cadmium	5.4	< 3.4	3.9	< 3.9	< 8.8	0.15		72
Chromum	224	14	63	79	157	0.26	99	63
Cobalt		< 14	53	54	101	< 0.22	144	115
Copper	396	14	310	172	308	0.42	117	122
Lead	310	<2.1	55	79	244	0.38	104	43
Manganese	1 450	123	108	448	812	0.59	80	38
Mercury ³	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.25	3.4	< 0.072	1.7	0.21	74	128
Molybdenum	38	18	26	<15	46	0.22	110	108
Nickel	141	15	19	57	102	0.22	102	54
Selenium ³	115	< 174	57	38	77	< 0.057	100	83
Phosphorus	35 200	532	12,800	20,300	29,800	<1.1	140	94
Vanadium	565	22	194	183	346	< 0.11	90	67
Average Metals							100	79
Calcium ⁴	205,000	1.47(10 5)	NV	77,300	1.08(10 %	106	69	
Sodium	27,400	522	NV	4.780	15.000	13	71	
Acid-Forming Anions	іь/10	¹² Bru	lb/10 ¹² Bru		16/10 ¹² Bru		56	
Chioride (C1) ³	1,720	712	825	848	645	371	77	98
Fluoride (F)	6.650	122	6,700	21	7,680	167	116	101
Sulfate	1.59(10 ත	3.670	1.58(10 5	2,790	410,000	990,000	88	100
Average Anions	}					ļ	94	100

"<"indicates that the quantity measured was less than the detection limit; thus the detection limit is shown.

"NP" indicates not performed, "NV" indicates not valid.

1. Sorbent input stream includes trace metal and anion levels in both the calcium sorbent and the sorbent water,

2. Boiler/FFDC mass balance calculated using: (outlet + fly ash + bottom ash)/(fuel + sorbent). Boiler mass balance calculated using: (inlet + bottom ash)/fuel.

3. Fuel concentrations from INAA.

4. Calcium sorbent flow rate as {(weight% of Ca) * (Ca flow rate) * (10⁶)} + (sorbent H₂O flow rate).

Table 23: Mass Balance Results for Calcium-Based DSI Test Period

G. Summary of Test Results

Table 24 summarizes the fuel input, FFDC inlet, and FFDC outlet results for each of the test periods. Yampa coal was fired at Arapahoe Unit 4 for low-NO_x combustion, SNCR, and sodium-based DSI test periods. For the calcium-based DSI test period, Edna coal was fired at Arapahoe Unit 4. It is not clear whether the significantly higher values for many trace metals in the coal tested during the sodium- and calcium-based DSI test periods is due to more representative techniques or the coal matrix. The higher levels in the FFDC of these trace metals, however, indicates that changes in the coal matrix caused the higher levels in the fuel input.

The increase of the trace metal levels in the FFDC inlet are consistent with the fuel input levels. However, if the FFDC inlet is considered as a point of uncontrolled emissions, the emissions levels are consistently in the same range.

Improved FFDC removal efficiency with sorbent injection may account for the lower levels of chromium, copper, manganese, nickel, and vanadium in the sodium- and calcium-based DSI test periods. Both sodium and calcium injection before the FFDC significantly reduced the FFDC outlet levels of phosphorous, chloride, fluoride, and sulfate. The lower levels of arsenic, mercury, and selenium suggest that calcium injection removes these elements more effectively than sodium injection.

		Fucl Ir	hput			FFDC	Inlet				butlet	
Parameter	Low-NO _x Combustion	SNCR	DSI (Sudium)	DSI (Calcium)	Low-NO ₅ Combustion	SNCR	DSI (Stadnur)	DSI (Calcium	Low-NO ₄ Combustion	SNCR	DSI (Sodmin)	DSI ("akaum)
		10/10	Bu			101/41	² Bu			11/10 12	n de la	, ,
Arsenic	43	56	62	47	23	13	30	20	0.75	0.15	0 47	660.0
Barium	37,600	29,700	24,400	12.400	534	192	681	431	1.1	1.1	2.5	F0 0
Beryllium	20	48	31	2	9.0	7.5	9.0	9.5	< 0.021	< 0.023	< 0.023	< 0.022
Cadmium	<4.5	< 5.3	3.5	5.4	2.3	2.0	3.6	3.9	0.12	<0.066	< 0.058	0.15
Chromium	76	125	272	224	50	51	135	63	0.66	0.30	0.15	0.26
Cohait	84	114	122	56	90	26	43	53	< 0.21	<0.23	< 0.23	<0.22
Copper	141	324	568	396	691	206	245	310	1.1	6.1	0.59	<u>7</u> 7'0
Lead	185	561	358	310	5	46	80	55	0.44	0.40	0.36	0.38
Manganese	379	458	2,340	1,450	195	88	113	108	1.0	0.89	0.29	0.59
Mercury	1.9	1.7	4.6	2.7	1.3	6.1	1.2	3.4	< 0.29	0.41	0.41	0.21
Malybdenum	0.6	44	45	38	01	12	32	26	0.17	0.27	0.23	0.22
Nickel	53.5	88	175	141	96	29	62	61	1.5	0.45	0.23	0 22
Selenium	3	127	47	115	22	12	< 66	57	0.36	<0.064	0.36	< 0.057
Phosphorous	36,700	27,700	48,500	35,200	14,300	9,300	11,600	12.800	6.7	4.6	1.5	<1.1>
Vanadium	266	379	617	565	135	120	178	101	0.24	0.29	0.13	< 0.11
Calcium	đN	185,000	213,000	205,000	ЧР	880	192	1,240	٩N	29	33	106
Sodium	AN	29.300	64,300	27,400	dN	2.700	1,750	2,580	dX	367	11	1
Chloride	2,000	1,400	1,370	1.720	795	1.010	864	825	626	719	811	371
Fluoride	7,600	7.400	9,140	6,650	4,780	5,780	7,670	6,700	4,290	4,810	0111	167
Sulfate	1.18(10 5)	1.15(10 \$	(01)/11.1	() 01)65.1	(01)9:01	9.88(10 ⁵)	1.14(10 5)	1.58(10 \$	9.83(10 ⁵)	1.17(10 %)	3.60(10.5)	<u>(101)0.0</u>
Cyanide	N/A	N/A	V/N	VN	8	< 12	AN	ЧN	<7	6>	4N	ΝĻ
Amnonia	V/N	N/A	V/N	N/N	001 	12,000	dN	NP	N/A	7,000	dN .	ź.

•

- < "indicates that the quantity measured was less than the detection limit thus the detection limit is shown. "NP" indicates test not performed.

Table 24: Summary of Fuel Input, FFDC Inlet, and FFDC Outlet Levels

7

Table 25 compares the trace metal levels in the output streams as a percentage of the fuel input. A larger distribution of the trace metals in the bottom ash improved the mass balances for the sodium- and calcium-based DSI test periods. The bottom ash levels for the SNCR test period appear negatively biased by 15% of fuel input. For the low-NO_x combustion test period, the bottom ash levels appear negatively biased by 20% of fuel input and the fly ash levels appear negatively biased by 15% of fuel input. The use of the same collection methods for all four test periods suggests that the closer adherence to ASTM preparation methods during the sodium- and calcium-based DSI test periods improved the trace metal results. Also, the use of more representative sampling techniques for fly ash during these test periods appears to have reduced the occurrence of poor trace metal results seen during the low-NO_x combustion test period.

Trat Dated	Output	Stream (% of Fu	el Input')	Total
l'est Period	Bottom Ash	Fly Ash	FFDC Outlet	(% Closure)
Low-NO, Combustion ²	9	53	2	64
SNCR	14	67	2	83
DSI (Sodium)	28	63	1	92
DSI (Calcium)	31	68	1	100

1. Fuel input for sodium- and calcium-based DSI test periods include the sorbent injection streams.

2. The fuel result for molybdenum appears to be severely biased low. The percentages for the low-NO_x combustion test period are based on an average of the molybdenum levels in the fuels from the SNCR and sodium-based DSI test periods.

.

.

.

·

·

.

INTEGRATED DRY NOx/SO2 EMISSIONS CONTROL SYSTEM

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I

ECONOMIC SAMPLE CALCULATIONS AND ASSUMPTIONS

DETAILED CAPITAL AND OPERATION AND MAINTENANCE ESTIMATED COSTS

.

1.0 Sample Economic Calculations

1.1 TOTAL CAPITAL REQUIREMENNT

Eqn. 1-1: Preproduction Costs

Preproduction costs = total O+M costs × length of startup

$$= \frac{\$1.126 (10^6)}{yr} \times 2 \text{ weeks startup } \times \frac{yr}{52 \text{ weeks}}$$

$$= \$0.043 (10^6)$$

Eqn. 1-2: Inventory Capital

Inventory capital =
$$\frac{\text{total variable operating cost} \times 60 \text{ days}}{365 \text{ days}}$$

= $\frac{\$1.025 (10^6)}{yr} \times 60 \text{ days} \times \frac{yr}{365 \text{ days}}$
= $\$0.169 (10^6)$

Eqn. 1-3: Cost of Constrution Downtime

Cost of downtime = downtime × capacity factor × replacement cost × power rating
= 2 days × 0.65 ×
$$\frac{\$0.05}{kWh}$$
 × $\frac{24}{day}$ × 100 MWe × $\frac{10^3 kW}{MWe}$
= $\$0.156 (10^6)$

•

_--

.

1.2 OPERATING AND MAINTENANCE COSTS

Eqn. 1-4: Operating Labor

Operating labor =
$$\frac{2 \text{ operator } -h}{day} \times \frac{\$23.00}{operator -h} \times \frac{365 \text{ days}}{yr}$$

= 0.017 $\frac{\$(10^6)}{yr}$

Eqn. 1-5: Maintenance Labor

Maintenance labor = maintenance percentage × total installed equipment cost × 40% = 4% × $\frac{\$1.76 (10^6)}{yr}$ × 40% = 0.028 $\frac{\$(10^6)}{yr}$

Eqn. 1-6: Maintenance Materials

Maintenace material = maintenance percentage \times total installed equipment cost \times 60%

$$= 4\% \times \frac{\$1.76 (10^{\circ})}{yr} \times 60\%$$
$$= 0.042 \frac{\$(10^{\circ})}{yr}$$

.

Eqn. 1-7: Reagent Cost (Sodium Sesquicarbonate)

Reagent cost = injection rate × reagent cost × capacity factor

$$= \frac{1.723 \text{ tons reagent}}{h} \times \frac{\$60.00}{\text{ton reagent}} \times \frac{24 \text{ h}}{\text{day}} \times \frac{365 \text{ days}}{\text{yr}} \times 0.65$$

$$= 0.589 \frac{\$(10^6)}{\text{yr}}$$

Eqn. 1-8: Reagent Freight

Reagent freight cost = injection rate × freight cost × capacity factor

$$= \frac{1.723 \text{ tons reagent}}{h} \times \frac{\$33.00}{\text{ton reagent}} \times \frac{24 \text{ h}}{\text{day}} \times \frac{365 \text{ days}}{\text{yr}} \times 0.65$$

$$= 0.324 \frac{\$(10^6)}{\text{yr}}$$

Eqn. 1-9: Auxilliary Power

.

Auxilliary power cost = power rate × power cost × capacity factor

$$= \frac{72.5 \ kWh}{h} \times \frac{\$0.05}{kWh} \times \frac{24 \ h}{day} \times \frac{365 \ days}{yr} \times 0.65$$

$$= 0.021 \ \frac{\$(10^6)}{yr}$$

Eqn. 1-10: Annual Waste Disposal Cost (Dry Solids Trucked to Landfill)

Annual waste disposal cost = injection rate × disposal cost × capacity factor

$$= \frac{1.723 \text{ tons waste}}{h} \times \frac{\$9.29}{\text{ton waste}} \times \frac{24 \text{ h}}{\text{day}} \times \frac{365 \text{ days}}{\text{yr}} \times 0.65$$

$$= 0.091 \frac{\$(10^6)}{\text{yr}}$$

1.3 SUMMARY OF PERFORMANCE AND COST DATA

1.3.1 Power Plant Attributes

Eqn. 1-11: Power Produced

Power produced = plant capacity × capacity factor ×
$$\frac{24 h}{day}$$
 × $\frac{365 days}{yr}$
= 100 MWe × $\frac{1,000 kW}{MWe}$ × 0.65 × $\frac{24 h}{day}$ × $\frac{365 days}{yr}$
= 0.569 $\frac{(10^9) kWh}{yr}$

•

Eqn. 1-12: Coal Feed

$$Coal feed = \frac{94,184 \ lb \ coal}{h} \times \frac{24 \ h}{day} \times \frac{365 \ days}{yr} \times 0.65 \times \frac{ton}{2,000 \ lb}$$
$$= 0.268 \ \frac{(10^6) \ tons \ coal}{yr}$$

Eqn. 1-13: SO₂ Removed

$$SO_2$$
 removed = (uncontrolled SO₂ emissions - controlled SO₂ emissions) × capacity factor

$$= \frac{748 - 224 \ lb \ SO_2}{h} \times \frac{24 \ h}{day} \times \frac{365 \ days}{yr} \times 0.65 \times \frac{ton}{2,000 \ lb}$$

$$= 1,490 \ \frac{tons \ SO_2}{yr}$$

1.3.2 Levelized Cost of Power

Eqn. 1-14: Levelized Capital Charge (mills/kWh)

Levelized capital charge =
$$\frac{\text{total capital } \times \text{levelization factor}}{\text{net power produced}}$$

= $\frac{\$2.586 (10^6) \times 0.160}{0.569 (10^9) \text{ kWh}} \times \frac{10^3 \text{ mills}}{\$}$
= $0.727 \frac{\text{mills}}{\text{kWh}}$

Eqn. 1-15: Levelized Fixed O&M Cost (mills/kWh)

Levelized fixed O+M cost =
$$\frac{fixed O+M cost \times levelization factor}{net power produced}$$

= $\frac{\$0.101 (10^6)}{yr} \times 1.314 \times \frac{yr}{0.569 (10^9) kWh} \times \frac{10^3 mills}{\$}$
= $0.233 \frac{mills}{kWh}$

Eqn. 1-16: Levelized Variable O&M Cost (mills/kWh)

Levelized variable
$$O + M \cos t = \frac{variable \ O + M \cos t \times levelization \ factor}{net \ power \ produced}$$

= $\frac{\$1.025 \ (10^6)}{yr} \times 1.314 \times \frac{yr}{0.569 \ (10^9) \ kWh} \times \frac{10^3 \ mills}{\$}$
= 2.367 $\frac{mills}{kWh}$

Eqn. 1-17: Levelized Capital Charge (\$/ton SO₂ removed) Levelized capital charge = $\frac{total \ capital \ requirement \ \times \ levelization \ factor}{SO_2 \ removed}$ = $\frac{\$2.586 \ (10^6) \ \times \ 0.160}{\frac{1,490 \ tons \ SO_2}{yr}}$ = $278 \ \frac{\$}{ton \ SO_2 \ removed}$

Eqn. 1-18: Levelized Fixed O&M Cost (\$/ton SO₂ removed)
Levelized fixed O+M cost =
$$\frac{fixed O+M cost \times levelization factor}{tons SO_2 removed}$$

= $\frac{\$0.101 (10^6)}{yr} \times 1.314 \times \frac{yr}{1,490 tons SO_2 removed}$
= $\$9 \frac{\$}{tons SO_2 removed}$

Eqn. 1-19: Levelized Variable O&M Cost (\$/ton SO₂ removed)
Levelized variable O+M cost =
$$\frac{variable O+M cost \times levelization factor}{tons SO_2 removed}$$

= $\frac{\$1.025 (10^6)}{yr} \times 1.314 \times \frac{yr}{1,490 tons SO_2 removed}$
= 904 $\frac{\$}{tons SO_2 removed}$

Project Performance and Economics

--

· ·

INTEGRATED DRY NOx/SO2 EMISSIONS CONTROL SYSTEM

.

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I-1

Summary of Inputs and Results

.

Input Data	NOTE: Do n	ot change inp	ut data cell to	tations unless all affected files are in memory.					-	
\$** • • • • • • • • • • • • • • • • • •	Coal 1	Coal 2 0	coal 3			ţ	Base SU	Z Kemoval Ka	ates	
						Щ	onomizer Injection		15%	
Sulfur Content	0.40%	1.20%	2.63%			Ŧ	midification		30%	
Heat Content (Btu/Ib)	11.050	7.080	10.300			ŭ	dium		20%	
Ash Content	9.6%	10.4%	10.8%				FO		%06	
Na2O Content	0.63%	1.05%	3 40%					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
							SO2 Ren	ioval Rates		
Unit Data						1	anomiae hi		7000	7006
Pere I Leit Cine /AMAin/	Ş					j	unidification			1003
	<u>s</u> :	ļ				É			6/DC 0	%.nc
Unit Sizes (MWe)	S	100	300	DOE Levelization Factors		<i></i> З 1	dium Bi & Sesqui	30%	6 50%	%07
Unit heatrate (Btu/Net-kwn)	10,542				1	2	Ş	*D \$	e 70%	%06
				Capital Factor (current 5)	0.160					
				Capital Factor (constant \$)	0.124			~~~~~	~~~~~~	~~~~~~
				O&M Factor (current \$)	1.314			For Inform	ation Only	
Capacity Factors	10%	30%	65%	O&M Factor (constant \$)	1.000			~~~~~	~~~~~	******
				Ptant life (yr)	15			DOE Retro	ofit Factors	
Economic Data										
					-			New		0.0
Study Year	1994				Coal Notes			Free acces	SS	0.02
-								Some limit	S	0.10
Inflation Rate	4%			Coal-1 is Yampa coal reported in PDR.				Limited spi	ace	0.25
General Facilities Rate	%0			Coal-2 is lignite from S. Hailsville, TX (B8	&W Steam, p. 8-9	~		Severe lim	iits	1.00
Engineering & Home Office Rate	10%			Coal-3 is Delta #6 coal reported in propos	sal.					
								DOE Proc	ess Contingen	2
	DOE	Specified Co	sts							
								New conce	ept	20%
Replacement Power Cost (\$/kWh)	\$0.05			Ammonia (\$/dry ton)	\$150.00			Bench sca	le	50%
Labor (\$/operator-h)	\$ 23.00							Pilot plant		25%
Ash disposal (\$/ton)	\$9.29							Full-size d	ala	15%
Limestone (\$/ton)	\$15.00							Commerci	<u>la</u>	5%

Condensate (\$/10^3 gal)	\$0.77							DOE Proje	sct Contingenc	*
Raw Water (\$/10^3 gal)	\$0.60									
Cooling Water (\$/10^3 gal)	\$ 0.16			تعرير العرابية والمراجع العرابية المراجع المراجع والمراجع والمراجع والمراجع المراجع والمراجع والمراجع والمراجع		-	***	Simplified		40%
					NOx Data			Preliminary	~	25%
LP Steam, 0-70 psi (\$/10^3 lb)	\$2.85			من عن عليه عليه عليه عليه عليه عليه عليه عليه	-	1		Detailed		15%
MP Steam, 70-250 psi (\$/10^3 lb)	\$3.50			Base SNCR & SCR NOX (IbMMBtu)	0.4			Finalized		5%
HP Steam, >250 psi (\$/10^3 lb)	\$5.30			Base LNB/OFA NOx (Ib/MMBtu)	1.15					
				SNCR & SCR NOX (ID/MMBtu)	4.0	0.9	1.15	DOE Main	tenance Facto	2
PSCo Assigned Costs				LNB/OFA NOx (Ib/MMBtu)	0.9	1.15	1.4			
								Corrosive/	abrasive	6.0
Freight (\$/ton-mi)	\$0.08			LNB/OFA Base Removal Rate	65%			Solids-hi p	res/temp	5.0%
Sodium Bicarbonate (\$/ton)	\$140.00			SNCR Base NOx Removal Rate	40%			Solids-to p	res/temp	4 U%
Sodium Securicarhonate (\$ften)	665 DD			CCD Race NOV Demonal Date						200
Hvdrated 1 ime (\$/ton)	\$62.00				*			Liquido de <u>c</u>	2000	%0.7 %0%
Biownicken Water (\$/10^3 cal)	\$0.00			CNCD Demonal Dates	1900	/001	E nor		AAAAAAAAAA	0/0/1 \$\$\$\$\$\$\$\$\$\$
Drv Hraa Cost (Shon)	\$180.00						6.00 2006	ſ	100000	
	÷ 100.001			OUN NERTOVAL NALES	%.nc	00. 20	00%	Hevised	12/15/94	
				LND/UFA Removal Hales	20%	65%	80%	By:	T.J. Hanley	
				Integrated NOx Removal Rate	%62					

Summary Input Results (INPUT XLS) - 1

Ň
Base
Content &
Sulfur (

		0	urrent Dollars						Const	ant Dollars		
Sulfur Content	0.4%	1.2%	2.6%	0.40%	1.20%	2.63%	0.40%	1.20%	2.63%	0.40%	1.20%	2.63%
	-	\$/ton	-	E	ills/kWh			\$/ton		E	ills/kWh	
Econ Ini(15%)	\$4,247	\$2,936	\$2,855	2.13	6.89	10.09	\$3,251	\$2,240	\$2,178	1.63	5.25	7.69
Humid(30%)	\$2,917	\$1,081	\$933	2.92	5.07	6.59	\$2,237	\$827	\$713	2.24	3.88	5.04
Bicarb(70%)	\$1,460	\$1,111	\$1,079	3.41	12.16	17.79	\$1,115	\$846	\$822	2.61	9.26	13.55
Sesqui(70%)	\$1,412	\$1,064	\$1,032	3.30	11.64	17.02	\$1,079	\$811	\$786	2.52	8.87	12.96
LSFO(90%)	\$4,369	\$1,033	\$735	13.13	14.53	15.58	\$3,362	\$794	\$565	10.10	11.17	11.98
	Total Capital I	Required (\$1	0^6)									
Econ Inj(15%)	\$2.39	\$3.45	\$4.62									
Humid(30%)	\$4.27	\$5.11	\$6.14									
Bicarb(70%)	\$2.52	\$2.66	\$2.76									
Sesqui(70%)	\$2.51	\$2.65	\$2.74									•
LSFO(90%)	\$28.31	\$ 29.98	\$31.60									

Base NOx (Ib/MMBtu)	0.4	0.9	1,15	1.4	0.4	6.0	1.15	4.1
そととたってもくとととととうとれていたと	\$/ton	(current doll	ars)	*******		mills/kWh (current o	lollars)	******
LNB/OFA (65%)	N/A	\$1,234	996\$	\$793	A/N	3.81	3.81	3.81
SNCR (40%)	\$2,906	\$1,838	\$1,655	N/A	2.45	3.49	4.01	N/A
SCR (80%)	\$3,736	\$1,803	\$1,514	N/A	6.30	6.84	7.34	N/A
	Total Canita	Reduited (\$	1046)					
			10 01					
LNB/OFA (65%)	N/A	\$12.87	\$12.87	\$12.87				
SNCR (40%)	\$4.13	\$4.15	\$4,15	A/N				
SCR (80%)	\$11.06	\$11.38	\$11.78	N/A				
***************	~~~~~~~		~~~~~~~	الان الوالي الله الله الله الله الله الله الله ا				

Ună Size				CHERENT	S A A LIOO							CONSTANT	L DOLLARS			
SO2 Systems	50 MWe		100 MWe	300 MWe	50 MWe		100 MWe	300 MWe	50 MWe	v	100 MWe	300 MWe	50 MWe	100 MW6	900 MV	Ne
			\$/ton				mil/kWh				\$/ton			mil/kW		
Econ Inj(15%)		\$5,291	\$4,247 \$247	\$3,432 \$4,567		2.65	2.13	1.72		54 ,055 54 ,055	\$3,251 \$3,251	\$2,623 \$1.105	2 6	1.6	6.5	1.31
Ricarh(70%)		\$1 748	51 460	\$1,007 \$1 253		4 08	3.41	2 93		\$1 ,337	\$1115	\$956		12 26		23
Sesqui(70%)		\$1,656	\$1,390	\$1,198		3.87	3.25	2.80		\$1,267	\$1,062	\$914		96 2.4	89	2.14
LSFO(90%)		\$5,292	\$4 ,369	\$2,770		15.90	13.13	8.33		\$4 .071	\$ 3,362	\$2,134	12	.23 10.1	9 0	5.41
	Total Capit	tal Requi	ired (\$10^6)													
Econ Inj(15%)		\$1.80	\$2.39	54 .36												
Humid(30%) Birath(70%)		5 3.50	5 4.27 69.59	\$ 7.39												
Sesoui(70%)		\$ 2.03	\$2.51	54 3												
LSFO(90%)		\$16.51	\$28.31	\$58.86												
				CURRENT	DOLLARS					·		CONSTAN	T DOLLARS		000	
NUX Systems	avvin uc			300 MVV6	aww uc			300 Mivve	ov mvve			300 MVVe				e l
			\$/ton				mills/kWh				\$/ton			milks/kV	£	
LNB/OFA (65%)		\$1,337	\$ 966	\$ 658		5.27	3.81	2.59		\$1,035	\$748	\$510	4	.08 2.9	95 2	2.01
SNCR (40%) SCR (80%)		\$3 ,879 \$4 ,408	\$ 2,891 \$ 3,721	\$1,861 \$2,577		3.27	2.44 6.28	1.57 4.35		\$2,981 \$3,388	\$2,219 \$2,857	\$1,426 \$1,978	N 10		23 -	1.20 3.34
ر الله الله الله الله الله الله الله الل	Total Capi	tal Requi	ired (\$10^6)													
LNB/0FA (65%)		\$ 8.84	\$12.87	\$26.60			1.15 Ib/MMI	Btu								
SNCR (40%) SCR (80%)		\$ 3.19 \$ 7.18	\$4.13 \$11.05	\$6.44 \$22 20			0.40 Ib/MMI 0.40 Ib/MMI	Btu								
Integrated Systems	50 MWe		100 MWe	CURRENT 300 MWe	DOLLARS 50 MWe		100 MWe	300 MWe	50 MWe	· ·	100 MWe	300 MWe				
			\$/ton				mills/KWh		Total Capit	al Requir	ed (\$10^6)					
SNCR & DSI		\$2,313	\$1.8 39	51 ,414		34.82	15.09	9.62	# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5.22	\$6.65	\$10.94	0.40 fb NOx/MI	ABtu NOx=40	%. SO2=70	%0
Integrated		\$1,746	\$1 ,339	\$987		12.43	9.53	7.03	-	\$14.06	\$ 19.52	\$37.55	1.15 Ib NOx/MN	ABtu SO2=70	%, NOX=79	6%
SCR & LSFO		\$4,974	\$4 ,136	\$2,701		23.34	19.40	12.67		\$23.70	\$39.37	\$81.06	0.40 lb NOx/MI	ABtu NOx=80	%, SO2=90	%0

.

Summary Input Results (INPUT.XLS) - 3

Capacity Factor								Ļ	CONSTANT	DOLLARS		
SO2 Systems	10%	30%	65%	10%	30%	65%	10%	30%	65%	10%	30%	65%
		\$/ton			mills/kWh			\$/ton			mills/kWh	
Econ Inj(15%)	\$12,108	\$5,914	\$4,247	6.06	2.96 2.96	2.13	\$9,308	\$4 ,535	\$3,251	4.66	2.27	1.63
Humid(30%)	\$11,606	\$4,760	\$2,917	11.63	4.77	2.92	\$8,935	\$3,658	52,237	8.95	3.66	2.24
Bicarb(70%)	\$3,570	\$1,907	\$1,460	8.34	4.46	3.41	\$2,741	\$1,460	\$1,115	6.41	3.41	2.61
Sesqui(70%)	\$3,522	\$ 1,859	\$1,412	8.23	4.35	3.30	\$2,704	\$1,424	\$1,079	6.32	3.33	2.52
LSFO(90%)	\$25,768	\$8,908	\$ 4,369	77.44	26.77	13.13	\$19,848	\$ 6,859	\$3,362	59.65	20.61	10.10
	Total Capital Req	uired (\$10^6										
Econ Ini(15%)	S1 83	\$2 03	\$7.39									
Humid(30%)	\$4.05	\$4.13	54.27									
Bicarb(70%)	\$2.21	\$2.32	\$2.52									
Sesqui(70%)	\$2.21	\$ 2.32	\$ 2.51									
LSFO(90%)	\$28.02	\$28.13	\$28.31									
									TIAATOIAO			
NOx Systems	10%	30%	CURRENT DULLARS	10%	30%	65%	10%	30%	65%	10% 10%	30%	65%
	Ö	urrent \$/ton			urrent mills/k	Ę		\$/ton			mills/kWh	
LNB/OFA (65%) SNCR (40%)	\$12,108 \$11,002	55,914 56,914 54,839	\$4 ,247 \$ 2 996	17.98	6.81 4.08	3.81 2.53	\$3,533 \$8,482	\$1,339 \$3 723	\$748 \$2.300	13.92 7.15	5.27 3.14	2.95 1.94
SCR (80%)	\$19,687	\$7,107	\$ 3,721	33.21	11.99	6.28	\$15,134	\$5,461	\$2,857	25.53	9.21	4.82
	Total Capital Req	uired (\$10^6	()									
LNB/OFA (65%)	59.17	5 10.52	\$12.87									
SNCR (40%)	\$3.59	\$4.06	\$4.40									
SCR (80%)	\$10.05	\$10.42	\$11.05									
	į		CURRENT DOLLARS					Total Capital	Required			
Integrated Systems	10%	30%	65% ====================================	10% ======= =	30%	65%	10%	30%	65%			
		\$/ton			mills/kWh			(\$10^6)				
SNCR & DSI	\$5,540	\$2,685	\$1,867	7.36	5.85	4.50	\$5.80	\$ 6.38	\$ 6.92 (0.40 lb NOx/MMBtu I	40x=40%, SO	2=70%
Integrated	\$4,889	\$2,119	\$1 ,352	34.82	15.09	9.62	\$14.97	\$16.90	\$19.79	1.15 lb NOx/MMBtu S	302=70%, NO	%=79%
SCR & LSFO	\$23,582	\$ 8,261	\$4 ,136	110.64	38.76	19.40	\$38.08	\$38.55	\$39.37 (0.40 lb NOx/MMBtu ?	IOx=80%, SO	2=90%

Summary Input Results (INPUT.XLS) - 4

SO2/NOx Removal Rates

SO2 Removal Rate

	15%	\$/ton 20%	(current dolla 30%	ırs) 50%	¥02	%06	15%	mills/kWl 20%	h (current dol 30%	llars) 50%	20%	%06
Econ Inj	\$4,247	\$3,815	\$3,448	A/N	N/A	N/A	2.13	2.55	3.45	N/A	NA	NA
Humid	\$4,110	AN	\$2,924	\$2,385	N/A	N/A	2.74	N/A	2.93	3.19	N/A	N/A
Bicarb	N/A	N A	\$1,749	\$1,551	\$1,460	N/A	N/A	NIA	1.75	2.59	3.41	N/A
Sesqui	N/A	N/A	\$1,472	\$1,285	\$1,412	N/A	NA	N/A	1.47	2.14	3.30	N/A
LSFO	N/A	N/A	N/N	\$7,111	\$5,227	\$4 ,370	N/A	N/A	N/A	11.87	12.22	13.13
			otal Capital	Required (\$1	- 10^6)							
	15%	20%	30%	50%	20%	%06						
Econ Ini	\$2.39	\$2.44	\$2.72	A/N	A/N	N/A						
Humid	\$4.26	N/A	\$4 .29	\$4.52	NA	N/A						
Bicarb	N/A	NA	\$2.08	\$2.32	\$2.52	N/A						
Sesqui	N/A	N A	\$2.06	\$ 2.28	\$2.51	N/A						
LSFO	N/A	NIA	NA	\$25.20	\$25.98	\$ 28.31						
من به بالله الله الله الله الله الله الله	والمالية الموالية المالية الم	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*							******	2	
			Z	IOX REMOV	AL RATES							
		\$/ton	(current dolla	IS)				E	iils/kWh (cur	rent doilars)	2	
	30%	40%	50%	65%	80%		30%	40%	50%	65%	80%	
LNB/0FA(1.15)	N/A	NA	\$1,256	996\$	\$785		N/A	AN	3.81	3.81	3.81	
SNCR(0.40)	\$4,673	\$2,891	\$1,909	N/A	N/A		2.96	2.44	2.01	N/A	N/A	
our(u.4u)			~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		001. H			AN A	0/ c	6.23	0.93	
	T 30%	otal Capital 40%	Requirement 50%	: (\$ 10^6) 65%	80%			0.4				
LNB/OFA(1.15)	A/N	NA	\$12.87	\$12.87	\$12.87		1.15	0.0	0.4			

0.0 4.0 4.0

1.15 1.15 1.15

\$12.87 \$12.87 NVA \$11.81

\$12.87 N/A \$11.05

\$12.87 \$2.18 \$10.55

N/A \$4.13 N/A

N/A \$6.36 N/A

LNB/OFA(1.15) SNCR(0.40) SCR(0.40)

~~~~~~

2222

|                                 |                  | Sulfur Conten                   | _                 | L              | Init Size              |                         |                    | Capacity Fac      | tor                                     | S02               | Removal Ra         | te                 |
|---------------------------------|------------------|---------------------------------|-------------------|----------------|------------------------|-------------------------|--------------------|-------------------|-----------------------------------------|-------------------|--------------------|--------------------|
| ******************              | 0.40%            | 1.20%                           | 2.63% 50 MWe      | . –            | 00 MWe                 | 300 MWe                 | 10%                | 30%               | 65%                                     |                   |                    |                    |
| Econ Inj                        |                  | ,<br>,<br>,<br>,<br>,<br>,<br>, |                   |                |                        |                         |                    |                   |                                         | 15%               | 20%                | 30%                |
| Tot Cap Required (\$10%6)       | \$2.39<br>\$2.39 | \$3.45<br>6.80                  | \$4.62<br>40.00   | \$1.80<br>7.65 | <b>\$</b> 2.39<br>2.13 | <b>\$4</b> .36<br>1 77  | \$1.83<br>6.06     | \$2.03<br>2.06    | \$2.39<br>2.13                          | \$2.39<br>2.13    | \$2.44<br>2.55     | \$2.72<br>3.45     |
| Total Constant (mills/kWh)      | 1.63             | 5.25                            | 7.69              | 2.03           | 1.63                   | 1.31                    | 4.66               | 2.27              | 1.63                                    | 1.63              | 1.95               | 2.64               |
| Total Current (\$/ton)          | <b>54</b> ,247   | \$2,936<br>\$2,936              | \$2,855<br>*2 470 | \$5,291        | <b>\$4</b> ,247        | \$3,432<br>• • • 22     | \$12,108<br>#0.208 | \$5,914<br>** 525 | \$4,247<br>63 263                       | \$4,247<br>53 251 | \$3,815<br>\$7 018 | \$3,448<br>\$2,634 |
| I Olal Constant (\$10n)         | 107'5¢           |                                 | *****             |                | 107'00                 |                         | onc's¢             | ·                 |                                         |                   | 010/70             | 100'30             |
| Humidification                  |                  |                                 |                   |                |                        |                         |                    |                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 15%               | 30%                | 50%                |
| Tot Cap Required (\$10^6)       | \$4.27           | <b>\$</b> 5.11                  | <b>\$</b> 6.14    | \$3.50         | \$4.27                 | \$7.39                  | \$4.05             | <b>\$4</b> .13    | \$4.27                                  | <b>\$4</b> .26    | \$4.29             | \$4.52             |
| Total Current (mills/kWh)       | 2.92             | 5.07                            | 6.59              | 4.03           | 2.92                   | 1.56                    | 11.63              | 4.77              | 2.92                                    | 2.74              | 2.93               | 3.19               |
| Total Constant (mills/kWh)      | 2.24             | 3.88                            | 5.04              | 3.09           | 2.24                   | 1.20                    | 8.95               | 3.66              | 2.24                                    | 2.11              | 2.25               | 2.44               |
| Total Current (\$/ton)          | \$2,917          | \$1,081                         | <b>\$</b> 833     | \$4,023        | \$2,917                | \$1,557                 | \$11,606           | \$4,760           | \$2,917                                 | \$4,110           | \$2,924            | \$2,385            |
| Total Constant (\$/ton)         | \$2,237          | \$827                           | <b>\$</b> 713     | \$3,089        | \$2,237                | \$1,195                 | \$8,935            | \$3,658           | <b>\$</b> 2,237                         | \$3,153           | <b>\$</b> 2,242    | \$1,828            |
| Bicarbonate                     |                  |                                 |                   |                |                        |                         |                    |                   |                                         | 30%               | 50%                | %0 <i>L</i>        |
| Tot Cap Required (\$10^6)       | \$2.52           | <b>\$</b> 2.66                  | \$2.76            | <b>\$</b> 2.03 | <b>\$</b> 2.52         | \$4.50                  | \$2.21             | \$2.32            | \$2.52                                  | \$2.08            | \$2.32             | \$2.52             |
| Total Current (mills/kWh)       | 3.41             | 12.16                           | 17.79             | 4.08           | 3.41                   | 2.93                    | 8.34               | 4.46              | 3.41                                    | 1.75              | 2.59               | 3.41               |
| Total Constant (mills/kWh)      | 2.61             | 9.26                            | 13.55             | 3.12           | 2.61                   | 2.23                    | 6.41               | 3.41              | 2.61                                    | 1.34              | 1.98               | 2.61               |
| Total Current (\$/ton)          | \$1,460          | \$1,111                         | \$1,079           | \$1,748        | \$1,460                | <b>\$1,</b> 253         | \$3,570            | \$1,907           | \$1,460                                 | \$1,749           | \$1,551            | \$1,460            |
| Total Constant (\$/ton)         | \$1,115          | \$846                           | <b>\$</b> 822     | \$1,337        | \$1,115                | \$956                   | \$2,741            | \$1,460           | \$1,115                                 | \$1,339           | \$1,186            | \$1,115            |
| Sesquicarbonate                 |                  |                                 |                   |                |                        |                         |                    |                   |                                         | 30%               | 50%                | %02                |
| Total Capital Required (\$10^6) | \$2.51           | \$2.65                          | \$2.74            | \$2.03         | <b>\$</b> 2.51         | · \$4.47                | \$2.21             | \$2.32            | \$2.51                                  | \$2.06            | \$2.28             | \$2.51             |
| Total Current (mills/kWh)       | 3.30             | 11.64                           | 17.02             | 3.87           | 3.25                   | 2.80                    | 8.23               | 4.35              | 3.30                                    | 1.47              | 2.14               | 3.30               |
| Total Constant (mills/kWh)      | 2.52             | 8.87                            | 12.96             | 2.96           | 2.48                   | 2.14                    | 6.32               | 3.33              | 2.52                                    | 1.13              | 1.64               | 2.52               |
| Total Current (\$/ton)          | \$1,412          | \$1,064                         | \$1,032           | \$1,656        | <b>\$1</b> ,390        | \$1,198                 | \$3,522            | \$1,859           | \$1,412                                 | \$1,472           | \$1,285            | \$1,412            |
| Total Constant (\$/ton)         | \$1,079          | <b>\$</b> 811                   | <b>\$</b> 786     | \$1,267        | <b>\$</b> 1,062        | <b>\$</b> 914           | \$2,704            | \$1,424           | <b>\$1</b> ,079                         | \$1,128           | \$983              | \$1,079            |
| LSFO                            |                  |                                 |                   |                |                        |                         |                    |                   |                                         | 50%               | 402                | %06                |
| Total Capital Required (\$10^6) | \$28.31          | \$29.98                         | \$31.60           | \$16.51        | \$28.31                | \$58.86                 | \$28.02            | \$28.13           | \$28.31                                 | \$25.20           | \$25.98            | \$28.31            |
| Total Current (mills/kWh)       | 13.13            | 14.53                           | 15.58             | 15.90          | 13.13                  | 8.33                    | 77.44              | 26.77             | 13.13                                   | 11.87             | 12.22              | 13.13              |
| Total Constant (mills/kWh)      | 10.10            | 11.17                           | 11.98             | 12.23          | 10.10                  | 6.41                    | 59.65              | 20.61             | 10.10                                   | 9.13              | 9.40               | 10.10              |
| Total Current (\$/ton)          | \$4,369          | <b>\$1,</b> 033                 | \$735             | \$5,292        | <b>\$4</b> ,369        | \$2,770                 | \$25,768           | \$8,908           | <b>\$4</b> ,369                         | \$7,111           | \$5,227            | \$4,370            |
| Total Constant (\$/ton)         | <b>\$</b> 3,362  | \$794                           | \$565             | \$4,071        | \$3,362                | <b>\$</b> 2,13 <b>4</b> | \$19,848           | \$6,859           | \$3,362                                 | \$5,471           | \$4,021            | \$3,362            |
|                                 |                  |                                 |                   |                |                        |                         | * **********       |                   | ~~~                                     |                   |                    | ******             |

SO2 REMOVAL SYSTEMS

•

.

Summary Input Results (INPUT XLS) - 6

| SYSTEMS   |  |
|-----------|--|
| NTEGRATED |  |
| NOX and I |  |

,

|                                                           | el              | ilet NOx (Ib/MA      | (Bku)        |       |                 | Jnit Size (M   | We)            | 0                | Sapacity Fact   | ø                    | z              | Ox Removal      | Rate            |
|-----------------------------------------------------------|-----------------|----------------------|--------------|-------|-----------------|----------------|----------------|------------------|-----------------|----------------------|----------------|-----------------|-----------------|
| LNB/OFA                                                   | 0.9 Ih/MMBu     | 1.15                 | 1.40 50      | MWe   | -               | OO MWe         | 300 MWe        | 10%              | 30%             | 65%                  | 50%            | 65%             | 80%             |
| Titual Capital Required (\$10°6)                          | \$12.87         | \$12.87              | \$12.87      |       | \$8.84          | \$12.87        | \$26.60        | \$9.17           | \$10.52         | \$12.87              | \$12.87        | \$12.87         | \$12.87         |
| Total Current (mills/kWh)                                 | 3.61            | 3.81                 | 3.81         |       | 5.27            | 3.81           | 2.59           | 17.98            | 6.81            | 3.81                 | 3.81           | 3.81            | 3.81            |
| Trital Constant (mills/LWh)                               | 2.95            | 2.95                 | 2.95         |       | 4.08            | 2.95           | 2.01           | 13.92            | 5.27            | 2.95                 | 2.95           | 2.95            | 2.95            |
| Total Current (\$/ww)                                     | HEZ'15          | \$96\$               | \$793        | -     | \$1,337         | \$966          | \$658          | \$4,564          | \$1,729         | <b>3</b> 96 <b>5</b> | \$1,256        | <b>\$96</b>     | \$785           |
| Total Constant (S/ww)                                     | 9565            | \$748                | \$614        |       | \$1,035         | \$748          | \$510          | <b>\$</b> 3,533  | \$1,339         | \$748                | \$972          | \$748           | \$608           |
| SNCR                                                      | 0.4 lh/MMBru    | 0.90                 | 1.15 50      | MWe   |                 | IOO MWe        | 300 MW6        | 10%              | 30%             |                      | 30%            | 40%             | 50%             |
| Total Capital Required (\$10`6)                           | 61 <b>13</b>    | 54.15                | <b>54.15</b> |       | \$3.19          | \$4.13         | \$6.41         | \$3.59           | \$4.06          | <b>1</b> .40         | \$6.36         | \$4.13          | \$2.18          |
| Treal Current (mills/kWh)                                 | 2.45            | 3.49                 | 4.01         |       | 3.27            | 2.44           | 1.57           | 9.28             | 4.08            | 2.53                 | 2.96           | 2.44            | 2.01            |
| Total Constant (mills/LWh)                                | 1 <b>1</b> 1    | 2.67                 | 3.07         |       | 2.51            | 1.87           | 1.20           | 7.15             | 3.14            | 1.94                 | 2 27           | 1.87            | 1.54            |
| Total Current (\$/ion)                                    | \$2,906         | 11,134               | \$1,655      |       | \$3,879         | \$2,891        | \$1,861        | \$11,002         | <b>54</b> ,839  | \$2,996              | <b>54</b> ,673 | \$2,891         | <b>\$</b> 1,909 |
| Tinal Constant (Shon)                                     | 162,52          | 90 <del>1</del> ,108 | \$1,266      | -     | \$2,981         | \$2,219        | \$1,426        | \$8,482          | \$3,723         | \$2,300              | 965'8\$        | \$2,219         | \$1,461         |
| SCR                                                       | 0.4 Ib/MMBtu    | 0.9                  | 1.15 50      | ) MWe |                 | DO IANA        | 300 MWe        | 10%              | 30%             | 65%                  | 50%            | 65%             | 80%             |
|                                                           |                 |                      |              |       |                 | 200            |                |                  |                 |                      |                |                 |                 |
| ling Laplas Keyura (510 b)<br>Toul Correct Anilia (510 b) | 90.11¢          | 80"   10<br>10 2     | 0/11¢        |       | 01.74           |                | 02-77 <b>4</b> | 50.016           | 410.42          | 60.11¢               | 50.01¢         | 50.11 <b>5</b>  | 11.811 <b>4</b> |
| rund cuarte (Burble Wa)<br>Turd Common (Bible Burbl       | NC:0            |                      | 5 5          |       | F F             |                | 8 .            | 5.5              | 6. C            | 070                  |                | 5 F             | 0.42            |
| Turd Commune (Show)                                       |                 | () ()<br>()          | 61 514       | -     | 21.0<br>24.476  | 10.4           | 0.0 <b>0</b>   | 20.02<br>610 687 | 3.21<br>67 107  | 10.4<br>10.4         |                |                 | 26.0            |
|                                                           | 001.00          | 5019,14              |              |       |                 | 2.12           | 110'70         | 100'81 4         | 101,16          | 17/54                |                | 240.44          | 5               |
| Total Constant (\$/tom)                                   | 52,869          | NUC.18               | \$1,162      |       | \$3,388         | \$2,857        | \$1,978        | \$15,134         | \$5,461         | \$2,857              | <b>54</b> ,195 | <b>\$</b> 3,492 | <b>\$</b> 3,152 |
| INTEGRATED S                                              | SYSTEMS         |                      |              |       |                 |                |                |                  |                 |                      |                |                 |                 |
| SNCR & DSI                                                | 0.4 Ib/MMB      | 2                    | 3            | BWM ( |                 | OO MWe         | 300 MWe        | 10%              | 30%             | 65%                  |                |                 |                 |
| Tinal Capital Required (\$10'6)                           | \$9.95          |                      |              |       | \$5.22          | \$6.65         | \$10.94        | \$5.80           | <b>\$</b> 6.38  | <b>\$</b> 6.92       |                |                 |                 |
| Total Current (milk/kWh)                                  | 15.09           |                      |              |       | 34.82           | 15.09          | 9.62           | 7.36             | 5.85            | 4.50                 |                |                 |                 |
| Total Constart (mills/kWb)                                | 11.63           |                      |              |       | 26.88           | 11.63          | 7.40           | 5.64             | 4,48            | 3.44                 |                |                 |                 |
| Total Current (\$/ion)                                    | 668.12          |                      |              |       | \$2,313         | \$1,839        | \$1,414        | \$5,540          | \$2,685         | \$1,867              |                |                 |                 |
| Tatał Constant (Skon)                                     | 165'15          |                      |              |       | \$1,851         | \$1,591        | <b>5</b> 1,338 | \$3,725          | \$2,084         | \$1,610              |                |                 |                 |
| Inlegrated                                                | 0.4 Ib/MMBtu    |                      | 8            | ) MWe | -               | DO MWe         | 300 MWe        | 10%              | 3<br>Se         | 65%                  | *              |                 |                 |
| Total Capital Required (\$10%6)                           | \$19.52         |                      |              |       | \$14.06         | \$19.52        | \$37.55        | \$14.97          | <b>\$</b> 16.90 | <b>\$19.79</b>       |                | *               | ****            |
| Total Current (mills/kWh)                                 | 9.53            |                      |              |       | 12.43           | 9.53           | 7.03           | 34.82            | 15.09           | 9.62                 |                |                 |                 |
| Total Constant (mills/kWh)                                | 7.33            |                      |              |       | 9.57            | 7.33           | 5.40           | 26.88            | 11.63           | 7.40                 |                |                 |                 |
| Total Current (\$/ton)                                    | <b>\$1</b> ,339 |                      |              |       | \$1,746         | <b>\$1,339</b> | 1961           | 54,689           | \$2,119         | \$1,352              |                |                 |                 |
| I dial Constant (Arton)                                   | 401'LE          | -                    |              |       | <b>\$1,368</b>  | 11,104         | <b>\$</b> 869  | \$3,487          | \$1,628         | <b>5</b> 1,113       |                |                 |                 |
| SCR & LSFO                                                | 0.4 Ib/MMBtu    |                      | 3            | MWe   |                 | OO MWA         | 300 MWe        | 10%              | 30%             | 65%                  |                |                 |                 |
| Total Capital Required (\$10^6)                           | 10.903          |                      |              |       | \$23.70         | \$39.37        | \$81.06        | <b>3</b> 38.08   | <b>\$</b> 38.55 | 239.37               |                | *               |                 |
| Total Current (mills/kWh)                                 | 19.40           |                      |              |       | 23.34           | 19.40          | 12.67          | 110.64           | 38.76           | 19.40                |                |                 |                 |
| Total Constant (mills/kWh)                                | 14.92           |                      |              |       | 17.95           | 14.92          | 9.75           | 85.17            | 29.82           | 14.92                |                |                 |                 |
| Total Current (\$100)<br>Total Constant (\$100)           | 80. <b>X</b>    |                      |              |       | <b>\$4</b> ,974 | <b>34</b> ,136 | \$2,701        | \$23,582         | <b>\$</b> 8,261 | <b>%</b> ,136        |                |                 |                 |
|                                                           | 71 1'70         |                      |              | -     | C90'61          | 217,24         | 1/8/14         | <b>\$</b> 13,937 | <b>\$</b> 5'033 | <b>\$</b> 2,712      |                |                 |                 |

Summary Input Results (INPUT.XLS) - 7

### **INTEGRATED DRY NOx/SO2 EMISSIONS CONTROL SYSTEM**

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

**Appendix I-2** 

Economizer Injection of Hydrated Lime

\_\_\_\_

|                                                      | 13 II 13         | IR CONTEN | F        | 5                  | NIT SIZE       |                  | CAPAC            | SITY FACTO | ŭ      | S           | <b>02 REMOV</b> | ۹L        |
|------------------------------------------------------|------------------|-----------|----------|--------------------|----------------|------------------|------------------|------------|--------|-------------|-----------------|-----------|
|                                                      | 0.40%            | 1.20%     | 2.63%    | 50                 | <del>1</del> 0 | 300              | 10%              | 30%        | 65%    | 15%         | 20%             | 30%       |
|                                                      |                  |           | Coal Sr  | oeclications       |                |                  |                  |            |        |             |                 |           |
| Aun Sulfur Contact                                   | 0.40%            | 1.20%     | 2.63%    | 0.40%              | 0.40%          | 0.40%            | 0.40%            | 0.40%      | 0.40%  | 0.40%       | 0.40%           | 0.40%     |
| Heat Content (Rti.Mb)                                | 11 050           | 7.080     | 10.300   | 11,050             | 11,050         | 11,050           | 11,050           | 11,050     | 11,050 | 11,050      | 11,050          | 11,050    |
| Ash Content                                          | 9.60%            | 10.40%    | 10.80%   | 9,09,6             | 9,60%          | 9.60%            | 9.60%            | 9.60%      | 8.60%  | 9.60%       | 9.60%           | 60%       |
|                                                      |                  |           | Unit an  | d Operating Speci  | fications      |                  |                  |            |        |             |                 |           |
|                                                      |                  |           |          |                    |                |                  | 10 547           | 40.643     | 10 643 | 10 542      | 10 542          | 10.547    |
| Unit Heatrate (Btu/NkWh)                             | 10,542           | 10,542    | 10,542   | 245'nL             | 216, UT        | 24C'0L           |                  | 7401       |        | 100         | 100             | 100       |
| Unit Size (MWe)                                      | 00 <b>-</b>      | 00        | <u>6</u> | ន                  |                | 200              | 200              |            | 2001   | 501<br>8.5% | 65%             | 65%       |
| Capacity Factor                                      | 65%              | 65%       | 65%      | 65%                | 65%            | 60.%<br>         | %0L              | 805        | 84.CD  |             |                 |           |
| SO2 Removal Required                                 | 15%              | 15%       | 15%      | 15%                | 15%            | 15%              | 15%              | 12%        | 15%    | *  <br>     | %N7             | 805       |
|                                                      |                  |           | Reager   | nt Specifications  |                |                  |                  |            |        |             |                 |           |
| NCD                                                  | 00               | 20        | 20       | 2.0                | 2.0            | 2.0              | 2.0              | 2.0        | 2.0    | 20          | 2.7             | 4.0       |
|                                                      | 7 594            | 7.5%      | 7 5%     | 7.5%               | 7.5%           | 7.5%             | 7.5%             | 7.5%       | 7.5%   | 7.5%        | 7.5%            | 7.5%      |
| Unization<br>the Car(DHV2/Jh reasont                 | %6 BB            | %6 68     | %6 68    | 89.9%              | 89.9%          | %6.68            | %6`68            | 89.9%      | %6-68  | 89.9%       | 89.9%           | 89°9%     |
|                                                      | 10.1%            | 10.1%     | 10.1%    | 10.1%              | 10.1%          | 10.1%            | 10.1%            | 10.1%      | 10.1%  | 10.1%       | 10.1%           | 10.1%     |
| -                                                    |                  |           | Reager   | nt Flowrate        |                |                  |                  |            |        |             |                 |           |
|                                                      |                  | 72        | 15       | 24                 | 4              | 143              | <br>  4          | 84         | <br> ₽ | 48          | 48              | 48        |
|                                                      | 823              | 3 127     | 4 711    | 1966               | 668            | 2.003            | 668              | 668        | 668    | 668         | 668             | 668       |
| Soz III Duct (IMII)<br>Soz to be Bernored (IMb)      | 101              | 469       | 707      | 8                  | 5              | 301              | 100<br>100       | 00‡        | 100    | 100         | 134             | 200       |
| ood in de verinted (invi)<br>Desnent Ehminste (ih/h) | 1 7 18           | B.043     | 12.117   | 859                | 1.718          | 5,153            | 1,718            | 1,718      | 1,718  | 1,718       | 2,290           | 3,436     |
| Reagent Flowrate (tons/h)                            | 0.859            | 4.022     | 6.059    | 0.429              | 0.859          | 2.577            | 0.859            | 0.859      | 0.859  | 0.859       | 1.145           | 1.718     |
|                                                      |                  |           | Ash Re   | eaction Data (Assu | me all unrea   | cted Ca(OH)2 cor | nverts to CaCO3) |            |        |             |                 | ļ         |
| Unreacted Ca(OH)2 (Ib/h)                             | 1.429            | 6.689     | 10,076   | 714                | 1,429          | 4,286            | 1,429            | 1,429      | 1,429  | 1,429       | 1,905           | 2,857     |
| Ca(OH)2 Conversion to CaCO3                          | 100%             | 100%      | 100%     | 100%               | 100%           | 100%             | 100%             | 100%       | 100%   | 100%        | 100%            | 100%      |
| CaSO3 Formation                                      | 100%             | 100%      | 100%     | 100%               | 100%           | 100%             | 100%             | 100%       | 100%   | 100%        | 100%            | 100%      |
| CaSO4 Formation                                      | 8                | 8         | %0       | %0                 | %o             | %0               | *0               | 8          | %0     | %0          | %0              | %0<br>    |
|                                                      |                  |           | Ash Di   | sposal Flowrate    |                |                  |                  |            |        |             |                 |           |
| Ca(OH12 in Ash (Ib/h)                                | 0                | 0         | 0        | 0                  | 0              | 0                | 0                | 0          | 0      | 0           | 0               | 0         |
| CaCO3 (Ib/h)                                         | 1.930            | 9,039     | 13,617   | 965                | 1,930          | 5,791            | 1,930            | 1,930      | 1,930  | 1,930       | 2,574           | 3,861     |
| CaSO3 (Ib/h)                                         | 162              | 761       | 1,146    | 81                 | 162            | 487              | 162              | 162        | 162    | 162         | 217             | 325       |
| CaSO4 (Ib/h)                                         | 0                | •         | 0        | •                  | 0              | •                | 0                | 0          | 0      | 0           | •               | 0         |
| Inerts (Ib/h)                                        | 174              | 812       | 1,224    | 87                 | 174            | 521              | 174              | 174        | 174    | 174         | 231             | 347       |
| Total Added Waste (Ib/h)                             | 2,266            | 10,612    | 15,986   | 1,133              | 2,266          | 6,799            | 2,266            | 2,266      | 2,266  | 2,266       | 3,022           | 4,533     |
| Total Added Waste (tons/h)                           | 1.13             | 5.31      | 7.99     | 0.57               | 1.13           | 3.40             | 1.13             | 1.13       | 1.13   | 1.13        | 1.51            | 2.27      |
|                                                      | Molecular Weight | ts        |          |                    |                |                  |                  |            |        |             |                 |           |
| MW Ca (lb/mole)                                      | 9                |           | MAC      | aCO3 (lb/mole)     | <u>6</u>       | MWC              | aS04"2H20        | 172        |        |             | Revised:        | 12/02/94  |
| MV CaO (Ib/mole)                                     | 56               |           | MWC      | aSO3 (lb/mole)     | 120            | S MM             | 02 (Ib/mole)     | 64         |        |             | By:             | TJ Hanley |
| MVV Ca(OH)2                                          | 74               |           | MW C     | aSO4 (lb/mole)     | 136            |                  |                  |            |        |             |                 |           |
|                                                      |                  |           |          |                    |                |                  |                  |            |        |             |                 |           |

Economizer Injection of Hydrated Lime (ECONINJN.XLS) - 1

| TOTAL CAPITAL RESULTS           | 0               | Sulfur Conten  | _               |                 | Unit Size        |                 | J               | apacity Facto    | Ŀ                | .,               | SO2 Remova         | l Rate           |
|---------------------------------|-----------------|----------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|------------------|------------------|--------------------|------------------|
|                                 | 0.40%           | 1.20%          | 2.63%           | 50              | 001              | 300             | 10%             | 30%              | 65%              | 15%              | 20%                | 30%              |
| Year installed                  | 1991            | 1991           | 1991            | 1991            | 1991             | 1991            | 1991            | 1991             | 1991             |                  | 1991               | 1991             |
| Year of Study                   | 1994            | 1994           | 1994            | 1994            | 1994             | 1994            | 1994            | 1994             | 1994             | 1994             | 1994               | 1994             |
| Subtotal Install-1991 (\$/kW)   | \$12.03         | \$16,72        | \$23.09         | \$20.43         | \$12.03          | \$5.57          | \$12.03         | \$12.03          | \$12.03          | \$12.03          | \$12.16            | \$13.64          |
| Inflation Rate                  | 4%              | 4%             | <b>4</b><br>%   | **              | 4%               | 4%              | 4%              | 4%               | 4%               | 4%               | 4%                 | 4%               |
| Subtotal Install-1994 (\$/kW)   | \$13.53         | \$18.81        | \$25.98         | \$22.98         | \$13.53          | \$6.27          | \$13.53         | \$13.53          | \$13.53          | \$13.53          | \$13.68            | \$15.34          |
| Subtotal Install-1994 (\$10^6)  | <b>\$1.35</b>   | \$1.88         | \$2.60          | \$1.15          | \$1.35           | \$1.88          | \$1.35          | \$1.35           | \$1.35           | \$1.35           | \$1.37             | \$1.53           |
| Retrofit Factor                 | 1               | 26             | ł               | à               | 2                |                 |                 |                  |                  |                  |                    |                  |
|                                 |                 |                |                 | 5               | 5                | 5               | %0              | %0               | %0               | %0               | %0                 | %                |
|                                 |                 | 00.04          | 00.04           | 20.00           | <b>2</b> 0.00    | <b>2</b> 0.00   | \$0.00          | \$0.00           | \$0.00           | \$0.00           | \$0.00             | <b>2</b> 0.00    |
| Process Contingency Factor      | 10%             | 10%            | 10%             | 10%             | 10%              | 10%             | 10%             | 10%              | 10%              | 10%              | 10%                | 10%              |
| Proc Contingency Cost (\$10%6)  | <b>\$</b> 0.135 | \$0.188        | \$0.260         | \$0.115         | <b>\$</b> 0.135  | \$0.188         | \$0.135         | \$0.135          | \$0.135          | \$0.135          | \$0.137            | \$0.153          |
| Total Install Equip (\$10^6)    | \$1.49          | \$2.07         | <b>\$</b> 2.86  | \$1.26          | <b>S1.4</b> 9    | \$2.07          | 51 49           | 51 49            | 5149             | 61 40            | 61 ED              | 61 60            |
| Tot. Process Capital (\$10^6)   | \$1.49          | \$2.07         | \$2.86          | \$1.26          | \$1.49           | \$2.07          | \$1,49          | <b>51.49</b>     | \$1.49           | <b>51.49</b>     | \$1.50             | \$1.69           |
| Canacel Earlikias Data          |                 |                |                 |                 |                  |                 |                 |                  |                  |                  |                    |                  |
|                                 | R D             | ۴ <u>۵</u>     | <b>%</b>        | \$°             | <b>%</b> 0       | <u>م</u>        | %0              | %0               | %0               | %0               | %0                 | %0               |
| Gen Faculties Cost (\$10%6)     | \$0,000         | \$0.000        | \$0.000         | \$0.000         | \$0.000          | \$0.000         | \$0.000         | \$0.000          | \$0.000          | <b>20.000</b>    | \$0.000            | \$0.000          |
| Engr & Home Office Rate         | 10%             | 10%            | 10%             | 10%             | 10%              | 10%             | 10%             | 10%              | 10%              | 10%              | 10%                | 10%              |
| Engr & Home Office (\$10^6)     | \$0.149         | \$0.207        | \$0.286         | <b>\$</b> 0.126 | \$0.149          | \$0.207         | \$0.149         | \$0.149          | \$0.149          | <b>\$</b> 0,149  | \$0.150            | <b>\$</b> 0.169  |
| Project Contingency Rate        | 5%              | 5%             | 5%              | 5%              | 5%               | 5%              | 5%              | 5%               | 5%               | 5%               | 5%                 | 2%               |
| Proj Contingency Cost (\$10^6)  | <b>\$</b> 0.082 | \$0.114        | <b>\$</b> 0.157 | \$0.070         | \$0.082          | \$0,114         | \$0.082         | \$0.082          | \$0.082          | \$0.082          | <b>\$0 083</b>     | \$0.093          |
| Total Plant Cost (\$10^6)       | \$1.72          | \$2.39         | <b>\$</b> 3.30  | \$1.46          | \$1.72           | <b>\$</b> 2.39  | \$1.72          | \$1.72           | \$1.72           | \$1.72           | \$1.74             | <b>\$1</b> .95   |
| AFDC rate (<1 year)             | 0.0%            | %0°0           | 960.0           | %0.0            | %0 <sup>.0</sup> | %0.0            |                 | 700              |                  | 200              |                    | à                |
| AFDC Cost (\$1046)              | <b>\$</b> 0.00  | \$0.00         | \$0.00          | <b>\$0.00</b>   | 00.03            |                 | 50.04<br>60.04  |                  |                  | 8.0.0            | 85.5               | 0.0%             |
| Total Plant Invest (\$10^6)     | \$1.72          | \$2.39         | <b>5</b> 3.30   | \$1.46          | \$1.72           | \$2.39          | \$1.72          | \$1.72           | \$1.72           | \$1.72           | \$0.00<br>\$1.74   | \$0.00<br>\$1.95 |
| Royalty Rate                    | 0.5%            | 0.5%           | 0.5%            | 0 E&            | 202              | 763 0           |                 |                  |                  |                  |                    |                  |
| Dovalty Cost (\$1045)           | 00000           |                |                 |                 | 2                |                 | <b>R D S</b>    | ¥c.0             | ₽.0<br>0         | 0.5%             | 0.5%               | 0.5%             |
| Startup Time (weeks)            | #0.000          | au.u.19        | \$0.0103        | 6/00.0\$        | \$0.0086         | \$0.0119<br>2   | \$0.0086        | <b>\$</b> 0.0086 | \$0.0086         | \$0 0086         | \$0.0087           | \$0.0097         |
| Preproduction Costs (\$10^6)    | \$0.024         | \$0.099        | \$0,146         | \$0.014         | \$D 024          | <b>\$</b> 0.065 | 40 007          | en 012           | 2<br>2<br>2      | 7.00.04          | 7.000              | 2                |
| Inventory Capital (\$10^6)      | <b>\$</b> 0.087 | \$0,405        | \$0.610         | 50.044          | \$0.087          | SO 259          | 40.043          | 60.040<br>60.040 | \$0.05           | \$0.024          | 50.U31             | \$0.045          |
| Initial Catalyst (\$10^6)       | \$0.000         | <b>2</b> 0.000 | 000.0\$         | \$0.000         | \$0.000          | \$0.000         | <b>\$</b> 0.000 | 20.000           | \$0.000          | \$0.000          | \$0.000<br>\$0.000 | \$0.000          |
| Subtotal Capital (\$10^6)       | \$1.84          | \$2.90         | <b>54</b> .07   | \$1.52          | \$1.84           | \$2.73          | \$1.75          | \$1.78           | \$1.84           | \$1.84           | \$1.89             | \$2.18           |
| Construction Downtime (days)    | 7               |                | -               |                 | ~                |                 | 2               |                  |                  | - r              |                    |                  |
| Replacement Power Cost (\$/kWh) | \$0.05          | \$0.05         | <b>\$</b> 0.05  | \$0.05          | \$0.05           | \$0.0£          | ¢n ne           | • 0 0 •          |                  | -                |                    |                  |
| Construction Downtime (\$10^6)  | <b>\$</b> 0.55  | \$0.55         | <b>\$</b> 0.55  | \$0.27          | \$0.55           | \$1.64          | \$0.08          | \$0.25           | \$0.55<br>\$0.55 | \$0,55<br>\$0,55 | \$0.05<br>\$0.55   | \$0.05<br>\$0.55 |
| Total Capital Required (\$10^6) | <b>\$</b> 2.39  | \$3.45         | \$4.62          | \$180           | <b>52</b> 39     | 24.36           | 6181            | en en            | 52.50            |                  |                    |                  |
| *****                           |                 |                |                 |                 |                  |                 | 3.1             | 5  <br>          | 8C.2¢            | ¥2.39            | \$2.44             | \$2.72           |
|                                 |                 |                |                 |                 |                  |                 |                 |                  |                  |                  |                    |                  |

|                                                                                                             |                  | 1              |                |                     | Init Size       |                  | Capa                                    | city Factor    |                | SO2 Re          | imoval Rate |                  |
|-------------------------------------------------------------------------------------------------------------|------------------|----------------|----------------|---------------------|-----------------|------------------|-----------------------------------------|----------------|----------------|-----------------|-------------|------------------|
| OAM COST RESULTS (\$10^6/yr)                                                                                | 193              | fur Content    |                |                     |                 |                  |                                         | 1000           | 2504           | 15%             | 20%         | 30%              |
|                                                                                                             | 0.40%            | 1.20%          | 2.63%          | 50                  | 100             | 300              | 10%                                     | 30%            | R. 00          |                 |             |                  |
|                                                                                                             |                  |                |                | Circle OBM Costs    | ~~              |                  |                                         |                |                |                 |             |                  |
|                                                                                                             |                  |                |                |                     |                 |                  |                                         |                |                | *13 00          | 00 263      | \$23.00          |
|                                                                                                             |                  | 00 103         | 00 552         | \$23.00             | \$23.00         | \$23.00          | \$23.00                                 | \$23.00<br>2.0 | \$23.00<br>7.0 | 3.0             | 3.0         | 3.0              |
| Labor (%operator-ft)                                                                                        | 01.676           | 0.0            | 3,0            | 3.0                 | 3.0             | 3.0              | 30                                      | 9.0<br>80028   | 2.0 D.5        | \$0,025         | \$0.025     | \$0.025          |
| Labor (operator-h/day)                                                                                      | 20.025           | <b>\$0.025</b> | \$0.025        | \$0.025             | \$0.025         | <b>\$</b> 0.025  | crn'nt                                  |                |                |                 |             |                  |
| Operating Lacor (a to or )                                                                                  |                  |                |                |                     |                 |                  | \$149                                   | \$1.49         | \$1.49         | \$1.49          | \$1.50      | <b>\$</b> 1.69   |
| trial trate Exuin (\$10%)                                                                                   | \$1.49           | 51.49          | \$1,49         | <b>11.26</b>        | 44.1 <b>2</b>   | 10.24            | 4 0%                                    | 10%            | 4.0%           | 4.0%            | 4.0%        | ₩0. <del>4</del> |
|                                                                                                             | ¥0.¥             | 4.0%           | ¥0.4           | ¥0.¥                |                 |                  | 100.02                                  | \$0.024        | \$0.024        | \$0.024         | \$0.024     | \$0.027          |
| Maintenance Factor                                                                                          | 50.024           | \$0.024        | \$0.024        | \$0.020             | \$0.024         | \$0.055          | 100 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 50 036         | \$0.036        | <b>\$</b> 0.036 | \$0.036     | \$0.040          |
| Mantenance Labor (a.c. u.y.)                                                                                | 20 036           | \$0.036        | \$0.036        | 00010\$             | \$0,036         | \$0.050          | 50.000<br>E0.045                        | 50.015         | \$0.015        | \$0.015         | \$0.015     | \$0.016          |
| Maintenance Mad (510°0/5/<br>Administrumont Labor (510/5/vr)                                                | \$0.015          | \$0.015        | \$0.015        | \$0.014             | \$0.015         | <b>\$0.017</b>   | 610.0 <b>¢</b>                          |                |                |                 |             |                  |
|                                                                                                             |                  | CD 0094        | 50.0994        | \$0.08              | \$0.0994        | \$0.1254         | \$0,094                                 | \$0.0994       | \$0.0994       | \$0.0994        | \$0.1001    | \$0.1083         |
| Total Fired O&M (S10*6/11)                                                                                  | Leen.ne          |                |                | -                   | -               |                  |                                         |                |                |                 |             |                  |
|                                                                                                             |                  |                | Annu           | al Veriable O&M Co  | 26(5            |                  |                                         |                |                | -               |             |                  |
|                                                                                                             |                  |                |                | al Bennent Cost     |                 |                  |                                         |                |                |                 |             |                  |
|                                                                                                             |                  |                | Annu           | ש אפאלמוור ראשו     |                 |                  | ~                                       |                |                |                 | E \$ 24     | 9 781            |
|                                                                                                             |                  | 908 50         | ASA AF         | 2.445               | 4,891           | 14,672           | 752                                     | 2,257          | 4,891          | 4,691<br>662 00 | 5,32 C      | <b>\$</b> 62.00  |
| Hydrated Lime Use (tonsiyr)                                                                                 |                  | 24,033         | 00.691         | \$62.00             | \$62.00         | \$62.00          | \$62.00                                 | \$62.00        | 10 702 O       | SO 303          | 50,404      | \$0.606          |
| Hydrated Lime Cost (\$100)                                                                                  | 00.204<br>202.02 | \$1,420        | \$2,139        | \$0.152             | \$0.303         | \$0.910          | 240.042                                 | 201140         | 000 DA         |                 | -           |                  |
|                                                                                                             |                  |                |                |                     |                 |                  |                                         |                |                |                 |             |                  |
|                                                                                                             |                  |                | Ann            | lai Ash Disposal Co |                 |                  |                                         |                |                |                 | e0.08       | \$0 0B           |
|                                                                                                             |                  |                | 80.00          | 50.08               | \$0.08          | 80,08            | <b>2</b> 0'0 <b>3</b>                   | \$0.08         | \$0.08         |                 | av. ve      | 413              |
| Freight Cast (\$Hon-mile)                                                                                   | 80.DS            | 90'N\$         | 413            | 413                 | 413             | 614              | 113                                     | ÷              |                | 40 EUS          | 533.04      | \$33,04          |
| Freight Distance (mi)                                                                                       |                  |                | 633.04         | \$33.04             | \$33.04         | \$33,04          | 10.021                                  |                |                | 50 1E2          | \$0.215     | \$0.323          |
| Reagent Freight (\$fton)                                                                                    | 50 162           | 50.757         | \$1.140        | \$0.031             | <b>\$</b> 0.162 | \$0.485          | \$0.025                                 | \$0.075        | 791 D <b>t</b> |                 |             |                  |
| Reagent Freign (***)                                                                                        |                  |                |                |                     |                 |                  |                                         |                |                |                 |             |                  |
|                                                                                                             |                  |                | Ann            |                     |                 |                  | ~~~~~~                                  |                |                |                 | 0.2501      | 0.2501           |
|                                                                                                             |                  | 1036.0         | 0.2501         | 0.2501              | 0.2501          | 0.2501           | 0.2501                                  | 0.2501         | 1062.0         | 1.4241<br>25    | 25          | 25               |
| Aux Power (KWIMWE)                                                                                          | 36               | 25             | 25             | 13                  | <b>35</b>       | 75               | R 1                                     |                | 50 US          | \$0.05          | \$0.05      | \$0.05           |
|                                                                                                             | 50.05            | \$0.05         | \$0.05         | \$0.05              | \$0.05          | \$0.05           | 50.04                                   |                | 20,007         | \$0.007         | \$0.007     | \$0.007          |
| Auxilary Power (Survey)<br>Auvilary Power (\$10^6/vr)                                                       | \$0,007          | \$0.007        | \$0.007        | 100.04              | \$0,007         | \$0.003          |                                         |                |                |                 |             |                  |
|                                                                                                             |                  |                | An             | ual Ash Disposal C  | ost             |                  |                                         |                |                |                 |             |                  |
|                                                                                                             |                  |                |                |                     |                 |                  | 90.99                                   | 9C 6S          | <b>\$9.29</b>  | \$9.29          | \$3.29      | \$9.29           |
| teh Discosal (Sthat)                                                                                        | \$3.29           | \$5.29         | <b>\$</b> 8°58 | \$2.6 <b>\$</b>     | <b>3</b> 9,29   | \$9.29<br>+0.257 | 57.6 <b>1</b>                           | 2.976          | 6,452          | 6,452           | 8,603       | 12,905           |
| Total Added Waste (tons/yr)                                                                                 | 6,452            | 30,211         | 45,513         | 3,226               | 767,0           | 100'E1           | SO 0092                                 | \$0.0277       | \$0.0599       | \$0.0599        | \$0.0799    | \$0.1199         |
| Ash Disposal (\$10°6/yr)                                                                                    | \$0.0599         | \$0.2807       | \$0.4228       | 0000.0%             | 5600'N          |                  |                                         |                |                | 59.03           | \$0.71      | \$1.06           |
| Total Variable (\$1046/vr)                                                                                  | \$0.53           | \$2.46         | \$3.71         | \$0.27              | \$0.53          | \$1.58           | 80.08                                   | \$0.25         | 56.98          |                 |             |                  |
|                                                                                                             |                  |                |                |                     |                 | 5                | €0.1R                                   | 50.34          | \$0.63         | \$0.63          | \$0.81      | \$1.16           |
| Total O&M (\$10^6/yr)                                                                                       | \$0.63           | \$2.56         | \$3.81         | \$0.36              | \$0.53          | N'14             | 01-74                                   |                |                |                 |             |                  |
| والمحافظ |                  |                |                |                     |                 |                  |                                         |                |                |                 |             |                  |

.

Economizer Injection of Hydrated Lime (ECONINJN XLS) - 3

| LEVELIZED COSTS                                          | 'nS               | fur Content       |                        | -                 | Jnit Size               |                     | Cal               | oacity Factor     |                         | S02               | Removal Rat       | Ð                 |
|----------------------------------------------------------|-------------------|-------------------|------------------------|-------------------|-------------------------|---------------------|-------------------|-------------------|-------------------------|-------------------|-------------------|-------------------|
|                                                          | 0.40%             | 1.20%             | 2.63%                  | 50                | 100                     | 300                 | 10%               | 30%               | 65%                     | 15%               | 20%               | 30%               |
| Tot Cap Required (\$10%6)<br>Fixed O&M (\$10%6/yr)       | \$2.39<br>\$0.099 | \$3.45<br>\$0.099 | \$4.62<br>\$0.099      | \$1.80<br>\$0.089 | \$2.39<br>\$0.099       | \$4.36<br>\$0.125   | \$1.83<br>\$0.099 | \$2.03<br>\$0.099 | \$2.39<br>\$0.099       | \$2.39<br>\$0.099 | \$2.44<br>\$0.100 | \$2.72<br>\$0.108 |
| Variable 0&M (\$10^6/yr)<br>POWER PRODUCED (10^9 kWh/yr) | \$0.532<br>0.569  | \$2.464<br>0.569  | \$3.709<br>0.569       | \$0.266<br>0.285  | <b>5</b> 0.532<br>0.569 | 51.5/8<br>1.708     | \$0.082<br>0.088  | \$0.245<br>0.263  | <b>5</b> 0.532<br>0.569 | \$0.569<br>0.569  | \$0.707<br>0.569  | 10.14<br>0.569    |
| SO2 REMOVED (tons/yr)                                    | 285               | 1,335             | 2,012                  | 143               | 285                     | 856                 | 44                | 132               | 285                     | 285               | 380               | 570               |
|                                                          |                   |                   | Levelized Co           | ost Per Power     | Produced (              | Current Dollars)    |                   |                   |                         |                   |                   |                   |
| Level Cap Chg (mills/kWh)                                | 0.670             | 0.970             | 1.298                  | 1.010             | 0.670                   | 0.409               | 3.346             | 1.238             | 0.670                   | 0.670             | 0.685             | 0.765             |
| Level Fixed O&M (mills/kWh)                              | 0.229             | 0.229             | 0.229                  | 0.412             | 0.229                   | 0.096               | 1.491             | 0.497             | 0.229                   | 0.229             | 0.231             | 0.250             |
| Level Variable O&M (mills/kWh)                           | 1.23              | 5.69              | 8.56                   | 1.23              | 1.23                    | 1.21                | 1.23              | 1.23              | 1.23                    | 1.23              | 1.63              | 2.44              |
| Total Current (mills/kWh)                                | 2.13              | 6.89              | 10.09                  | 2.65              | 2.13                    | 1.72                | 6.06              | 2.96              | 2.13                    | 2.13              | 2.55              | 3.45              |
|                                                          |                   |                   | Levelized Co           | ost Per Power     | Produced (              | Constant Dollars)   |                   |                   |                         |                   |                   |                   |
| Level Cap Chg (mills/kWh)                                | 0.519             | 0.752             | 1.006                  | 0.783             | 0.519                   | 0.317               | 2.593             | 0.959             | 0.519                   | 0.519             | 0.531             | 0.593             |
| Level Fixed O&M (mills/kWh)                              | 0.175             | 0.175             | 0.175                  | 0.314             | 0.175                   | 0.073               | 1.135             | 0.378             | 0.175                   | 0.175             | 0.176             | 0.190             |
| Level Variable O&M (milis/kWh)                           | 0.93              | 4.33              | 6.51                   | 0.93              | 0.93                    | 0.92                | 0.93              | 0.93              | 0.93                    | 0.93              | 1.24              | 1.86              |
| Total Constant (mills/KWh)                               | 1.63              | 5.25              | 7.69                   | 2.03              | 1.63                    | 1.31                | 4.66              | 2.27              | 1.63                    | 1.63              | 1.95              | 2.64              |
|                                                          |                   |                   |                        |                   |                         |                     |                   |                   |                         |                   |                   |                   |
|                                                          |                   |                   | Levelized Co           | ast Per Ton P     | ollutant Rem            | oved (Current Dolla | ſs)               |                   |                         |                   |                   |                   |
| Level Cap Chg (\$10n)                                    | \$1,338           | \$413             | \$367                  | \$2,017           | \$1,338                 | \$816               | \$6,680           | \$2,471           | \$1,338                 | \$1,338           | \$1,026           | \$764             |
| Level Fixed O&M (\$/ton)                                 | <b>\$4</b> 58     | \$98              | <b>\$</b> 65           | \$824             | \$458                   | <b>\$</b> 193       | \$2,977           | \$992             | \$458                   | \$458             | \$346             | \$250             |
| Level Variable O&M (\$fton)                              | \$2,451           | \$2,425           | \$2 <mark>,</mark> 422 | \$2,451           | \$2,451                 | \$2,423             | <b>\$</b> 2,451   | \$2,451           | <b>\$</b> 2,451         | \$2,451           | \$2,442           | \$2,434           |
| Total Current (\$/ton)                                   | \$4,247           | \$2,936           | \$2,855                | \$5,291           | \$4,247                 | \$3,432             | \$12,108          | \$5,914           | <b>54</b> ,247          | \$4,247           | \$3,815           | \$3,448           |
| Total w/o Downtime (\$/ton)                              | \$3,940           | \$2,871           | \$2,811                | <b>\$4</b> ,985   | \$3,940                 | <b>\$</b> 3,125     | \$11,801          | \$5,608           | \$3,940                 | \$3,940           | \$3,585           | \$3,294           |
|                                                          |                   |                   | Levelized Co           | ost Per Ton P     | oliutant Rem            | oved (Constant Doll | lars)             |                   |                         |                   |                   |                   |
| Level Cap Chg (\$/ton)                                   | \$1,037           | \$320             | \$285                  | \$1,563           | \$1,037                 | <b>\$</b> 632       | <b>\$</b> 5,177   | \$1,915           | <b>\$</b> 1,037         | \$1,037           | \$795             | \$592             |
| Level Fixed O&M (\$/ton)                                 | \$349             | \$74              | <b>54</b> 9            | \$627             | \$349                   | \$147               | \$2,266           | \$755             | \$349                   | \$349             | \$263             | \$190             |
| Level Variable O&M (\$/ton)                              | \$1,865           | \$1,845           | \$1,844                | <b>\$</b> 1,865   | \$1,865                 | \$1,844             | \$1,865           | \$1,865           | \$1,865                 | \$1,865           | \$1,859           | \$1,852           |
| Total Constant (\$/ton)                                  | \$3,251           | \$2,240           | \$2,178                | \$4,055           | \$3,251                 | \$2,623             | \$9,308           | \$4,535           | \$3,251                 | \$3,251           | \$2.918           | \$2,634           |
| Total w/o downtime (\$/ton)                              | <b>\$</b> 3,013   | \$2,190           | \$2,144                | \$3,818           | \$3,013                 | \$2,386             | \$9,070           | <b>\$4</b> ,298   | <b>5</b> 3,013          | \$3,013           | \$2,739           | <b>\$</b> 2,516   |

,

•

Fronomizer Injection of Hydrated Lime (FCONIN IN XLS) - A

Print Date: 11/15/1999

0.160 0.124 1.314 1.000

Level Cao Factor (current) Level Cap Factor (constant) Level O&M Factor (current) Level O&M Factor (constant)

Levelization Factors (Plant life =15yr)

## INTEGRATED DRY NOx/SO2 EMISSIONS CONTROL SYSTEM

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I-3

Humidification System

----

|                                       | SULF            | UR CONTE   | NT            |                   | UNIT SIZE    |                  | CAP             | ACITY FACT  | au       | ŭ          |            |          |
|---------------------------------------|-----------------|------------|---------------|-------------------|--------------|------------------|-----------------|-------------|----------|------------|------------|----------|
| · · · · · · · · · · · · · · · · · · · | 0.40%           | 1.20%      | 2.63%         | 50                | 100          | 300              | 10%             | 30%         | 65%      | 20%        | 20% XEMU   | VAL 40%  |
|                                       |                 |            | Coal S        | pecfications      |              |                  |                 |             |          |            |            |          |
| Avg Sulfur Content                    | 0.40%           | 1.20%      | 2.63%         |                   |              |                  |                 |             |          |            |            |          |
| Heat Content (Btu/b)                  | 11,050          | 7,080      | 10.300        | 050 11            | 11 050       | 0.40%            | 5.40%           | 0.40%       | 0.40%    | 0 40%      | 0.40%      | 0 40%    |
| Ash Content                           | 9.60%           | 10.40%     | 10 80%        | 0 60%             |              | 000'61           | 090,11          | 11,050      | 11,050   | 11,050     | 11,050     | 11,050   |
|                                       |                 |            |               | \$ n0 n           | 8.00.W       | 9.60%            | 9,60%           | 8,60%       | 9.60%    | 3.60%      | 9,60%      | 9,60%    |
|                                       |                 | -          | Unit an       | d Operating Spec  | incations    |                  |                 | -           |          |            |            |          |
| Vinit Mantenia (Ötti Altistan)        |                 |            |               |                   |              |                  |                 |             |          | 1          |            |          |
| Unit Freedate (Blu/NKVVI)             | 10,542          | 10,542     | 10,542        | 10.542            | 10,542       | 10,542           | 10.542          | 10.542      | 10 542   | 10 643     | 10.2.05    |          |
| Cartan (arta)                         | 100             | <u>8</u>   | ð             | 8                 | 100          | 300              | 100             |             | 100      | 240.0      | 10,042     | 10,542   |
| Capacity Factor                       | 65%             | 65%        | 65%           | 65%               | 65%          | 65%              | 104             |             | 001      | 001        | 100        | 100      |
| SUZ Kemoval Required                  | 30%             | 30%        | 30%           | 30%               | 30%          | 30%              | 30E             | 30%         | * 300    | 65%<br>20% | 85%<br>20% | 65%      |
|                                       |                 |            |               |                   |              |                  |                 |             |          | 843        | 2 77       | 2, D t   |
|                                       |                 |            | Reager        | It Specifications |              |                  |                 |             |          |            |            |          |
| NSR                                   | 00              |            |               |                   |              |                  |                 |             |          |            |            |          |
| Utilization                           |                 |            | 0.7<br>15 011 | 2.0               | 2.0          | 2.0              | 2.0             | 2.0         | 2.0      | 1.3        | 20         | 76       |
| Ib Ca(OH)2/Ib reacent                 | 20 00 V         | \$C0.61    | 460.01        | 15.0%             | 15.0%        | 15.0%            | 15.0%           | 15.0%       | 15.0%    | 15.0%      | 15.0%      | 15 045   |
| (herts                                |                 |            | 56.9%         | 89.9%             | 89.9%        | 89.9%            | 89.9%           | 89.9%       | 89.9%    | %6 68      | 89.9%      | 740 D8   |
|                                       | 4               |            | 10.1%         | 10.1%             | 10,1%        | 10.1%            | 10.1%           | 10.1%       | 10.1%    | 10.1%      | 10 1%      | N P. P.  |
|                                       |                 |            | Reager        | it Flownate       |              |                  |                 |             |          | -          |            |          |
| Max Coal Flow (tons/h)                | 44              | ~ ~        | 13            |                   |              |                  |                 |             |          |            |            | ł        |
| S02 In Duct (Ib/h)                    | 568             | 101 1      | 1744          |                   | ₽ ;          | 143              | <b>4</b> 8      | 84          | 48       | 48         | 48         | 48       |
| S02 to be Removed (Ib/h)              | 000             | 2.020      |               | <b>7</b> ,        | <b>56</b> 8  | 2,003            | 699             | 668         | 669      | 668        | 668        | 659      |
| Reacent Flowrate (Ib/h)               | 1 7 4 10        |            |               | 100               | 200          | 601              | 200             | 200         | 200      | 1          |            | 757      |
|                                       |                 |            | 711,21        | 858               | 1,718        | 5,153            | 1,718           | 1,718       | 1,718    | 1,145      | 1,718      | 2,290    |
|                                       |                 |            | Ash Re-       | action Data (Assu | me all unrea | cted Ca(OH)2 con | werts to CaCO3) |             |          |            |            |          |
| Unreacted CarOHY2 IIMM                |                 |            |               |                   |              |                  |                 |             |          |            |            |          |
| Ca(OH)2 Conversion to CaC/D           |                 | 0+1.0      | 9.239         | 656               | 1,313        | 3,938            | 1,313           | 1,313       | 1,313    | 875        | 1 313      | 1 750    |
| CaSO3*1/2H2O Formation                | 8 001           |            | 400)          | 100%              | 100%         | 100%             | 100%            | 100%        | 100%     | 100%       | 100%       | No. 11   |
| CaSO4*2H2O Formation                  | 7609            |            |               | ¥0¥               | ¥0¥          | 40%              | 40%             | <b>%0</b> † | ¥0¥      | *0*        | %0 <b></b> | 40%      |
|                                       |                 |            |               | 600               | 609          | 60%              | 60%             | 80%         | 60%      | 60%        | 60%        | 60%      |
|                                       |                 |            | Ash Disi      | posal Fiowrate    |              |                  |                 |             |          |            |            |          |
| Ca(OH)2 in Ash (Ib/h)                 | 0               | 0          |               |                   |              |                  |                 |             |          |            |            |          |
| CaCO3 (Ib/h)                          | 1,774           | 8,306      | 12,513        | 202               |              |                  |                 | ¢           | đ        | ٥          | a          | G        |
| CaSO3*1/2H2O (Ib/h)                   | 140             | 654        | 385           | 100               |              | 275-0            | 177             | 1 774       | 1.774    | 1,183      | 1,774      | 2,365    |
| CaSO4*2H20 (Ib/h)                     | 323             | 1.513      | 2 279         | 1631              |              | #                | 140             | 140         | 140      | 56         | 140        | 186      |
| Inerts (Ib/h)                         | 174             | 812        | 1.224         | 70<br>70          | 220          |                  | 323             | 323         | 323      | 215        | 323        | 431      |
| Total Added Waste (Ib/h)              | 2.410           | 11.285     | 17 On 1       | 10 T              |              | 700              | 112             | 174         | 124      | 116        | 174        | 231      |
|                                       |                 |            |               | 202'1             |              | 1,230            | 2,410           | 2,410       | 2,410    | 1,607      | 2,410      | 3.214    |
| 9¥                                    | lecular Weights |            | Ĩ             |                   |              | {                |                 |             |          |            |            |          |
| MVV Ca (Ib/mole)                      | Q <del>.</del>  | {<br>{<br> | MWCas         | 03 (Ib/mole)      | 2            |                  |                 | -           |          |            |            |          |
| MW Ca(OH)2                            | 74              |            | MW CaS        | 03*1/2 H2O        | 120          |                  | 2 (IUMOIE)      |             | 3        | Re         | vised: 1   | 2/02/94  |
| MVV CaCO3 (ib/mole)                   | 100             |            | MWCaS         | O4 (Ib/mole)      | 136          |                  |                 |             | 172      | By         |            | J Hanley |
|                                       |                 |            |               |                   | }            | BC 0.711         | (neffici) (Just | -           | 3.333646 |            |            |          |

•

Humidification System (not including DSI) - HUMID.XLS - 1

| TOTAL CAPITAL RESULTS                               | ĩ              | lfur Content    |                 | -               | Unit Size           |                 | Ca              | pacity Factor    |                 | S                | 02 Removal | Rate             |
|-----------------------------------------------------|----------------|-----------------|-----------------|-----------------|---------------------|-----------------|-----------------|------------------|-----------------|------------------|------------|------------------|
|                                                     | 0.40%          | 1.20%           | 2.63%           | 50              | 100                 | 300             | 10%             | 30%              | 65%             | 20%              | 30%        | 40%              |
| Year installed                                      | 1991           | 1991            | 1991            | 1991            | 1991                | 1991            | 1991            | 1991             | 1991            | 1991             | 1991       | 1991             |
| Year of Study                                       | 1994           | 1994            | 1994            | 1994            | 1994                | 1994            | 1994            | 1994             | 1994            | 1994             | 1994       | 1994             |
| DSI Install-1991 (\$/kw)                            | \$12.03        | \$16,72         | \$23.09         | \$20.43         | \$12.03             | \$5.57          | \$12.03         | \$12.03          | \$12.03         | \$12.03          | \$12.16    | \$13.64          |
| Humid Install-1991 (\$/kw)                          | \$15.81        | \$15,81         | \$15.81         | <b>\$</b> 26.32 | \$15.81             | \$10.07         | \$15.81         | \$15.81          | \$15.81         | \$15.81          | \$15.81    | \$15.81          |
| Inflation Rate                                      | 4              | *               | 4%              | 4%              | <del>4</del><br>84  | 4%              | *               | 4%               | 4%              | 4%               | 4%         | 4%               |
| DSI+Humid install-1991 (\$/kw)                      | \$31.31        | \$36.59         | <b>\$4</b> 3.76 | \$52.59         | \$31.31             | \$17.59         | 16.16 <b>2</b>  | <b>\$</b> 31.31  | \$31.31         | <b>\$</b> 31.31  | \$31.46    | <b>\$</b> 33.12  |
| DSI+Humid Install-1994 (\$10^6)                     | \$3.13         | \$3.66          | \$4.38          | \$2.63          | \$3.13              | \$5.28          | \$3.13          | \$3.13           | \$3.13          | \$3.13           | \$3.15     | \$3.31           |
|                                                     |                |                 |                 |                 |                     |                 |                 | 6<br>            |                 |                  |            |                  |
| Retrofit Factor                                     | %0             | %0              | <b>ж</b> о      | <b>%</b> о      | %0                  | <b>%</b> 0      | %0              | %0               | %0              | %0               | %0         | %0               |
| Retrofit Cost (\$10^6)                              | \$0.00         | \$0.00          | <b>20.00</b>    | \$0.00          | <b>2</b> 0.00       | <b>2</b> 0.00   | \$0.00          | \$0,00           | <b>\$</b> 0.00  | \$0.00           | \$0.00     | \$0.00           |
| Process Contingency Factor                          | 10%            | 10%             | 10%             | 10%             | 10%                 | 10%             | 10%             | 10%              | 10%             | 10%              | 10%        | 10%              |
| Proc Contingency Cost (\$10^6)                      | \$0.313        | <b>\$</b> 0.366 | \$0.438         | \$0.263         | \$0.313             | <b>\$</b> 0.528 | <b>\$</b> 0.313 | \$0.313          | <b>\$</b> 0.313 | <b>\$</b> 0.313  | \$0.315    | <b>\$</b> 0.331  |
| Total Install Equip (\$10%6)                        | <b>\$3.44</b>  | <b>54</b> 02    | \$4.81          | \$2.89          | <b>53 44</b>        | \$5.81          | \$3.44          | \$3.44           | \$3.44          | \$3.44           | \$3.46     | \$3.64           |
| Tot. Process Capital (\$10^6)                       | \$3.44         | <b>\$4</b> .02  | \$4.81          | \$2.89          | \$3.44              | \$5.81          | \$3.44          | \$3.44           | \$3.44          | \$3.44           | \$3.46     | \$3.64           |
| · · · · · · · · · · · · · · · · · · ·               |                |                 |                 |                 |                     |                 |                 |                  |                 |                  |            |                  |
| General Facilities Rate                             | %0             | %0              | %0<br>0         | %0              | %o                  | %0              | %0              | %0               | %0              | %0               | %0         | %0               |
| Gen Facilities Cost (\$10^6)                        | \$0.000        | \$0.000         | \$0.000         | \$0.000         | \$0,000             | \$0.000         | <b>\$</b> 0.000 | \$0.000          | \$0.000         | \$0.000          | \$0.000    | <b>\$</b> 0.000  |
| Engr & Home Office Rate                             | 10%            | 10%             | 10%             | 10%             | 10%                 | 10%             | 10%             | 10%              | 10%             | 10%              | 10%        | 10%              |
| Engr & Home Office (\$10^6)                         | \$0.344        | \$0.402         | \$0.481         | \$0.289         | \$0,344             | \$0.581         | \$0.344         | \$0.344          | \$0.344         | \$0.344          | \$0.346    | \$0.364          |
| Project Contingency Rate                            | 5%             | 5%              | 5%              | 5%              | 5%                  | 5%              | 5%              | 5%               | 5%              | 5%               | 5%         | 5%               |
| Proj Contingency Cost (\$10^6)                      | \$0.189        | \$0.221         | <b>\$</b> 0.265 | \$0.159         | \$0.189             | \$0.319         | <b>\$</b> 0.189 | \$0.189          | <b>\$</b> 0.189 | \$0.189          | \$0.190    | \$0.200          |
| Total Plant Cost (\$10^6)                           | \$3.98         | <b>\$4</b> .65  | \$5.56          | \$3.34          | \$3.98              | \$6.71          | \$3.98          | \$3.98           | \$3.98          | \$3.98           | \$4.00     | \$4.21           |
|                                                     | 1000           | 1000            | 100             |                 |                     |                 |                 |                  |                 |                  | 1000       | 100 0            |
| AFDC Cont (\$1046)                                  |                |                 |                 |                 |                     |                 |                 |                  |                 | 8000<br>2000     | 0.0%       |                  |
| Artoc Cost (\$ 10°6)<br>Totat Plant Invest (\$10^6) | \$0.00<br>\$1  | 90.0 <b>0</b>   | 90.06<br>85 55  | 90.00<br>85 38  | 90.0¢               | \$0.00<br>66 71 | \$0.00<br>#1 08 |                  |                 | 00.04            | 90.00      |                  |
|                                                     | 08.04          | <b>B</b>        | 8.7             |                 |                     | 17.06           | 8.7             | 0¢               | 97.96           | 90.00            | nn-++      | 12.44            |
|                                                     | 5 Far          | 20              | 22              |                 | 200                 | 22.0            |                 |                  |                 | Ì                |            | č                |
|                                                     | %C.D           | 8 C O           | Roo             | R 0.0           | 84 C D              | 4K.C.D          | 8 C D           | 8.C.D            | ek c n          | %C.D             | %C D       | %C'D             |
| Koyalty Cost (\$10°6)                               | \$610.0\$      | \$0.0232        | \$0.02/8        | \$0.0167        | \$0.0199            | \$0.0335        | \$0.0199        | <b>\$</b> 0.0199 | \$0.0199        | <b>\$</b> 0.0199 | \$0.0200   | <b>\$</b> 0.0210 |
|                                                     |                | × .             | 7               | 7               | 7                   | 7               | N .             | 2                | 7               | 7                | N          | <b>N</b>         |
| Preproduction Costs (#10%6)                         | 20.029         | 190.04          | \$0.081         | \$10.U\$        | \$0.02 <del>3</del> | 20.043          | \$0.011         | \$0.017          | \$0.029         | \$0.026          | \$0.029    | \$0.032          |
| inventory Capital (\$10°6)                          | \$0.090        | <b>\$</b> 0.226 | <b>\$0.314</b>  | <b>\$0.04</b> 5 | \$0.090             | <b>\$</b> 0.136 | \$0.014         | \$0.042          | \$0.090         | \$0.078          | \$0.090    | <b>\$</b> 0.102  |
| Initial Catalyst (\$10^6)                           | \$0.000        | <b>\$</b> 0.000 | <b>2</b> 0.000  | \$0.000         | \$0.000             | <b>\$</b> 0.000 | \$0.00          | \$0.000          | \$0.000         | <b>\$</b> 0.000  | \$0.000    | <b>\$</b> 0.000  |
| Subtotal Capital (\$10 <sup>4</sup> 6)              | \$4.12         | <b>X</b><br>8   | . \$5.98        | \$3.42          | \$4.12              | \$6.92          | \$4.02          | \$4.06           | \$4.12          | <b>54</b> .10    | \$4.14     | \$4.36           |
| Construction Downtime (days)                        | 7              | 7               | 2               | 2               | 8                   | 2               | 2               |                  |                 | 5                | 5          | 3                |
| Replacement Power Cost (\$/kWh)                     | <b>\$</b> 0.05 | \$0.05          | \$0.05          | \$0.05          | \$0.05              | <b>\$</b> 0.05  | \$0.05          | <b>\$</b> 0.05   | <b>3</b> 0.05   | \$0.05           | \$0.05     | \$0.05           |
| Construction Downtime (\$10^6)                      | \$0.16         | <b>\$</b> 0.16  | <b>\$</b> 0.16  | \$0.08          | <b>\$</b> 0.16      | \$0.47          | \$0.02          | \$0.07           | \$0.16          | <b>\$</b> 0.16   | \$0.16     | \$0,16           |
| Total Capital Required (\$10^6)                     | <b>\$4</b> .27 | \$5.11          | \$6.14          | \$3.50          | \$4 27              | \$7.39          | \$4.05          | \$4.13           | \$4.27          | \$4.26           | \$4.29     | \$4.52           |
|                                                     |                |                 |                 |                 |                     |                 |                 |                  |                 |                  |            |                  |

.
|                                                           |                |                 | Annué               | al Fixed O&M Cost:  |                | 1                |                 |                 |                      |                 |                 |                 |
|-----------------------------------------------------------|----------------|-----------------|---------------------|---------------------|----------------|------------------|-----------------|-----------------|----------------------|-----------------|-----------------|-----------------|
| ( the Advantation b)                                      | 001.03         | <b>5</b> 23 00  | \$23.00             | <b>\$</b> 23.00     | \$23.00        | \$23,00          | \$23.00         | \$23.00         | \$23.00              | \$23.00         | \$23.00         | \$23.00         |
| Labor (3voperator-11)<br>DSH shor (onerator-hidav)        | 3.0            | 3.0             | 3.0                 | 3.0                 | 3.0            | 3.0              | 3.0             | 3.0             | 3.0                  | 3.0             | 3,0             | 3.0             |
| Humid Labor (operator-h/day)                              | -              | -               | -                   | -                   | -              | -                | -               | -               |                      |                 | 1               | E0.034          |
| Operating Labor (\$10^6/yr)                               | \$0.034        | \$0,034         | \$0.03 <del>4</del> | \$0.034             | \$0.034        | \$0.034          | <b>\$</b> 0.034 | *0:03           | \$0.034              |                 |                 |                 |
| Total Install Could (\$1046)                              | 17.12          | 17 83           | 53.44               | <b>\$</b> 2.69      | \$3.44         | \$5.81           | <b>53</b> 44    | \$3.44          | \$3.44               | \$3.44          | \$3.46          | \$3.64          |
| roual fiistain Equip (4:0 V)<br>Ministration Earther      | 104            | 104             | 4.0%                | 4.0%                | 4.0%           | 4.0%             | 4.0%            | 4.0%            | <b>%</b> 0. <b>*</b> | 4.0%            | 4.0%            | 4.0%            |
| Maintenance I abor (\$1046/vr)                            | <b>S</b> 0.055 | <b>S</b> 0.055  | \$0.055             | \$0.046             | \$0.055        | \$0.093          | \$0.055         | \$0.055         | <b>\$</b> 0.055      | <b>\$</b> 0.055 | \$0.055         | <b>\$</b> 0.058 |
| Mahingiance Lawa (*10 vyv)<br>Maintanenes Mah (\$10^6/vr) | \$0 DB3        | \$0.083         | 50.083              | <b>\$</b> 0.069     | \$0.083        | <b>\$</b> 0.139  | \$0.083         | \$0.083         | \$0.083              | \$0.083         | \$0.083         | <b>\$</b> 0.087 |
| Admin/Support Labor (\$10^6/yr)                           | \$0.027        | \$0.027         | \$0.027             | \$0.024             | \$0.027        | <b>\$</b> 0.038  | \$0.027         | <b>\$</b> 0.027 | \$0.027              | <b>\$</b> 0.027 | \$0.027         | \$0.028         |
| Totaj Fixed O&M (\$10^6/yr)                               | <b>\$</b> 0.20 | \$0.20          | <b>\$</b> 0.20      | \$0.17              | \$0.20         | <b>\$</b> 0.30   | <b>\$</b> 0.20  | <b>\$</b> 0.20  | <b>\$</b> 0.20       | <b>\$</b> 0.20  | \$0.20          | \$0.21          |
|                                                           |                |                 | Annu                | al Variable O&M Co  | osts           |                  |                 |                 |                      |                 |                 |                 |
|                                                           |                |                 | Annue               | al Reagent Cost     |                |                  |                 |                 |                      |                 |                 |                 |
|                                                           |                |                 |                     |                     |                |                  | 763             | 736.6           | 4 801                | 3.260           | 4.89.1          | 6.521           |
| Hydrated Lime Use (tons/yr)                               | 4,891          | 22,899          | 34,498              | 2,442               | 169'4          |                  | 552 D0          | 562.00          | 562 00               | \$62.00         | <b>\$</b> 62.00 | \$62.00         |
| Hydrated Lime Cost (\$/ton)                               | \$62.00        | \$62.00         | 562.00<br>50.100    | \$62.00             | 902.UU         | \$02.UC          | SU 047          | SO 140          | \$0.303              | <b>\$</b> 0.202 | \$0.303         | \$0,404         |
| Hydrated Lime Cost (\$/yr)                                | \$0.303        | \$1.420         | \$2.139             | 261.0 <b>¢</b>      | 500°.04        | 90.910           | 10.00           |                 |                      |                 |                 |                 |
| Erainti Cost / Chon.mile)                                 | 80.08          | 50.08           | <b>\$</b> 0.08      | \$0.08              | \$0.08         | \$0.08           | \$0.08          | 80°0\$          | \$0.08               | <b>\$</b> 0.08  | \$0.0B          | \$0.08          |
| Freinht Distance (m)                                      | 413            | 413             | 413                 | 413                 | 413            | 413              | 413             | 413             | 413                  | 413             | 413             | 614             |
| Rearent Freinht (\$10n)                                   | \$33.00        | <b>5</b> 33.00  | \$33.00             | \$33.00             | \$33.00        | \$33.00          | \$33.00         | \$33.00         | \$13.00              | \$33.00         | <b>5</b> 33.00  | <b>\$</b> 33.00 |
| Reapent Freicht (\$/yr)                                   | \$0.161        | <b>\$</b> 0.756 | \$1.138             | <b>\$</b> 0.081     | \$0.161        | \$0.484          | <b>\$</b> 0.025 | \$0.074         | <b>\$</b> 0.161      | \$0.108         | \$0.161         | \$0.215         |
|                                                           |                |                 | Annu                | at Water and Auxili | iary Power C   | osts             |                 |                 |                      |                 |                 |                 |
|                                                           |                |                 |                     |                     |                |                  |                 |                 | 07.0                 | 040             | 0.49            | 0.49            |
| H2O Use (ga/h/MWe)                                        | 0.49           | 0.49            | 0.49                | 0.49                |                |                  |                 |                 | 0000                 | 0.049           | 0.049           | 0.049           |
| H2O Use (10^3 gal/h)                                      | 0,049          | 0.049           | 0.049               | 620°0               | 640'0          | 141.0            | 540'D           | 640.0           | en en                | 50 60<br>50 60  | 50.60           | 50.60           |
| Raw H2O Cost (\$/10^3 gal)                                | \$0.60         | <b>\$</b> 0.60  | 29:0 <b>5</b>       | 19. DZ              | 10.04<br>71.04 | to Anoso         | 10000 US        | \$0.000 Q2      | \$0 00017            | 50.0017         | \$0.00017       | \$0.00017       |
| Annual H2O Cost (\$10^6/yr)                               | \$0.00017      | \$0.00017       | /1000.0\$           | pupun nt            | 11000.04       | nextro ne        |                 |                 |                      |                 |                 |                 |
| DSI Alix Priver Lise (kW/MWe)                             | 0.2501         | 0.2501          | 0.2501              | 0.2501              | 0.2501         | 0.2501           | 0.2501          | 0.2501          | 0.2501               | 0.2501          | 0.2501          | 0.2501          |
| Humid Aux Power Use (kW/MWe)                              | 11.09          | 11.09           | 11.09               | 11.09               | 11.09          | 11.09            | 11.09           | 11.09           | 11.09                | 11.09           | 90.11<br>11.09  | 90'LL           |
| Total Aux Power (kWMh)                                    | 1,134          | 1,134           | 1,134               | 567                 | 1,134          | 3,402            | 1.134           | 1,134           |                      |                 | 100 C           |                 |
| Aux Power Cost (\$/kWh)                                   | \$0,05         | \$0.05          | <b>\$</b> 0.05      | \$0.0\$             | \$0.05         | \$0.0\$          | <b>\$</b> 0.05  | \$0.05          | \$0.0\$              | 50'n\$          | CD:04           | co.ne           |
| Aux Power Cost (\$10^6/yr)                                | \$0.323        | \$0.323         | \$0.323             | \$0.161             | \$0.323        | <b>\$</b> 0.149  | \$0.050         | \$0.149         | <b>\$</b> 0.323      | \$0.323         | 626.04          | 676.D¢          |
|                                                           |                |                 | Ann.                | al Ash Disposal Co  | )<br>St        |                  |                 |                 |                      |                 |                 |                 |
| Ach Diemeal (\$1100)                                      | 59.29          | \$9.29          | \$9.29              | \$9.29              | \$9.29         | \$9.29           | \$9.29          | \$9.29          | <b>\$</b> 9,29       | <b>\$</b> 9.29  | \$9.29          | \$9.29          |
| Total Addad Ach (tons/vr)                                 | 6.862          | 32.128          | 48,401              | 3,431               | 6,862          | 20,585           | 1,056           | 3, 167          | 6,862                | 4 574           | 6,862           | 9,149           |
| Ash Disposal (\$10%6/yr)                                  | \$0.0637       | \$0.2985        | <b>5</b> 0.4496     | \$0.0319            | \$0.0637       | <b>\$</b> 0,1912 | 800.0 <b>8</b>  | \$0.0294        | \$0.0637             | \$0.0425        | \$0.0637        | \$0.0850        |
| Total Variable (\$10 <sup>4</sup> 6/yr)                   | \$0.548        | \$1.38          | \$1.91              | \$0.27              | \$0.55         | \$0.82           | \$0.0\$         | \$0.25          | <b>\$</b> 0.55       | \$0.47          | \$0.55          | \$0.62          |
|                                                           |                |                 |                     | 27.04               | <b>*</b> 0.7E  | 111              |                 | 5U 45           | <b>\$</b> 0.75       | \$0.67          | \$0.75          | \$0.83          |
| Total O&M (\$10^6/yr)                                     | \$0.75         | \$1.57          | 11.2 <b>4</b>       | \$0.42              | e              | c1.1¢            | n7:04           |                 | 2                    |                 |                 |                 |
|                                                           |                |                 |                     |                     |                |                  |                 |                 |                      |                 |                 |                 |

|                                                           | 0.40%           | 1.20%       | 2.63%         | 50                  | 100             | 300               | 10.00%          | 30.00%        | 65.00%          | 20.00%          | 30.00%          | 40.00%          |
|-----------------------------------------------------------|-----------------|-------------|---------------|---------------------|-----------------|-------------------|-----------------|---------------|-----------------|-----------------|-----------------|-----------------|
| Tot Cap Required (\$10^6)                                 | \$4.27          | \$5.11      | \$6.14        | \$3.50              | \$4.27          | \$7.39            | <b>\$4</b> .05  | \$4.13        | \$4.27          | <b>\$4</b> .26  | \$4.29          | \$4.52          |
| Fixed O&M (\$10^6/yr)                                     | <b>\$0.198</b>  | \$0.198     | \$0.198       | \$0.173             | \$0.198         | \$0.304           | \$0.198         | \$0.198       | \$0.198         | <b>\$</b> 0.198 | <b>\$</b> 0.199 | \$0.207         |
| Variable O&M (\$10^6/yr)                                  | \$0.548         | \$1.377     | \$1.911       | \$0.274             | \$0.548         | \$0.824           | \$0.084         | \$0.253       | \$0.548         | \$0.473         | \$0.548         | \$0.623         |
| Power Produced (10 <sup>A</sup> B kWh/yr)                 | 0.569           | 0.569       | 0.569         | 0.285               | 0.569           | 1.708             | 0.088           | 0.263         | 0.569           | 0.569           | 0.569           | 0.569           |
| SO2 Removed (tons/yr)                                     | 570             | 2,671       | 4,023         | 285                 | 570             | 1,711             | 8               | 263           | 570             | 380             | 570             | 761             |
|                                                           |                 |             |               |                     |                 |                   |                 |               |                 |                 |                 |                 |
|                                                           |                 |             | , Levi        | elized Cost Per Pow | er Produced     | (Current Dollars) |                 |               |                 |                 |                 |                 |
| Level Cap Chg (mills/kWh)                                 | 1.201           | 1.437       | 1.725         | 1.966               | 1.201           | 0.692             | 7.392           | 2.514         | 1.201           | 1.196           | 1.206           | 1.270           |
| Level Fixed O&M (mills/kWh)                               | 0.457           | 0.457       | 0.457         | 0.800               | 0.457           | 0.234             | 2.969           | 066.0         | 0.457           | 0.457           | 0.459           | 0.477           |
| Level Variable O&M (mills/kWh)                            | 1.26            | 3.18        | 4.41          | 1.26                | 1.26            | 0.63              | 1.26            | 1.26          | 1.26            | 1.09            | 1.26            | 1.44            |
| Total Current (mills/KVM)                                 | 2.92            | 5.07        | 6.59          | 4.03                | 2.92            | 1.56              | 11.63           | 4.77          | 2.92            | 2.74            | 2.93            | 3.19            |
|                                                           |                 |             | , el          | elized Cost Per Pow | er Produced     | (Constant Dollars | (               |               |                 |                 |                 |                 |
| Level Cap Chg (mills/kWh)                                 | 0.931           | 1.114       | 1.337         | 1.523               | 0.931           | 0.536             | 5.728           | 1.948         | 0.931           | 0.927           | 0.935           | 0.984           |
| Level Fixed O&M (mills/kWh)                               | 0.348           | 0.348       | 0.348         | 0.609               | 0.348           | 0.178             | 2.260           | 0.753         | 0.348           | 0.348           | 0.349           | 0.363           |
| Level Variable O&M (mills/kWh)                            | 0.96            | 2.42        | 3.36          | 0.96                | 0.96            | 0.48              | 0.96            | 0.96          | 0.96            | 0.83            | 0.96            | 1.09            |
| Total Constant (mills/kWh)                                | 2.24            | 3.88        | 5.04          | 3.09                | 2.24            | 1.20              | 8.95            | 3.66          | 2.24            | 2.11            | 2.25            | 2.44            |
|                                                           |                 |             | Lew           | elized Cost Per Ton | Pollutant Re    | moved (Current D  | kollars)        |               |                 |                 |                 |                 |
| Level Cap Chg (\$/lon)                                    | <b>\$</b> 1,199 | \$306       | \$244         | \$1,962             | \$1,199         | <b>\$</b> 691     | 676,7\$         | \$2,510       | <b>\$</b> 1,199 | \$1,792         | \$1,204         | \$951           |
| Level Fixed O&M (\$/ton)                                  | <b>\$1</b> 56   | <b>2</b> 97 | <b>\$</b> 65  | 86/\$               | <b>\$1</b> 56   | \$233             | \$2,964         | <b>\$</b> 388 | <b>\$4</b> 56   | \$684           | <b>\$4</b> 58   | \$357           |
| Level Variable O&M (\$/ton)                               | <b>\$1</b> ,263 | \$677       | \$624         | <b>\$</b> 1,262     | <b>\$1</b> ,262 | <b>\$</b> 633     | \$1,262         | \$1,262       | \$1,262         | \$1,634         | \$1,262         | \$1,076         |
| Total Current (\$/ton)                                    | \$2,917         | \$1,081     | <b>\$</b> 933 | <b>54</b> ,023      | \$2,917         | <b>\$1</b> ,557   | \$11,606        | \$4,760       | <b>\$</b> 2.917 | \$4.110         | \$2,924         | <b>\$</b> 2,385 |
| Total w/o downtime (\$/ton)                               | \$2,874         | \$1,072     | \$927         | \$3,979             | \$2,873         | \$1,513           | \$11,562        | \$4,716       | \$2,873         | \$4,044         | \$2,880         | \$2,352         |
|                                                           |                 |             | Levi          | elized Cost Per Ton | Pollutant Re    | moved (Constant   | Dollars)        |               |                 |                 |                 |                 |
| Level Cap Chg (\$10n)                                     | \$929           | \$237       | \$189         | \$1,521             | <b>\$</b> 929   | \$535             | \$5,719         | \$1,945       | <b>\$</b> 929   | \$1.388         | <b>\$</b> 933   | \$737           |
| Level Fixed O&M (\$/ton)                                  | \$347           | \$74        | 6 <b>M</b> 3  | \$607               | \$347           | \$178             | \$2,256         | \$752         | \$347           | \$521           | \$348           | \$272           |
| Level Variable O&M (\$/ton)                               | \$961           | \$516       | <b>\$</b> 775 | \$961               | \$961           | \$482             | <b>\$</b> 961   | <b>\$</b> 961 | \$961           | \$1,244         | <b>\$</b> 961   | \$819           |
| Total Constant (S/ton)                                    | \$2,237         | \$827       | \$713         | \$3,089             | \$2,237         | \$1,195           | <b>\$</b> 8,935 | \$3,658       | \$2.237         | \$3.153         | \$2.242         | \$1.828         |
| Total w/o downtime (\$fton)                               | \$2,203         | \$820       | \$709         | \$3,055             | \$2,203         | \$1,161           | \$8,901         | \$3,624       | \$2,203         | \$3,102         | \$2,208         | \$1,803         |
| Levelization Factors (Plant life = 15yr)                  |                 |             |               |                     |                 |                   |                 |               |                 |                 |                 |                 |
| Level Cap Factor (current)                                | 0.160           |             |               |                     |                 |                   |                 |               |                 |                 |                 |                 |
| Level Cap Factor (constant)                               | 0.124           |             |               |                     |                 |                   |                 |               |                 |                 |                 |                 |
| Level U&M Factor (current)<br>Level O&M Factor (constant) | 1.000           |             |               |                     |                 |                   |                 |               |                 |                 |                 |                 |

| Humidification             |           | Arapah | be 4  |             |               |       |             |     |               |             |
|----------------------------|-----------|--------|-------|-------------|---------------|-------|-------------|-----|---------------|-------------|
| Capital Costs for year:    |           |        |       |             |               | ŋ     | it Size (MW | (e) |               |             |
| 1991                       | Unit Cost | No. F  | actor | Cost        | No. F         | actor | 50          | No. | Factor        | 300         |
| Humidification lances      | \$13,600  | 14     | -     | \$190,400   | 2             | -     | \$95,200    | 20  | 1.5           | \$408,000   |
| Water pump                 | \$3,115   |        | -     | \$3,115     | <del>~~</del> | 0.8   | \$2,492     | -   | 7             | \$6,230     |
| Atomization air compressor | \$80,560  | 7      | -     | \$161,120   | 2             | 0.8   | \$128,896   | 9   | <del>~~</del> | \$483,360   |
| Shield air fan             | \$2,321   | ~      | -     | \$2,321     | -             | 0.8   | \$1,857     | -   | 2             | \$4,642     |
| Other equipment            | \$424,050 | -      | -     | \$424,050   | -             | 0.9   | \$381,645   | ~   | 2             | \$848,100   |
| Total procurement          |           |        |       | \$781,006   |               |       | \$610,090   |     |               | \$1,750,332 |
| Total design/engineering   | \$330,000 | -      | -     | \$330,000   | *             | -     | \$330,000   | -   | -             | \$330,000   |
| Total installation         | \$470,000 | ~      | -     | \$470,000   | -             | 0.8   | \$376,000   | -   | 2             | \$940,000   |
| Total capital cost         | N/A       |        |       | \$1,581,006 |               |       | \$1,316,090 |     |               | \$3,020,332 |
| \$/kW                      | N/A       | -      |       | \$15.81     |               |       | \$26.32     |     |               | \$10.07     |
|                            |           |        |       |             |               |       |             |     |               |             |

,

ł

1

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I-4

Sodium Bicarbonate Dry Sorbent Injection

• .

\_\_\_

| Bicarbonate SO2 Removal                                                                     | SULF<br>0.40%     | -UR CONTEN<br>1.20% | uT<br>2.63% | 20 F             | JNIT SIZE<br>100 | 300          | CAPA<br>10% | CITY FACTO<br>30% | )R<br>65% | 30%<br>30% | 02 REMOVA<br>50%    | ل<br>۲0%        |
|---------------------------------------------------------------------------------------------|-------------------|---------------------|-------------|------------------|------------------|--------------|-------------|-------------------|-----------|------------|---------------------|-----------------|
|                                                                                             |                   |                     | Coal        | Data             |                  |              |             |                   |           |            |                     |                 |
| Ann Sulfue Contant                                                                          |                   |                     | 763V        |                  | 7001.0           | 1005 0       | 1004 0      | 1001 0            | 1000      |            | 1007 0              | 2001 0          |
|                                                                                             | 0.40%             | 94.07°L             | 20100       | 0.40%            | 0.40%            | 0.40%        | 0.40%       | 0.40%             | 0.40%     | 0.40%      | 0.40%               | 0.40%           |
| Ash Content<br>Ash Content                                                                  | 0 600 1           | 10,000              | 10,200      | 7003 0           |                  | 19,000       | 0 CD, L1    | 7603 0            | 0 60%L    | UGU,FT     | 050,11              | 0e0,11          |
| Na2O in Ash                                                                                 | 0.63%             | 1.05%               | 3.40%       | 0.63%            | 0.63%            | 0.63%        | 0.63%       | 0.63%             | 0.63%     | 0.63%      | 9.63%               | 9 00 %<br>0.63% |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                   |                     | Oper        | ating Specifica  | tions            |              |             |                   |           |            |                     |                 |
|                                                                                             |                   |                     |             |                  |                  |              |             |                   |           |            |                     |                 |
| Unit Heatrate (Btu/NkWh)                                                                    | 10,542            | 10,542              | 10,542      | 10,542           | 10,542           | 10,542       | 10,542      | 10,542            | 10,542    | 10,542     | 10,542              | 10,542          |
| Unit Size (MWe)                                                                             | 8                 | <u>6</u>            | 100         | 20               | 100              | 300          | <u>6</u>    | 100               | 100       | 6          | 100                 | 100             |
| Capacity Factor                                                                             | 65%               | 65%                 | 65%         | 65%              | 65%              | 65%          | 10%         | 30%               | 65%       | 65%        | 65%                 | 65%             |
| SO2 Removal Required                                                                        | %02               | 70%                 | %02         | %0 <u>/</u>      | 10%              | 20%          | 70%         | - %02             | 70%       | 30%        | 50%                 | 70%             |
| NSR                                                                                         | 1.10              | 1.10                | 1.10        | 1,10             | 1.10             | 1.10         | 1.10        | 1.10              | 1.10      | 040        | 0.75                | 110             |
| Utilization                                                                                 | 64%               | 64%                 | <b>%1</b> 3 | ***              | <b>64</b> %      | % <b>F</b> 9 | 64%         | 64%               | 64%       | 75%        | 67%                 | 64%             |
|                                                                                             |                   |                     | Real        | pent Specificati | ons              |              |             |                   |           |            |                     |                 |
| Na Content (Ib Na/Ib reagent)                                                               | 0.272             | 0.272               | 0.272       | 0.272            | 0.272            | 0.272        | 0.272       | 0.272             | 0 272     | 0 272      | 0 272               | 0.772           |
| Na2SO4 Formation Rate                                                                       | %0.06             | %0.08               | %0.08       | <b>%</b> 0 06    | %0.08            | %0.06        | 80.08       | <b>%0 06</b>      | 20 06     | 90 USK     | 20 D9               | 90 US           |
| Na2SO3 Formation Rate                                                                       | 10.0%             | 10.0%               | 10.0%       | 10.0%            | 10.0%            | 10.0%        | 10.0%       | 10.0%             | 10.0%     | 10.0%      | 10.0%               | 10.0%           |
| NaHCO3 Content                                                                              | <b>99.5%</b>      | <b>99.5%</b>        | 99.5%       | 99.5%            | 99.5%            | 99.5%        | 99.5%       | 99.5%             | 99.5%     | 99.5%      | <b>99.5%</b>        | <b>66.5%</b>    |
| Na2CO3 Content                                                                              | 0.0%              | 0.0%                | 0.0%        | 0.0%             | 0.0%             | 0.0%         | 0.0%        | 0.0%              | 0.0%      | 0.0%       | 0.0%                | %0.0            |
| Inert Content                                                                               | 0.5%              | 0.5%                | 0.5%        | 0.5%             | 0.5%             | 0.5%         | 0.5%        | 0.5%              | 0.5%      | 0.5%       | 0.5%                | 0.5%            |
|                                                                                             | 1                 |                     | Rea         | jent Flowrate    |                  |              |             |                   |           |            |                     |                 |
| Max Coal Flow (tons/h)                                                                      | 8                 | *                   | 51          | 24               | 84               | 153          | 84          | 8                 | 48        | 48         | 8                   | 48              |
| S02 In Duct (Ib/h)                                                                          | 668               | 3,127               | 4,711       | VEE              | 668              | 2,003        | 668         | 668               | 668       | 668        | 668                 | 568             |
| S02 to be Removed (lb/h)                                                                    | 467               | 2,189               | 3,297       | 234              | 467              | 1,402        | 467         | 467               | 467       | 200        | 334                 | 467             |
| Reagent Flowrate (Ib/h)                                                                     | 1,941             | 9,089               | 13,692      | 971              | 1941             | 5,823        | 1,941       | 1,941             | 1,941     | 706        | 1,324               | 1,941           |
| Reagent Flowrate (ton/h)                                                                    | 0.971             | 4.544               | 6.846       | 0.485            | 0.971            | 2.912        | 0.971       | 0.971             | 0.971     | 0.353      | 0.662               | 0.971           |
|                                                                                             |                   |                     | Ash         | Disposal         |                  |              |             |                   |           |            |                     |                 |
| Ash Formation (Ib/h)                                                                        | 9,159             | 15,485              | 11,054      | 4,579            | 9,159            | 27,476       | 9,159       | 9,159             | 9.159     | 9.159      | 9.159               | 9.159           |
| Unreacted reagent (Ib/h)                                                                    | 706               | 3,305               | 4,979       | 353              | 706              | 2,118        | 706         | 706               | 706       | 176        | 441                 | 706             |
| Na2SO4 (Ib/h)                                                                               | 1,045             | 4,893               | 7,372       | 523              | 1,045            | 3,135        | 1,045       | 1,045             | 1,045     | 448        | 746                 | 1,045           |
| Na2SO3 (Ib/h)                                                                               | 116               | 544                 | 819         | 58               | 116              | 348          | 116         | 116               | 116       | 50         | 83                  | 116             |
| NaHCO3 (Ib/h)                                                                               | 702               | 3,289               | 4,954       | 351              | 702              | 2,107        | 702         | 702               | 702       | 176        | <b>6</b> 2 <b>#</b> | 702             |
| NaZCO3 (Ib/h)                                                                               | •                 | 0                   | 0           | •                | •                | 0            | •           | 0                 | 0         | 0          | •                   | 0               |
| inerts (Ib/h)                                                                               | 10                | 45                  | 68          | ŝ                | 10               | 29           | õ           | 10                | 10        | 4          | 7                   | <u>1</u>        |
| Fotal Added Ash (Ib/h)                                                                      | 2,579             | 12,076              | 18,192      | 1,290            | 2,579            | 7.737        | 2,579       | 2,579             | 2,579     | 853        | 1,716               | 2.579           |
| Total Added Ash (ton/h)                                                                     | 1.29              | 6.0                 | 9.10        | 0.645            | 1.29             | 3.87         | 1.29        | 1.29              | 1.29      | 0.427      | 0.858               | 1.29            |
| Sodium bicarbonate data from reage                                                          | ent data reported | d in PDR.           | .<br> <br>  |                  |                  |              |             |                   |           |            |                     | ,               |
|                                                                                             | Revised: 1        | 12/15/94            |             |                  |                  |              |             |                   |           |            |                     |                 |
|                                                                                             | 8y:               | [] Hanley           |             |                  |                  |              |             |                   |           |            |                     |                 |

Sodium-Based DSI (NABICAFB XLS) - 1

Print Date: 11/16/1999

|                                                    |                   |                | _       | 5                 | NIT SIZE        |        | CAPAC        | <b>SITY FACTO</b> | æ      | S             | <b>D2 REMOVA</b>          | _      |
|----------------------------------------------------|-------------------|----------------|---------|-------------------|-----------------|--------|--------------|-------------------|--------|---------------|---------------------------|--------|
|                                                    | 0.40%             | 1.20%          | 2.63%   | 50                | 100             | 300    | 10%          | 30%               | 65%    | 30%           | 50%                       | 70%    |
|                                                    |                   |                | Coal    | Data              |                 |        |              |                   |        |               |                           |        |
|                                                    |                   | 1 200          | 1       |                   | 0.40%           | 0 40%  | 0.40%        | 0.40%             | 0.40%  | 0.40%         | 0.40%                     | 0 40%  |
|                                                    |                   | 080 2          | 10.300  | 11 050            | 11 050          | 11.050 | 11.050       | 11,050            | 11,050 | 11,050        | 11.050                    | 11,050 |
| Heat Content (Bturip)                              | 000'I             |                | 40 8067 | 9.60%             | 9 60%           | 960%   | 9,60%        | 9,00%             | 9.60%  | 9.60%         | 9.60%                     | 9,60%  |
| Ash Content<br>Ne2O in Ash                         | 9.00%<br>0.63%    | 1.05%          | 3.40%   | 0.63%             | 0.63%           | 0.63%  | 0.63%        | 0.63%             | 0.63%  | 0.63%         | 0.63%                     | 0.63%  |
|                                                    |                   |                |         |                   |                 |        |              |                   |        |               |                           |        |
|                                                    |                   |                | Oper    | ating Specificat  | suo             |        |              |                   |        |               |                           |        |
|                                                    |                   |                |         | 10 540            |                 | 10 643 | 10 542       | 10 542            | 10 542 | 10.542        | 10.542                    | 10,542 |
| Unit Heatrate (Btu/NkWh)                           | 10,542            | 10,542         | 10,542  | 10 <sup>-2</sup>  | 1001            |        | 001          | 100               | 100    | 100           | 100                       | 100    |
| Unit Size (WWe)                                    | <b>8</b>          | 3 5            | 3       | 202               | 201             | 65%    | 10%          | %0X               | 65%    | 65%           | 65%                       | 65%    |
| Capacity Factor                                    | 60 <del>1</del> 8 | 8.CO           | ek co   | <b>R</b> C0       | 3               | 2 22   |              |                   |        |               |                           |        |
|                                                    | 7002              | 70%            | 20%     | 20%               | 20%             | 70%    | 70%          | %04               | 70%    | 30%           | 50%                       | %02    |
| SUZ Remova required                                | 207<br>110        | 1.10           | 110     | 1.10              | 1 10            | 1.10   | 1.10         | 1.10              | 1.10   | 0.40          | 0.75                      | 1.10   |
| nor<br>Utilization                                 | 9<br>19           | 8 <b>4</b> 8   | *2      | **                | 64%             | 64%    | 64%          | 64%               | 64%    | 75%           | 67%                       | 64%    |
|                                                    |                   |                | Real    | ent Specification | SUG             |        |              |                   |        |               |                           |        |
|                                                    | 0.170             | C 10 0         | 0.372   | 0.272             | 0 272           | 0.272  | 0.272        | 0.272             | 0.272  | 0.272         | 0.272                     | 0.272  |
| Na Content (ID Na/ID reagent)                      | 772.0             | 212.0          | 7 7 7 0 |                   |                 |        | %0.0%        | 80 0%             | %0.06  | 90.0%         | <b>%0</b> .0 <del>%</del> | 90.0%  |
| Na2SO4 Formation Rate                              | \$0.05            | 90.08          | 80.0%   |                   | 10.0%           | 10.0%  | 10.0%        | 10.0%             | 10.0%  | 10.0%         | 10.0%                     | 10.0%  |
| Na2SO3 Formation Rate                              | 10.0%<br>20 52    | 40.01<br>20.5% | 20 EV   |                   | 00 5 46         | 99.5%  | 965 66<br>96 | 99.5%             | %5.66  | <b>99.5</b> % | %5 66                     | 99.5%  |
| NaHCO3 Content                                     | 94.C-56           |                |         | 94.0.50<br>740 U  | 20.02<br>100    | 0.0%   | 0.0%         | 0.0%              | 0.0%   | 0.0%          | 0.0%                      | 0.0%   |
| Na2CO3 Content                                     | 85°0              | 860 O          | 6.0.D   | 8 O O             |                 |        |              | 70 207            | 0 5%   | 0.5%          | 0.5%                      | 0.5%   |
| Inert Content                                      | 0.5%              | 0.5%           | 0.5%    | %C.0              | <b>%</b>        | %C.D   | R            |                   | 200    |               |                           |        |
|                                                    |                   |                | Rea     | pent Flowrate     |                 |        |              |                   |        |               |                           |        |
| May Cool Elow (tons/h)                             | 84                | 12             | 51      | 24                | 8 <b>9</b><br>4 | 143    | 48           | 48                | 48     | 48            | 48                        | 48     |
|                                                    | 858               | 107            | 4 7 1 1 | 334               | 668             | 2.003  | 668          | 668               | 668    | 668           | 668                       | 668    |
| SUZ IN LUCT (IMI)<br>SOO to be Bernowed (Ibfb)     | 467               | 7 189          | 3 297   | 234               | 467             | 1.402  | 467          | 467               | 467    | 200           | 334                       | 467    |
| out to be removed (min)<br>Resnest Firwrata (ih/h) | 1.941             | 690.6          | 13,692  | 971               | 1,941           | 5,823  | 1,941        | 1,941             | 1,941  | 706           | 1,324                     | 1,941  |
| Reagent Flowrate (ton/h)                           | 0.971             | 4.544          | 6.846   | 0.485             | 0.971           | 2.912  | 0.971        | 0.971             | 0.971  | 0.353         | 0.662                     | 0.971  |
|                                                    |                   |                | Ash     | Disposal          |                 |        |              |                   |        |               |                           |        |
| Ash Exmetion (Ib/h)                                | 9.159             | 15.485         | 11.054  | 4,579             | 9,159           | 27,476 | 9,159        | 9,159             | 9,159  | 9,159         | 9,159                     | 9,159  |
| threaded respect (b/h)                             | 2016              | 3.305          | 4,979   | 353               | 706             | 2,118  | 706          | 706               | 706    | 176           | 441                       | 706    |
| Unreacted reagant (mail)                           | 1.045             | 4,893          | 7.372   | 523               | 1,045           | 3, 135 | 1,045        | 1,045             | 1,045  | 448           | 746                       | 1,045  |
|                                                    | 116               | 544            | 819     | 58                | 116             | 348    | 116          | 116               | 116    | 50            | 83                        | 116    |
|                                                    | 702               | 3.289          | 4.954   | 351               | 702             | 2,107  | 702          | 702               | 702    | 176           | 439                       | 702    |
|                                                    | C                 | 0              | 0       | •                 | 0               | 0      | 0            | 0                 | 0      | •             | 0                         | 0      |
| Inerts (Ib/h)                                      | 2                 | 45             | 68      | 'n                | ₽               | 29     | 10           | 10                | 10     | *             | ~                         | 9      |
| Total Added Ash (lb/h)                             | 2,579             | 12,076         | 18,192  | 1,290             | 2.579           | 7.737  | 2,579        | 2,579             | 2,579  | 853           | 1,716                     | 2,579  |
| Total Added Ash (ton/h)                            | 1.29              | 6.04           | 9,10    | 0.645             | 1.29            | 3.87   | 1.29         | 1.29              | 1.29   | 0.427         | 0.858                     | 1.29   |
|                                                    |                   |                |         |                   |                 |        |              |                   |        |               |                           |        |
| Sodium bicarbonate data from reage                 | nt data reporte   | d in PDR.      |         |                   |                 |        |              |                   |        |               |                           |        |
|                                                    | Nevised.          |                |         |                   |                 |        |              |                   |        |               |                           |        |
|                                                    | By:               | Г. Напеу       |         |                   |                 |        |              |                   |        |               |                           |        |

,

| BICARBONATÉ TOTAL CAPITAL                                       | Ŵ       | uifur Content  |                 |                 | Unit Size      |                  | C al             | acity Factor     |                 | S)             | 02 Removal     | Rate                 |
|-----------------------------------------------------------------|---------|----------------|-----------------|-----------------|----------------|------------------|------------------|------------------|-----------------|----------------|----------------|----------------------|
|                                                                 | 0.40%   | 1.20%          | 2.63%           | 50              | 100            | 300              | 10%              | 30%              | 65%             | 30%            | 50%            | 70%                  |
| Install Year                                                    | 1991    | 1991           | 1981            | 1991            |                | 1991             | 1991             | 1991             | 1001            | 1001           | 1001           | 1001                 |
| Study Year                                                      | 1994    | 1994           | 1994            | 1994            | 1994           | 1994             | 1994             | 1994             | 1994            | 1994           | 1994           | 1994                 |
| Inflation Rate                                                  | *       | \$             | 87              | 4%              | **             | 4%               | 4%               | 4%               | **              | 4%             | 4%             | 4%                   |
| Subtotat Install-1991 (\$/kW)                                   | \$14.95 | \$23.69        | \$32,55         | \$25.69         | \$14.95        | 06.18            | \$14.95          | \$14.95          | \$14.95         | \$12.82        | \$14.03        | \$14.95              |
| Subtotal Install-1994 (\$1046)                                  | \$1.68  | \$2.66         | \$3.66          | \$1.44          | \$1.68         | \$2.66           | \$1.68           | \$1.68           | \$1.68          | \$1.44         | \$1.58         | \$1.68               |
|                                                                 | ,       |                |                 |                 |                |                  |                  |                  |                 | -              |                |                      |
| Retrofit Factor                                                 | Ċ       | 0              | Ð               | 0               | Ð              | 0                | 0                | 0                | 0               | 0              | 0              | a                    |
| Revolt Cost (\$10^6)                                            | \$0.00  | \$0.00         | \$0.00          | \$0.00          | \$0.00         | \$0.00           | \$0.00           | <b>\$</b> 0.00   | \$0.00          | <b>\$</b> 0.00 | \$0.00         | \$0.00               |
| Process Contingency Factor                                      | 10%     | 10%            | \$0 <b>%</b>    | 10%             | 10%            | 10%              | 10%              | 10%              | 10%             | 10%            | 10%            | 10%                  |
| Proc Contingency Cost (\$10%6)                                  | \$0.166 | \$0.168        | \$0.168         | \$0.144         | \$0,168        | <b>\$</b> 0.266  | \$0.168          | \$0.168          | <b>\$</b> 0.168 | \$0.144        | \$0.158        | \$0.168              |
| Total Install Equip (\$10%6)                                    | \$1.85  | \$1.85         | \$1.85          | \$1.59          | \$1.85         | \$2.93           | \$1.85           | \$1.85           | \$1.85          | \$1,59         | \$1.74         | \$1.85               |
| Tot. Process Capital (\$10 <sup>46</sup> )                      | \$1.85  | \$1.85         | \$1.85          | \$1.59          | \$1.85         | \$2.93           | \$1.85           | \$1.85           | \$1.85          | \$1.59         | \$1.74         | \$1.85               |
| General Facilities Rate                                         | 18      | 18             | 1               | 8               | 18             | 10               | 120              |                  |                 |                |                |                      |
| Gen Facilities Cost (\$10^6)                                    | \$0.000 | \$0,000        | \$0.000         | 50.000          | \$0,000        | 50 000<br>51 000 | 20 000 VX        | \$0 000          | \$000           |                | \$000 <b>4</b> | %.D                  |
| Engr & Home Office Rate                                         | 10%     | 10%            | 10%             | 10%             | 10%            | 10%              | 10%              | 10%              | 10%             | 1000           | 2007           | 2001                 |
| Engr & Home Office (\$10%6)                                     | \$0 185 | \$0,185        | \$0.185         | <b>\$</b> 0.159 | \$0.185        | \$0.293          | \$0.185          | 50.185           | <b>5</b> 0.185  | <b>\$0</b> 159 | 50 174         | 941 US               |
| Project Contingency Rate                                        | 5%      | 5%             | 5%              | 5%              | 2 <b>%</b>     | 5%               | 5%               | *5               | 265<br>765      | 59%            | 59%            | 5%                   |
| Proj Contingency Cost (\$10^6)                                  | \$0.102 | \$0.102        | \$0.102         | \$0.087         | \$0.102        | <b>\$</b> 0.161  | \$0.102          | <b>\$</b> 0.102  | <b>\$</b> 0,102 | \$0.087        | \$0.095        | <b>\$</b> 0.102      |
| Total Plant Cost (\$10^6)                                       | \$2.14  | \$2.14         | \$2.14          | \$1.84          | \$2.14         | \$3.39           | \$2.14           | \$2.14           | \$2.14          | \$1.83         | \$2.00         | \$2.14               |
| AFDC rate                                                       | %0      | %0             | %0              | %0              | ¥0             | %0               | 5                | 30               |                 | 1              |                | 1                    |
| AFDC Cost (\$10%6)                                              | \$0.00  | <b>\$</b> 0.00 | \$0.00          | \$0°.0          | \$0.00         | \$0`0\$          | \$0.00           | \$0.00           | 00.05           | <b>\$</b> 0.00 | \$0.00         | \$0 <sup>0</sup> 0\$ |
| Total Plant Invest (\$10%)                                      | \$2.14  | 52.14          | \$2.14          | <b>31.84</b>    | \$2.14         | 53.39            | \$2.14           | \$2.14           | \$2.14          | \$1.83         | \$2.00         | \$2.14               |
| Rovaity Rate                                                    | 0.5%    | 0 5%           | 25              |                 | 787 0          |                  |                  |                  |                 |                |                | {                    |
| Rovalty Cost (\$10^6)                                           | \$0.01  | 10.03          | 50 D4           |                 |                | 940 M            | \$0.0<br>1       | 0.5%             | 0.5%            | 0.5%           | 0.5%           | 0.5%                 |
| Startup Time (weeks)                                            | 2       |                |                 | 10.04           | 10'0¢          | 20.02<br>°       | 10.01            | \$0.01           | \$0.01          | \$0.01         | \$0.01         | \$0.01               |
| Preproduction Costs (\$10^6)                                    | \$0.045 | 061.08         | \$0.284         | \$0.025         | 20 045         | 40 135           | *0.044           | 40 cm            | 2               | 5              | 2              | 7                    |
| Inventory Capital (\$10^6)                                      | \$0.172 | \$0.172        | \$0.172         | \$0.086         | \$0.172        | 50 507           | 40.011<br>40.026 | 50.023<br>80.078 | \$0.475         | 50.019         | 50.032         | \$0.045              |
| Initial Catalyst (\$10%6)                                       | \$0.000 | \$0.000        | 20.000          | \$0.000         | \$0.000        | <b>\$</b> 0.000  | \$0.000          | \$0.000          | 000 OS          | 000:0\$        | \$0.000        | 271.U¢               |
| Subtotal Capital (\$10^6)                                       | \$2.36  | \$2.51         | \$2.60          | \$1.96          | \$2.36         | 54.03            | \$2.18           | \$2.25           | \$2.36          | \$1.93         | \$2.17         | <b>\$</b> 2.36       |
| Construction Downtime (days)                                    | 2       | 8              | м               | ю               | 6              | 2                | ~                | 2                | 5               | ~              | ~              | `                    |
| replacement rower cust (aktvn)<br>Construction Downtime (\$10%) | \$0'n\$ | \$0.05         | \$0.05<br>50.05 | \$0,05          | \$0.05         | \$0.05           | \$0.05           | \$0.05           | \$0.05          | \$0.05         | \$0.05         | \$0.05               |
|                                                                 |         | •0.10          |                 | \$0.08          | <b>\$</b> 0.16 | <b>5</b> 0.47    | \$0.02           | \$0.07           | \$0.16          | <b>\$</b> 0.16 | <b>\$</b> 0.16 | \$0.16               |
| Total Capital Required (\$10^6)                                 | \$2.52  | \$2.66         | \$2.76          | <b>\$</b> 2,03  | \$2.52         | \$4.50           | \$2.21           | \$2.32           | \$2.52          | \$2.08         | <b>5</b> 2.32  | \$2.52               |
|                                                                 |         |                |                 |                 |                |                  |                  |                  |                 |                |                |                      |

| BICARBONATE O&M COSTS                                           | ŭ                  | ulfur Contert      |                    |                         | Unit Size            |                      | Ű                    | pacity Factor        |                      | \$02                 | Removal Rai          | Ð                    |
|-----------------------------------------------------------------|--------------------|--------------------|--------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                                                                 | 0.40%              | 1,20%              | 2.63%              | 50                      | 100                  | 300                  | 10%                  | 30%                  | 65%                  | 30%                  | 50%                  | %02                  |
|                                                                 |                    |                    | Fix                | ed O&M Costs            |                      |                      |                      |                      |                      |                      |                      |                      |
| Labor (\$'op-h)                                                 | \$23.00            | \$23.00            | \$23.00            | \$23.00                 | \$23.00              | tz3.00               | \$23.00              | \$23.00              | \$23.00<br>\$        | \$23 00<br>4         | \$23.00<br>4         | \$23.00<br>4         |
| Labor (operator-1vday)<br>Operating Labor (\$10*6/yr)           | \$0.0336           | \$0.0336           | <b>\$</b> 0.0336   | \$0.0336                | \$0.0336             | \$0.0336             | \$0.0336             | \$0.0336             | \$0.0336             | \$0.0336             | \$0.0336             | \$0.0336             |
| Total Install Equip (\$10^6)                                    | \$1.85             | \$1.85             | \$1.85             | \$1.59                  | \$1.85               | \$2.93               | <b>\$1.85</b>        | <b>\$</b> 1.85       | <b>\$</b> 1.85       | <b>\$</b> 1.59       | \$1.74               | \$1.85<br>402        |
| Maintenance Factor                                              | %†<br>9000 V3      | 4%<br>\$0 0206     | 4%<br>\$0 0206     | 50 0254                 | \$0.0296<br>\$6.0296 | \$0.0469             | \$0.0296             | \$0.0296             | \$0.0296             | \$0.0254             | \$0.0278             | \$0.0296             |
| Maintenance Matt (\$10^6/yr)                                    | \$0,0444           | \$0.0444           | \$0.0444           | \$0.0381<br>\$0.0381    | \$0.0444             | \$0.0703<br>\$0.0241 | \$0.0444<br>\$0.0190 | \$0,0444<br>\$0,0190 | \$0.0444<br>\$0.0190 | \$0.0381<br>\$0.0177 | \$0.0417<br>\$0.0184 | \$0.0444<br>\$0.0190 |
| Admirvoupport Lator (a to wyr)<br>Total Fixed O&M (\$10^6/yr)   | \$0.127            | \$0.127            | \$0.121            | \$0.115                 | <b>\$</b> 0.127      | \$0.175              | \$0.127              | \$0.127              | <b>\$0.127</b>       | \$0.115              | <b>\$</b> 0.121      | \$0.127              |
|                                                                 |                    |                    |                    |                         |                      |                      | }                    |                      |                      |                      |                      |                      |
|                                                                 |                    |                    |                    |                         | Variable O&I         | M Costs              |                      |                      |                      |                      |                      |                      |
|                                                                 |                    |                    | ž                  | lagent Cost             |                      |                      |                      |                      |                      |                      |                      | 1                    |
| Na Bicarbonate Use (tons/yr)                                    | 5,526              | 25,876             | 38,982             | 2,763                   | 5,526                | 16,579               | 850                  | 2,551                | 5,526                | 2,010                | 3,768                | 5,526                |
| Na Bicarbonate Cost (\$ftor)<br>Na Bicarbonate Cost (\$10/6/yr) | \$140.00<br>\$0.77 | \$140.00<br>\$3.62 | \$140.00<br>\$5.46 | \$140.00<br>\$0.33      | \$140.00<br>\$0.77   | \$140.00<br>\$2.32   | \$140.00<br>\$0.12   | \$140.00<br>\$0.36   | \$140.00<br>\$8.77   | \$140.00<br>\$0.28   | \$140.00<br>\$0.53   | \$140.00<br>\$0.77   |
|                                                                 |                    |                    |                    | agent Freight Cost      |                      |                      |                      |                      |                      |                      |                      |                      |
| Frainht Cret (Sthon-mile)                                       | 80.08              | \$0 D8             | 80 05              | 50,08                   | \$0.08               | \$0.08               | \$0.08               | 80 O\$               | \$0.08               | \$0.08               | \$0.08               | \$0.08               |
| Freight Distance (mi)                                           | 413                | 413                | 413                | 413                     | 413                  | 413                  | 413                  | 413                  | 413                  | 413                  | 413                  | 413                  |
| Reagent Freight (\$10n)                                         | \$33.04            | \$33.04            | 10.662             | 10.005                  | 10.55                | \$33.04              | <b>3</b> 33.04       | <b>\$33.04</b>       | 40.55 <b>8</b>       | \$33.04              | \$33.04<br>\$2.40    | \$33.04              |
| Reagent Freight (\$10^6/yr)                                     | 81.0\$             | \$8.04             | \$1.29             | 60 OS                   | <b>5</b> 0.18        | \$0.55               | <b>\$0</b> .03       | 80:08                | B1.04                | /0.0%                | 71'0 <del>4</del>    | \$0.18               |
|                                                                 |                    | 1                  | ¥                  | uxilliary Electric Powe |                      |                      |                      |                      |                      |                      |                      |                      |
| Auxillary Power (kW/MWe)                                        | 0.725              | 0.725              | 0.725              | 0.725                   | 0.725                | 0.725                | 0.725                | 0.725                | 0.725                | 0.725                | 0.725                | 0.725                |
| Auxidary Power (kWh/h)                                          | 72.5               | 72.5               | 72.5               | 36.25                   | 72.5                 | 217.5                | 72.5                 | 72.5                 | 72.5                 | 72.5                 | 72.5                 | 72.5                 |
| Auxillary Power (\$10^6/yr)<br>Auxillary Power (\$10^6/yr)      | \$0:05<br>\$0:0206 | \$0.05<br>\$0.0206 | \$0.05<br>\$0.0206 | \$0.03<br>\$0.0103      | \$0.0206             | 5600.0 <b>\$</b>     | 50.032               | \$0.095              | \$0.0206             | \$0.0206             | \$0.0206             | \$0.0206             |
|                                                                 |                    |                    | ×                  | th Disposal Cost        |                      |                      |                      |                      |                      |                      |                      |                      |
| Ash Disposal (\$/ton)                                           | \$9.29             | \$9.29             | \$9.29             | \$9.29                  | \$9.29               | <b>\$</b> 9.29       | <b>\$</b> 9.29       | <b>\$</b> 9.29       | \$9.29               | \$9.29               | <b>\$</b> 9.29       | \$9.29               |
| Ash Disposal (tons/yr)                                          | 7,343              | 34,380             | 51,793             | 3.671                   | CHC.7                | 22,028               | 1,130                | 3,389                | 7,343                | 2,429                | <b>4</b> , 886       | 7.343                |
| Added Disposal Cost (\$10^6/yr)                                 | \$0.068            | <b>\$</b> 0.319    | \$0,481            | \$0.034                 | \$0.068              | \$0.205              | \$0.010              | \$0.031              | \$0.068              | \$0.023              | 20.045               | \$0.068              |
| Total Variable (\$10^6/yr)                                      | \$1,045            | <b>54</b> 818      | \$7.247            | <b>\$</b> 0.523         | \$1.045              | \$3.083              | \$0.161              | \$0.482              | \$1.045              | \$0.391              | \$0.718              | \$1.045              |
| Total O&M (\$10^6/yr)                                           | \$1.172            | <b>1</b> 94        | \$7.37             | \$0.64                  | \$1.17               | <b>\$</b> 3.26       | <b>\$</b> 0.29       | <b>\$</b> 0.51       | \$1.17               | <b>\$</b> 0.51       | \$0.84               | \$1.17               |
|                                                                 |                    |                    |                    | *****                   |                      |                      |                      |                      |                      |                      |                      |                      |

Sodium-Based DSI (NABICARB.XLS) - 3

Print Date 11/16/1999

| BICARBONATE LEVELIZED COSTS    | บี            | Ifur Content  |                        | -               | Unit Size |                 | Ű       | pacity Factor |                 | S02           | Removal Ra      | e               |
|--------------------------------|---------------|---------------|------------------------|-----------------|-----------|-----------------|---------|---------------|-----------------|---------------|-----------------|-----------------|
|                                | 0.40%         | 1.20%         | 2.63%                  | 50              | 100       | 300             | 10%     | 30%           | 65%             | %0E           | 50%             | 20%             |
| Tot Cap Required (\$10^6)      | \$2.52        | \$2.66        | \$2.76                 | \$2.03          | \$2.52    | \$4.50          | \$2.21  | \$2.32        | \$2.52          | \$2.08        | \$2.32          | \$2.52          |
| Tot Cap Required (\$/kW)       | \$25.20       | \$26.65       | \$27.58                | \$40.67         | \$25.20   | \$15.01         | \$22.09 | \$23.22       | \$25.20         | \$20,82       | \$23.21         | \$25.20         |
| Fixed O&M (\$10^6/yr)          | \$0.127       | \$0.127       | \$0.127                | \$0.115         | \$0.127   | \$0.175         | \$0.127 | \$0.127       | \$0.127         | \$0.115       | \$0.121         | \$0.127         |
| Variable O&M (\$10^6/yr)       | \$1.045       | \$4.818       | \$7.247                | <b>\$</b> 0.523 | \$1.045   | <b>\$</b> 3.083 | \$0.161 | \$0.482       | \$1.045         | \$0.391       | \$0.718         | \$1.045         |
| POWER PRODUCED (10^9 kWh/yr)   | 0.569         | 0.569         | 0.569                  | 0.285           | 0.569     | 1.708           | 0.088   | 0.263         | 0.569           | 0.569         | 0.569           | 0.569           |
| SUZ REMOVEL) (tons/yr)         | 1,331         | 6,232         | 9,368                  | 665             | 1,331     | 3,993           | 205     | 614           | 1,331           | 570           | 951             | 1,331           |
|                                |               |               |                        |                 |           |                 |         |               |                 |               |                 |                 |
|                                | 0             | ost per Pow   | er Produced (Current [ | Jollars)        |           |                 |         |               |                 |               |                 |                 |
| Level Cap Chg (mills/kWh)      | 0.708         | 0.749         | 0.775                  | 1.143           | 0.708     | 0.422           | 4 034   | 1 414         | 0 708           | 0.585         | 0.652           | 0 708           |
| Level Fixed O&M (m#s/kWh)      | 0.292         | 0.292         | 0.292                  | 0.530           | 0.292     | 0.135           | 1.898   | 0.633         | 0.292           | 0.265         | 0.280           | 0 292           |
| Level Variable Q&M (mills/kWh) | 2.41          | 11.12         | 16.72                  | 2.41            | 2.41      | 2.37            | 2.41    | 2.41          | 2.41            | 06.0          | 1.66            | 2.41            |
| Total Current (milis/XWh)      | 3.41          | 12.16         | 17.79                  | 4.08            | 3.41      | 2.93            | 8.34    | 4.46          | 3.41            | 1.75          | 2.59            | 3.41            |
| -                              | 0             | ost per Powr  | er Produced (Constant  | Dollars)        |           |                 |         |               |                 |               |                 |                 |
| Level Cap Chg (mills/kWh)      | 0.549         | 0.580         | 0.601                  | 0.886           | 0.549     | 0.327           | 3.126   | 1.095         | 0.549           | 0.453         | 0.506           | 0 549           |
| Level Fixed O&M (mills/XWh)    | 0.222         | 0.222         | 0.222                  | 0.403           | 0.222     | 0.102           | 1.444   | 0.481         | 0.222           | 0.202         | 0.213           | 0.222           |
| Level Variable O&M (mills/kWh) | 1.84          | 8.46          | 12.73                  | 1.84            | 1.84      | 1.80            | 1.84    | 1.84          | 1.84            | 0.69          | 1.26            | 1.84            |
| Total Constant (mills/kWh)     | 2.61          | 9.26          | 13.55                  | 3.12            | 2.61      | 2.23            | 6.41    | 3.41          | 2.61            | 1.34          | 1.98            | 2.61            |
|                                | 0             | ost Per Ton   | Poltutant Removed (Cu  | irrent Dottars) |           |                 |         |               |                 |               |                 |                 |
| Level Cap Chg (\$/ton)         | \$303         | \$68          | 547                    | \$489           | \$303     | \$180           | \$1.726 | \$605         | <b>\$</b> 303   | 5584          | 1652            | 101             |
| Level Fixed O&M (\$/ton)       | \$125         | \$27          | <b>\$</b> 18           | \$227           | \$125     | \$58            | \$812   | \$271         | \$125           | 5264          | 1168            | \$125           |
| Level Variable O&M (\$400)     | \$1,032       | \$1,016       | \$1,014                | <b>\$</b> 1,032 | \$1,032   | \$1,015         | \$1,032 | \$1,032       | <b>\$</b> 1,032 | <b>\$</b> 901 | \$66 <b>\$</b>  | \$1,032         |
| Total Current (\$/ton)         | \$1,460       | \$1,111       | \$1,079                | \$1,748         | \$1,460   | <b>\$</b> 1,253 | \$3.570 | \$1.907       | <b>S</b> 1460   | <b>51 749</b> | <b>5</b> 1 551  | \$1 460         |
| Total w/o downtime (\$/ton)    | \$1,441       | \$1,107       | \$1,076                | \$1,729         | \$1,441   | \$1,234         | \$3,551 | \$1,889       | \$1,441         | \$1.705       | \$1,525         | \$1,441         |
|                                | 0             | ost Per Ton   | ollutant Removed (Co   | nstant Dollars  |           |                 |         |               |                 |               |                 |                 |
| Level Cap Chg (\$rton)         | \$235         | \$53          | \$36                   | \$379           | \$235     | S140            | 51 337  |               | <b>¢</b> 336    | <b>6463</b>   | 6000            |                 |
| Level Fixed O&M (\$/ion)       | <b>\$6</b> \$ | \$20          | <b>\$</b> 13           | \$173           | \$95      | Ŧ               | \$618   | \$206         | <b>\$</b> 95    | \$201         | <b>\$128</b>    | 26 <b>5</b>     |
| Level Varable U&M (\$fon)      | \$785         | \$173         | \$772                  | \$785           | \$785     | \$772           | \$785   | \$785         | \$785           | \$685         | \$755           | \$785           |
| Total Constant (\$/ton)        | \$1,115       | \$846         | <b>\$8</b> 22          | <b>\$</b> 1,337 | \$1,115   | \$956           | \$2,741 | \$1.460       | \$1.115         | \$1.339       | <b>S1</b> 186   | \$1.115         |
| ł otał w/o downtime (\$/ton)   | \$1,101       | <b>\$</b> 843 | <b>\$</b> 820          | \$1,322         | \$1,101   | 5941            | \$2,726 | \$1,445       | \$1 101         | \$1,305       | <b>\$</b> 1 165 | <b>\$</b> 1,101 |
| Levelization Factors           |               |               |                        |                 |           |                 |         |               |                 |               |                 |                 |
| Plant Life (vr)                | ţ¥            |               |                        |                 |           |                 |         |               |                 |               |                 |                 |
| Level Cap Factor (current)     | 0.160         |               |                        |                 |           |                 |         |               |                 |               |                 |                 |
| Level Cap Factor (constant)    | 0.124         |               |                        |                 |           |                 |         |               |                 |               |                 |                 |
| Level O&M Factor (current)     | 1.314         |               |                        |                 |           |                 |         |               |                 |               |                 |                 |
| Level O&M Factor (constant)    | 1.000         |               |                        |                 |           |                 |         |               |                 |               |                 |                 |

Sodium-Based DSI (NABICARB.XLS) - 4

Print Date: 11/16/1999

| Install Year=            | 1991        |          |               |              |      |              |               |     |        |             |                   |
|--------------------------|-------------|----------|---------------|--------------|------|--------------|---------------|-----|--------|-------------|-------------------|
| SODIUM CAPITAL COSTS     | Arapa       | hoe 4 (I | 3ase)         |              |      | S            | ulfur Content |     |        |             |                   |
| ltem                     | Unit Cost   | No.      | Factor        | Cost         | No.  | Factor       | 1.20%         | No. | Factor | 2.63%       |                   |
| Reagent storage silos    | \$104,480   | 2        | -             | \$208,960    | e    | 1.2          | \$376,128     | 4   | 1.5    | \$626,880   |                   |
| Silo vent filters        | \$3,850     | 7        | -             | \$7,700      | Ċ    | -            | \$11,550      | 4   | -      | \$15,400    |                   |
| Reagent screw feeders    | , \$5,525   | 0        | -             | \$11,050     | e    | 1.2          | \$19,890      | ষ   | 1.2    | \$26,520    |                   |
| Blower & heat exchanger  | \$13,104    | 2        | <del>~~</del> | \$26,208     | e    | <b>~</b>     | \$39,312      | 4   | -      | \$52,416    |                   |
| Pulverizers              | \$65,533    | 2        | <del></del>   | \$131,066    | e    | 1.2          | \$235,919     | 4   | 1.5    | \$393,198   |                   |
| Splitter Box             | \$7,616     | 7        | -             | \$15,232     | ო    | -            | \$22,848      | 4   | 1.1    | \$33,510    |                   |
| Rotary airlock           | \$9,340     | 2        | <del></del>   | \$18,680     | ო    | -            | \$28,020      | 4   | 1.1    | \$41,096    |                   |
| Other equipment          | \$335,950   | 1        | 1             | \$335,950    | 1    | 1.8          | \$604,710     | ٢   | 2.2    | \$739,090   |                   |
| Total design/engineering | \$199,000   | 1        | -             | \$199,000    | ۲    | 1.1          | \$218,900     |     | 1.5    | \$298,500   |                   |
| Total procurement        | \$545,398   |          |               | \$754,846    |      |              | \$1,338,377   |     |        | \$1,928,110 |                   |
| Total installation       | \$541,000   | 1        | 1             | \$541,000    | -    | 1.5          | \$811,500     | 1   | 1.9    | \$1,027,900 |                   |
| Total Installed Cost     |             |          |               | \$1,494,846  |      |              | \$2,368,777   |     |        | \$3,254,510 |                   |
| \$/kW =                  |             | _        |               | \$14.95      |      |              | \$23.69       |     |        | \$32.55     |                   |
|                          |             |          |               |              |      |              |               |     |        |             |                   |
|                          |             |          | S             | O2 Removal I | Rate |              |               |     | ر      | Jnit Size   |                   |
| Item                     | Item Cost   | No.      | Factor        | 30%          | No.  | Factor       | 50%           | No. | Factor | 50          | 300               |
| Reagent storage silos    | \$104,480   | 2        | 0.7           | \$146,272    | 2    | 0.85         | \$177,616     | 5   | 0.8    | \$167,168   |                   |
| Silo vent filters        | \$3,850     | 2        | <del></del>   | \$7,700      | 7    | •            | \$7,700       | 2   | 0.8    | \$6,160     | (See 1.2%         |
| Reagent screw feeders    | \$5,525     | 2        | 0.8           | \$8,840      | 7    | -            | \$11,050      | 2   | 0.8    | \$8,840     | sulfur coal data) |
| Blower & heat exchanger  | \$13,104    | 2        | -             | \$26,208     | 2    | -            | \$26,208      | 0   | 0.8    | \$20,966    |                   |
| Pulverizers              | \$65,533    | 2        | 0.8           | \$104,853    | 2    | -            | \$131,066     | 2   | 0.9    | \$117,959   |                   |
| Splitter Box             | \$7,616     | 2        | -             | \$15,232     | 2    | <del>-</del> | \$15,232      | 2   | 0.9    | \$13,709    |                   |
| Rotary airlock           | \$9,340     | 2        | ۳             | \$18,680     | 2    | -            | \$18,680      | 0   | 0.8    | \$14,944    |                   |
| Other equipment          | \$335,950   | -        | 0.8           | \$268,760    | 1    | 0.9          | \$302,355     | -   | 0.8    | \$268,760   |                   |
| Total design/engineering | \$199,000   | +        | -             | \$199,000    | 1    | -            | \$199,000     | -   | 0.9    | \$179,100   |                   |
| Total procurement        | \$545,398   |          |               | \$596,545    |      |              | \$689,907     |     |        | \$618,507   |                   |
| Total installation       | \$541,000   | -        | 0.9           | \$486,900    | -    | 0.95         | \$513,950     | 1   | 0.9    | \$486,900   |                   |
| Total Installed Cost     | \$1,285,398 |          |               | \$1,282,445  |      |              | \$1,402,857   |     |        | \$1,284,507 | \$2,368,777       |
| \$/kW =                  |             |          |               | \$12.82      |      |              | \$14.03       |     |        | \$25.69     | \$7.90            |
|                          |             |          |               |              |      | -            |               |     |        |             |                   |

Capital Costs of Sodium-Based DSI (NABICARB.XLS)

Print Date: 11/16/1999

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I-5

Sodium Sesquicarbonate Dry Sorbent Injection

.

• .

\_ \_

| SESQUICARBONATE SO2 REMOVAL                                              | SULI                              | -UR CONTEI                                           | 71                                 | J                                 | NIT SIZE                 |                          | CAPA                              | CITY FACTO              | R                                 | Ω.                       | <b>02 REMOVA</b>         | _                        |
|--------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|------------------------------------|-----------------------------------|--------------------------|--------------------------|-----------------------------------|-------------------------|-----------------------------------|--------------------------|--------------------------|--------------------------|
|                                                                          | 0.40%                             | 1.20%                                                | 2.63%                              | 50                                | <u>100</u>               | 300                      | 10%                               | 30%                     | 65%                               | 30%                      | 50%                      | 70%                      |
|                                                                          |                                   |                                                      | · ·                                | 0                                 | oal Data                 |                          |                                   |                         |                                   |                          |                          |                          |
| Avg Suffur Content<br>Heat Content (Btu/b)<br>Ash Content<br>Na2O in Ash | 0.40%<br>11,050<br>9.60%          | 1.20%<br>7.080<br>10.40%                             | 2.63%<br>10,300<br>10.80%<br>3.40% | 0.40%<br>11,050<br>9.60%<br>0.63% | 0.40%<br>11,050<br>9.60% | 0.40%<br>11,050<br>9.60% | 0.40%<br>11,050<br>9.60%<br>0.63% | 0.40%<br>0.40%<br>9.60% | 0.40%<br>11.050<br>9.60%<br>0.63% | 0.40%<br>11,050<br>9.60% | 0.40%<br>11,050<br>9.60% | 0.40%<br>11,050<br>9.60% |
|                                                                          |                                   |                                                      |                                    | 0                                 | perating Da              | Ę                        |                                   |                         |                                   |                          |                          |                          |
| Unit Heatrate (Btu/NkVM)                                                 | 10,542                            | 10,542                                               | 10,542                             | 10,542                            | 10,542                   | 10,542                   | 10,542                            | 10,542                  | 10,542                            | 10,542                   | 10,542                   | 10,542                   |
| Capacity Factor                                                          | 65%                               | 65%                                                  | 100<br>65%                         | 59<br>65%                         | 100<br>65%               | 300<br>65%               | 01<br>%01                         | 30%                     | 100<br>65%                        | 100<br>65%               | 100<br>. 65%             | 100<br>65%               |
| SO2 Removal Required                                                     | 20%                               | 70%                                                  | 70%                                | ¥02                               | 70%                      | 70%                      | 40%                               | 20%                     | 70%                               | 30%                      | 50%                      | 70%                      |
| NSR<br>Utilization                                                       | 1.9<br>37%                        | 1.9<br>37%                                           | 1.9<br>37%                         | 1.9<br>37%                        | 1.9<br>37%               | 1.9<br>37%               | 1.9<br>37%                        | 1.9<br>37%              | 1.9<br>37%                        | 0.5<br>60%               | 1<br>50%                 | 1.9<br>37%               |
|                                                                          |                                   |                                                      |                                    | 2                                 | eagent Spec              | cifications              |                                   |                         |                                   |                          |                          |                          |
| Na Content (b Na/b reagent)                                              | 0.298                             | 0.298                                                | 0.298                              | 0.298                             | 0.298                    | 0.298                    | 0.298                             | 0.298                   | 0.298                             | 0.298                    | 0.298                    | 0.298                    |
| Na2SO4 Formation Rate                                                    | 90.0%                             | 80.0%                                                | 90°0%                              | %0.06                             | 80.0%                    | 80.0%                    | %0.06                             | 90.0%                   | %0 <sup>°</sup> 06                | %0°08                    | 90.0%                    | %0.06                    |
| Na2SO3 Formation Rate                                                    | 10.0%                             | 10.0%                                                | 10.0%                              | 10.0%                             | 10.0%                    | 10.0%                    | 10.0%                             | 10.0%                   | 10.0%                             | 10.0%                    | 10.0%                    | 10.0%                    |
| NaHCO3 Content                                                           | 36.3%                             | 36.3%                                                | 36.3%                              | 36.3%                             | 36.3%                    | 36.3%                    | 36.3%<br>ar an                    | 36.3%                   | 36.3%                             | 36.3%                    | 36.3%                    | 36.3%                    |
| naccos content<br>inert Content                                          | 40.07%<br>2.3%                    | 40.0%<br>2.3%                                        | 40.0%                              | 40.6%<br>2.3%                     | 45.8%                    | 40.6%<br>2.3%            | 40.8%<br>2.3%                     | 45.8%<br>2.3%           | 45.8%<br>2.3%                     | 45.8%<br>2.3%            | 45.8%<br>2.3%            | 45.8%                    |
|                                                                          |                                   |                                                      |                                    |                                   | eagent Flow              | rate                     |                                   |                         |                                   |                          |                          |                          |
| Max Coal Flow (tons/h)                                                   | <b>4</b> 8                        | 74                                                   | 51                                 | 24                                | 48                       | 143                      | 84                                | <b>4</b> 8              | 48                                | 48                       | 48                       | 48                       |
| S02 In Duct (Ib/h)                                                       | 668                               | 3,127                                                | 4,711                              | 334                               | 668                      | 2,003                    | 668                               | 668                     | 668                               | 668                      | 668                      | 668                      |
| S02 to be Removed (lb/h)<br>Reagent Fiowrate (lb/h)                      | 467<br>3 060                      | 2,189                                                | 3,297<br>21.587                    | 234<br>1 530                      | 467<br>3 060             | 1,402<br>0.181           | 467<br>3 060                      | 467<br>3 060            | 467<br>3 nen                      | 200                      | 334                      | 467                      |
|                                                                          |                                   |                                                      |                                    | Discont Date                      |                          |                          | non'n                             | 200                     | 80.5                              |                          |                          | nm'r                     |
|                                                                          |                                   |                                                      |                                    |                                   |                          |                          |                                   |                         |                                   |                          |                          |                          |
| Ash Formation (Ib/h)                                                     | 9,159                             | 15,485                                               | 11,054                             | 4,579                             | 9,159                    | 27,476                   | 9,159                             | 9,159                   | 9,159                             | 9,159                    | 9,159                    | 9,159                    |
| unication reagent (runt)<br>Na2SO4 (IMN)                                 | 1,950<br>954                      | 9,000<br>4,466                                       | 6 728                              | 808<br>774                        | 1,933<br>054             | 687'C                    | 1,933<br>064                      | 1,933                   | 1,933                             | 322                      | 809<br>5 8 4             | 1,933                    |
| Na2SO3 (Ib/h)                                                            | 5 <u>6</u>                        | 496                                                  | 748                                | 59                                | 106                      | 318                      | 90F                               | # 90F                   | 407<br>907                        | 4<br>4<br>4              | 100                      | 408<br>907               |
| NaHCO3 (Ib/h)                                                            | 702                               | 3,285                                                | 4,949                              | 351                               | 702                      | 2,105                    | 702                               | 702                     | 702                               | 117                      | 292                      | 702                      |
| Na2CO3 (lb/h)                                                            | 885                               | 4,145                                                | 6,244                              | 443                               | 885                      | 2,656                    | 885                               | 885                     | 885                               | 148                      | 369                      | 885                      |
| Inerts (Ib/h)                                                            | 2                                 | 330                                                  | 497                                | 35                                | 20                       | 211                      | 20                                | 2                       | 20                                | 19                       | 37                       | 20                       |
| Totai Added Ash (Ib/h)                                                   | 4,650                             | 21,772                                               | 32,800                             | 2,325                             | 4,650                    | 13,950                   | 4,650                             | 4,650                   | 4,650                             | 1,059                    | 2,261                    | 4,650                    |
| Note. Sodium sesquicarbonate data from<br>RASESQUI WK3<br>By             | Freagent da<br>evised: 1<br>y: 7: | ta report <del>e</del> d in<br>12/02/94<br>1J Hanley | PDR                                |                                   |                          |                          |                                   |                         |                                   |                          |                          |                          |

Duct Injection of Sodium Sesquicarbonate (NASESQULXLS) - 1

•

. -

| SESQUICARBONATE TUTAL CAPITAL                                    | Su               | ifur Content     |                       | -                | Jnit Size        |                  | Cap                              | acity Factor     |                  | S                | 02 Removal       | Rate             |
|------------------------------------------------------------------|------------------|------------------|-----------------------|------------------|------------------|------------------|----------------------------------|------------------|------------------|------------------|------------------|------------------|
|                                                                  | 0.40%            | 1.20%            | 2.63%                 | 50               | 100              | 300              | 10%                              | 30%              | 65%              | 30%              | 50%              | 20%              |
| inctall Vaar                                                     | 1901             | 1991             | 1991                  | 1991             | 1991             | 1991             | 1991                             | 1991             | 1991             | 1991             | 1991             | 1991             |
| Study Year                                                       | 1994             | 1994             | 1994                  | 1994             | 1994             | 1994             | 1994                             | 1994             | 1994             | 1994             | 1994             | 1994             |
| Inflation Rate                                                   | 4%               | 4%               | 4%                    | 4%               | 4%               | 4%               | 4%                               | 4%               | 4%               | 4%               | 4%               | 4%               |
| Subtotai install-1991 (\$/kW)                                    | \$14.95          | \$23.69          | \$32.55               | \$25.69          | <b>\$</b> 14.95  | \$7.90           | \$14.95                          | \$14.95          | \$14.95          | \$12.82          | \$14.03          | \$14.95          |
| Subtotal Install-1994 (\$10^6)                                   | \$1.68           | <b>5</b> 2.66    | \$3.66                | \$1.44           | \$1.68           | \$2.66           | \$1.68                           | \$1.68           | \$1.68           | \$1.44           | <b>\$</b> 1.58   | \$1.68           |
| Retrofit Factor                                                  | -                | e                |                       | o                | Ċ                | 0                | ٥                                |                  | o                | 0                | 0                | 0                |
|                                                                  |                  |                  |                       |                  |                  | 60 00            | 60 00                            |                  | en nn            | en nn            | 000              |                  |
| Process Contingency Earthy                                       | 10%              | 10%              | 10%                   | 10%              | 10%              | 10%              | 10%                              | 10%              | 10%              | 10%              | 10%              | 10%              |
| Proc Contingency Cost (\$10^6)                                   | \$0.168          | \$0.168          | \$0.168               | \$0.144          | \$0.168          | \$0.266          | <b>\$</b> 0.168                  | <b>\$</b> 0.168  | \$0.168          | \$0.144          | \$0.158          | \$0.168          |
| Total Install Equip (\$10^8)                                     | \$1.85           | \$1.85           | \$1.85                | <b>\$1</b> .59   | \$1.85           | <b>\$</b> 2.93   | <b>\$</b> 1.85                   | \$1.85           | <b>\$</b> 1.85   | \$1.59           | \$1.74           | 21.85            |
| Tot. Process Capital (\$10^6)                                    | <b>5</b> 1.85    | \$1.85           | \$1.85                | \$1.59           | <b>\$</b> 1.85   | \$2 93           | <b>\$</b> 1.85                   | \$1.85           | \$1.85           | \$1,59           | \$1.74           | \$1.85           |
|                                                                  |                  |                  |                       |                  |                  |                  |                                  |                  |                  |                  |                  |                  |
| General Facilities Rate                                          | %0               | %0               | %0                    | %0               | %0               | %0               | %0                               | %0               | %0               | %0               | %0               | %0               |
| Gen Facilities Cost (\$10^6)                                     | <b>\$</b> 0.000  | <b>\$</b> 0.000  | \$0.000               | \$0.000          | <b>\$0.000</b>   | \$0.000          | \$0.000                          | \$0.000          | \$0.000          | \$0.000          | \$0.000          | \$0.000          |
| Engr & Home Office Rate                                          | 10%              | 10%              | 10%                   | 10%              | 10%              | 10%              | 10%                              | 10%              | 10%              | 10%              | 10%              | 10%              |
| Engr & Home Office (\$10"6)                                      | <b>\$</b> 0.185  | \$0.185          | <b>\$</b> 0.185<br>50 | <b>\$0.159</b>   | 50.185<br>54/    | <b>\$</b> 0.293  | CB1.0 <b>2</b>                   | 681.0 <b>2</b>   | 50.185           | 901.U <b>2</b>   | \$U.1/4          | \$0.185          |
| Project Contingency Kate<br>Proj Contingency Cost (\$10^6)       | 50.102           | 50.102           | 50.102                | 780.0 <b>\$</b>  | 50.102           | 50.161           | 50.102                           | 50.102           | 5%<br>\$0.102    | 0.087            | 50.095           | \$0.102          |
| Total Plant Cost (\$10^6)                                        | <b>\$</b> 2.14   | \$2.14           | \$2.14                | <b>\$</b> 1.84   | \$2.14           | \$3.39           | \$2.14                           | \$2.14           | \$2.14           | \$183            | <b>\$</b> 2.00   | \$2.14           |
| AFDC rate (<1 yr)                                                | %0               | %0               | %0                    | %0               | %0               | %0               | %0                               | %0               | %0               | %0               | %0               | %0               |
| AFDC Cost (\$10^6)                                               | \$0.00           | \$0.00           | \$0.00                | <b>2</b> 0.00    | \$0.00           | \$0.00           | \$0.00                           | \$0.00           | \$0.00           | \$0.00           | \$0.00           | \$0.00           |
| Total Plant Invest (\$10^6)                                      | \$2.14           | \$2.14           | \$2.14                | \$1.84           | \$2.14           | <b>\$</b> 3.39   | \$2.14                           | \$2.14           | \$2.14           | \$1.83           | \$2.00           | \$2.14           |
| Rovaltv Rate                                                     | 0.5%             | 0.5%             | 0.5%                  | 0.5%             | 0.5%             | 0.5%             | 0.5%                             | 0.5%             | 0 5%             | 05%              | 0.5%             | 0 5%             |
| Rovalty Cost (\$10^6)                                            | 50.01            | 10.01            | 50.01                 | \$0.01           | \$0.01           | 50.02            | 50 01                            | \$0.01<br>\$0.01 | \$0.01           | \$0.01           | 50.01            | <b>60.01</b>     |
| Startuo Time (weeks)                                             | 2                | ~                | 2                     | 2                | 2                | 2                | 2                                | 2                | 2                | 2                | - C              | - 0.0#<br>- 0    |
| Preproduction Costs (\$10^6)                                     | \$0.043          | \$0.182          | <b>\$</b> 0.271       | \$0.023          | \$0.042          | <b>\$</b> 0.119  | \$0.011                          | \$0.023          | \$0.043          | \$0.015          | \$0.025          | \$0.043          |
| Inventory Capital (\$10^6)                                       | <b>\$</b> 0.164  | \$0.164          | <b>\$</b> 0.164       | \$0.082          | <b>\$</b> 0.164  | <b>\$</b> 0.483  | \$0.025                          | \$0.076          | <b>\$</b> 0.164  | \$0.045          | \$0.087          | \$0.164          |
| Initial Catalyst (\$10^6)                                        | <b>\$</b> 0.000  | <b>\$</b> 0.000  | \$0.000               | 000.0\$          | \$0.000          | \$0.000          | \$0.000                          | <b>\$</b> 0.000  | \$0.000          | <b>\$0</b> ,000  | <b>\$</b> 0.000  | \$0 000          |
| Subtotal Capital (\$10^6)                                        | <b>\$</b> 2.35   | <b>\$</b> 2.49   | \$2.58                | \$1.95           | <b>\$</b> 2.35   | <b>\$</b> 4.00   | \$2.18                           | \$2.25           | \$2.35           | \$1.90           | \$2.13           | \$2.35           |
| Construction Downtime (days)                                     | 2                | 7                | 2                     | 5                | 2                | 7                | 2                                | 2                | 6                | 2                | 2                | 2                |
| Replacement Power Cost (\$/NM)<br>Construction Downtime (\$10^6) | \$0.05<br>\$0.16 | \$0.05<br>\$0.16 | \$0.05<br>\$0.16      | \$0.05<br>\$0.08 | \$0.05<br>\$0.16 | \$0.05<br>\$0.47 | <b>\$</b> 0.05<br><b>\$</b> 0.02 | \$0.05<br>\$0.07 | \$0.05<br>\$0.16 | \$0.05<br>\$0.16 | \$0.05<br>\$0.16 | \$0.05<br>\$0.16 |
|                                                                  |                  |                  |                       |                  |                  |                  |                                  |                  |                  |                  |                  |                  |
| i otal Lapital Required (\$10°6)                                 | - lez <b>t</b>   | G0 7 <b>4</b>    | \$2.14                | \$2.03           | \$2.51           | <b>\$4</b> .47   | <b>\$</b> 2.21                   | \$2.32           | <b>\$</b> 2.51   | <b>\$</b> 2.06   | \$2.28           | \$2.51           |

| SESQUICARBONATE O&M COSTS                             | ũ               | ulfur Content    |                      |                 | Unit Size        |                   | Ca               | oacity Factor    | _                | S02              | Removal Ra       | te               |
|-------------------------------------------------------|-----------------|------------------|----------------------|-----------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                       | 0.40%           | 1.20%            | 2.63%                | 50              | 100              | 300               | 10%              | 30%              | 65%              | 30%              | 50%              | 70%              |
|                                                       |                 |                  |                      | 4               | NNUAL FIX        | ED O&M COSTS      |                  |                  |                  |                  |                  |                  |
| Labor (\$/op-h)                                       | \$23.00         | \$23.00          | \$23.00              | \$23.00         | \$23.00          | \$23.00           | \$23.00          | \$23.00          | \$23.00          | \$23.00          | \$23.00          | <b>\$</b> 23.00  |
| Labor (operator-h/day)<br>Operating Labor (\$10^6/vr) | 4<br>\$0.0336   | 4<br>\$0.0336    | 4<br>\$0.0336        | 2<br>\$0.0168   | 2<br>\$0.0168    | 2<br>\$0.0168     | 4<br>\$0.0336    | 4<br>\$0.0336    | 4<br>\$0.0336    | 4<br>\$0.0336    | <b>\$</b> 0.0336 | 4<br>\$0.0336    |
|                                                       |                 |                  |                      |                 |                  |                   | 10 10            |                  | e1 05            | C1 E0            | 64 74            | 61 B5            |
| Total Install Equip (\$10^6)                          | <b>\$1.85</b>   | <b>\$1.85</b>    | <b>\$</b> 1.85<br>4% | 60.1 <b>3</b>   | C8.1 <b>3</b>    | 26.2 <b>4</b>     | C0.14            | 00.1¢            | <b>9</b> 1.03    | 4%               | 4%               | % <b>4</b>       |
| Maintenance ractor<br>Maintenance Labor (\$10^6/vr)   | \$0.0296        | <b>\$0.0296</b>  | <b>5</b> 0.0296      | \$0.0254        | <b>\$</b> 0.0296 | <b>\$</b> 0.0469  | \$0.0296         | \$0.0296         | \$0.0296         | \$0.0254         | \$0.0278         | \$0.0296         |
| Maintenance Mati (\$10^6/yr)                          | \$0.0444        | \$0.0444         | \$0.0444             | \$0.0381        | \$0.0444         | \$0.0703          | <b>\$</b> 0.0444 | \$0.0444         | \$0.0444         | \$0.0381         | \$0 0417         | \$0 0444         |
| Admin/Support Labor (\$10^6/yr)                       | \$0.0190        | <b>\$</b> 0.0190 | \$0.0190             | \$0.0127        | \$0.0139         | <b>\$</b> 0.0191  | <b>\$</b> 0.0190 | <b>\$</b> 0.0190 | <b>\$</b> 0.0190 | <b>\$</b> 0.0177 | \$0.0184         | <b>\$</b> 0 0190 |
| Total Fixed O&M (\$10^6/yr)                           | <b>\$</b> 0.127 | <b>\$</b> 0.127  | <b>\$</b> 0.127      | <b>\$</b> 0.093 | <b>\$</b> 0.105  | <b>\$</b> 0.153   | <b>\$</b> 0.127  | <b>\$</b> 0.127  | <b>\$</b> 0.127  | <b>\$</b> 0.115  | <b>\$</b> 0.121  | <b>\$</b> 0.127  |
|                                                       |                 |                  |                      |                 |                  |                   |                  |                  |                  |                  |                  |                  |
|                                                       |                 |                  |                      |                 |                  | ANNUAL VARIABI    | LE O&M COSTS     |                  |                  |                  |                  |                  |
|                                                       |                 |                  |                      |                 | Annual Reag      | ent Cost          |                  |                  |                  |                  |                  |                  |
| Coontinationata Ilea (toneku)                         | R 713           | 40.705           | 61.459               | 4 356           | 8 713            | 26 139            | 1.340            | 4.021            | 8,713            | 2.293            | 4,586            | 8,713            |
| Sessinicarbonate Cost (\$100)                         | \$65.00         | <b>5</b> 65,00   | <b>\$</b> 65.00      | \$65.00         | \$65.00          | \$65.00           | \$65.00          | \$65.00          | \$65.00          | \$65.00          | \$65.00          | \$65.00          |
| Sesquicarbonate Cost (\$10^6/yr)                      | <b>\$</b> 0.57  | \$2.65           | \$3.99               | \$0.28          | \$0.57           | \$1.70            | \$0.09           | \$0.26           | \$0.57           | \$0.15           | <b>\$</b> 0.30   | 25'0\$           |
| Freinht Cost (\$100-mile)                             | <b>5</b> 0 08   | <b>S</b> 0 08    | \$0.08               | <b>\$0.08</b>   | \$0.08           | \$0.08            | \$0.08           | \$0.08           | \$0.08           | <b>\$</b> 0.08   | <b>\$</b> 0.08   | \$0.08           |
| Freinht Distance (mi)                                 | 413             | 413              | 413                  | 413             | 413              | 413               | 413              | 413              | 413              | 413              | 413              | 413              |
| Reagent Freight (\$/ton)                              | \$33.04         | \$33.04          | \$33.04              | \$33.04         | \$33.04          | \$33,04           | \$33.04          | \$33.04          | \$33.04          | \$33.04          | \$33.04          | \$33.04          |
| Reagent Freight (\$10^6/yr)                           | <b>\$</b> 0.29  | \$1.35           | \$2.03               | \$0.14          | \$0.29           | \$0,86            | \$0.04           | \$0.13           | <b>\$</b> 0.29   | \$0.08           | <b>\$</b> 0.15   | <b>\$</b> 0.29   |
|                                                       |                 |                  |                      |                 | Annual Auxi      | laiary Power Cost |                  |                  |                  |                  |                  |                  |
| Arry Downer (kt/MMA)                                  | 0.725           | 0 725            | 0 725                | 0.725           | 0.725            | 0.725             | 0.725            | 0.725            | 0.725            | 0.725            | 0.725            | 0.725            |
| Arrithmy Prover (KMh/h)                               | 72.5            | 72.5             | 72.5                 | 36.25           | 72.5             | 217.5             | 72.5             | 72.5             | 72.5             | 72.5             | 72.5             | 72.5             |
| Auxillary Power (\$/km)                               | \$0.05          | \$0.05           | \$0.05               | <b>\$</b> 0.05  | \$0.05           | \$0.05            | \$0.05           | <b>\$</b> 0.05   | \$0.05           | \$0.05           | <b>\$</b> 0.05   | \$0.05           |
| Auxillary Power (\$10^6/yr)                           | \$0.0206        | \$0.0206         | <b>\$</b> 0.0206     | \$0.0103        | <b>\$</b> 0.0206 | \$0,0095          | <b>\$</b> 0.0032 | \$0.005          | \$0.0206         | \$0.0206         | \$0.0206         | \$0.0206         |
|                                                       |                 |                  | *****                |                 | Annual Disp      | osal Cost         |                  |                  |                  |                  |                  |                  |
| Ash Disposal (tons/vr)                                | 13,239          | 61,985           | 93,361               | 6,619           | 13,239           | 39,716            | 2,037            | 6,110            | 13,239           | 3,016            | 6,436            | 13.239           |
| Ash Disposal (\$/ton)                                 | \$9.29          | \$9.29           | \$9.29               | \$9.29          | \$9.29           | \$9 29            | \$9.29           | \$9.29           | <b>\$</b> 9.29   | \$9.29           | \$9.29           | \$9.29           |
| Added Disposal Cost (\$/yr)                           | <b>\$</b> 0.123 | \$0.576          | \$0.868              | <b>\$</b> 0.061 | <b>\$</b> 0.123  | <b>\$</b> 0,369   | \$0.019          | <b>\$</b> 0.057  | <b>\$</b> 0.123  | \$0.028          | <b>\$</b> 0.060  | <b>\$</b> 0.123  |
| Total Variable (\$10^6/yr)                            | 866'0 <b>\$</b> | \$4.596          | \$6.914              | \$0.499         | \$0.99B          | \$2.941           | \$0.154          | <b>\$</b> 0.461  | \$0.998          | <b>\$</b> 0.273  | <b>\$</b> 0.530  | <b>\$</b> 0.998  |
| Total O&M (\$10 <sup>4</sup> 6/yr)                    | <b>\$</b> 1.124 | <b>\$4</b> .72   | \$7.04               | <b>\$</b> 0.59  | \$1.10           | <b>\$</b> 3.09    | <b>\$</b> 0.28   | \$0.59           | \$1.12           | <b>\$</b> 0.39   | \$0.65           | \$1.12           |
| *****                                                 |                 |                  |                      |                 |                  |                   |                  |                  |                  |                  |                  |                  |

| SESQUICARBONATE LEVELIZED CO            | STS Su        | iffur Content  |                 |                 | Unit Size     |                          | C                 | pacity Factor  |               | S02     | Removal Rat | e               |
|-----------------------------------------|---------------|----------------|-----------------|-----------------|---------------|--------------------------|-------------------|----------------|---------------|---------|-------------|-----------------|
|                                         | 0.40%         | 1.20%          | 2.63%           | 20<br>20        | <u>1</u> 00   | 300                      | 10%               | 30%            | 65%           | 30%     | 50%         | %0/             |
| · · · · · · · · · · · · · · · · · · ·   |               |                |                 | _               | Economic Da   | la                       |                   |                |               |         |             |                 |
| Tot Cap Required (\$10^6)               | \$2.51        | <b>\$</b> 2.65 | \$2.74          | \$2.03          | \$2.51        | \$4.47                   | \$2.21            | \$2.32         | \$2.51        | \$2.06  | \$2.28      | \$2.51          |
| Fixed 0&M (\$10^6/vr)                   | \$0.127       | \$0.127        | \$0.127         | \$0.093         | \$0.105       | \$0.153                  | \$0.127           | \$0.127        | \$0.127       | \$0.115 | \$0.121     | \$0.127         |
| Variable O&M (\$10^8/yr)                | \$0.998       | <b>\$4</b> 596 | <b>\$</b> 6.914 | \$0.499         | \$0.998       | \$2.941                  | \$0.154           | \$0.461        | \$0.998       | \$0.273 | \$0.530     | \$0.998         |
| POWER PRODUCED (10^9 kWh/yr)            | 0.569         | 0.569          | 0.569           | 0.285           | 0.569         | 1.708                    | 0.088             | 0.263          | 0.569         | 0 569   | 0.569       | 0.569           |
| SO2 REMOVED (tons/yr)                   | 1,331         | 6,232          | 9,388           | 665             | 1,331         | 3,993                    | 205               | 614            | 1,331         | 570     | 851         | 1,331           |
|                                         |               |                |                 |                 |               |                          | ç                 |                |               |         |             |                 |
|                                         |               |                |                 |                 | evelized Co   | st Per Power Prod        | uced (Current Dol | (ars)          |               |         |             |                 |
| Level Cap Cho (mills/KWh)               | 0.705         | 0.744          | 0.769           | 1.140           | 0.705         | 0.419                    | 4.031             | 1.411          | 0.705         | 0.578   | 0.642       | 0.705           |
| Level Fixed O&M (mills/kWh)             | - 0.292       | 0.292          | 0.292           | 0.429           | 0.242         | 0.118                    | 1.898             | 0.633          | 0.292         | 0.265   | 0.280       | 0.292           |
| Level Variable O&M (mills/kWh)          | 2.30          | 10.61          | 15.95           | 2.30            | 2.30          | 2.26                     | 2.30              | 2.30           | 2.30          | 0.63    | 1.22        | 2.30            |
| Total Current (mills/KWh)               | 3.30          | 11.64          | 17.02           | 3.87            | 3.25          | 2.80                     | 8.23              | 4.35           | 3.30          | 1.47    | 2.14        | 3.30            |
|                                         |               |                |                 |                 | evelized Co   | st Per Power Prod        | uced (Constant D  | ollars)        |               |         |             |                 |
| Level Cao Cha (mills/kWh)               | 0.547         | 0.577          | 0,596           | 0.883           | 0.546         | 0.325                    | 3.124             | 1.093          | 0.547         | 0.448   | 0.497       | 0.547           |
| Level Fixed O&M (mills/kWh)             | 0.222         | 0.222          | 0.222           | 0.327           | 0.164         | 060.0                    | 1.444             | 0.481          | 0.222         | 0.202   | 0.213       | 0.222           |
| Level Variable O&M (mills/kWh)          | 1.75          | 8.07           | 12.14           | 1.75            | 1.75          | 1.72                     | 1.75              | 1.75           | 1.75          | 0.48    | 0.93        | 1.75            |
| Total Constant (mits/kWh)               | 2.52          | 8.87           | 12.96           | 2.96            | 2.48          | 2.14                     | 6.32              | 3.33           | 2.52          | 1.13    | 1.64        | 2.52            |
|                                         |               |                |                 |                 | evelized Co   | st Per Ton Polluta       | nt Removed (Curr  | ent Dollars)   |               |         |             |                 |
| Level Cap Chg (\$/ton)                  | <b>\$</b> 302 | \$68           | \$47            | <b>5</b> 488    | \$302         | \$179                    | \$1,725           | <b>\$</b> 604  | \$302         | \$577   | \$384       | <b>\$</b> 302   |
| Level Fixed O&M (\$/ton)                | \$125         | \$27           | \$18            | \$184           | <b>\$</b> 103 | \$50                     | \$812             | \$271          | \$125         | \$264   | \$168       | \$125           |
| Level Variable O&M (\$/ton)             | \$86\$        | <b>\$</b> 965  | \$968           | \$96\$          | \$885         | \$968                    | <b>\$</b> 885     | \$985          | \$985         | \$630   | \$733       | \$985           |
| Total Current (\$/ton)                  | \$1,412       | \$1,064        | \$1,032         | <b>\$</b> 1,656 | \$1,390       | \$1,198                  | <b>\$</b> 3,522   | \$1,859        | <b>51,412</b> | \$1,472 | \$1,285     | \$1,412         |
| Total w/o Downtime (\$/ton)             | \$1,393       | \$1,060        | \$1,029         | <b>\$</b> 1,638 | \$1,371       | <b>\$</b> 1,179          | \$3,503           | \$1,841        | \$1,393       | \$1,428 | \$1,258     | <b>\$</b> 1,393 |
|                                         |               |                |                 | -               | evelized Co   | st Per Ton Polluta       | nt Removed (Con   | stant Dollars) |               |         |             |                 |
| Level Cap Chg (\$fton)                  | \$234         | \$53           | \$36            | \$378           | \$234         | \$139                    | <b>\$1</b> ,337   | \$468          | \$234         | \$447   | \$298       | \$234           |
| Level Fixed O&M (\$flon)                | \$8\$         | \$20           | <b>\$</b> 13    | \$140           | 6/\$          | \$38                     | \$618             | \$206          | \$95          | \$201   | \$128       | <b>\$</b> 95    |
| Level Variable O&M (\$/ton)             | \$750         | \$738          | \$736           | \$750           | \$750         | <b>5</b> 737             | \$750             | \$750          | \$750         | \$479   | \$558       | \$750           |
| Total Constant (\$/ton)                 | \$1,078       | \$811          | \$786           | \$1,267         | \$1,062       | \$914                    | \$2,704           | \$1,424        | \$1,079       | \$1,128 | \$983       | \$1,079         |
| Total w/o Downtime (\$/ton)             | \$1,064       | \$807          | \$784           | <b>\$1,</b> 253 | \$1,048       | <b>5</b> 89 <del>3</del> | <b>\$</b> 2 690   | \$1,409        | \$1,064       | \$1,094 | \$963       | \$1,064         |
| Levelization Factors (plant life=15 yr) |               |                |                 |                 |               |                          |                   |                |               |         |             |                 |
| Level Cap Factor (current)              | 0.160         |                |                 |                 |               |                          |                   |                |               |         |             |                 |
| Level Cap Factor (constant)             | 0.124         |                |                 |                 |               |                          |                   |                |               |         |             |                 |
| Level O&M Factor (current)              | 1.314         |                |                 |                 |               |                          |                   |                |               |         |             |                 |
| Level O&M Factor (constant)             | 1.000         |                |                 |                 |               |                          |                   |                |               |         |             |                 |

Print date: 11/15/1999

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I-6

Limestone With Forced Oxidation Scrubbing

-

\_\_\_

| Scrubber (LSPO) SO2 Removal              | Ins                                                                | FUR CONTENT                                    | L                                                                                           | _            | ONIT SIZE   |                                         | CAPI                                                                                             | ACITY FACTO | NK<br>NK   |                                                                        | SOZ REMOVAL                          |                                 |
|------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|-------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|-------------|------------|------------------------------------------------------------------------|--------------------------------------|---------------------------------|
|                                          | \$0¥.0                                                             | 1.20%                                          | 2.63\$                                                                                      | 50           | 100         | 00E                                     | 101                                                                                              | 308         | <b>65</b>  | 105                                                                    | 701                                  | 106                             |
|                                          |                                                                    |                                                |                                                                                             |              | Coal Data   |                                         |                                                                                                  |             |            |                                                                        |                                      |                                 |
| Avg Sulfur Content                       | 0.40%                                                              | 1.201                                          | 2.63\$                                                                                      | 404.0        | . 40¥.0     | 0.40%                                   | 404.0                                                                                            | 0.408       | 0.40%      | ¥0¥ 0                                                                  | 0.40\$                               | 101.0                           |
| Heat Content (Btu/lb)                    | 11,050                                                             | 7,080                                          | 10,300                                                                                      | 11,050       | 11,050      | 11,050                                  | 11,050                                                                                           | 11,050      | 11,050     | 11,050                                                                 | 11,050                               | 11,050                          |
| Ash Content                              | 9.40 <b>%</b>                                                      | 10.401                                         | 10.80%                                                                                      | 9.601        | 9.60%       | 9.60 <b>t</b>                           | 9.601                                                                                            | 9.60%       | 9.60%      | 9.601                                                                  | 9.60%                                | 9.601                           |
|                                          | )<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ,<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              | Operating 1 | bata                                    |                                                                                                  |             |            | )<br> <br> |                                      | )<br>)<br>)<br>)<br>)<br>)<br>) |
| Unit Heatrate (Btu/NKWh)                 | 10,542                                                             | 10,542                                         | 10,542                                                                                      | 10,542       | 10,542      | 10,542                                  | 10,542                                                                                           | 10,542      | 10,542     | 10,542                                                                 | 10,542                               | 10,542                          |
| Unit Size (MWe)                          | 100                                                                | 100                                            | 100                                                                                         | 50           | 100         | 006                                     | 100                                                                                              | 100         | 001        | 100                                                                    | 100                                  | 100                             |
| Capacity Factor                          | 65 <b>k</b>                                                        | 65%                                            | 65%                                                                                         | 65%          | 651         | 65 <b>t</b>                             | 101                                                                                              | 308         | <b>65</b>  | 651                                                                    | 65%                                  | <b>65</b>                       |
| SO2 Removal Required                     | 406                                                                | 106                                            | \$06                                                                                        | 106          | 106         | 106                                     | 406                                                                                              | \$06        | \$06       | 501                                                                    | 70%                                  | 106                             |
| mole CaCO3/mole SO2 removed              | 1.1                                                                | 1.1                                            | 1.1                                                                                         | 1.1          | 1.1         | 1.1                                     | 1.1                                                                                              | 1.1         | 1.1        | 1.1                                                                    | 1.1                                  | 1.1                             |
| Utilization                              | \$16                                                               | 116                                            | 916                                                                                         | 116          | \$16        | <b>\$16</b>                             | <b>11</b> 6                                                                                      | 916         | \$15       | 918                                                                    | <b>3</b> 1 <b>8</b>                  | 116                             |
| Purity (lb CaCO3/lb reagent)             | 948                                                                | 948                                            | 948                                                                                         | 116          | <b>48</b>   | 948                                     | 345                                                                                              | 948         | 948        | 396                                                                    | 316                                  | 941                             |
|                                          |                                                                    |                                                |                                                                                             |              | -           | keagent Flowrate                        |                                                                                                  |             |            |                                                                        |                                      |                                 |
| Max Coal Flow (tons/h)                   |                                                                    | 74                                             | 51                                                                                          | 24           | 84          | 143                                     | 07                                                                                               |             | - 0¥       | 89                                                                     |                                      | 84                              |
| S02 In Duct (1b/h)                       | 668                                                                | 121,E                                          | 4,711                                                                                       | 334          | 668         | 2,003                                   | 669                                                                                              | 668         | 668        | 668                                                                    | 668                                  | 668                             |
| S02 to be Removed (lb/h)                 | 601                                                                | 2,814                                          | 4,240                                                                                       | 301          | 601         | 1,803                                   | 601                                                                                              | 601         | 601        | 334                                                                    | 467                                  | 601                             |
| CaCO3 Flowrate (1b/h)                    | 1, 033                                                             | 4,837                                          | 7,287                                                                                       | 517          | 1,043       | 3,099                                   | 1,033                                                                                            | 1, 033      | 1,033      | 574                                                                    | 803                                  | 1, 033                          |
| Limestone Flowrate (lb/h)                | 1,099                                                              | 5,146                                          | 7,752                                                                                       | 549          | 1,099       | 3,297                                   | 1,099                                                                                            | 1,099       | 1,099      | 611                                                                    | 855                                  | 1,099                           |
|                                          |                                                                    |                                                |                                                                                             |              | Ash Flowra  | •                                       |                                                                                                  |             |            | 7 6 7 8 7 8 4 5 7 8 4 8 7 8 7 8 7 8 4 8 7 8 7 8 7 8 7 8                | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |                                 |
| Unreacted CaCO3 (1b/h)                   | 94                                                                 | 440                                            | 662                                                                                         | 47           | <b>¥</b> 6  | 282                                     | <b>9</b> 6                                                                                       | 5           | <b>1</b> 6 | 52                                                                     | 73                                   | 94                              |
| CaSO4*2H20 (1b/h)                        | 1,615                                                              | 7,563                                          | 11,394                                                                                      | 808          | 1,615       | 4,846                                   | 1,615                                                                                            | 1,615       | 1,615      | 697                                                                    | 1,256                                | 1,615                           |
| Inerts (lb/h)                            | 99                                                                 | 600                                            | 465                                                                                         | 66           | 99          | 961                                     | 66                                                                                               | 66          | 66         | 56                                                                     | 78                                   | 100                             |
| Total Added Waste (1b/h)                 | 1,775                                                              | 8,312                                          | 12,521                                                                                      | 888          | 1,715       | 5,325                                   | 1,775                                                                                            | 1,775       | 1,775      | 1,005                                                                  | 1,407                                | 1,809                           |
| Molecular Weights                        |                                                                    |                                                |                                                                                             |              |             |                                         | 1<br>2<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |             |            |                                                                        |                                      |                                 |
| WW Ca (lb/mole)                          | 04                                                                 |                                                | MM CI                                                                                       | ISO4 *2H20   | 172         | * * * * * * * * * * * * * * * * * * * * | +<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                    |             |            | * * * * * * * * * * * * * * * * * * * *                                |                                      |                                 |
| MW CaCO3 (lb/mole)<br>MW CaSO4 (lb/mole) | 100<br>136                                                         |                                                | MM SC                                                                                       | 02 (lb/mole) | 64          |                                         |                                                                                                  |             |            |                                                                        |                                      |                                 |
|                                          |                                                                    |                                                |                                                                                             |              |             |                                         |                                                                                                  |             |            |                                                                        |                                      |                                 |
|                                          |                                                                    |                                                |                                                                                             |              |             |                                         |                                                                                                  |             |            |                                                                        |                                      |                                 |

12/02/94 TJ Hanley

Revised: By:

Print Date: 11/15/1999

| TOTAL CAPITAL RESULTS                        | Sul                                                                                         | fur Conten |                                         | 5       | nit Size |                                         | Capa    | city Facto | г                                       | Ċ)                                      | 02 Removal                                | Rate                     |
|----------------------------------------------|---------------------------------------------------------------------------------------------|------------|-----------------------------------------|---------|----------|-----------------------------------------|---------|------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------|
|                                              | 0.40\$                                                                                      | 1.20%      | 2.631                                   | 50      | 100      | 300                                     | 101     | 105        | 65 <b>%</b>                             | 50 <b>1</b>                             | 101                                       | <b>\$</b> 06             |
| Year Installed                               | 1994                                                                                        | 466T       | 1994                                    | 1994    | 466t     | 1994                                    | 1994    | 1994       | 1994                                    | 1994                                    | 1994                                      | 1994                     |
| Year of Study                                | 1994                                                                                        | 1994       | 1994                                    | 1994    | 1994     | 1994                                    | 1994    | 1994       | 1994                                    | 1994                                    | 1994                                      | 1994                     |
| Subtotal Install-1994 (\$/kW)                | \$180                                                                                       | \$190      | \$200                                   | \$210   | \$180    | \$125                                   | \$180   | \$180      | \$180                                   | \$160                                   | \$165                                     | \$180                    |
| Inflation Rate                               | 11                                                                                          | 44         | 415                                     | 44      | 11       | 48                                      | 4.8     | 4 4        | 44                                      | 35                                      | <b>*</b>                                  | <b>4</b>                 |
| Subtotal Install-1994 (\$/kW)                | \$180                                                                                       | \$190      | \$200                                   | \$210   | \$180    | \$125                                   | \$180   | \$180      | \$180<br>                               | \$160                                   | \$165                                     | \$180                    |
| Subtotal Install-1994 (\$10 <sup>6</sup> 6)  | \$18.00                                                                                     | \$19.00    | \$20.00                                 | \$10.50 | \$18.00  | \$37.50                                 | \$18.00 | \$18.00    | \$18.00                                 | \$16.00                                 | \$16.50                                   | 00.81\$                  |
|                                              | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | 1          | ,                                       | •       |          | 1<br>6<br>7<br>9<br>1<br>1<br>1<br>1    |         |            |                                         |                                         |                                           | 401                      |
| Retrofit Factor                              | 121                                                                                         | 121        | 121                                     | 12%     | 121      | 171                                     | \$71    | 121        |                                         |                                         |                                           |                          |
| Retrofit Cost (\$10°6)                       | \$2.16                                                                                      | \$2.28     | \$2.40                                  | \$1.26  | \$2.16   | \$4.50                                  | \$2.16  | \$2.16     | \$2.16<br>                              | \$1.92                                  | 51.98<br>22                               | 52.16                    |
| Process Contingency Factor                   | 23                                                                                          | 2%         | 2%                                      | 2%      | 2%       | 21                                      | 28      | 28         | 24                                      | 24                                      | 47                                        | ¥7                       |
| Proc Contingency Cost (\$10 <sup>6</sup> )   | \$0.360                                                                                     | \$0.380    | \$0.400                                 | \$0.210 | \$0.360  | \$0.750                                 | \$0.360 | \$0.360    | \$0.360                                 | \$0.320                                 | \$0.330                                   | \$0.360                  |
| Total Install Equip (\$10 <sup>°</sup> 6)    | \$20.52                                                                                     | \$21.66    | \$22.80                                 | \$11.97 | \$20.52  | 542.75                                  | \$20.52 | \$20.52    | \$20.52                                 | \$18.24                                 | \$18.81                                   | \$20.52                  |
| Tot. Process Capital (\$10 <sup>6</sup> )    | \$20.52                                                                                     | \$21.66    | \$22.80                                 | \$11.97 | \$20.52  | \$42.75                                 | \$20.52 | \$20.52    | \$20.52                                 | \$18.24                                 | \$18.81                                   | \$20.52                  |
|                                              | •                                                                                           |            |                                         |         | -        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |         |            | • • • • • • • • • • • • • • • • • • • • |                                         | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | <br> <br> <br> <br> <br> |
| General Facilities Rate                      | 101                                                                                         | 101        | 101                                     | 101     | 101      | 101                                     | 101     | 101        | 101                                     | 101                                     | 101                                       | 101                      |
| Gen Facilities Cost (S10 <sup>-</sup> 6)     | 52.052                                                                                      | 52.166     | \$2,280                                 | \$1.197 | \$2.052  | \$4.275                                 | \$2.052 | \$2.052    | \$2.052                                 | \$1.824                                 | \$1.881                                   | \$2.052                  |
| Engr & Home Office Rate                      | 101                                                                                         | 101        | 101                                     | 101     | 101      | 10%                                     | 101     | 101        | 101                                     | 101                                     | 101                                       | 101                      |
| Engr & Home Office (S10°6)                   | \$2.052                                                                                     | \$2.166    | \$2,280                                 | 51.197  | \$2.052  | \$4.275                                 | \$2.052 | \$2.052    | \$2.052                                 | \$1.824                                 | \$1,861                                   | \$2.052                  |
| Project Contingency Rate                     | 124                                                                                         | 124        | 121                                     | 121     | 121      | 12%                                     | 121     | 121        | 12%                                     | 121                                     | 12\$                                      | 124                      |
| Proj Contingency Cost (\$10°6)               | \$2.955                                                                                     | 511.63     | \$3.283                                 | \$1.724 | \$2.955  | \$e.156                                 | \$2.955 | \$2.955    | \$2.955                                 | \$2.627                                 | \$2.709                                   | \$2.955                  |
| Total Plant Cost (\$10 <sup>6</sup> )        | \$27.58                                                                                     | \$29.11    | \$30.64                                 | \$16.09 | \$27.58  | \$57.46                                 | \$27.58 | \$27.58    | \$27.58                                 | \$24.51                                 | \$25.28                                   | \$27.58                  |
|                                              |                                                                                             |            | • • • • • • • • • • • • • • • • • • • • | •       |          |                                         |         |            |                                         |                                         |                                           | 1                        |
| AEDC rate (/) vear)                          | 0.01                                                                                        | 10 0       | 1.01                                    | 0.0     | 0.0      | 0.01                                    | 0.01    | 0.0        | 0.0%                                    | 0.0                                     | 0.01                                      | 0.0                      |
| AFDC Cost (\$10,6)                           | \$0.00                                                                                      | \$0,00     | 50.00                                   | so.00   | 50 00    | \$0.00                                  | \$0.00  | \$0.00     | \$0.00                                  | \$0.00                                  | \$0.00                                    | \$0.00                   |
| Total Plant Invest (\$10 <sup>6</sup> )      | \$27.58                                                                                     | \$29.11    | \$30.64                                 | \$16.09 | 527.58   | \$57.46                                 | \$27.58 | \$27.58    | \$27.58                                 | \$24.51                                 | \$25.28                                   | \$27.58                  |
| Dovalto Data                                 | 0.54                                                                                        |            | 0.5%                                    | 0.5%    | 0.5%     | 0.5%                                    | 0.51    | 0.5%       | 0.5%                                    | 0.54                                    | 0.54                                      | 0.5%                     |
| Povalty Cost (\$10,6)                        | 50.14                                                                                       | \$0.15     | \$0.15                                  | \$0.08  | \$0.14   | \$0.29                                  | 50.14   | \$0.14     | \$0.14                                  | \$0.12                                  | \$0.13                                    | \$0.14                   |
| Startun Time (weeks)                         |                                                                                             |            | 80                                      | æ       | 80       | 80                                      | e¢      | 20         | 8                                       | ÷                                       | 8                                         | 80                       |
| Preproduction Costs (\$10^6)                 | \$0.345                                                                                     | \$0.407    | \$0.447                                 | \$0.221 | \$0.345  | \$0.562                                 | \$0.269 | \$0.297    | \$0.345                                 | \$0.319                                 | \$0,328                                   | \$0.345                  |
| Inventory Capital (\$10 <sup>6</sup> )       | \$0.056                                                                                     | \$0.162    | \$0.205                                 | \$0.048 | \$0.096  | \$0.090                                 | \$0.015 | \$0.044    | \$0.096                                 | \$0.088                                 | \$0.092                                   | \$0.096                  |
| Initial Catalyst (\$10°6)                    | \$0.000                                                                                     | \$0.000    | \$0,000                                 | \$0.000 | \$0.000  | \$0.000                                 | \$0.000 | \$0.000    | \$0.000                                 | \$0.000                                 | \$0°000                                   | \$0.000                  |
| Subtotal Capital (\$10°6)                    | \$28.16                                                                                     | \$29.83    | \$31.45                                 | \$16.44 | \$28.16  | \$58.40                                 | \$28.00 | \$28.06    | \$28.16                                 | \$25.04                                 | \$25.83                                   | \$28.16                  |
| Construction Downtime (davs)                 |                                                                                             |            |                                         | ~ ~~    |          |                                         |         | 7          | 2                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 2                                         | 2                        |
| Bonlanderton Donne fort (c/YEh)              | 50 DE                                                                                       | 50 08      | 60 05                                   | \$0 US  | ¢0 0E    | \$0.05                                  | \$0.05  | \$0.05     | \$0.05                                  | \$0 D5                                  | \$0.05                                    | \$0.05                   |
| Construction Downtime (\$10 <sup>6</sup> )   | \$0.16                                                                                      | \$0.16     | \$0.16                                  | 80.08   | \$0.16   | \$0.47                                  | \$0.02  | \$0.07     | \$0.16                                  | \$0.16                                  | \$0.16                                    | \$0.16                   |
| Total Capital Required (\$10 <sup>-6</sup> ) | \$28.31                                                                                     | \$29.96    | \$31.60                                 | \$16.51 | \$28.31  | \$58,86                                 | \$28.02 | \$28.13    | \$28.31                                 | \$25.20                                 | \$25.98                                   | \$28.31                  |
|                                              | , , , , , , , , , , , , , , , , , , , ,                                                     |            |                                         |         |          | *******                                 |         |            |                                         |                                         |                                           |                          |

| QAM COST RESULTS (\$10^6/yr)                 | 1 <b>3</b>                 | ilfur Conte | ent                    |                                       | Unit Size  |                                                  | Cal                                   | acity Fact                                               | OT                                      | Sos                                                      | 2 Removal      | are                                      |
|----------------------------------------------|----------------------------|-------------|------------------------|---------------------------------------|------------|--------------------------------------------------|---------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|----------------|------------------------------------------|
|                                              | 0.40%                      | 1.20        | 2.631                  | 50                                    | 100        | 300                                              | 101                                   | 301                                                      | 65%                                     | 50\$                                                     | 101            | 106                                      |
|                                              |                            |             | ANNU                   | AL FIXED OLM CO                       | STS        |                                                  |                                       |                                                          |                                         |                                                          |                |                                          |
| Labor (\$/operator-h)                        | \$23.00                    | 523.00      |                        |                                       |            |                                                  | **********                            |                                                          |                                         |                                                          |                |                                          |
| Labor (operators/shift)                      | 2.3                        | 2.1         | 50.50                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00.646     | 00.02¢                                           | 00.624                                | 523.00                                                   | \$23.00                                 | \$23.00                                                  | \$23.00        | \$23.00                                  |
| Labor (shifts/week)                          | 12°. •                     | 4.2         | . 2                    |                                       |            |                                                  |                                       | F.7                                                      | 2.3                                     | 2.3                                                      | 2.7            | 2.3                                      |
| Operating Labor (\$10°6/yr)                  | \$0.464                    | \$0.464     | \$0.464                | 50.40K                                | \$0.464    | 2.5 A7                                           |                                       | 1.5                                                      | 7.8                                     | 4.2                                                      | 4              | 4.2                                      |
|                                              |                            |             |                        |                                       |            |                                                  |                                       |                                                          | 101.04                                  | \$0.464                                                  | 50.464         | \$0.464                                  |
| Total Install Equip (\$10^6)                 | \$20.5                     | \$20.5      | \$20.5                 | \$12.0                                | \$20.5     | \$42.8                                           | \$20.5                                | \$20.5                                                   | \$20.5                                  | 518.2                                                    | 518 B          | s ucs                                    |
| Maintenance Factor                           | 4.61                       | 4.61        | 1 <b>4</b> .6 <b>%</b> | 4.61                                  | 4.61       | 4.61                                             | 1.61                                  | 4.61                                                     | 4.68                                    |                                                          | 89 F           | 6.03A                                    |
| Maintenance Labor (\$10°6/yr)                | \$0.378                    | \$0.378     | \$0.378                | \$0.220                               | \$0.378    | \$0.787                                          | \$0.378                               | \$0.378                                                  | 87E.02                                  | 961 US                                                   | 345 13         | 50 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| Maintenance Matl (\$10^6/yr)                 | \$0.566                    | \$0.566     | \$0.566                | \$0.330                               | \$0.566    | S1.180                                           | \$0.566                               | \$0.566                                                  | \$0.566                                 | 103 05                                                   |                | 0/5°0¢                                   |
| Admin/Support Labor {\$10^6/yr}              | \$0.253                    | \$0.253     | \$0.253                | \$0.186                               | \$0.253    | \$0.445                                          | \$0.253                               | \$0.253                                                  | \$0.253                                 | \$0.240                                                  | \$0.243        | \$0.253                                  |
| Total Fixed OLM (\$10°6/yr)                  | \$1.66                     | \$1.66      | \$1.66                 | \$1.14                                | \$1.66     | \$3.11                                           | \$1.66                                | \$1.66                                                   | \$1.66                                  | \$1.54                                                   | \$1.57         | \$1.66                                   |
|                                              | 2<br>1<br>1<br>1<br>1<br>2 |             | )                      | * * * * } } }                         | ANNUAL VAR | IABLE OLN COSTS                                  | ****                                  |                                                          |                                         |                                                          |                | <br> <br> <br> <br> <br> <br>            |
|                                              |                            |             |                        |                                       |            | • • • • • • • • • • • • • • • • • • • •          |                                       |                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                          | ****           |                                          |
|                                              |                            | *******     |                        |                                       | Annual Kea | gent Cost                                        |                                       |                                                          |                                         |                                                          |                |                                          |
| Limestone Use (tons/yr)                      | 3,129                      | 14,650      | 22,070                 | 1,564                                 | 3,129      | 9,386                                            | 401                                   | 1.444                                                    | 9-1129                                  | 812 6                                                    |                |                                          |
| Limestone Cost (\$/ton)                      | \$15.00                    | \$15.00     | \$15.00                | \$15.00                               | \$15.00    | \$15.00                                          | \$15.00                               | \$15.00                                                  | \$15.00                                 | 85.'T                                                    |                | 477'S                                    |
| Limestone Cost (\$/yr)                       | \$0.047                    | \$0.220     | \$0.331                | \$0.023                               | \$0.047    | \$0.141                                          | \$0.007                               | \$0.0 <b>2</b> 2                                         | \$0.047                                 | \$0 02K                                                  | 20.015         |                                          |
|                                              |                            |             |                        |                                       |            | • • • • • • • • • • • • • • • • • • • •          |                                       |                                                          |                                         | 870.04                                                   |                | 1 80.00                                  |
| Freight Coat (\$/ton-mile)                   | 50.08                      | \$0.08      | \$0.08                 | \$0.08                                | \$0.06     | \$0.0\$                                          | \$0.08                                | \$0°0\$                                                  | \$0.08                                  | \$0.08                                                   | \$0.08         | \$0.08                                   |
| regon braconce (mj)<br>Deerest staints (f.a) | 250                        | 250         | 250                    | 250                                   | 250        | 250                                              | 250                                   | 250                                                      | 250                                     | 250                                                      | 250            | 250                                      |
| Pressent First and (\$/ ton)                 | 520.00                     | \$20.00     | \$20.00                | \$20.00                               | \$20.00    | \$20.00                                          | \$20.00                               | \$20.00                                                  | \$20.00                                 | \$20.00                                                  | \$20.00        | \$20.00                                  |
| reagent figtgit (s/yr)                       | 50.053                     | \$0.293     | \$0.441                | 160.03                                | \$0.063    | \$0.18 <b>0</b>                                  | \$0.010                               | \$0.029                                                  | \$0.063                                 | \$0.03                                                   | \$0.049        | \$0.063                                  |
|                                              |                            |             |                        |                                       | Annual Aux | illiary Power Co                                 |                                       |                                                          | ,                                       | r<br>                                                    | ↓              | 1<br>1<br>8<br>8<br>1<br>1               |
| Aux Power Use (kM/MWe)                       | 16.6                       | 16.6        | 16.6                   | 16.6                                  | 16.6       | 16.6                                             | 16.6                                  |                                                          |                                         |                                                          |                |                                          |
| Auxillary Power Use (kWh/h)                  | 1,657                      | 1,657       | 1,657                  | 828                                   | 1,657      | 4.970                                            | 1 457                                 | 639 L                                                    | 0.0T                                    | 0.0T                                                     | 9.9T           | 16.6                                     |
| Auxillary Power Cost (\$/kMh)                | \$0.0\$                    | \$0.05      | \$0.05                 | \$0°0\$                               | \$0.05     | \$0.05                                           | \$0.05                                | \$0.05                                                   | 50 US                                   | 100,1                                                    | 1.057<br>60 05 | 1,657                                    |
| Aux Power Cost (Si0 <sup>6</sup> 6/yr)       | \$0.472                    | \$0.472     | \$0.472                | \$0.236                               | \$0.472    | \$0.218                                          | \$0.073                               | \$0.218                                                  | \$0.472                                 | \$0.472                                                  | 50.472         | 50.472                                   |
| 9 ) 9 ) 9 ) 9 ) 9 ) 9 ) 9 ) 9 ) 9 ) 9 )      |                            |             |                        |                                       | tonual Sat | Province and |                                       |                                                          |                                         |                                                          |                | *                                        |
|                                              | ********                   | *******     |                        |                                       |            |                                                  |                                       |                                                          |                                         |                                                          |                |                                          |
| Blowdown H20 (gpm/MWe)                       | 1.1                        | 1.1         | 1.1                    | 1.1                                   | 1.1        | 1.1                                              | 1.1                                   | 1.1                                                      | 1.1                                     | 1.1                                                      | 1.1            |                                          |
| Blowdown H20 (gal/min)                       | 110                        | 110         | 110                    | 55                                    | 110        | 330                                              | 011                                   | 110                                                      | 110                                     | 110                                                      | 110            | 110                                      |
| THE FOILS OUT THOMATE                        | 50.00                      | \$0.00      | 20.00                  | \$0.00                                | \$0.00     | \$0.00                                           | \$0.00                                | \$0.00                                                   | \$0.00                                  | \$0,00                                                   | \$0.00         | 50.00                                    |
| (λ/2 015) 07H μασιωσια                       | \$0.0000                   | \$0.0000    | \$0.000                | \$0.000                               | \$0.0000   | \$0.0000                                         | \$0.0000                              | \$0,0000                                                 | \$0.000                                 | \$0.000                                                  | \$0.0000       | \$0.000                                  |
|                                              |                            |             |                        |                                       | unual Dis  | posal Cost                                       | , , , , , , , , , , , , , , , , , , , | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | *                                       | 4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ****           |                                          |
| Total Added Ash (tons/yr)                    | 5,054                      | 23,663      | 35,648                 | 2,527                                 | 5, 054     | 15, 161                                          | 877                                   |                                                          | 5 054                                   |                                                          |                |                                          |
| Ash Disposal Cost (\$/ton)                   | \$9.29                     | \$9.29      | \$9.29                 | \$9.29                                | \$9.29     | \$9.29                                           | 59.29                                 | 80 98                                                    |                                         | 100'7                                                    | 400 4          | 5,151                                    |
| Ash Disposal (\$10°6/yr)                     | \$0.0469                   | \$0.2198    | \$0.3312               | \$0.0235                              | \$0.0469   | \$0.1408                                         | \$0.0072                              | \$0.0217                                                 | \$0.0469                                | \$0.0266                                                 | \$0.0372       | \$0.0478                                 |
| Total Variable (\$10°6/yr)                   | \$0.581                    | \$0.984     | \$1.24                 | \$0°.29                               | \$0.58     | \$0.55                                           | 60.0\$                                | \$0.27                                                   | \$0.58                                  | \$0.53                                                   | \$0.56         | 20 CB                                    |
| Total Dem (c) of /                           |                            |             |                        |                                       |            |                                                  |                                       |                                                          |                                         |                                                          |                |                                          |
| 17X10 0141 180 10101                         | \$7.2 <del>5</del>         | 2d.25       | 52.90                  | \$1.43                                | \$2.24     | \$ <b>3.6</b> 6                                  | \$1.75                                | £6.1\$                                                   | \$2.24                                  | \$2.08                                                   | \$2.13         | \$2.24                                   |

| LEVELIZED COSTS                                       | Sul                   | fur Conten     | ų                                                                  | -               | Jnit Size        |                  | Cap                                     | acity Fact      | or                                    | 502              | Removal Ra                              | e               |
|-------------------------------------------------------|-----------------------|----------------|--------------------------------------------------------------------|-----------------|------------------|------------------|-----------------------------------------|-----------------|---------------------------------------|------------------|-----------------------------------------|-----------------|
|                                                       | 0.401                 | 1.201          | 2.63\$                                                             | 50              | 100              | 00E              | 101                                     | 301             | 651                                   | 50\$             | 104                                     | 106             |
| Tot Cap Required (\$10 <sup>6</sup> 6)                | \$28.31               | \$29.98        | \$31.60                                                            | \$16.51         | \$28.31          | \$58,86          | \$28.02                                 | \$28.13         | \$28.31                               | \$25.20          | \$25.98                                 | \$28.31         |
| Fixed OEM (\$10 <sup>6</sup> /yr)                     | \$1.661               | \$1.661        | \$1.661                                                            | \$1.144         | \$1.661          | 601 6\$          | \$1.661                                 | 51,661          | \$1.661                               | \$1.543          | \$1.572                                 | \$1.661         |
| Variable O&M {\$10^6/yr}                              | \$0.581               | \$0.984        | \$1.244                                                            | \$0.291         | \$0.581          | \$0.546          | \$0.089                                 | \$0.268         | \$0.581                               | \$0.533          | \$0.558                                 | \$0.582         |
| Power Produced (10 <sup>-</sup> 9 kWh/yr)             | 0.569                 | 0.569          | 0.569                                                              | 0.285           | 0.569            | 1.708            | 0.088                                   | 0.263           | 0.569                                 | 0.569            | 0.569                                   | 0.569           |
| S02 Removed [tons/yr]                                 | 1,711                 | 8,012          | 12,070                                                             | 856             | 11,711           | 5,133            | 263                                     | 790             | 1, 711                                | 951              | 1,331                                   | 117,1           |
| • • • • • • • • • • • • • • • • • • • •               | •<br>•<br>•<br>•<br>• |                | ,<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) |                 |                  |                  | . , , , , , , , , , , , , , , , , , , , |                 | · · · · · · · · · · · · · · · · · · · |                  |                                         |                 |
|                                                       |                       |                |                                                                    |                 | Cost Per Po      | ower Produced (( | Current Dollars                         | -               |                                       |                  |                                         |                 |
| Level Cap Chg (mills/kWh)                             | 7.956                 | 8.425          | 8,881                                                              | 9.281           | 7.956            | 5.513            | 51.187                                  | 17.126          | 7.956                                 | 7.081            | 7.301                                   | 7.956           |
| Level Fixed OWM (mills/kWh)                           | 3.832                 | 3.832          | 3.632                                                              | 5.282           | 3.832            | 2,391            | 24.909                                  | 8.303           | 3,832                                 | 3.561            | 3.629                                   | 3.832           |
| Level Variable O&M (mills/kWh)                        | 1.34                  | 2.27           | 2.87                                                               | 1.34            | 1.34             | 0.42             | 1.34                                    | 1.34            | 1.34                                  | 1.23             | 1.29                                    | 1.34            |
| Total Current (mills/kWh)                             | ET.ET                 | 14.53          | 15.58                                                              | 15.90           | ET ET            | E. 8             | 11.11                                   | 26.77           | 13.13                                 | 11.67            | 12.22                                   | 13.13           |
| • 222322452222222222222222222222222222222             |                       | 1              |                                                                    |                 | Cost Per Po      | wer Produced {(  | Constant Dollar                         | (8)             |                                       |                  |                                         |                 |
| Level Cap Chg (mills/kWh)                             | 6,166                 | 6.529          | 6,882                                                              | 7.193           | 6.166            | £72.4            | 39.670                                  | E72.E1          | 6.166                                 | 5.488            | 5.658                                   | 6.166           |
| Level Fixed O&M (mills/kWh)                           | 2.916                 | 2.916          | 2.916                                                              | 4.019           | 2.916            | 1.820            | 18.956                                  | 6.319           | 2.916                                 | 2.710            | 2.762                                   | 2.916           |
| Level Variable OLM (mills/kWh)                        | 1.02                  | 1.73           | 2.19                                                               | 1.02            | 1.02             | 0.32             | 1.02                                    | 1.02            | 1.02                                  | 0.94             | 6.98                                    | 1.02            |
| Total Constant (mills/kWh)                            | 10.10                 | 11.17          | 11.98                                                              | 12.23           | 10.10            | 6.41             | 59.65                                   | 20.61           | 10.10                                 | 9.13             | 9.40                                    | 10.10           |
|                                                       |                       |                |                                                                    |                 |                  |                  |                                         |                 |                                       |                  |                                         |                 |
|                                                       |                       |                |                                                                    | Ū               | ost Per To       | n S02 Removed    | (Current Dolla                          | (8)             |                                       |                  |                                         |                 |
| Level Cap Chg (\$/ton)                                | \$2,647               | \$539          | \$419                                                              | \$3,088         | \$2,647          | \$1,835          | \$17,033                                | \$5,699         | \$2,647                               | \$4,241          | \$3,124                                 | \$2,647         |
| LEVEL FIXED UEM (5/100)<br>Level Variable OEM (5/100) | \$1, 275<br>\$446     | \$272<br>\$161 | 51815                                                              | 51, 757<br>5446 | \$1,275<br>\$446 | \$796<br>\$140   | 58,289<br>5445                          | \$2,763<br>Saaƙ | \$1,275<br>5446                       | \$2,133<br>\$717 | \$1,553<br>\$550                        | \$1,275<br>5447 |
| Total Curtant (S/ton)                                 |                       |                |                                                                    |                 |                  |                  |                                         |                 |                                       |                  |                                         |                 |
| Total w/o downtime {\$/ton}                           | \$4,354               | \$1,029        | 5733                                                               | \$5,278         | \$4,354          | \$2,756          | \$25, 753                               | 59, 393         | 54, 354                               | \$7, 085         | \$5, 208                                | 54,355          |
|                                                       |                       |                | *                                                                  |                 | ost Per To       | n SO2 Removed (  | (Constant Dolla                         | rs)             |                                       |                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 |
| Level Cap Chg (\$/ton)                                | \$2,052               | \$464          | \$325                                                              | \$2,393         | \$2,052          | \$1,422          | \$13,200                                | \$4,417         | \$2,052                               | \$3,287          | \$2,421                                 | \$2,052         |
| Level Fixed QEM (\$/ton)                              | \$970                 | \$207          | \$138                                                              | \$1,337         | \$970            | \$606            | \$6,308                                 | \$2,103         | \$970                                 | \$1,623          | \$1,182                                 | \$970           |
| Level Variable OEM (\$/ton)                           | \$340                 | \$123          | \$103                                                              | \$340           | \$340            | \$106            | \$340                                   | \$340           | \$340                                 | \$561            | \$419                                   | \$340           |
| Total Constant (\$/ton)                               | \$3,362               | \$794          | \$565                                                              | \$4,071         | \$3,362          | \$2,134          | \$19,848                                | \$6,859         | \$3,362                               | \$5,471          | \$4,021                                 | \$3,362         |
| יייייייייייייייייייייייייייייייייייייי                |                       | 7616           | ₽¢0%                                                               | \$4, 055        | \$3,351<br>      | \$2,123          | \$19,837                                | \$6,848         | \$3,351                               | \$5,451          | \$4,007                                 | \$3,351         |

Levelization Factors (Plant life = 15 yr) Level Cap Factor (current) 0.160 Level Cap Factor (constant) 0.124 Level OM Factor (current) 1.314 Level OM Factor (constant) 1.000

Print Date: 11/15/1999

Limestone With Forced Oxidation { SCRUBBER.XLS} - 4

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I-7

Low-NOx Combustion System

,

.

- --

| S Install y | 'ear=  | 1991        |             | Init Size      |             |     |              |             |
|-------------|--------|-------------|-------------|----------------|-------------|-----|--------------|-------------|
| ц<br>,      | Eactor | 50          |             |                |             |     | 4            | Ċ           |
| , )) `      |        | DC          | 20.         | actor          |             | NO. | actor        | 300         |
| ~           | -      | \$257,400   | 12          | -              | \$514,800   | 24  | -            | \$1,029,600 |
|             |        | \$18,600    | 12          |                | \$37,200    | 24  | *            | \$74,400    |
|             | -      | \$20,400    | 12          | <del>~~</del>  | \$40,800    | 24  | <del>4</del> | \$81,600    |
|             |        | \$20,400    | 12          |                | \$40,800    | 24  |              | \$81,600    |
|             | -      | \$12,000    | 12          | -              | \$24,000    | 24  | ~            | \$48,000    |
|             | -      | \$12,400    | 8           | <del>~ -</del> | \$12,400    | 2   | -            | \$12,400    |
|             | -      | \$48,400    | 9           | <del></del>    | \$72,600    | 10  | -            | \$121,000   |
|             | 0.8    | \$973,920   | -           | -              | \$1,217,400 | -   | 2            | \$2,434,800 |
|             |        | \$1,363,520 |             |                | \$1,960,000 |     |              | \$3,883,400 |
|             | 0.9    | \$947,700   | -           | <del>~</del>   | \$1,053,000 | -   | 1,1          | \$1,158,300 |
|             | 0.8    | \$2,322,400 | -           | ٢              | \$2,903,000 | -   | 1.5          | \$4,354,500 |
|             | -      | \$4,633,620 | <del></del> | ~              | \$5,916,000 | -   | -            | \$9,396,200 |
|             |        | \$92.67     |             |                | \$59.16     |     |              | \$31.32     |

Capital Costs of Low-NOx Combustion System (LNBOFA.WK3)

Print Date: 11/15/1999

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I-8

Selective Non-Catalytic Reduction

-

• .

- --

| (0       |
|----------|
| Ň        |
| 14       |
|          |
| 2        |
| ö        |
| 5        |
| š        |
| 4        |
| ŝ        |
| <u>a</u> |
| 5        |
| 2        |
| N.       |
| 9        |
| - L      |
| 1        |
|          |
| 2        |
|          |

| SNCR NOX REMOVAL                                               | -                    | ilet NOx (lb/)       | AMBtu)               | Þ                   | NIT SIZE             |                      | CAPA                 | DITY FACTO           | æ                    | z                    | Ox REMOVA            | -1                   |
|----------------------------------------------------------------|----------------------|----------------------|----------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                                                                | 0.40                 | 0:90                 | 1.15                 | 50                  | 100                  | 300                  | 10%                  | 30%                  | 65%                  | 30%                  | 40%                  | 50%                  |
|                                                                |                      |                      | nit Specification    |                     |                      |                      |                      |                      |                      | •                    |                      |                      |
| Unit Heatrate (Btw/NkWh)<br>Unit Size (MWe)<br>Capacity Factor | 10,542<br>100<br>65% | 10,542<br>100<br>65% | 10,542<br>100<br>65% | 10,542<br>50<br>65% | 10,542<br>100<br>65% | 10,542<br>300<br>65% | 10,542<br>100<br>10% | 10,542<br>100<br>30% | 10,542<br>100<br>65% | 10,542<br>100<br>65% | 10,542<br>100<br>65% | 10.542<br>100<br>65% |
|                                                                |                      |                      | let NOx              |                     |                      |                      |                      |                      |                      |                      |                      |                      |
| NOX before SNCR (Ib/MMBtu)                                     | 40                   | 6.0                  | 1.15                 | ••                  | 4.0                  | 4.0                  | 4.0                  | 0.4                  | 4.0                  | 0.4                  | 0.4                  | 0.4                  |
| NOx before SNCR (Ib/h)<br>NOx before SNCR (mole/h)             | 422                  | 949<br>31.6          | 1,212<br>40.4        | 211<br>7.0          | 422<br>14.1          | 1,265<br>42.2        | 422<br>14.1          | 422<br>14.1          | 422                  | 422<br>14.1          | 422<br>14.1          | 422                  |
|                                                                |                      | z                    | Ox Removal Re        | quired by SNCI      | R (Assume a          | il NOX is NO.)       |                      |                      |                      |                      |                      |                      |
| SNCR NOx Removal Required                                      | %0¥                  | +0%<br>  %0          | 40%                  | 40%                 | 40%                  | 40%                  | 40%                  | 40%                  | 40%                  | 30%                  | 40%                  | 50%                  |
| NSR                                                            | 0.8                  | 0.6                  | 0.8                  | 0.0                 | 0.8                  | 0.8                  | 0.8                  | 0.8                  | 0.0                  | 0.6                  | 0.8                  | -                    |
| Utilization                                                    | 50%                  | 50%                  | 50%                  | 50%                 | 50%                  | 50%                  | 50%                  | 50%                  | 50%                  | 50%                  | 50%                  | 50%                  |
| NO to be Removed (lb/h)                                        | 169                  | 380                  | 485                  | 2                   | 169                  | 506                  | 169                  | 169                  | 169                  | 127                  | 169                  | 211                  |
| NO to be Removed (mole/h)                                      | 5.62                 | 12.65                | 16.16                | 2.81                | 5.62                 | 16.87                | 5.62                 | 5.62                 | 5.62                 | 4.22                 | 5.62                 | 7.03                 |
|                                                                |                      | S                    | NCR Injection FI     | owrates             |                      |                      |                      |                      |                      |                      |                      |                      |
| Ib H2O/Ib soln                                                 | 84.6%                | 84.6%                | 84.6%                | 84.6%               | 84.6%                | 84.6%                | 84.6%                | 84.6%                | 84.6%                | 84.6%                | 84.6%                | 84.6%                |
| Ib Urea/Ib soln                                                | 15.4%                | 15.4%                | 15.4%                | 15.4%               | 15.4%                | 15.4%                | 15.4%                | 15.4%                | 15.4%                | 15.4%                | 15.4%                | 15.4%                |
| Urea Flowrate (mole/h)                                         | 11.2                 | 25.3                 | 32.3                 | 5.6                 | 11.2                 | 33.7                 | 11.2                 | 11.2                 | 11.2                 | 8.4                  | 11.2                 | 14 1                 |
| Urea Flowrate (Ib/h)                                           | 675                  | 1,518                | 1,940                | 337                 | 675                  | 2,024                | 675                  | 675                  | 675                  | 506                  | 675                  | 843                  |
| H2O Flowrate (Ib/h)                                            | 3,706                | 9,857                | 12,596               | 2,191               | 4,381                | 13,143               | 4,381                | 4,381                | 4,381                | 3,286                | 4,381                | 5,476                |
| MOLECULAR WEIGHTS                                              |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |                      |
| MW Nitrocen (Ib/mole)                                          | 14.0067              |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |                      |
| WW NO (Ib/mole)                                                | 30                   |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |                      |
| MW (NH2)2CO                                                    | 3                    |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |                      |
| Water Density (Ib/gal)                                         | 8.3                  |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |                      |
|                                                                |                      |                      |                      |                     |                      |                      |                      |                      |                      |                      |                      |                      |

Revised: 12/02/94 By: TJ Hanley

| SNCR TOTAL CAPITAL RESULTS      | -               | nlet NOx (ib.   | (MMBtu)         |                       | Unit Size       |                        | Ca              | pacity Factor   | L                       | Ł              | JOx Remova     | Rate            |
|---------------------------------|-----------------|-----------------|-----------------|-----------------------|-----------------|------------------------|-----------------|-----------------|-------------------------|----------------|----------------|-----------------|
|                                 | 0.40            | 0:00            | 1.15            | 50                    | 100             | 300                    | 10%             | 30%             | 65%                     | 30%            | 40%            | 50%             |
| Install Year                    | 1991            | 1991            | 1991            | 1991                  | 1991            | 1991                   | 1991            | 1991            | 1991                    | 1991           | 1991           | 1991            |
| Study Year                      | 1994            | 1994            | 1994            | 1994                  | 1994            | 1994                   | 1994            | 1994            | 1994                    | 1994           | 1994           | 1994            |
| Inflation Rate                  | **              | 4               | <b>8</b> 4      | 4%                    | *               | 4%                     | 4%              | *               | 4%                      | 4%             | 4%             | 4%              |
| Subtotal install-1991 (\$/kW)   | \$24.28         | \$26.17         | \$26.17         | \$39.92               | <b>\$</b> 24.28 | \$10.60                | \$24.28         | \$26.17         | \$26.17                 | \$39.92        | \$24.28        | \$10.60         |
| Subtotal Install-1994 (\$10^6)  | \$2 73          | \$2.94          | \$2.94          | <b>\$</b> 2.25        | \$2.73          | \$3.58                 | \$2.73          | \$2.94          | \$2.94                  | \$4.49         | \$2.73         | \$1.19          |
| Retroft Eactor                  | -               | c               | c               | c                     |                 |                        |                 |                 |                         |                |                |                 |
|                                 | <b>-</b>        | 2               |                 | •                     | c               | >                      | D               | þ               | 5                       | Ð              | Đ              | 0               |
| Keron Cost (\$10%)              | \$0.00          | 20.00           | \$0.00          | <b>2</b> 0.0 <b>5</b> | <b>2</b> 0.00   | \$0.00                 | <b>2</b> 0.00   | \$0.00          | <b>\$</b> 0:00          | \$0.00         | \$0.00         | \$0.00          |
| Process Contingency Factor      | 10%             | 10%             | *0*             | 10%                   | 10%             | 10%                    | 10%             | 10%             | 10%                     | 10%            | 10%            | 10%             |
| Proc Contingency Cost (\$10%6)  | \$0.273         | <b>\$</b> 0.273 | \$0.273         | \$0.225               | \$0.273         | \$0.358                | \$0.273         | \$0.294         | <b>\$</b> 0.29 <b>4</b> | \$0.449        | \$0.273        | \$0.119         |
| Total Instatt Equip (\$10^6)    | <b>3</b> 3.00   | \$3.00          | \$3.00          | \$2.47                | <b>\$</b> 3.00  | \$3.94                 | <b>\$</b> 3.00  | \$3.24          | \$3.24                  | \$4.94         | \$3.00         | \$1.31          |
| Tot. Process Capital (\$10^6)   | \$3.00          | \$3.00          | <b>\$3.00</b>   | \$2.47                | <b>\$</b> 3.00  | <b>1</b> 6°E <b>\$</b> | 00'E <b>\$</b>  | <b>\$</b> 3.24  | <b>\$</b> 3.24          | <b>54</b> 94   | 00 E <b>S</b>  | 51.31           |
| General Facilities Rate         | đ               | 30              | 8               | 2                     | ą               | ą                      | 20              | 20              | à                       | š              |                |                 |
| Can Fordition Cont (\$106)      |                 |                 |                 |                       |                 | <b>%</b>               |                 | <b>Å</b>        | <b>Å</b>                | %0             | %0             | %0              |
|                                 | 000.0 <b>4</b>  | 000.0¢          | 200.000         | 00010\$               | <b>2</b> 0.000  | 20.000                 | \$0.000         | \$0.000         | <b>\$</b> 0.000         | \$0.000        | \$0.000        | <b>\$</b> 0.000 |
| Engris House Once Mate          | *0L             |                 | %0L             | 10%                   | 10%             | 10%                    | 10%             | 10%             | 10%                     | 10%            | 10%            | 10%             |
| Engr & Home Office (\$10%6)     | \$0.300         | <b>\$</b> 0.300 | <b>\$</b> 0.300 | \$0.247               | \$0.300         | \$0.394                | <b>\$</b> 0.300 | <b>\$</b> 0.324 | \$0.324                 | \$0.494        | \$0.300        | \$0.131         |
| Project Contingency Rate        | *9              | Å.              | 5%              | 2%                    | 5%              | 5%                     | 5%              | 5%              | 5%                      | 5%             | 5%             | 5%              |
| Proj Contingency Cost (\$10^6)  | <b>\$</b> 0.165 | <b>\$</b> 0.165 | \$0.165         | <b>\$</b> 0.136       | <b>\$</b> 0.165 | <b>\$</b> 0.216        | <b>\$</b> 0.165 | \$0.178         | \$0.178                 | \$0.272        | \$0.165        | \$0.072         |
| Total Plant Cost (\$10^6)       | \$3.47          | \$3.47          | \$3.47          | \$2.85                | \$3.47          | <b>24</b> .55          | \$3.47          | \$3.74          | \$3.74                  | \$5.71         | \$3.47         | <b>\$</b> 1.52  |
| AFDC rate (<1 year)             | %0              | %0              | <b>%</b> 0      | %<br>0                | %0              | %0                     | <b>%</b> U      | %U              | %U                      | %U             | 700            | 700             |
| AFDC Cost (\$10%)               | <b>\$</b> 0.00  | \$0.00          | <b>\$</b> 0.00  | <b>\$</b> 0.00        | \$0.00          | 00.0\$                 | \$0.00          | \$0.00          | \$0.00                  | <b>\$</b> 0.00 | <b>\$</b> 0.00 | \$0.00          |
| Total Plant Invest (\$10^6)     | \$3.47          | \$3.47          | \$3.47          | <b>\$</b> 2.85        | \$3.47          | \$4.55                 | \$3.47          | \$3.74          | \$3.74                  | \$5.71         | \$3.47         | \$1.52          |
| Royaity Rate                    | 0.5%            | 0.5%            | 0.5%            | 0.5%                  | 0.5%            | 0.5%                   | 0.5%            | 0.5%            | 0.5%                    |                | 765 0          | 0 E0/           |
| Royalty Cost (\$10^6)           | 50.02           | \$0.02          | \$0.02          | 50 D1                 | \$0 03          | en no                  |                 |                 |                         |                |                | 0.00            |
| Startup Time (weeks)            | 2               | 2               | 2               | 2                     | ~               | ~                      | 20.04           | 37.04           | 20.06                   | 50.0 <b>¢</b>  | 20.0¢          | ۰.<br>۱۳.       |
| Preproduction Costs (\$10^6)    | \$0.022         | \$0.039         | \$0.047         | \$0.012               | <b>\$</b> 0.021 | \$0.048                | \$0.007         | <b>5</b> 0 012  | \$0.027                 | \$0.019        | \$0.021        | ¢0.023          |
| Inventory Capital (\$10^6)      | . \$0.074       | \$0.074         | \$0.074         | \$0.036               | \$0.073         | \$0.185                | \$0.012         | \$0.034         | \$0.073                 | \$0.058        | \$0.073        | \$0.08B         |
| Initial Catalyst (\$10^6)       | \$0.000         | <b>\$</b> 0.000 | \$0.000         | \$0.000               | \$0.000         | \$0.000                | <b>\$</b> 0,000 | <b>\$</b> 0.000 | \$0.000                 | \$0.000        | \$0.000        | \$0.000         |
| Subtotal Capital (\$10%6)       | \$3.58          | \$3.60          | <b>\$</b> 3.61  | <b>\$</b> 2.92        | \$3.58          | \$4.80                 | \$3.51          | \$3.81          | \$3.85                  | \$5.81         | \$3.58         | \$1.63          |
| Construction Downtime (days)    | 2               | 2               | 2               | 2                     | 2               | ~                      | 7               | -               | 1                       | 7              |                | 7               |
| Replacement Power Cost (\$/kWh) | <b>\$</b> 0.05  | \$0.05          | \$0.05          | <b>\$</b> 0.05        | \$0.05          | \$0.05                 | \$0.05          | <b>\$</b> 0.05  | \$0.05                  | <b>\$</b> 0.05 | \$0.05         | <b>S</b> 0.05   |
| Construction Downtime (\$10^6)  | \$0.55          | \$0.55          | <b>\$</b> 0.55  | \$0.27                | \$0.55          | \$1.64                 | \$0.08          | <b>\$</b> 0.25  | <b>\$</b> 0.55          | \$0.55         | \$0.55         | <b>\$</b> 0.55  |
| Total Capital Required (\$10^6) | <b>\$4</b> .13  | <b>\$4</b> .15  | <b>\$4</b> .15  | \$3.19                | \$4.13          | \$6.44                 | \$3.59          | <b>\$1</b> .06  | <b>S4</b> 40            | \$6.36         | \$4.13         | \$2.18          |

| SNCP ORM COST RESULTS                                        | Inlet N               | IOX (Ib/MMB      | (n)                 |                  | Unit Size        |                  | C.<br>C.           | acity Factor   |                  | Ň               | Removal Ra       | te<br>roor       |
|--------------------------------------------------------------|-----------------------|------------------|---------------------|------------------|------------------|------------------|--------------------|----------------|------------------|-----------------|------------------|------------------|
|                                                              | 0.40                  | 06.0             | 1.15                | 50               | 100              | 300              | 10%                | 30%            | 65%              | 30%             | 40%              | 20%              |
|                                                              |                       |                  | ixed O&M Costs      |                  |                  |                  |                    | l              |                  |                 |                  |                  |
|                                                              |                       | 00 004           | #13 00              | 00 203           | \$ 33 DD         | \$23.00          | \$23.00            | \$23.00        | \$23.00          | \$23.00         | \$23.00          | \$23.00          |
| Labor (\$/op-h)                                              | \$23.00               |                  | <b>1</b>            | 4                | 4                | 4                | 4                  | 4              | -                | 4               | 4                | 4                |
| Labor (operator-IVday)<br>Operating Labor (\$10^6/yr)        | \$0.0336              | \$0.0336         | \$0.0336            | \$0.0336         | \$0.0336         | \$0.0336         | \$0.0336           | \$0.0336       | \$0.0336         | \$0.0336        | \$0.0336         | \$0.0336         |
|                                                              |                       |                  |                     |                  |                  |                  | £3.00              |                | <b>5</b> 9.24    | 54.94           | \$3.00           | \$1.31           |
| Total Install Equip (\$10 <sup>46</sup> )                    | \$3.00                | 23.00            | 23.00               | 14.24            | 00.0¢            |                  | 200                | 296            | 24               | 2%              | 2%               | 2%               |
| Maintenance Factor                                           | 2%                    | 2%               | *2                  | 4 J              |                  | ¥ 7              |                    | \$0 0269       | en n259          | <b>s</b> 0 0395 | <b>\$</b> 0.0240 | <b>\$</b> 0 0105 |
| Maintenance Labor (\$10^6/yr)                                | \$0.0240              | \$0.0240         | \$0.0240            | <b>\$</b> 0.0196 | \$0.U24U         | \$0.0410         | 0420.04<br>40.0264 |                | #0.0230          | \$0.0593        | \$0.0361         | \$0.0157         |
| Maintenance Mati (\$10^6/yr)                                 | \$0.0361              | \$0.0361         | \$0.0361            | <b>\$</b> 0.0296 | <b>\$</b> 0.0361 | SU.04/2          | 1000.04            | 40 0303        | 40.0003          | \$0.0219        | <b>\$0</b> 0173  | \$0.0132         |
| Admin/Support Labor (\$10^6/yr)                              | \$0.0173              | \$0.0173         | \$0.0173            | \$0.0160         | \$0.0173         | \$0.0195         | C/10'0\$           | a/10/0€        |                  |                 |                  |                  |
| Total Fixed O&M (\$10^6/yr)                                  | \$0.111               | \$0.111          | \$0.111             | \$0.099          | \$0.111          | <b>\$</b> 0.132  | <b>\$</b> 0.111    | \$0.116        | <b>\$</b> 0.116  | <b>\$</b> 0.154 | <b>\$</b> 0.111  | \$0.073          |
|                                                              |                       |                  |                     |                  |                  |                  |                    |                |                  |                 |                  |                  |
|                                                              |                       |                  |                     |                  |                  |                  |                    |                |                  |                 |                  |                  |
|                                                              |                       | -                | Variable O&M Costs  |                  |                  |                  |                    | ľ              |                  |                 |                  |                  |
|                                                              |                       |                  | Urea Cost           |                  |                  |                  |                    |                |                  |                 |                  |                  |
|                                                              |                       |                  |                     |                  |                  | £ 769            | 300                | 987            | 1 421            | 141             | 1.921            | 2.401            |
| Dry Urea Use (tons/yr)                                       | 1,921                 | 4,322            | 5,522               | 900              | 1,321            | 3,703<br>6180 00 | 230<br>E180 00     | \$180.00       | <b>5180.00</b>   | \$180.00        | \$180.00         | \$180.00         |
| Dry Urea Cost (\$/ion)                                       | \$180.00              | \$180.00         | \$180.00            | \$160.00         | 00.001¢          | 51 PK            | \$0.05             | <b>\$</b> 0.16 | \$0.35           | \$0.26          | <b>\$0.35</b>    | \$0.43           |
| Dry Urea Cost (\$10"/yr)                                     | 55.De                 |                  | 66.D4               |                  |                  |                  |                    |                |                  |                 |                  |                  |
|                                                              |                       |                  | Urea Delivery Cost  |                  |                  |                  |                    |                |                  |                 |                  |                  |
|                                                              | 1002                  |                  | 704                 | 70%              | 70%              | 70%              | %04                | 70%            | 70%              | 70%             | 20%              | ¥01              |
|                                                              |                       | N01              | 7 200               | 1 372            | 2.744            | B.232            | 422                | 1,266          | 2,744            | 2,058           | 2,744            | 3,430            |
| Diute Urea Use (ronsryf)                                     | 1<br>1<br>1<br>1<br>1 | 8                | 500'                | 6                | 06               | 6                | 06                 | 6              | 8                | 06              | 69               | 6                |
| Freight Uistance (mi)<br>Cruicht Cret (Shoc-mile)            | 50 08                 | 80.05            | <b>5</b> 0.08       | \$0.08           | \$0.08           | \$0.08           | \$0.0\$            | \$0.08         | <b>\$</b> 0.08   | \$0.08          | \$0.08           | \$0.08           |
| Freight Cost (#101-11116)<br>Därte Lines Ernicht (*1046/100) | \$7.20                | 57.20            | <b>5</b> 7,20       | \$7.20           | \$7.20           | \$7.20           | \$7.20             | \$7.20         | \$7.20           | \$7.20          | \$7.20           | \$7.20           |
| Daute Urea Freight (\$Pr)                                    | \$0.0198              | \$0.0311         | \$0.039B            | \$0.0069         | \$0.0138         | \$0.0415         | \$0.0021           | \$0.0064       | <b>\$</b> 0.0138 | \$0.0104        | \$0.0138         | <b>\$</b> 0.0173 |
|                                                              |                       |                  | Auxillary Power Cos |                  |                  |                  |                    |                |                  |                 |                  |                  |
|                                                              |                       |                  |                     |                  |                  |                  |                    |                |                  |                 | 50 C             | 58.0             |
| Aux Power Use (kWh/MWe)                                      | 2.83                  | 2.83             | 2.83                | 2.83             | 2.83             | 2.83             | 2.63               | 20.7<br>202    | C0.2             | 283             | 283              | 283              |
| Aux Power Use (kWh/h)                                        | 283                   | 283              | 283                 | 142              | 587<br>20 20     | 848              | 20.05              | 40.0F          | 40.05            | S0.05           | <b>3</b> 0 05    | \$0.05           |
| Aux Power Cost (\$/kWh)                                      | \$0.05                | \$0.05           | \$0.05              | 20.02            | \$0.0\$          |                  | 50'D\$             | 00.05          |                  | SC:US           | SO 0806          | \$0.0806         |
| Aux Power Cost (\$10^6/yr)                                   | \$0.0806              | \$0.0806         | \$0.0806            | \$0,0403         | \$0.0806         | \$0.0372         | 4710.0¢            | 2100.06        | man'ne           |                 |                  |                  |
|                                                              |                       |                  | Water Cost          |                  |                  |                  |                    |                |                  |                 |                  |                  |
|                                                              |                       | 041 1            | 1 548               | 0.264            | 0.528            | 1 584            | 0.528              | 0.528          | 0.528            | 0.396           | 0.528            | 0.660            |
| Water Use (10°3 gavn)                                        |                       | 001              | en en               | 50 60            | SO 60            | SO 60            | <b>\$</b> 0.60     | \$0.60         | \$0.60           | <b>\$</b> 0.60  | \$0.60           | \$0.60           |
| Water Cost (\$/10~3 gal)                                     | 90.04<br>40.003       | 00.06<br>Cano na |                     | \$0.00<br>14     | SO 0028          | 50 0083          | \$0.0028           | \$0.0028       | \$0.0028         | \$0.0021        | \$0.0028         | \$0.0035         |
| Water Cost (\$10%6/yr)                                       | 5700.0 <b>t</b>       | Zanninet         | nonn.ut             | 100.00           |                  |                  |                    |                |                  |                 |                  |                  |
| Total Variable (\$10^6/yr)                                   | \$0.448               | \$0.896          | <b>\$</b> 1.122     | \$0.221          | \$0.443          | <b>5</b> 1.124   | \$0.070            | \$0.206        | \$0.443          | \$0.352         | \$0.443          | \$0.534          |
| Total O&M (\$10^6/vr)                                        | \$0.559               | \$1.01           | \$1.23              | \$0.32           | <b>\$</b> 0.55   | \$1.26           | <b>\$</b> 0.18     | \$0.32         | \$0.56           | <b>\$</b> 0.51  | \$0.55           | \$0.61           |
|                                                              |                       |                  |                     |                  |                  |                  |                    |                |                  |                 |                  |                  |

SNCR (SNCR.WK3) - 3

Print Date. 11/15/1999

| SNCR LEVELIZED COSTS                                  | Inlet I               | NOx (Ib/MME        | (III)                 |                    | Unit Size          |                    | Ű                    | ipacity Factor     |                    | NON                | Removal Rate                     | •                  |
|-------------------------------------------------------|-----------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------------------|--------------------|
|                                                       | 0.40                  | 0.90               | 1.15                  | 50                 | 100                | 300                | 10%                  | 30%                | 65%                | 30%                | 40%                              | 50%                |
|                                                       |                       |                    | Economi               | c Data             |                    |                    |                      |                    |                    |                    |                                  |                    |
| Tot Cap Required (\$10^6)                             | \$4.13                | \$4.15             | \$4.15                | \$3.19             | \$4.13             | \$6.44             | \$3.59               | <b>\$4</b> .06     | \$4.40             | <b>\$</b> 6.36     | <b>\$</b> 4.13                   | \$2.18             |
| Fixed O&M (\$10^6/yr)                                 | \$0.111               | <b>\$</b> 0.111    | \$0.111               | \$0.099            | \$0.111            | <b>\$</b> 0.132    | \$0.111              | \$0.116            | \$0.116            | <b>\$</b> 0.154    | \$0.111                          | \$0.073            |
| Variable O&M (\$10^6/yr)                              | \$0.448               | \$0.896            | <b>\$</b> 1.122       | \$0.221            | <b>\$0.443</b>     | <b>\$</b> 1.124    | \$0.070              | <b>\$</b> 0.206    | \$0.443<br>0.500   | \$0.352<br>0.520   | <b>\$</b> 0 443                  | \$0.534            |
| POWER PRODUCED (10°9 kWh/yr)<br>NOx REMOVED (tons/yr) | 0.569                 | 0.569<br>1,080     | 0.569<br>1,381        | 0.285<br>240       | 0.569<br>480       | 1,441              | 0.058                | 0.263<br>222       | U.569<br>480       | 360<br>360         | 480                              | 600<br>600         |
|                                                       | -                     |                    |                       | İ                  |                    |                    |                      |                    |                    |                    |                                  |                    |
|                                                       |                       |                    | Cost Per              | kW (Current De     | ollars)            |                    |                      |                    |                    |                    |                                  |                    |
| Level Cap Chg (mills/kWh)                             | 1.160                 | 1.165              | 1.167                 | 1.792              | 1.160              | 0.603              | 6.557                | 2.470              | 1.236              | 1.786              | 1,160                            | 0.613              |
| Level Fixed O&M (mills/kWh)                           | 0.256                 | 0.256              | 0.256                 | 0.457              | 0 256              | 0.101              | 1.664                | 0.581              | 0.268              | 0.356              | 0.256                            | 0.169              |
| Level Variable O&M (mills/kWh)                        | 1.03                  | 2.07               | 2.59                  | 1.02               | 1.02               | 0.86               | 1.06                 | 1.03               | 1.02               | 0.81               | 1.02                             | 1.23               |
| Total Current (mills/kWh)                             | 2.45                  | 3.49               | 4.01                  | 3.27               | 2.44               | 1.57               | 9.28                 | 4.08               | 2.53               | 2.96               | 2.44                             | 2.01               |
|                                                       |                       |                    | Cost Per              | kW (Constant (     | Dotiars)           |                    |                      |                    |                    |                    |                                  |                    |
| Level Cap Chg (mills/KWh)                             | 0.899                 | 0.903              | 0.905                 | 1.369              | 0.899              | 0.467              | 5.082                | 1.915              | 0.958              | 1,384              | 0.899                            | 0.475              |
| Level Fixed O&M (mills/kWh)                           | 0.195                 | 0.195              | 0.195                 | 0.348              | 0.195              | 0.077              | 1.267                | 0.442              | 0.204              | 0.271              | 0.195                            | 0.128              |
| Level Variable O&M (mills/kWh)                        | 0.79                  | 1.57               | 1.97                  | 0.78               | 0.78               | 0.66               | 0.80                 | 0.78               | 0.78               | 0.62               | 0.78                             | 0.94               |
| Total Constant (mills/kWh)                            | 1.88                  | 2.67               | 3.07                  | 2.51               | 1.87               | 1.20               | 7.15                 | 3.14               | 1.94               | 2.27               | 1.87                             | 1.54               |
|                                                       |                       | Č                  | set Par Ton Pollutant | Removed (Cur       | rent Oollare)      |                    |                      |                    |                    |                    |                                  |                    |
|                                                       |                       |                    |                       |                    |                    |                    |                      |                    |                    |                    |                                  |                    |
| Level Cap Chg (\$/ton)                                | \$1,376<br>*204       | \$614<br>5435      | \$481<br>5465         | \$2,125<br>EEAD    | \$1,375            | \$715<br>5120      | \$7,775<br>\$1,072   | \$2,929<br>Fead    | \$1,466<br>5240    | \$2,824<br>\$563   | \$1,375<br>*304                  | \$581<br>• 160     |
| Level Variable O&M (\$/ton)                           | \$1,227               | \$1,089            | \$1,068               | \$1,212            | \$1,212            | \$1,025            | \$1,254              | \$1,221            | \$1,212            | \$1,285            | \$1,212                          | \$1,168            |
|                                                       |                       |                    |                       |                    |                    |                    |                      |                    |                    |                    |                                  |                    |
| rotal current (\$/ton)<br>Total w/ downtime (\$/ton)  | \$2,724               | \$1,838<br>\$1,758 | \$1,592<br>\$1,592    | \$3,879<br>\$3,697 | \$2,891<br>\$2,709 | \$1,861<br>\$1,679 | \$11,002<br>\$10,820 | \$4,839<br>\$4,657 | \$2,996<br>\$2,814 | \$4,673<br>\$4,430 | <b>5</b> 2,891<br><b>5</b> 2,709 | \$1,909<br>\$1.763 |
|                                                       |                       | <sup>8</sup>       | st Per Ton Poliutant  | Removed (Con       | stant Dollars)     |                    |                      |                    |                    |                    |                                  |                    |
| Levei Cap Chg (\$rion)                                | \$1,066               | \$476              | <b>\$</b> 373         | \$1.647            | \$1.066            | \$654              | \$6.026              | \$2.270            | <b>S1</b> ,136     | \$2.189            | <b>\$1.066</b>                   | <b>\$4</b> 50      |
| Level Fixed O&M (\$ton)                               | \$231                 | \$103              | \$80                  | \$412              | \$231              | 16\$               | \$1,502              | \$524              | \$242              | \$428              | \$231                            | \$122              |
| Level Variable O&M (\$/ton)                           | <b>\$</b> 83 <b>4</b> | <b>\$</b> 929      | <b>\$</b> 813         | \$922              | \$922              | \$780              | <b>\$</b> 954        | \$929              | \$922              | \$978              | \$922                            | \$889              |
| Total Constant (\$/ton)                               | \$2,231               | \$1,408            | \$1,266               | \$2,981            | \$2,219            | \$1,426            | <b>\$8</b> ,482      | <b>\$</b> 3,723    | \$2,300            | \$3,596            | \$2,219                          | \$1,461            |
| Total w/ downtime (\$/ton)                            | \$2,090               | \$1,345            | \$1,217               | \$2,840            | \$2,078            | \$1,285            | \$8,341              | \$3,583            | <b>\$</b> 2,159    | \$3,408            | \$2,078                          | \$1,348            |
| Levelization Factors (Plant life = 15 yr)             |                       |                    |                       |                    |                    |                    |                      |                    |                    |                    |                                  |                    |
| Lavel Cap Factor (current)                            | 0.160                 |                    |                       |                    |                    |                    |                      |                    |                    |                    |                                  |                    |
| Level Cap Factor (constant)                           | 0.124                 |                    |                       |                    |                    |                    |                      |                    |                    |                    |                                  |                    |
| Level O&M Factor (current)                            | 1.314                 |                    |                       |                    |                    |                    |                      |                    |                    |                    |                                  |                    |
| Level O&M Factor (constant)                           | 1.000                 |                    |                       |                    |                    |                    |                      |                    |                    |                    |                                  |                    |

-

| SNCR Capital Costs         |             |    | Arapaho | e 4         |       | Z     | Ox (ib/MMBtu) |       |       |             |
|----------------------------|-------------|----|---------|-------------|-------|-------|---------------|-------|-------|-------------|
| ltem                       | Unit Cost   | No | Factor  | 0.40        | No. F | actor | 06.0          | No. F | actor | 1.15        |
| Urea storage tank          |             | 2  | -       | \$0         | 2     | -     | <b>\$</b> 0   | 7     | -     | <b>\$</b> 0 |
| Urea circulation pump      |             | 2  | -       | \$0         | 2     | -     | <b>\$</b>     | 2     | -     | \$0         |
| Urea heater                |             | 8  | -       | \$0         | 2     | -     | <b>\$</b> 0   | 2     | +     | \$0         |
| Urea filter                |             | N  | -       | \$0         | 2     | -     | \$0           | 2     | -     | \$0         |
| Urea injection pump        |             | 7  | -       | \$0         | 2     | -     | \$0           | 2     | -     | \$0         |
| Atomization compressor     |             | -  | -       | 05          | -     | -     | 0\$           | -     | -     | 8           |
| Quench vessel              |             | -  | -       | \$0         | •     | -     | \$0           | -     | -     | \$0         |
| Purge fan                  |             | 8  | -       | 3           | 2     | -     | \$0           | 2     | -     | \$0         |
| Water softener skid        |             | -  | -       | \$0         | -     | -     | \$0           | -     | -     | \$0         |
| Injection lances (level 1) | a and o     | 9  | -       | 8           | 10    | -     | 2             | 10    | ٢     | \$0         |
| Injection lances (level 2) |             | 9  | -       | \$0         | 10    | -     | \$0           | 10    | -     | \$0         |
| NH3 conversion system      | \$136,828   | 0  | -       | 3           | 0     |       | <b>3</b>      | •     | -     | 3           |
| Other equipment            | \$1,181,172 | -  | +       | \$1,181,172 | 1     | 1.1   | \$1,299,289   | -     |       | \$1,299,289 |
| Total design/engineering   | \$536,000   | -  | -       | \$536,000   | -     | -     | \$536,000     | -     | -     | \$536,000   |
| Total procurement          | \$1,318,000 |    |         | \$1,181,172 |       |       | \$1,299,289   |       |       | \$1,299,289 |
| Total installation         | \$711,000   | -  | -       | \$711,000   | -     | =     | \$782,100     | -     | Ŧ     | \$782,100   |
| Total Installed Cost       |             |    |         | \$2,428,172 |       |       | \$2,617,389   |       |       | \$2,617,389 |
| \$/kW =                    |             |    |         | \$24.28     |       |       | \$26.17       |       |       | \$26.17     |
|                            |             |    |         |             |       |       |               |       |       |             |

| SNCR Capital Costs         | A4          |       | n     | nit Size (MWe)    |     |        |             |
|----------------------------|-------------|-------|-------|-------------------|-----|--------|-------------|
| Item                       | Unit Cost   | No. F | actor | 50                | No. | Factor | 300         |
| Urea storage tank          |             | 2     | -     | 0\$               | 2   | -      | <b>05</b>   |
| Urea circulation pump      | ••••        | 7     | -     | 3                 | 8   | -      | \$0         |
| Urea heater                |             | 2     | -     | 20                | 2   | -      | \$0         |
| Urea fitter                |             | 2     | -     | 0\$               | 7   | -      | <b>95</b>   |
| Urea injection pump        |             | 7     | -     | \$0               | 2   | -      | <b>2</b> 0  |
| Atomization compressor     |             | -     | -     | 3                 | -   | -      | \$0         |
| Quench vessel              |             | -     | -     | 50                | -   | -      | \$0         |
| Purge fan                  |             | 7     | -     | 25                | 7   | -      | 80          |
| Water softener skid        |             | -     | -     | \$0               | -   | +-     | \$0         |
| injection lances (level 1) |             | 10    | -     | 35                | 10  | -      | \$0         |
| Injection lances (level 2) |             | 10    | -     | \$0               | 10  | -      | \$0         |
| NH3 conversion system      | \$136,828   | 0     | -     | <b>S</b> 0        | 0   |        | \$          |
| Other equipment            | \$1,181,172 | -     | 0.8   | \$944,938         | 1   | 1.5    | \$1,417,406 |
| Total design/engineering   | \$536,000   | -     | 0.9   | <b>\$4</b> 82,400 | -   | 1.3    | \$696,800   |
| Total procurement          | \$1,318,000 |       |       | \$944,938         |     |        | \$1,417,406 |
| Total installation         | \$711,000   |       | 0.8   | \$568,800         | -   | 1.5    | \$1,066,500 |
| Total Installed Cost       |             |       |       | \$1,996,138       |     |        | \$3,180,706 |
| \$rkW =                    |             |       |       | \$39.92           |     |        | \$10.60     |

ſ

"No." = quantity \*Factor" = Scaling factor

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I-9

Selective Catalytic Reduction

- -

| SCR NOX REMOVAL           | -               | inlet NOX (            | 1b/MMBtu)      | þ             | NIT SIZE    |             | CAPI                                                                                        | CITY FACTO | X.                                                                                          | 4             | 40× REMOVAL |                   |
|---------------------------|-----------------|------------------------|----------------|---------------|-------------|-------------|---------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------|---------------|-------------|-------------------|
|                           | 0.40            | 06.0                   | 1.15           | 50            | 100         | 300         | 10%                                                                                         | 308        | <b>\$</b> 59                                                                                | 50%           | 65 <b>%</b> | <b>80</b> %       |
|                           |                 |                        | nit specifica  | ations        |             |             | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | •          | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |               |             |                   |
|                           | 10 543          | 10 543                 | 10 542         | 10.542        | 10.542      | 10.542      | 10.542                                                                                      | 10,542     | 10,542                                                                                      | 10,542        | 10,542      | 10,542            |
| Unit Size (MMe)           | 100             | 100                    | 100            | 205           | 100         | 300         | 100                                                                                         | 100        | 100                                                                                         | 100           | 100         | 100               |
| Capacity Factor           | 65%             | 651                    | 65%            | 651           | 65 <b>k</b> | 65 <b>t</b> | \$0I                                                                                        | 105        | 65%                                                                                         |               |             | 651               |
|                           |                 |                        | lase NOX       |               |             |             |                                                                                             |            |                                                                                             |               |             |                   |
|                           |                 |                        |                |               |             |             | • •                                                                                         | 4.0        | • •                                                                                         | 0.4           | 4.0         | 0.4               |
| NOX DETOTE SCR (ID/MMBtu) |                 |                        | CIC 1          |               | 22          | 1.265       | 422                                                                                         | 422        | 422                                                                                         | 422           | 422         | 422               |
| NOX DEFORE SCR (WOLE/h)   | 1.1             | 31.6                   | 40.4           | 7.0           | Ţ           | 42.2        | 1.41                                                                                        | 14.1       | 14.1                                                                                        | 14.1          | 14.1        | 14.1              |
|                           |                 | £                      | iOx Removal Re | equired by SN | ick (Assume | all NOX 18  | NO. 1                                                                                       |            |                                                                                             |               |             |                   |
| crb MAY Bemoval Bernitad  |                 |                        | 801            | 808           | #09         | 808         | 108                                                                                         | 808        | 801                                                                                         | \$0\$         | 651         | 808               |
| mole NH3/mole NOX removed | 1.14            | 1.14                   | 1.14           | 1.14          | 1.14        | 1.14        | 1.14                                                                                        | 1.14       | 1.14                                                                                        | 1.14          | 1.14        | 4E.I              |
| NSR                       | 16.0            | 10.91                  | 0.91           | 16.0          | 0.91        | 16.0        | 16.0                                                                                        | 0.91       | 16.0                                                                                        | 0.57          | 0.74        | 0.91              |
| Utilization               | 87.78           | 87.7%                  | 87.74          | 87.7%         | 87.78       | 87.7%       | 87.78                                                                                       | 87.7%      | 87.7%                                                                                       | 87.78         | 87.74       | 87.7%             |
| NO to be Removed (lb/h)   | 337             | 759                    | 970            | 169           | 166         | 1,012       | 337                                                                                         | 337        | 337                                                                                         | 211           | 274         | 137               |
| NO to be Removed (mole/h) | 11.24           | 25.30                  | 32.33          | 5.62          | 11.24       | E7.EE       | 11.24                                                                                       | 11.24      | 11.24                                                                                       | 1.03          | 9.14        | 11.24             |
|                           |                 | -                      | ana Injection  | Flowrates     |             |             |                                                                                             |            |                                                                                             |               |             |                   |
|                           |                 |                        |                |               |             |             |                                                                                             |            |                                                                                             |               |             | * - * * * * * * * |
| ID NH3/IP BOIN            | 100.05          | 100.04                 | 100.01         | 100.01        | 100.01      | 100.0%      | 100.01                                                                                      | 100.01     | 100.0%                                                                                      | 100.01        | 100.0%      | 100.0%            |
| NH3 Flowrate (mole/h)     | 12.8            | 28.8                   | 36.9           | 6.4           | 12.8        | 38.5        | 12.8                                                                                        | 12.8       | 12.8                                                                                        | 8.0           | 10.4        | 12.8              |
| NH3 Flowrate (lb/h)       | 218             | 491                    | 627            | 109           | 218         | 654         | 218                                                                                         | 218        | 218                                                                                         | 136           | 177         | 218               |
| MOLECULAR WEIGHTS         |                 |                        |                |               |             |             |                                                                                             |            |                                                                                             |               |             |                   |
|                           |                 |                        |                |               |             |             | Notes                                                                                       |            |                                                                                             |               |             |                   |
| MW Nitrogen (lb/mole)     | 14.0067         |                        |                |               |             |             |                                                                                             |            |                                                                                             |               |             |                   |
| MW NO (lb/mole)           | 30              |                        |                |               |             | Z I         | sume all MUK                                                                                | te mu.     | the lower th                                                                                |               |             |                   |
| MW (NH2) 2CO              | 60              |                        |                |               |             |             | s nigner cne                                                                                | INTEL NUX, | CTRE LOWEL LI                                                                               | le Bpace Velo | בזרא.       |                   |
| EHN                       | 17.0067         |                        |                |               |             | sbs         | the velocity                                                                                | - SCIN OI  | riue gas/ir 3                                                                               | OL CAUSTYSC   |             |                   |
| NH4 OH                    | 35,0067         |                        |                |               |             |             | . Coarificatio                                                                              |            |                                                                                             |               |             |                   |
| Water Density (ID/gal)    |                 |                        |                |               |             |             |                                                                                             |            |                                                                                             |               |             |                   |
|                           |                 |                        |                |               |             | NON N       | c-side, high-<br>J slip = 5 PM                                                              | dust<br>4  |                                                                                             |               |             |                   |
|                           |                 |                        |                |               |             |             |                                                                                             |            |                                                                                             |               |             |                   |
|                           |                 |                        |                |               |             |             |                                                                                             |            |                                                                                             |               |             |                   |
|                           | Revised:<br>Bv: | 12/02/94<br>T.I Hanlev |                |               |             |             |                                                                                             |            |                                                                                             |               |             |                   |
|                           |                 |                        |                |               |             |             |                                                                                             |            |                                                                                             |               |             |                   |

SCR (SCR.XLS) - 1

Print Date: 11/16/1999

| SCR TOTAL CAPITAL RESULTS                                                | I                                                                       | inlet NOX (      | lb/MMBtu)        | þ                | hit Size         |                  | Cap                   | scity Fact           | or                 | Z                | Ox Removal         | Race             |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|-----------------------|----------------------|--------------------|------------------|--------------------|------------------|
|                                                                          | 0.40                                                                    | 0.90             | 1.15             | 50               | 100              | 00E              | 101                   | 301                  | 654                | 50 <b>8</b>      |                    | \$0 <b>8</b>     |
|                                                                          | 1991                                                                    | 1994             | 1994             | 1994             | 1994             | 1994             | 1994                  | 1994                 | 1994               | 1994             | 1994               | 1994             |
| Install Ica.<br>Study Year                                               | 1994                                                                    | 1994             | 1994             | 1994             | 1994             | 1994             | 1994                  | 1994                 | 1994               | 1994             | 1994               | 1994             |
| Inflation Rate                                                           | 11                                                                      | 48               | 4.8              | 48               | 44               | Ŧ                | 44                    | 48                   | 44                 | <b>*</b> 4       |                    | • c • 3          |
| Subtotal Install-1994 (\$/kW)                                            | \$42                                                                    | \$43             | 546              | \$62             | \$42             | \$22             | \$42                  | \$42                 | \$42               | 745              | 784                | 766              |
| Subtotal Install-1994 (\$10 <sup>6</sup> 6)                              | \$4.15                                                                  | \$4.33           | \$4.83           | 80°E\$           | \$4.15           | \$6.45           | \$4,15                | \$1.15               | \$4.15             | \$4.15           | \$4.15             | \$4.15           |
|                                                                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                  |                  |                  |                  |                  |                       |                      | 010                | 0.10             | 0.10               | 0.10             |
| Retrofit Factor                                                          | 0.10                                                                    | 0.10             | 0.10             | 0.10             | 01.0             | 0.00             | 01.0                  |                      |                    | ¢ 1 1 2          | S0 42              | \$0.42           |
| Retrofit Cost (\$10 <sup>6</sup> )                                       | \$0.42                                                                  | \$0.42           | \$0.42           | \$0.31           | 50.42            | \$0.00<br>151    | \$0.42<br>15 <b>8</b> | 20.12<br>15 <b>1</b> | 15%                | 151              | 151                | 151              |
| Process Contingency Factor<br>Proc Contingency Cost (\$10 <sup>6</sup> ) | 151<br>\$0.623                                                          | 15%<br>\$0.623   | ¥c1<br>\$0.623   | \$0.461          | \$0.623          | \$0.968          | \$0.623               | \$0.623              | \$0.623            | \$0.623          | \$0.623            | \$0.623          |
| Total Install Equip (\$10°6)                                             | \$5.19                                                                  | \$5.37           | \$5.87           | \$3.84           | \$5.19           | \$7,42           | \$5.19                | \$5.19               | \$5.19             | \$5.19           | \$5.19             | \$5.19           |
| Tot. Process Capital (\$10 <sup>°</sup> 6)                               | \$5.19                                                                  | \$5.37           | \$5.87           | \$3.84           | \$5.19           | \$7.42           | \$5.19                | \$5.19               | \$5.19             | \$5.19           | \$5.19             | \$5.19           |
|                                                                          |                                                                         |                  |                  |                  |                  | 54               | <b>1</b> 5            | 15<br>51             | 5                  | 5                | 5%                 | 5                |
| General pacificas Kate<br>Can Pariliries Cost (\$10^6)                   | S0 259                                                                  | \$0.269<br>\$    | \$0.294          | \$0.192          | \$0.259          | \$0.171          | \$0.259               | \$0.259              | \$O.259            | \$0.259          | \$0.259            | \$0.259          |
| con sources core that a<br>Four & Home Office Rate                       | 101                                                                     | 101              | 101              | 101              | 101              | 101              | 101                   | 101                  | 101                | 101              | 101                | 101              |
| Engr & Home Office (\$10 <sup>°</sup> 6)                                 | \$0.519                                                                 | \$0.537          | Ş0.587           | \$0.384          | \$0.519          | \$0.742          | \$0.519               | \$0.519              | \$0.519            | \$0.519          | \$0.519            | \$0.519<br>15    |
| Project Contingency Rate                                                 | 15%                                                                     | 154              | 15%              | 15%              | 151              | 151              | 154                   | 151                  | 154                | 154              | 151                | 761<br>200 20    |
| Proj Contingency Cost (\$10 <sup>-6</sup> )                              | \$0.895                                                                 | \$0.926          | \$1.013          | \$0.663          | \$0.895          | \$1.280          | \$0.895               | \$0.895              | \$0.895            | \$0.895          | \$69'.U\$          | 568.04           |
| Total Plant Cost (\$10 <sup>6</sup> 6)                                   | \$6.86                                                                  | \$7.10           | \$7.76           | \$5.08           | \$6.86           | \$9.81           | \$6.86                | \$6.86               | \$6.86             | \$6.86           | \$6.86             | \$6.86           |
|                                                                          |                                                                         |                  |                  |                  |                  | :                | :                     |                      | ł                  | đ                | *0                 | đ                |
| AFDC rate (=1 year)                                                      | 30                                                                      | 10               | <b>1</b> 0       | <b>1</b> 0       | 10               | <b>1</b> 0       | <b>10</b>             | <b>1</b> 0           | <b>3</b> 0 00      | *0 00<br>•0      | •0 00<br>•0 00     | 40 US            |
| AFDC Cost (\$10 <sup>°</sup> 6)                                          | \$0.00                                                                  | \$0.00           | \$0.00           | \$0.00           | \$0.00           | \$0.00           | 00.0\$                | \$0.05               | 20,00              | na.u4            |                    | nn.u¢            |
| Total Plant Invest (\$10 <sup>6</sup> 6)                                 | \$6.86                                                                  | \$7.10           | \$7.76           | \$5.08           | \$6.96           | \$9.81           | \$6.86                | 36.86                | \$6.86             | \$6.86           | \$6.86             | \$6.86<br>       |
| bovaltv Bate                                                             | 40°0                                                                    | <b>1</b> 0       | 0.0              | 0.0              | 0.01             | 0.01             | 0.01                  | 0.0                  | 40°0               | <b>9</b> 0.0     | <b>\$</b> 0.0      | 0.0              |
| Rovalty Cost (\$10°6)                                                    | \$0.00                                                                  | \$0.00           | 50 00            | \$0.00           | \$0.00           | \$0.00           | \$0.00                | \$0.00               | \$0.00             | \$0.00           | \$0.00             | \$0.00           |
| Startup Time (weeks)                                                     | N                                                                       | 7                | 2                | 3                | 2                | 61               | 73                    | 7                    | 2                  | 5                | <b>2</b>           | 2                |
| Preproduction Costs (\$10^6)                                             | \$0.053                                                                 | \$0.061          | \$0.067          | \$0.028          | \$0.0\$          | \$0.113          | \$0.038               | \$0.0 <b>4</b> 3     | \$ G . U\$ 3       | \$0.047          | 750.U\$            | 20.060           |
| Inventory Capital (\$10 <sup>6</sup> 6)                                  | \$0.201                                                                 | \$0.201          | \$0.201          | \$0.100          | \$0.199          | 50.450           | \$0,136               | \$0.159<br>\$3 259   | \$0.199<br>\$2 550 | 511.05           | \$0.196<br>\$3 850 | 162.04           |
| Initial Catalyst (\$10°6)                                                | \$2.850                                                                 | \$3.167          | <b>\$3.563</b>   | \$1.425          | 52.850           | 055.95           | nce.7¢                | nca . 74             | 060.74             | e.c.**           |                    |                  |
| Subtotal Capital (\$10 <sup>6</sup> 6)                                   | 96.6\$                                                                  | \$10.53          | \$11.60          | \$6.64           | \$9.96           | \$18.92          | 88.9\$                | 16.93                | \$9.96             | \$9.45           | 96 . 6\$           | \$10.71          |
| Construction Downtime (dave)                                             | 1                                                                       | •                | 14               | 11               | 14               | 14               | 14                    | 14                   | 14                 | 14               | 14                 | 14               |
| Construction Downtime (510°6)                                            | \$0.05<br>\$1.09                                                        | \$0.05<br>\$1.09 | \$0.05<br>\$1.09 | \$0.05<br>\$0.55 | \$0.05<br>\$1.09 | \$0.05<br>\$3.28 | \$0.05<br>\$0.17      | \$0.05<br>\$0.50     | \$0.05<br>\$1.09   | \$0.05<br>\$1.09 | \$0.05<br>\$1.09   | \$0.05<br>\$1.09 |
|                                                                          |                                                                         |                  |                  |                  |                  |                  |                       |                      |                    | 610 EE           | ¢11 05             | ¢11 03           |
| Total Capital Required (\$10 <sup>-6</sup> )                             | \$11.06                                                                 | \$11.62          | \$12.69          | \$7.18           | \$11.05          | \$22.20          | c0.013                | 21.014               | cn.11¢             | 66 0 N P         | 60.11 <b>6</b>     | 79.17¢           |

.

SCR (SCR.XLS) - 2

| SCR OWN COST RESULTS                                                                        | Inlet                         | M(dI) XON                       | HBtu)                                                                                       |                                                                                             | Unit Size             |                                                                                                 | Cap                                     | acity Fact           | or                                                                                          | XON                                                                                              | Removal Ra           | ite<br>                        |
|---------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|--------------------------------|
|                                                                                             | 0.40                          | 06.0                            | 1.15                                                                                        |                                                                                             |                       | 00E                                                                                             | 401                                     | 105                  | 65 <b>%</b>                                                                                 | 201                                                                                              |                      | ¥08                            |
|                                                                                             |                               |                                 | Fixed OLM Costs                                                                             |                                                                                             |                       |                                                                                                 | * * * * * * * * * * * * * * * * * * * * | •                    | +<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ |                                                                                                  |                      |                                |
| Labor (\$/op-h)                                                                             | \$23.00                       | \$23.00                         | \$23.00                                                                                     | \$23.00                                                                                     | \$23.00               | \$23.00                                                                                         | \$23.00                                 | \$23.00              | \$23.00                                                                                     | \$23.00                                                                                          | \$23.00              | \$23.00                        |
| Labor (operator-n/day)<br>Operating Labor (\$10^6/yr)                                       | 4<br>\$0.0336                 | \$0.0336                        | \$0.0336                                                                                    | <b>\$</b> 0.0336                                                                            | \$0.0336              | \$0.0336                                                                                        | ±<br>\$0.0336                           | \$0.0336             | \$0.0336                                                                                    | \$0.0336                                                                                         | \$0.0336             | \$0.0336                       |
| Total Install Equip (\$10°6)                                                                | \$5.19                        | 61.2\$                          | \$5.19                                                                                      | \$3.84                                                                                      | \$5.19                | \$7.42                                                                                          | \$5.19                                  | 61.2\$               | \$5.19                                                                                      | \$5.19                                                                                           | 61.2\$               | \$5.19                         |
| Maintenance Factor                                                                          | 24                            | 24                              | 28                                                                                          | 28                                                                                          | 21                    | 28                                                                                              | 28                                      | 21                   | 24                                                                                          | <b>3</b> 2                                                                                       | 21                   | 24                             |
| Maintenance Labor (\$10°6/yr)<br>Maintenance Matl (\$10°6/yr)                               | \$0.0415<br>\$0.0623          | \$0.0415<br>\$0.0623            | \$0.0415<br>\$0.0623                                                                        | \$0.0308<br>\$0.0461                                                                        | \$0.0415<br>\$0.0623  | \$0.0593<br>\$0.0890                                                                            | \$0.0415<br>\$0.0623                    | \$0.0415<br>\$0.0623 | \$0.0415<br>\$0.0623                                                                        | \$0.0415<br>\$0.0623                                                                             | \$0.0415<br>\$0.0621 | \$0.0415<br>\$0.0623           |
| Admin/Support Labor (\$10 <sup>6</sup> /yr)                                                 | \$0.0225                      | \$0.0225                        | \$0.0225                                                                                    | \$0.0193                                                                                    | \$0.0225              | \$0.0279                                                                                        | \$0.0225                                | \$0.0225             | \$0.0225                                                                                    | \$0.0225                                                                                         | \$0.0225             | \$0.0225                       |
| Total Fixed OMM (\$10 <sup>-6</sup> /yr)                                                    | \$0.160                       | \$0.160                         | \$0.160                                                                                     | 011.0\$                                                                                     | \$0.160               | \$0.210                                                                                         | \$0.160                                 | \$0,160              | \$0.160                                                                                     | \$0.160                                                                                          | \$0.160              | \$0.160                        |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                               | 1<br>1<br>1<br>1<br>1<br>1<br>1 | Variable O&M Cost                                                                           |                                                                                             |                       | <br>                                     |                                         |                      |                                                                                             |                                                                                                  |                      | ,<br>,<br>,<br>,<br>,          |
|                                                                                             |                               |                                 | NH3 Cost                                                                                    |                                                                                             |                       |                                                                                                 |                                         |                      |                                                                                             |                                                                                                  |                      |                                |
| NH3 Use (dry tons/yr)                                                                       | 621                           | 1, 397                          | 1,784                                                                                       | 310                                                                                         | 621                   | 1,862                                                                                           | 95                                      | 286                  | 621                                                                                         | 368                                                                                              | 504                  | 621                            |
| NH3 Cost (\$/dry ton)                                                                       | \$150.00                      | \$150.00                        | \$150.00                                                                                    | \$150.00                                                                                    | \$150.00              | \$150.00                                                                                        | \$150.00                                | \$150.00             | \$150.00                                                                                    | \$150.00                                                                                         | \$150.00             | \$150.00                       |
| NH3 Cost (\$10 <sup>°</sup> /yr)                                                            | \$0.03                        | \$0.209                         | \$0.26B                                                                                     | \$0.047                                                                                     | \$0.03                | \$0.279                                                                                         | \$0.014                                 | \$0.04J              | \$0.093                                                                                     | \$0.058                                                                                          | \$0.076              | 160.0\$                        |
| NH3 Concentration (wtw)                                                                     | 29.41                         | 29.48                           | 29.41                                                                                       | 29.41                                                                                       | 29.48                 | 29.4%                                                                                           | 44.62                                   | 29.41                | 29.4%                                                                                       | 29.41                                                                                            | 29.48                | 29.41                          |
| Dilute NH3 Use (tons/yr)                                                                    | 2,111                         | 4,750                           | 6,070                                                                                       | 1,056                                                                                       | 2, 111                | 6,333                                                                                           | 325                                     | 974                  | 2,111                                                                                       | 1,319                                                                                            | 1,715                | 2,111                          |
| Freight Distance (mi)                                                                       | 06                            | 96 .2<br>2                      | 06<br>07                                                                                    | 06<br>                                                                                      | 06<br>17              | 06                                                                                              | 06                                      | 06                   | 96                                                                                          | 06                                                                                               | 06                   | 06                             |
| Freignt Logt (\$/ton-mile)<br>NH3 Freight (\$10^6/ton)                                      | \$0.08<br>\$7.20              | \$0.08<br>\$7.20                | \$7.20                                                                                      | \$7.20                                                                                      | \$7.20                | \$0.08<br>\$7.20                                                                                | \$0.08                                  | \$0.08<br>\$7.20     | 50.08<br>51.20                                                                              | \$0.08                                                                                           | \$0.08<br>\$7 20     | \$0.08<br>\$7 20               |
| NH3 Freight (\$10 <sup>6</sup> 6/yr)                                                        | \$0.0152                      | \$0.0101                        | \$0.0128                                                                                    | \$0.0022                                                                                    | \$0.0045              | \$0.0134                                                                                        | \$0.0007                                | \$0.0021             | \$0.0045                                                                                    | \$0.0028                                                                                         | \$0.0036             | \$0.0045                       |
|                                                                                             | <br> <br> <br> <br> <br> <br> |                                 | Catalyst Cost                                                                               | 8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | )<br>)<br>)<br>,<br>, | ,<br> <br> |                                         |                      | * * * * * * * * * * * * * * * * * * * *                                                     | )<br>)<br>)<br>1<br>)<br>1<br>)<br>1<br>)<br>1<br>)<br>1<br>)<br>1<br>)<br>1<br>)<br>1<br>)<br>1 |                      |                                |
| Catalyst Life (yr)                                                                          | <b>.</b>                      |                                 | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) |                                                                                             |                       | <b>F</b>                                                                                        |                                         | ſ                    | e                                                                                           | £                                                                                                |                      | . F                            |
| No. of replacements in 15 yrs                                                               |                               | •                               | •                                                                                           | •                                                                                           | *                     | •                                                                                               | •                                       | +                    | Ŧ                                                                                           | 4                                                                                                | •                    | 4                              |
| Catalyst Cost (\$/ft <sup>3</sup> )                                                         | \$475                         | \$475                           | \$475                                                                                       | \$475                                                                                       | \$475                 | \$475                                                                                           | \$175                                   | \$475                | \$475                                                                                       | \$475                                                                                            | \$475                | \$475                          |
| Flue Gas Flowrate (scim/MMe)<br>Soace Velocity (h^-1)                                       | 2,500                         | 2,500                           | 2,500                                                                                       | 2,500                                                                                       | 2.500                 | 2,500<br>2,500                                                                                  | 2,500                                   | 2,500                | 2,500<br>7 500                                                                              | 2,500                                                                                            | 2,500                | 2,500                          |
| Catalyst Regd (ft <sup>3</sup> )                                                            | 6,000                         | 6,667                           | 7,500                                                                                       | 3,000                                                                                       | 6,000                 | 18,000                                                                                          | 6,000                                   | 6,000                | 6,000                                                                                       | 5,000                                                                                            | 6,000                | 7,500                          |
| Catalyst Cost (\$10 <sup>6</sup> /replace)                                                  | \$2.85                        | \$3.17                          | \$3.56                                                                                      | \$1.43                                                                                      | \$2.85                | \$8.55                                                                                          | \$2.85                                  | \$2.85               | \$2.85                                                                                      | \$2.38                                                                                           | \$2.85               | <b>33.56</b>                   |
| Annual Cost (\$10°6/Yr)                                                                     | \$0.760                       | \$0.844                         | \$0.950                                                                                     | \$0.380                                                                                     | \$0.760               | \$2.280                                                                                         | \$0.760                                 | \$0,760              | \$0.760                                                                                     | \$0.633                                                                                          | \$0.760              | \$0.950                        |
|                                                                                             |                               |                                 | Auxillary Power C                                                                           | OBt                                                                                         |                       |                                                                                                 |                                         |                      |                                                                                             |                                                                                                  |                      | )<br> <br> <br> <br> <br> <br> |
| Aux Power Use (kWh/MMe)                                                                     | 12.5                          | 12.5                            | 12.5                                                                                        | 12.5                                                                                        | 12.5                  | 12.5                                                                                            | 12.5                                    | 12.5                 | 12.5                                                                                        | 12.5                                                                                             | 12.5                 | 12.5                           |
| Aux Power Use (kWh/h)                                                                       | 1,250                         | 1,250                           | 1,250                                                                                       | 625                                                                                         | 1,250                 | 3,750                                                                                           | 1,250                                   | 1,250                | 1,250                                                                                       | 1,250                                                                                            | 1,250                | 1,250                          |
| ALX FOWET COST (5/KMN)<br>Aux Power Cost (510 <sup>-6</sup> /yr)                            | \$0.3559<br>\$0.3559          | \$0.3559<br>\$0.3559            | \$0.3559<br>\$0.3559                                                                        | \$0.05<br>\$0.1779                                                                          | \$0.05<br>\$0.3559    | \$0.05<br>\$0.1643                                                                              | \$0.05<br>\$0.0548                      | \$0.05<br>\$0.1643   | \$0.05<br>\$0.3559                                                                          | \$0.05<br>\$0.3559                                                                               | \$0.05<br>\$0.3559   | \$0.0\$<br>\$0.1559            |
|                                                                                             |                               |                                 |                                                                                             |                                                                                             |                       |                                                                                                 |                                         |                      |                                                                                             |                                                                                                  |                      |                                |
| Total Variable (\$10°6/yr)                                                                  | \$1.224                       | \$1.420                         | \$1.586                                                                                     | \$0.607                                                                                     | \$1.213               | \$2.737                                                                                         | \$0.830                                 | \$0.969              | \$1.213                                                                                     | \$1.050                                                                                          | \$1.195              | \$1.403                        |
| Total OLM (\$10 <sup>°</sup> 6/yr)                                                          | \$1.384                       | \$1.58                          | \$1.75                                                                                      | \$0.74                                                                                      | \$1.37                | \$2.95                                                                                          | £0 . 99                                 | \$1.13               | 11.37                                                                                       | \$1.21                                                                                           | \$1.36               | \$1.56                         |
|                                                                                             |                               | *****                           |                                                                                             |                                                                                             |                       |                                                                                                 |                                         |                      |                                                                                             |                                                                                                  |                      |                                |

| SCR LEVELIZED COSTS                                                                         | Inlet<br>0.40         | NOX (1b/MH<br>0.90 | Btu)<br>1.15   | 50              | Unit Size<br>100 | 300            | Cap<br>101                                          | acity Facto<br>30%                      | or<br>65 <b>}</b> | NOX              | Removal Rat<br>65 <b>%</b> | 60%                        |
|---------------------------------------------------------------------------------------------|-----------------------|--------------------|----------------|-----------------|------------------|----------------|-----------------------------------------------------|-----------------------------------------|-------------------|------------------|----------------------------|----------------------------|
|                                                                                             |                       |                    | Econe          | ymic Data       |                  |                | * * * * * * * * * *                                 | , , , , , , , , , , , , , , , , , , , , |                   |                  |                            |                            |
| The Can Bemired (\$10°6)                                                                    | \$11.06               | \$11.62            | \$12.69        | 57.18           | \$11.05          | \$22.20        | 50.01\$                                             | \$10.42                                 | \$11.05           | \$10.55          | \$11.05                    | \$11.81                    |
| rut tap negarrad (yru d)<br>Pixed OAM (S10°6/vr)                                            | \$0.160               | \$0.160            | \$0.160        | 001.02          | \$0.160          | \$0.210        | \$0.160                                             | \$0.160                                 | \$0.160           | \$0.160          | \$0.160                    | \$0.160                    |
| Variable OEM (\$10°6/yr)                                                                    | \$1.224               | \$1.420            | \$1.586        | \$0.607         | \$1.213          | \$2.737        | \$0.830                                             | \$0,969                                 | \$1.213           | \$1.050          | \$1.195<br>2.750           | \$1.403<br>2.500           |
| POWER PRODUCED (10°9 KWh/yr)                                                                | 0.569<br>960          | 0.569              | 0.569<br>2.761 | 0.285           | 0.569<br>960     | 1.708<br>2,881 | 0.088<br>148                                        | 0.263                                   | 0.569<br>960      | 602.U<br>600     | 780                        | 695.V                      |
|                                                                                             |                       |                    |                |                 |                  |                |                                                     | •                                       |                   | * * * * * *      | 1                          |                            |
|                                                                                             |                       |                    | Cost           | Per kW (Curren  | t Dollars)       |                |                                                     |                                         |                   |                  | 4<br>4<br>1<br>1<br>1<br>1 | <br> <br> <br> <br>        |
| 1                                                                                           | 3.107                 | 3.266              | 3.565          | 4.036           | 3.106            | 2.079          | 10.362                                              | 6.342                                   | 3.106             | 2.964            | 3.105                      | 3.317                      |
| Level Fixed O&M (mills/kWh)                                                                 | 0.369                 | 0.369              | 0.369          | 0.599           | 0.369            | 0.161          | 396.2                                               | 0.799                                   | 0.369             | 0.369            | 0.369                      | 0.369                      |
| Level variable O&M (mills/kWh)                                                              | 2.83                  | 3.28               | 3.66           | 2.80            | 2.80             | 2.11           | 12.45                                               | 4.85                                    | 2.80              | 2.42             | 2.76                       | 3.24                       |
| Total Current (mills/kWh)                                                                   | 6.30                  |                    | 7.59           | 7.44            | 6.28             | 4.35           | 13.21                                               | 11.99                                   | 6.28              | 5.76             | 6.23                       | 6.93                       |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                       |                    | Cost           | Per kW (Consta  | nt Dollars       |                |                                                     |                                         |                   |                  |                            | 1<br>1<br>1<br>1<br>1<br>1 |
|                                                                                             |                       |                    |                |                 |                  |                |                                                     |                                         |                   |                  |                            |                            |
| Level Cap Chg (mills/kWh)                                                                   | 2.408                 | 2.531              | 2.763          | 3.128           | 2.407            | 1.611          | 14.230                                              | 4.715<br>0.608                          | 2.407             | 0.281            | 0.281                      | 0.281                      |
| Level Fixed Uam (milis/KMG)<br>Level Variable O&M (milis/KWh)                               | 2.15                  | 2.49               | 2.79           | 2.13            | 2.13             | 1.60           | 9.47                                                | 3.69                                    | 2.13              | 1.84             | 2.10                       | 2.46                       |
| Total Constant (mills/kWh)                                                                  | 4.84                  | 16.2               | 5.03           | 5.72            | 4.82             | 3.34           | 25.53                                               | 9.21                                    | 4.82              | 4.42             | 4.79                       | 5.32                       |
|                                                                                             | 5<br>5<br>5<br>7<br>7 | Cost               | Per Ton Pollut | ant Removed (Ci | rrent Doll       | ars)           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         |                   |                  |                            |                            |
|                                                                                             |                       |                    |                |                 |                  |                |                                                     |                                         |                   |                  |                            |                            |
| Level Cap Chg (\$/ton)                                                                      | \$1,842               | \$861<br>697       | \$735<br>*76   | \$2,393<br>¢265 | \$1,842<br>€216  | \$1,233<br>*** | \$10,886<br>\$1 422                                 | 53,760<br>5474                          | \$1,842<br>\$219  | \$2,811<br>\$350 | 34,455<br>\$269            | \$219                      |
| Level Fixed UMM (\$/ton)<br>Level Variable OLM (\$/ton)                                     | \$1,675               | \$863              | \$755          | \$1,660         | \$1,660          | \$1,248        | \$7,379                                             | \$2,873                                 | \$1,660           | \$2,299          | \$2,012                    | \$1,920                    |
| Total Ourtent (\$/ron)                                                                      | 53.736                | \$1.821            | \$1,566        | \$4,408         | \$3,721          | \$2,577        | \$19,687                                            | \$7,107                                 | 127,E\$           | \$5,460          | \$4,54B                    | \$4,106                    |
| Total v/ downtime (\$/ton)                                                                  | \$3,554               | \$1,740            | \$1,503        | \$4,226         | \$3,539          | \$2,395        | \$19,505                                            | \$6,925                                 | £13,539           | \$2'I69          | \$4,324                    | \$3,924                    |
|                                                                                             |                       | Cost               | Per Ton Pollut | ant Removed (Co | nstant Dol       | are)           |                                                     |                                         |                   |                  |                            |                            |
| Level Cap Chq (\$/ton)                                                                      | \$1,428               | \$667              | \$570          | \$1,855         | \$1,427          | \$955          | \$8,437                                             | \$2,914                                 | \$1,427           | \$2,179          | \$1,756                    | \$1,524                    |
| Level Fixed OaM (\$/ton)                                                                    | \$166                 | \$74               | \$58<br>222    | \$270           | \$166            | EL\$           | \$1,082                                             | \$361                                   | \$166             | \$266            | \$205                      | \$166                      |
| Level Variable O&M (\$/ton)                                                                 | \$1,275               | \$657              | \$575          | \$1,263         | \$97.45          | 0565           | 979'C\$                                             | 197'7¢                                  | 547'T¢            | nc/ 'Tê          | * *********                | 705 <sup>(</sup> 72        |
| Total Constant (\$/ton)                                                                     | \$2,869               | \$1,398            | \$1,202        | \$3,388         | \$2,857          | \$1,978        | \$15,134                                            | \$5,461                                 | \$2,857           | \$4,195          | \$1,492                    | \$3,152                    |
| Total w/ downtime (\$/ton)                                                                  | \$2,728               | \$1,335            | \$1,153        | \$3,247         | \$2,716          | \$1,637        | \$14,993                                            | \$5,320                                 | \$2,716           | \$3,969          | \$1,319                    | 53,011                     |
| <br>   | [eve]                 | isation Fa         | ctors          |                 |                  |                |                                                     |                                         |                   |                  |                            |                            |
| <pre>1.evel Cab Factor (current)</pre>                                                      | 0.160                 |                    | nalg           | r Life (yr)     | 15               |                |                                                     |                                         |                   |                  |                            |                            |
| Level Cap Factor (constant)                                                                 | 0.124                 |                    |                |                 | I                |                |                                                     |                                         |                   |                  |                            |                            |
| Level OLM Factor (current)                                                                  | 1.314                 |                    |                |                 |                  |                |                                                     |                                         |                   |                  |                            |                            |
| Level Own Factor (CONStant)                                                                 | 7 . UUU               |                    |                |                 |                  |                |                                                     |                                         |                   |                  |                            |                            |

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

**Appendix I-10** 

Integrated System

.

- --

,

| INTEGRATED LEVELIZED COSTS                                        |                                                                                                  |                                     | LNB/OFA                                                                                     | , SNCR, & DSI |                    |                      |                                                                             |                                | SNCR                                                                                                                | DSI                                                                                              |                    |                                         |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|---------------|--------------------|----------------------|-----------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|
| Cost Per Power Produced                                           | 50                                                                                               | Unit Size<br>100                    | (MWe)<br>300                                                                                | 101           | Capacity P.<br>30% | actor<br>65 <b>1</b> | 50                                                                          | Unit Size<br>100               | 006                                                                                                                 | 10 <b>1</b>                                                                                      | Capacity Fa<br>30% | ictor<br>65 <b>1</b>                    |
| <pre>(</pre>                                                      |                                                                                                  |                                     | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |               | Total Capi         | tal Required to      | or Integrated S                                                             | ystem                          | <br>4<br>4<br>4<br>5<br> <br>5<br>5<br> <br>5<br>5<br> <br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 4<br>1<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |                    | t<br>;<br>;<br>;<br>;<br>;              |
|                                                                   |                                                                                                  |                                     | 09 963                                                                                      | FF 83         | 610 62             |                      |                                                                             |                                |                                                                                                                     | τ                                                                                                |                    |                                         |
| LWO/OFN CAPITAL Regulation (100 0)<br>SNCR Capital Reggi (510 6)  | 61.ES                                                                                            | 51.45                               | \$6.44<br>\$6.44                                                                            | 53.59         | \$4.06             | 54.40                | \$3.19                                                                      | 54.13                          | 56.44                                                                                                               | \$3.59                                                                                           | \$4.06             | 54.40                                   |
| DSI Capital Redd (\$10°6)                                         | \$2.03                                                                                           | \$2.52                              | \$4.50                                                                                      | \$2.21        | \$2.32             | \$2.52               | \$2.03                                                                      | \$2.52                         | \$4.50                                                                                                              | \$2.21                                                                                           | \$2.32             | \$2.52                                  |
| Total Capital Reqd (\$10 <sup>6</sup> 6)                          | \$14.06                                                                                          | \$19.5                              | \$37.55                                                                                     | \$14.97       | \$16.90            | \$19.79              | \$5.22                                                                      | \$6.65                         | \$10.94                                                                                                             | \$5,80                                                                                           | \$6.38             | \$6.92                                  |
|                                                                   |                                                                                                  | )<br> <br> <br> <br> <br> <br> <br> | •                                                                                           |               | Fixed 04M          | Cost for Integ       | rated System                                                                | )<br>)<br> <br> <br> <br> <br> | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                         |                                                                                                  |                    |                                         |
| 1 MD //DA Bived /CM (510°6 //m)                                   | ¢0 0230                                                                                          | \$0 0263                            | 40 A465                                                                                     | 50.03         | 1950 03            | ¢0.0243              |                                                                             | 0000                           | \$0.000                                                                                                             | \$0 0000                                                                                         |                    | 0000 05                                 |
| SNCR Fixed OLM (\$10°6/yr)                                        | \$0.0990                                                                                         | 111.0\$                             | \$0.132                                                                                     | \$0.111       | \$0.116            | \$0.116              | 0660.03                                                                     | \$0.1110                       | \$0.1318                                                                                                            | \$0.1110                                                                                         | \$0.1162           | \$0.1162                                |
| DSI Fixed O&M [\$10^6/yr]                                         | \$D.115                                                                                          | \$0.127                             | \$0.175                                                                                     | \$0.127       | \$0.127            | \$0.127              | \$0.1149                                                                    | \$0.1265                       | \$0.1750                                                                                                            | \$0.1265                                                                                         | \$0.1265           | \$0.1265                                |
| Total Fixed OtM (\$10°6/yr)                                       | \$0.237                                                                                          | \$0.267                             | \$0.353                                                                                     | \$0.267       | \$0.272            | \$0.272              | \$12.0\$                                                                    | \$0.237                        | \$0.307                                                                                                             | \$0.237                                                                                          | \$0.243            | \$0.243                                 |
|                                                                   | (<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;                                                        | 6<br>6<br>6<br>6<br>6<br>6<br>6     |                                                                                             |               | variable 0         | LM Cost for In       | tegrated System                                                             | _                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                             | , , , , , , , , , , , , , , , , , , , ,                                                          | •                  | <br> <br> <br> <br> <br> <br> <br> <br> |
| T MD (ADA Visitable Area (610 <sup>4</sup> 6 (vis)                |                                                                                                  |                                     |                                                                                             | ¢0.00013      |                    | *0.00102             | ¢0,000                                                                      | 60 000                         | to 500                                                                                                              | ¢0.000                                                                                           | 60 000             | ¢0 000                                  |
| LAB/OFA VALIANJE VAM (\$10 9/91)<br>SNCR Variable OLM (\$10^6/vr) | \$0.221<br>\$0.221                                                                               | 5000.0¢                             | \$1.124<br>\$1.124                                                                          | 17000.0¢      | 50.206             | 20100.0¢             | 50.221                                                                      | 50.443                         | \$1.124<br>\$1.124                                                                                                  | 50.070                                                                                           | \$0.206            | 50.443                                  |
| DSI Variable O&M (\$10 <sup>6</sup> /yr)                          | \$0.523                                                                                          | \$1.045                             | \$3.083                                                                                     | \$0.161       | \$0.482            | \$1.045              | \$0.523                                                                     | \$1.045                        | \$3.083                                                                                                             | \$0.161                                                                                          | \$0.482            | \$1.045                                 |
| Total Variable O&M (\$10^6/yr)                                    | \$0,744                                                                                          | \$1.49                              | \$4.21                                                                                      | \$0.23        | \$0.69             | \$1.49<br>\$1.49     | \$0.74                                                                      | \$1.49                         | \$4.21                                                                                                              | \$0.23                                                                                           | \$0.69             | \$1.49                                  |
| Power Produced (10°9 kWh/yr)                                      | 0.285                                                                                            | 0.569                               | 1.708                                                                                       | 0.086         | 0.263              | 0.569                | 0.285                                                                       | 0.569                          | 1.708                                                                                                               | 0.088                                                                                            | 0.263              | 0.569                                   |
|                                                                   | )<br>)<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | Levelized                           | COSt Per Power P                                                                            | roduced (Curr | ent Dollari        | (B                   | )<br> <br> |                                |                                                                                                                     |                                                                                                  |                    |                                         |
| Level Cap Chg (mills/kWh)                                         | 7.90                                                                                             | 5,48                                | 3.52                                                                                        | 27.34         | 10.29              | 5.56                 | 2.93                                                                        | 1.87                           | 1.02                                                                                                                | 10.59                                                                                            | 3.68               | 1.94                                    |
| Level Fixed OLM (mills/kWh)                                       | 1.09                                                                                             | 0.62                                | 0.27                                                                                        | 4.00          | 1.36               | 0.63                 | 0.99                                                                        | 0.55                           | 0.24                                                                                                                | 3.56                                                                                             | 1.21               | 0.56                                    |
| Level Variable O&M (mills/kWh)                                    | 3.44                                                                                             | 3.43                                | 3.24                                                                                        | 3.47          | 99'E               | 9.44<br>             | E#'E                                                                        | 3.43                           | 3.24                                                                                                                | 3.47                                                                                             | 3.44               | 3.43                                    |
| Total Current (mills/kWh)                                         | 12.43                                                                                            | 9.53                                | 7.03                                                                                        | 34.82         | 15.09              | 9.62                 | 7.36                                                                        | 5.85                           | 4.50                                                                                                                | 17.62                                                                                            | 8.54               | 5.94                                    |
|                                                                   | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                        | Levelized                           | Cost Per Power P                                                                            | roduced (Cons | tant Dolla:        |                      | )<br>)<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1               |                                |                                                                                                                     |                                                                                                  |                    | )<br>)<br>)<br>;<br>;                   |
| Level Cap Chg (mills/kWh)                                         | 6.13                                                                                             | 4.25                                | 2.73                                                                                        | 21.15         | 7.97               | 4.31                 | 2.27                                                                        | 1.45                           | 0.79                                                                                                                | 8.21                                                                                             |                    | 1.51                                    |
| Level Fixed O&M (mills/kWh)<br>Level Variable O&M (mills/kWh)     | 0.83<br>2.61                                                                                     | 0.47<br>2.61                        | 0.21<br>2.46                                                                                | 3.05<br>2.64  | 1,04<br>2,62       | 0,48<br>2.62         | 0.75<br>2.61                                                                | 0.42<br>2.61                   | 0.18<br>2.46                                                                                                        | 2 71                                                                                             | 0.92<br>2.62       | 0.43<br>2.61                            |
| Total Constant (mills/kWh)                                        | 9 57                                                                                             | EE 2                                |                                                                                             | 26 AR         |                    |                      | <b>1</b> 3 2                                                                |                                |                                                                                                                     | 13 66                                                                                            |                    |                                         |
|                                                                   |                                                                                                  |                                     |                                                                                             |               |                    |                      |                                                                             |                                |                                                                                                                     | DD - C 4                                                                                         |                    |                                         |

Integrated System (INTGRTD1.XLS) - 1

By: TJ Hanley

Revised: 12/15/94

Print Date: 11/16/1999

| . Devomes not ter ter ton semoned                         |                      |                     | /ANTI                                                                                       | DFA, SNCR, & DS | I                 |                 |                                                     |                            | SNCR &                                                                                      | DSI                                     | 4<br> <br> <br> <br> <br> <br> <br> <br> <br> <br> |                                                                                             |
|-----------------------------------------------------------|----------------------|---------------------|---------------------------------------------------------------------------------------------|-----------------|-------------------|-----------------|-----------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                           | 50 50                | nit Size (          | MWe) 300                                                                                    | 101             | apacity Fa        | ctor 65%        | 50                                                  | nit Size<br>100            | 300                                                                                         | 10%                                     | apacity Fac<br>305                                 | tor<br>65 <b>1</b>                                                                          |
|                                                           |                      |                     |                                                                                             |                 |                   |                 | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | )<br>)<br>)<br>)<br>)<br>) | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |                                         |                                                    |                                                                                             |
|                                                           |                      | _                   |                                                                                             |                 | 502 & NOX R       | emoval Rates    |                                                     |                            |                                                                                             | , , , , , , , , , , , , , , , , , , , , |                                                    |                                                                                             |
|                                                           | ,                    |                     | 651                                                                                         | 65%             | 65%               | 65%             | 10                                                  | <b>\$</b> 0                | <b>1</b> 0                                                                                  | 0                                       | 10                                                 | 40¥                                                                                         |
| LNB/UFA NUX REMUVAL MALE<br>SNCR NQX REMOVAL RALE         | 101                  | 404                 | 401                                                                                         | 408             | 101               | 101             | 101                                                 | 408                        | 101                                                                                         | • • • • • • • • • • • • • • •           | •                                                  |                                                                                             |
|                                                           |                      | 36L                 | 791                                                                                         | <b>3</b> 6L     | 164               | <b>1</b> 6L     | <b>1</b> 0 <b>†</b>                                 | 404                        | 104                                                                                         | 404                                     | 40%                                                | 404<br>405                                                                                  |
| Overall NOX Removal Kate<br>SO2 Removal Rate              | 104                  | 104                 | 701                                                                                         | 104             | 101               | 701             | ¥04                                                 | <b>1</b> 0L                | 70%                                                                                         | <b>1</b> 07                             |                                                    |                                                                                             |
| )<br>}<br>}<br>}<br>}                                     | 1                    |                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                 | Total Pollu       | stants Removed  |                                                     |                            |                                                                                             |                                         |                                                    |                                                                                             |
| son Removed (tons/vr)                                     |                      |                     | 3, 993                                                                                      | 205             | 614               | 1, 331          | 665                                                 | 1, 131                     | 3,993                                                                                       | 205                                     | 614                                                | 1, 331                                                                                      |
|                                                           |                      |                     |                                                                                             |                 | 1 436             | EFC C           |                                                     | . 0                        | 0                                                                                           | 0                                       | 0                                                  | 0                                                                                           |
| LNB/OFA NOx Removed (tons/yr)                             | 1,122                | 2,243               | 6,730                                                                                       | 45              | 222               | 4.60            | 240                                                 | 480                        | 1,441                                                                                       | 74                                      | 222                                                | 480                                                                                         |
| SNCR NOK Removed (tons/yr)<br>Total Woy Bemoved (tons/yr) | 1,362                | 2,724               | 1, 171<br>8, 171                                                                            | 419             | 1,257             | 2,724           | 240                                                 | 480                        | 1,441                                                                                       | 74                                      | 222                                                | 480                                                                                         |
| Total Nnx/SO3 Removed (tons/vr)                           | 2,627                | 4,055               | 12, 164                                                                                     | 624             | 1,871             | 4,055           | 906                                                 | 118,1                      | 5,433                                                                                       | 279                                     | 958                                                | 1,811                                                                                       |
|                                                           |                      |                     | Lev                                                                                         | elized Cost Per | Ton Pollut        | tant Removed (C | urrent Dollars                                      | (                          |                                                                                             |                                         |                                                    | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |
|                                                           |                      | * * • • • • • • • • |                                                                                             |                 |                   |                 |                                                     | CERT                       | \$122                                                                                       | 53.330                                  | \$1,221                                            | \$611                                                                                       |
| Level Cap Chg (\$/ton)                                    | \$1,110              | 011\$               | +6+S                                                                                        | \$3,840         | 51,445            | 19/4            | 5310                                                | \$172                      | \$15                                                                                        | \$1,120                                 | \$382                                              | \$176                                                                                       |
| Level Fixed O&M (\$/ton)<br>Level Variable O&M (\$/ton)   | \$153<br>\$482       | 586<br>5482         | 5455                                                                                        | 2488            | \$484             | \$483           | \$1,080                                             | \$1,080                    | \$1,018                                                                                     | 160,1\$                                 | \$1,082                                            | \$1,080                                                                                     |
|                                                           |                      |                     |                                                                                             | CA ARD          | \$2,119           | \$1.352         | \$2,313                                             | \$1,639                    | \$1,414                                                                                     | \$5,540                                 | \$2,685                                            | \$1,867                                                                                     |
| Total Current (\$/ton)<br>Total w/o downtime (\$/ton)     | \$1, 146<br>\$1, 020 | E09\$               | \$603                                                                                       | \$2,509         | \$1,192           | \$816           | \$2,251                                             | \$1,777                    | \$1,352                                                                                     | \$5, 478                                | \$2,623                                            | \$1,805                                                                                     |
| , , , , , , , , , , , , , , , , , , , ,                   |                      |                     | Lev                                                                                         | elized Cost Per | Ton Pollu         | tant Removed (C | Constant Dollar                                     | (B)                        |                                                                                             |                                         |                                                    |                                                                                             |
|                                                           | 0783                 | 45.97               | 5163                                                                                        | \$2,976         | \$1,120           | \$605           | \$715                                               | \$455                      | \$250                                                                                       | \$2,581                                 | 5946                                               | \$474                                                                                       |
| Level Cap Lig (2/1044)                                    | 5117                 | \$66                | \$29                                                                                        | \$428           | \$145             | \$67            | \$236                                               | \$131                      | \$56                                                                                        | \$852                                   | 0675                                               | 5133                                                                                        |
| Level Variable OLM (S/ton)                                | 1963                 | \$367               | \$346                                                                                       | £371            | \$368             | \$367           | \$822                                               | \$822                      | \$774                                                                                       | 068\$                                   |                                                    | 7704                                                                                        |
|                                                           | AAE 15               | 010 12              | 5758                                                                                        | 53,775          | \$1,633           | \$1,040         | \$1,773                                             | \$1,408                    | \$1,081                                                                                     | \$4,263                                 | \$2,060                                            | \$1,429                                                                                     |
| Total Constant (%/ con)<br>Total w/o Downtime (\$/ ton)   | \$782                | \$615               | \$465                                                                                       | \$1,930         | \$915             | \$624           | \$1,725                                             | \$1,360                    | \$1,032                                                                                     | \$4,215                                 | \$2,012                                            |                                                                                             |
|                                                           |                      |                     |                                                                                             |                 | * * * * * * * * * |                 |                                                     |                            |                                                                                             |                                         |                                                    |                                                                                             |

0.160 0.124 1.314 1.000

Levelization Factors Level Cap Factor (current) Level Cap Factor (constant) Level O&M Factor (current) Level O&M Factor (constant)

-----
## INTEGRATED DRY NOx/SO2 EMISSIONS CONTROL SYSTEM

FINAL REPORT, VOLUME 2: PROJECT PERFORMANCE AND ECONOMICS

Appendix I-11

Limestone Forced Oxidation Scrubbing with Selective Catalytic Reduction

\_ \_

.

## -

.

85.17

-----

.....

14.92

\_

------

29.82

| SCR & LSFO LEVELIZED COSTS     | LSFO & SCR      |               |                   |                                        |                 |         |  |
|--------------------------------|-----------------|---------------|-------------------|----------------------------------------|-----------------|---------|--|
| Cost Per Power Produced        | Unit Size (MWe) |               |                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Capacity Factor |         |  |
|                                | 50              | 100           | 300               |                                        | 30%             | 65%     |  |
|                                |                 | Total Capital | Required for LS   | FO & SCR                               |                 |         |  |
| SCR Capital Reqd (\$10^6)      | \$7.18          | \$11.05       | \$22.20           | \$10.05                                | \$10.42         | \$11.05 |  |
| LSFO Capital Reqd (\$10^6)     | \$16.51         | \$28.31       | \$58.86           | \$28.02                                | \$28.13         | \$28.31 |  |
| Total Capital Reqd (\$10^6)    | \$23.70         | \$39.37       | \$81.06           | \$38.08                                | \$38.55         | \$39.37 |  |
|                                |                 | Fixed O&M C   | Cost for LSFO & S | SCR                                    |                 |         |  |
| SCR Fixed O&M (\$10^6/yr)      | \$0.130         | \$0.160       | \$0.210           | \$0.160                                | \$0.160         | \$0.160 |  |
| LSFO Fixed O&M (\$10^6/yr)     | \$1.144         | \$1.661       | \$3.109           | \$1.661                                | \$1.661         | \$1.661 |  |
| Total Fixed O&M (\$10^6/yr)    | \$1.274         | \$1.820       | \$3.319           | \$1.820                                | \$1.820         | \$1.820 |  |
|                                |                 | Variable O&N  | A Cost for LSFO   | & SCR                                  |                 |         |  |
| SCR Variable O&M (\$10^6/vr)   | \$0,607         | \$1.213       | \$2.737           | \$0.830                                | \$0,969         | \$1.213 |  |
| LSFO Variable O&M (\$10^6/yr)  | \$0.291         | \$0.581       | \$0.546           | \$0.089                                | \$0.268         | \$0.581 |  |
| otal Variable O&M (\$10^6/yr)  | \$0.90          | \$1.79        | \$3.28            | \$0.92                                 | \$1.24          | \$1.79  |  |
| Power Produced (10^9 kWh/yr)   | 0.285           | 0.569         | 1.708             | 0.088                                  | 0.263           | 0.569   |  |
|                                |                 | Levelized Co  | st Per Power Pro  | duced (Current Do                      | ollars)         |         |  |
| Level Cap Chg (mills/kWh)      | 13.32           | 11.06         | 7.59              | 69.55                                  | 23.47           | 11.06   |  |
| Level Fixed O&M (mills/kWh)    | 5.88            | 4.20          | 2.55              | 27.31                                  | 9.10            | 4.20    |  |
| Level Variable O&M (mills/kWh) | 4.14            | 4.14          | 2.53              | 13.79                                  | 6.19            | 4.14    |  |
| Total Current (mills/kWh)      | 23.34           | 19.40         | 12.67             | 110.64                                 | 38.76           | 19.40   |  |
|                                |                 | Levelized Co  | st Per Power Pro  | duced (Constant [                      | )ollars)        |         |  |
| Level Cap Chg (mills/kWh)      | 10.32           | 8.57          | 5.88              | 53.90                                  | 18.19           | 8.57    |  |
| Level Fixed O&M (mills/kWh)    | 4.48            | 3.20          | 1.94              | 20.78                                  | 6.93            | 3.20    |  |
| Level Variable O&M (mills/kWh) | 3.15            | 3.15          | 1.92              | 10.49                                  | 4.71            | 3.15    |  |

Total Constant (mills/kWh)

------

----

\_\_\_\_\_

•

14.92

......

9.75

-------

-----

-----

17.95

| Levelized Co | ost Per | Ton F | Remov | /ed |
|--------------|---------|-------|-------|-----|
|--------------|---------|-------|-------|-----|

•

SCR & LSFO

|                                                         |                  | Unit Size (MWe) |                |                       | Capacity Factor       |                |
|---------------------------------------------------------|------------------|-----------------|----------------|-----------------------|-----------------------|----------------|
|                                                         | 50               | 100             | 300            | 10%                   | 30%                   | 65%            |
|                                                         | SO2 & NOx        | : Removal Rat   | es             |                       |                       |                |
| SCR NOx Removal Rate                                    | 80%              | 80%             | 80%            | 80%                   | 80%                   | 80%            |
| SO2 Removal Rate                                        | 90%              | 90%             | 90%            | 90%                   | 90%                   | 90%            |
|                                                         | Total Pollut     | ants Removed    | I              |                       |                       |                |
| SO2 Removed (tons/yr)                                   | 856              | 1,711           | 5,133          | 263                   | <br>790               | 1,711          |
| NOx Removed (tons/yr)                                   | 480              | 960             | 2,881          | 148                   | 443                   | 960            |
| Total NOx/SO2 Removed (tons/yr)                         | 1,336            | 2,672           | 8,015          | 411                   | 1,233                 | 2,672          |
|                                                         | Levelized C      | ost Per Ton P   | ollutant Re    | emoved (Current Dolla | rs)                   |                |
| Level Cap Chg (\$/ton)                                  | \$2,838          | \$2,358         | \$1,618        | \$14,823              | \$5,002               | \$2,358        |
| Level Fixed O&M (\$/ton)<br>Level Variable O&M (\$/ton) | \$1,253<br>\$883 | \$895<br>\$883  | \$544<br>\$538 | \$5,820<br>\$2,939    | \$1,940<br>\$1,319    | \$895<br>\$883 |
| Fotal Current (\$/ton)                                  | <u>\$4.974</u>   | \$4,136         | \$2.701        | \$23.582              | <br>\$8.261           | <br>\$4.136    |
| Total w/o downtime (\$/ton)                             | \$4,900          | \$4,061         | \$2,626        | \$23,507              | \$8,186               | \$4,061        |
|                                                         | Levelized C      | ost Per Ton P   | ollutant Re    | emoved (Constant Doll | ars)                  |                |
| Level Cap Chg (\$/ton)                                  | \$2,200          | \$1,827         | \$1,254        | \$11,488              | \$3,876               | \$1,827        |
| Level Fixed O&M (\$/ton)                                | \$213            | \$213           | \$213          | \$213                 | · \$213               | \$213          |
| Level Variable O&M (\$/ton)                             | \$672            | \$672           | \$410          | \$2,236               | \$1,004               | \$672          |
| Total Constant (\$/ton)                                 | \$3,085          | \$2,712         | \$1,877        | \$13,937              | \$5,093               | \$2,712        |
| Total w/o Downtime (\$/ton)                             | \$3,027          | \$2,654<br>     | \$1,819        | \$13,879              | \$5,035               | \$2,654        |
| Levelization Factors                                    |                  |                 |                | <b>—</b> · · ·        |                       |                |
| Level Cap Factor (current)                              | 0.160            |                 |                | kevisea:<br>By:       | 12/02/94<br>TJ Hanley |                |
| Level Cap Factor (constant)                             | 0.124            |                 |                | -                     |                       |                |
| Level O&M Factor (current)                              | 1.314            |                 |                |                       |                       |                |
| Level O&M Factor (constant)                             | 1.000            |                 |                |                       |                       |                |

.

,

.