APPENDIX D

INTRODUCTORY PRESENTATIONS --OCTOBER WORKSHOP

D-2

U.S. Department of Energy's **Office of Science**

Overview of the Office of Science

for the BESAC Workshop on Basic Research Needs to Assure a Secure Energy Future

Dr. James F. Decker, Deputy Director October 21, 2002

The Department of Energy is a Science Agency

Top Five Government Research Organizations for*:

Physical Sciences	Mathematics & Computing	Life Sciences	Environmental Sciences
1. Energy (1,938)	1. Energy (862)	1. HHS (18,216)	1. NASA (1,113)
2. NASA (1,152)	2. DOD (861)	2. USDA (1,342)	2. NSF (515)
3. HHS (794)	3. NSF (515)	3. DOD (616)	3. Interior (353)
4. NSF (593)	4. HHS (181)	4. NSF (500)	4. DOD (301)
5. DOD (364)	5. Commerce (78)	5. Energy (267)	5. Energy (298)

* Numbers are FY 2002 dollars in millions - Source: NSF -- Preliminary Federal obligations for research, by agency and field of science and engineering: fiscal year 2002

FY2003 Budget Request

OFFICE OF SCIENCE FY 2003 PRESIDENT'S BUDGET REQUEST (B/A in thousands)

	FY 2001 Comparable Approp.	FY 2002 Comparable Approp.	FY 2003 President's Request
SCIENCE			
Basic Energy Sciences	973,768	999,605	1,019,600
Advanced Scientific Computing Research	161,296	157,400	169,625
Biological and Environmental Research	514,064	570,300	504,215
High Energy Physics	695,927	713,170	724,990
Nuclear Physics	351,794	359,035	382,370
Fusion Energy Sciences	241,957	247,480	257,310
Energy Research Analyses	950	995	1,020
Science Laboratories Infrastructure	26,887	37,130	42,735
Science Program Direction	139,861	152,475	139,479
Small Business Inn. Research and Technology Transfer	93,069	-	-
Subtotal	3,199,573	3,237,590	3,241,344
Safeguards and Security	39,081	47,609	48,127
Reimbursable Work	(4,648)	(4,460)	(4,383
Total Safeguards and Security	34,433	43,149	43,744
Total Science	3,234,006	3,280,739	3,285,088

Biological and Environmental Research

- Genomes to Life will enable revolutionary advances in energy supply, greenhouse gas mitigation, and environmental cleanup.
 - Bioterrorism detection/defeat.
- The Human Genome Program will provide high quality complete sequence of Chromosomes 5, 16, and 19.
- Climate Change Research underpins the President's initiative. Research and observations will improve climate models and understanding of the global carbon cycle.
- Climate Change Research Initiative.
- The Environmental Management Science Program is transferred from the Office of Environmental Management.
- Boron Neutron Capture Therapy.

High Energy & Nuclear Physics

Nuclear Physics

Increased facility operating time to:

- Create and study a quarkgluon plasma at the Relativistic Heavy Ion Collider
- Explore how quarks bind together to form protons and neutrons at the Continuous Electron Beam Accelerator Facility

High Energy Physics

Exploit the opportunity to answer two key questions about matter and energy:

- Explore the origin of mass in the search for the Higgs boson at the Tevatron
- Understand the absence of antimatter in the Universe by studying Charge-Parity Violation at the B-Factory

Advanced Scientific Computing Research

• Mathematical, Information, & Computational Sciences

- Supports operation of supercomputer and network facilities available to researchers 24-7-365:
 - National Energy Research Scientific Computing Center (NERSC),
 - Advanced Computing Research Testbeds, and
 - Energy Sciences Network (ESNet).
- Scientific Computing Research Investments:
 - Applied Mathematics,
 - Computer Science, and
 - Advanced Computing Software Tools.
- High Performance Networking, Middleware and Collaboratory Research Investments:
 - Networking,
 - Collaboratory Tools, and
 - National Collaboratory Pilot Projects.
- Laboratory Technology Research

Scientific Discovery through Advanced Computation

- SciDAC brings the power of tera-scale computing and information technologies to several scientific areas -breakthroughs through simulation.
- SciDAC is building community simulation models through collaborations among application scientists, mathematicians and computer scientists -- research tools for plasma physics, climate prediction, combustion, etc.
- State-of-the-art electronic collaboration tools will facilitate the access of these tools to the broader scientific community to bring simulation to a level of parity with theory & observation in the scientific enterprise.
- Topical Computing (TC)
 - FY03 increases will reconfigure some resources at existing facilities around TC concept.
 - These facilities will support applications communities to develop the operational model.
 - Full-scale TC facilities will be proposed in FY-04.

Basic Research Needs to Assure a Secure Energy Future

A BESAC Workshop

Patricia M. Dehmer

Director, Office of Basic Energy Sciences 21 October 2002

http://www.sc.doe.gov/production/bes/bes.html

2

Remarks by Secretary Abraham Brookhaven National Laboratory – June 14, 2002

DOE and American Leadership in Science

The Department of Energy could well have been called the Department of Science and Energy given our contribution to American science. And the reason we are so deeply involved in science is simple. Our mission here at DOE ... as I have stressed since becoming Secretary ... is national security.

And in my view, a serious commitment to national security demands a serious commitment to science, including basic research. This commitment strengthens our energy security, international competitiveness, economic growth, and intellectual leadership. Moreover, if we ever hope to leapfrog today's energy challenges we must look to basic research.

I think it's clear. A nation that embraces basic research embraces a brighter future.

What Does "A BESAC Workshop" Mean?

Conversations with BESAC on the Workshop

3

4

"The basic research community has focused on many of the known problems in energy technologies for many years – the workshop should not rehash these areas."

"Rather, the workshop should focus on new, revolutionary basic research opportunities."

The Basic Energy Sciences Program Mission

"... to foster and support fundamental research to expand the scientific foundations for new and improved, environmentally conscientious energy technologies"

"... to plan, construct, and operate major scientific user facilities for the Nation"

5

6

The Basic Energy Sciences Program ...

- ... is one of the Nation's largest sponsors of basic research.
- ... supports research in more than 150 academic institutions and 13 DOE laboratories.
- ... supports world-class scientific user facilities, providing outstanding capabilities for characterizing materials of all kinds.
- ... is uniquely responsible in the Federal government for supporting research in materials sciences, chemistry, geosciences, and aspects of biosciences related to energy resources, production, conversion, efficiency, and use – all in an environmentally conscientious manner.

Past Accomplishments

Nobel Prize Research Supported During the 1980s and 1990s

87878	1983 Chemistry	Henry Taube, Stanford University, for "his work on the mechanisms of electron transfer reactions, especially in metal complexes"
Ac (42) + Q.	<u>1986 Chemistry</u>	Yuan Tseh Lee, UC Berkeley, for "dynamics of chemical elementary processes"
	1987 Chemistry	Donald J. Cram, UC Los Angeles, for "development of molecules with structurally specific interaction of high specificity"
CHy CHy	<u>1994 Physics</u>	Clifford G. Shull (MIT) for "pioneering contributions to the development of neutron scattering techniques for studies of condensed matter"
Viences Vie	<u>1995 Chemistry</u>	Frank Sherwood Rowland (UC, Irvine) for "work in atmospheric chemistry, particularly concerning the formation and decomposition of ozone"
	<u>1996 Chemistry</u>	Richard E. Smalley and Robert Curl (Rice U) for "collaborative discovery that carbon could occur in a uniquely beautiful and satisfying structure that engendered an entirely new branch of chemistry"
	1997 Chemistry	Paul D. Boyer (UC, Los Angeles) for "elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosophate (ATP)" 8

The BES Major Scientific User Facilities

Combustion Research Facility Manuel Lujan Jr. Neutron Scattering Center

High-Flux Isotope Reactor 1

The Spallation Neutron Source

DEPARTMENT OF ENERGY

13¹³

14

Strong, Tough, and Creep-Resistant Ceramics

ceramic turbine (Honeywell) silicon nitride or silicon carbide

Grain boundary films, as thin as 1 nm, affect mechanical properties of ceramics

- Doubled fracture resistance
- Resistant to high-temp deformation
- High strength

Lutgard De Jonghe, Robert O. Ritchie Materials Sciences Division LBNL

Bulk Metallic Glasses

New alloys that form bulk metallic glasses at low cooling rates have led to significant advances in the study of undercooled liquid metals and the glass transition in metallic systems. These materials do not have crystalline structure, but rather the atoms are randomly positioned like in a liquid. This structure leads to improved toughness and large plastic strain to failure because of the lack of grain boundaries which in crystalline materials are points of weakness.

Some of the first bulk metallic glass material

TEM showing amorphous structure and Cu-rich and Cupoor regions

15

Nuclear-Friendly Materials

Changing the constituent A and B elements in A₂B₂O₇ compounds profoundly affects radiation performance.

Dramatic improvements in radiation tolerance were found as the metallic elements A and B become more similar in size.

X-rays Diffraction to Understand Welds

Photonic Band Gap Structures

By designing materials where certain wavelengths do not propagate, one can build very high Q cavities, highly directional antennas, and enhanced low loss propagation.

Thermoacoustic Refrigeration

Oscillating temperature and heat flux accompany the oscillating pressure in sound waves. Combining oscillating temperature, pressure, heat, and motion, we create "thermoacoustic" heat engines, refrigerators, and mixture separators, with efficiency now close to that of mature technologies.

Los Alamos National Laboratory, G. Swift, et al.

Organometallic Catalysts

The study of weakly bound ligands in organometallic compounds led to industrial polymerization catalysis.

19

Rechargeable Thin-Film Lithium Batteries

- Revolutionary solid electrolyte
 - (lithium phosphorus oxynitride)
 - stable in contact with lithium metal
 - enables highest energy density
- Rechargeable battery
 - 1/2 the thickness of plastic wrap
 - can be fabricated on silicon
 - resulted in 4 CRADAs and 1 license
 - used in medical and consumer devices, smart credit cards, miniature hazardous materials monitors, memory backup power reservoir

Semiconductor Alloys Lead to Record Solar Cell

Studies relate spontaneous ordering in a semiconductor alloy to optoelectronic properties

- Superstructure ordering modifies energy band structure.
- Allows tailoring optical properties to optimize solar cell performance.
- Resulted in a record-performance "triple junction" photovoltaic device (32.4% efficiency!)
- These devices are being applied in space-based applications and terrestrial light concentrator devices.

Photosynthetic Reaction Center

The fundamental process by which plants and bacteria convert and store solar energy as chemical free energy occurs in the photosynthetic reaction center. One electron is pumped by the action of light from the primary donor, bacteriochlorophyll dimer $(BChl)_2A$, to a quinone acceptor, Q_A . The charge separation process is studied as the prototype for simpler model systems.

Plant Response to Blue Light

Plants use different photoreceptors to sense the quality and quantity of light in the surrounding environment; this information is conveyed by molecular-level signaling mechanisms to allow plants to adjust their growth and development accordingly. Potential developmental responses to cryptochrome action include seed germination, stem elongation, and flowering. 23

Patterns and Predictions of Subsurface Flow

Recovery of subsurface fluids, whether oil and gas or contaminants, requires understanding the ways fluids flow within porous and fractured rocks and soil.

The Combustion Research Facility

- Research addresses
 - Energy sciences
 - Energy efficiency
 - Environmental impact

25

26

- Fuel flexibility
- Core programs provide
 - Basic to applied research
 - Unique laser facilities
 - Partnerships with academia and industry

Basic Research and Applied Programs at the CRF

- Basic
 - Combustion chemistry
 - Optical diagnostics
 - Reacting fluid flows
- Applied
 - Engine combustion and emissions
 - Industrial furnaces and boilers
 - Manufacturing processes
 - Alternative fuels
 - Field measurements
 - Remote sensing

27

"Generic" Scientific Opportunities

Realizing the nanoscale revolution Tailoring materials one atom at a time for desired properties and functions

Complex systems Understanding collective, cooperative, and adaptive phenomena and emergent behavior

Harnessing the power of advanced computing Investigating condensed matter and materials physics, chemistry, and biosciences

Complex systems:

Understanding collective, cooperative, and adaptive phenomena and emergent behavior

Interactions among individual components can lead to coherent behavior that can be described only at higher levels than those of the individual units. This can produce remarkably complex and yet organized behavior.

- Electrons interacting with each other and the host lattice in solids give rise to magnetism and superconductivity.
- Chemical constituents interacting in solution give rise to complex pattern formation and growth.
- Living systems self assemble their own components, self repair them as necessary, and reproduce; they sense and respond to even subtle changes in their environments.

Harnessing the Power of Advanced Computing for Condensed Matter and Materials Physics, Chemistry, and Biosciences

Fundamental Research for Energy Security

"The basic research community has focused on many of the known problems in energy technologies for many years – the workshop should not rehash these areas."

"Rather, the workshop should focus on new revolutionary basic research opportunities."

Overview DOE's Office of Fossil Energy Programs

Basic Energy Sciences Advisory Committee-Sponsored Workshop

October 21, 2002 Rita A. Bajura **Director NETL**

Fossil Energy

FE Responsible for RD&D Program in Fossil Energy Supply, Delivery, and Use Technologies

Clean Liquid Fuels

Electric Power Using Coal

> Environmental Control

V21 Next Generation

Carbon Sequestration

Refining & Delivery

Exploration &

Production

Alternative **Fuels**

Future

Combustion

Natural Gas

Exploration &

Production

Pipelines &

Storage

Fuel

Cells

Fossil Energy

Energy Profoundly Impacts Our Quality of Life

Comfort Fuel warms our homes and provides electricity to wash our clothes and power our televisions

Food Energy needed to produce food and to deliver clean water to our homes

Reliability Reliable power for air traffic control, banking, and telecommunications

Mobility Fuel provides mobility

Energy Impacts the Environment *Production and Use*

Air Emissions Emissions down but continuing pressure to reduce further

Water Energy production and use can impact water quality

EIA Report #EIA/DOE-0573 (98) reenhouse Gases in the U.S.: 1998 "Emissions of Gr Executive Summary

Fossil Energy

Fossil Energy

Energy Impacts the Economy *Production and Use*

Individual Economics \$2,000 per person per year spent on energy

International Trade Petroleum imports account for one-fourth of U.S. trade deficit in goods*

While energy accounts for 6% of GDP, it underlies all economic activity

* Data for 2000 on Balance of Payments basis

Burgers \$1,9 \$2.09

Prices Energy prices impact all economic sectors

D-31

The Challenge: *Defining a Pathway for U.S. Energy Future*

Issues Facing Energy

• Local/regional environmental

- Energy security
- Global supply/environmental

12

Fossil Fuel Resources Abundant

Proved Recoverable World Reserves

COAI 984 Billion Tons

Natural Gas More Than 5,000 Tcf

Oil Just Over 1 Trillion Barrels Estimated World Resource

Methane Hydrates Up to 270 Million Tcf

Proved recoverable reserves should last most of 21st century

Concentration of Particulate Matter in Urban Areas

Natural Gas & Oil Exploration & Production Technology Reducing Environmental Impact

Fewer wells to add same level of reserves

Lower drilling waste volume

Lower produced water volumes

Smaller footprints

Greater protection of unique and sensitive environments

Mining is Critical to Quality of Life

Every American Born Will Need...

11.7 Tons Clays 1,925 lbs. Copper 1.8 Troy oz. Gold 295 Tons Coal 13.9 Tons Phosphate 3 Tons Aluminum 1,078 lbs. Lead 21.3 Tons Iron Ore 15.2 Tons Salt

1,001 lbs. Zinc

850 Tons Stone, Sand, Gravel

83,890 Gallons Petroleum

34.4 Tons Cement

34.5 Tons Other Minerals and Metals

6 million cu. ft. of Natural Gas

1,875 tons of minerals, metals, and fuels in a lifetime

Fossil Energy

Coal Mining *Technology Reducing Environmental Impact*

Made progress through improved

- Planning
- Permitting
- Groundwater
 management
- Utilization of coal mine methane
- Reclamation

Legacy programs exist

Contaminated Mine Drainage

Reclaimed

Surface Mine in Western PA

Issues Facing Energy

- Local/regional environmental
- Energy security
- Global supply/environmental

Fossil Energy

ience 10/21/02

Threats to Energy Security

- Increased
 - Terrorist threats
 - -Oil and gas imports
 - -Interdependencies
- Aging infrastructure
- Less reserve capacity

Fossil Energy

Much of World's Oil Comes from Unstable Regions

Demographics of Middle East

- Population is young, growing rapidly, poor
- Nations are young
- Rich/poor gap
- Rising internal energy use

Based on Matt Sir

Fossil Energy

Production Lag Suggests Shrinking U.S. Gas Surplus U.S. Drilling Rig Count vs. Gas Production

Issues Facing Energy

- Local/regional environmental
- Energy security
- Global supply/environmental

12

~ 10/21/07

Fossil Energy

CO₂ From Energy Is Major Contributor U.S. GHG Emissions Weighted by Global Warming Potential

Global Climate Change *Fact or Fiction?*

- Science unlikely to provide unequivocal causality answer
- Governments and markets likely to act on their perception of the science
 - -Interpreted with a slant towards their self-interest
- Corporate boards increasingly expected to evaluate potential risks / benefits of climate change

-Enron effect

Portions based on Executive Action Brief No. 23, June 2002, The Conference Board

Technological Carbon Management Options

Reduce Carbon Intensity

- Renewables
- Nuclear
- Fuel Switching

Improve Efficiency

- Demand Side
- Supply Side

Sequester Carbon

- Capture & Store
- Enhance Natural
 Processes

All options needed to:

- Supply energy demand
- Address environmental objectives

Fossil Energy

Ultra-Clean Energy Plant of Future

Energy Plants for Post-2015

- Coal and other fuels
- Electricity and possible co-products

Fossil Energy

Goal Eliminate Environmental Concerns from Use of Fossil Energy

Approach

- Maximize efficiency
- Near-zero emissions

Approaches to Sequester Carbon Capture and Storage **Enhance** Natural Processes Unmineable Forestation Coal Seams **Deep Ocean** Enhanced Injection **Photosynthesis Depleted Oil** Iron or Nitrogen Gas Wells, Fertilization of Saline Reservoirs Ocean **Fossil Energy**

Hydrogen A Proposed Solution for Energy Issues ...

- Energy security
- Local environmental degradation
- Global environmental degradation

Hydrogen Economy

12

RAB-Science 10/21/02

Ability for consumers to use hydrogen energy devices for transportation, electric power generation, and portable power

Fossil Energy

The Short List Fossil Energy Basic Research Needs

- Materials
 - -Alloys
 - -Ceramics
- Sensors & controls
- Self healing systems
- Robotic systems
- Computational techniques
- Geologic interactions
 - -Water

 $-CO_2$

-Gas,oil, coal

Fossil Energy

Innovative Sequestration Approaches

Issue

- Scarcity of innovative concepts in program
- Traditional FE R&D performers more engineering oriented

Approach

- Engage best minds in nation!
- National Academy of Science to assist in proposal preparation
 - NAS roll-out meeting Feb. 03
- National Lab involvement encouraged

Advanced Technologies Can Resolve the Environmental, Supply, and Reliability Constraints of Producing and Using Fossil Fuels

12

Fossil Energy

D-50

Basic Research Needs in Support of Advanced Nuclear Reactor and Fuel Cycle Technologies

Basic Energy Sciences Advisory Committee Workshop on "Basic Research Needs to Assure a Secure Energy Future" Gaithersburg, MD, October 21, 2002

R. Shane Johnson Associate Director for Advanced Nuclear Research Office of Nuclear Energy, Science and Technology

Office of Nuclear Energy, Science and Technology

æ

Advanced Fuel Cycle R&D Challenges

- Advanced separation chemistry and processes that:
 - minimize waste volume
 - minimize losses
 - are proliferation resistant
 - minimize dose to workers
- Advanced fuels for transmutation systems
 - ceramic fuel in inert metal matrix (cermet)
 - dispersion fuel in inert matrix
 - ceramic, metal and particle fuels
- Subcritical multiplier for accelerator transmutation
 - demonstrate safety of configuration
 - materials and coolant for spallation target

Spallation Neutron Source

n/Oct21_02 to BESAC WS.

Office of Nuclear Energy, Science and Technology

Basic Science Support

Foundations for Support

- Provide the fundamental understanding of materials and chemistry that support the development of next-generation reactor and fuel cycle systems
- Provide projects at the university level that engage students in R&D that showcase a relevance to advanced reactor development
- Maintain critical infrastructure for fundamental studies, including the ability to work on radioactive materials
- Encourage the development and application of advanced computational tools (e.g. multi-scale material modeling) toward advanced nuclear application

RSJohnson/Oct21_02 to BESAC WS.ppt 9

Office of Nuclear Energy, Science and Technology

Basic Science Support

Specific Areas

- Radiation-stable materials for high temperature application (ferriticmartensitc alloys, ceramics and ceramic composites, refractory metals, coatings) to include welding and joining.
- Complex microstructural evolution in engineering materials (complex alloys) under irradiation
- Corrosion of structural materials in supercritical water undergoing radiolysis
- Corrosion of structural materials in lead and lead-bismuth.
- Advanced actinide chemistry that simplifies the number of processing steps (*e.g.,* group extraction using designer molecules)
- Materials for minimizing loss in the recycle process
- Fundamental understanding of the processing and physical properties of nitride fuel

RSJohnson/Oct21_02 to BESAC WS.ppt 10

Science Issues in the Office of Energy Efficiency and Renewable Energy

Sam Baldwin

Chief Technology Officer and Member, Board of Directors Office of Energy Efficiency and Renewable Energy U.S. Department of Energy October 21, 2002

The Oil Problem

Nations that HAVE oil
(% of Global Reserves)

Nations that NEED oil (% of Global Consumption)

<mark>26%</mark> 7%

6%

4%

3%

3%

3%

3%

3%

3%

3%

3%

Saudi Arabia	26%	U.S.
Iraq	11%	Japan
Kuwait	10%	China
Iran	9%	Germany
UAE	8%	Russia
Venezuela	6%	S. Korea
Russia	5%	France
Mexico	3%	Italy
Libya	3%	Mexico
China	3%	Brazil
Nigeria	2%	Canada
U.S.	2%	India

Source: EIA International Energy Annual 1999

EERE Vision, Mission, and Goals

Vision: A prosperous future where energy is clean, abundant, reliable, and affordable.

Mission: Strengthen America's energy security, environmental quality, and economic vitality through public-private partnerships that:

- Promote energy efficiency and productivity;
- Bring clean, reliable, and affordable energy technologies to the marketplace;&
- Make a difference in the everyday lives of Americans by enhancing their energy choices and their quality of life.

Goals:

- 1. End dependence on foreign oil.
- 2. Reduce burden of energy prices on disadvantaged.
- 3. Increase viability and deployment of renewable energy.
- 4. Increase reliability and efficiency of electricity generation.
- 5. Increase the efficiency of buildings and appliances.
- 6. Increase the efficiency/reduce the energy intensity of industry.
- 7. Create the new domestic bioindustry.
- 8. Lead by example through Government's own actions.
- 9. Change the way that EERE does business.

Strategic Program Review of EERE

Historic Performance

- Patents, Awards, Technical accomplishments

Performance-based

- Technology push to market pull; components to integrated systems
- Competitive solicitations; Goals, metrics, milestones; Peer review; Graduations and terminations

Public-Private Partnerships

- Partnering
- Contracting
- Cost-sharing
- Costs and Benefits

Dusings Darformange

NRC Benefits/Costs Framework

	Realized Benefits and	Options Benefits and	Knowledge Benefits and
	Costs	Costs	Costs
Economic Benefits and Costs			
Environmental Benefits and Costs			
Security Benefits and Costs			

- FEMP
- Industry: Direct Steelmaking; Intermetallic Alloys, 140 technologies tracked
- Transport: Catalytic converters for CIDI, heavy diesels, transportation materials structural ceramics and lightweight materials; advanced batteries
- Power: Biopower, Geothermal, Photovoltaics, Wind,

SPR Recommendations

- **Closures:** activities that should be closed because the work has been successfully completed and no significant further government role is needed (graduations), or does not provide sufficient public benefits (terminations).
- **Redirections:** activities that potentially provide appropriate public benefits but need redirection and/or redefinition to increase the probability of success.
- Watch List: activities that need close monitoring to ensure that they advance effectively and expeditiously.
- **Expansions:** activities not currently receiving adequate support in comparison to the benefits they can provide.
- Best Practices: actions to improve overall program performance.

Criteria for Judgments

- Projected Benefits (economic, environmental, security, options) vs investment
- **Projected potential for commercialization** by industry.
- Whether industry could or would do the RD3 by itself
- **Program effectiveness (**technical performance, business management, etc.)

http://www.eren.doe.gov/pdfs/strategic_program_review.pd

Budget by Program

111,581 64,449 131,901 20,321 181,352	108,944 60,563 131,290 26,425	Floor 114,944 68,195 148,790 21,925	Cmte 125,439 76,563 136,452 26,425
111,581 64,449 131,901 20,321 181,352	108,944 60,563 131,290 26,425	114,944 68,195 148,790 21,925	125,439 76,563 136,452 26,425
64,449 131,901 20,321 181,352	60,563 131,290 26,425	68,195 148,790 21,925	76,563 136,452 26,425
131,901 20,321 181,352	131,290 26,425	148,790 21,925	136,452
20,321 181,352	26,425	21,925	26 425
181,352	152 5(2		20,423
	153,563	195,963	181,253
27,098	26,500	26,500	28,300
76,317	97,381	96,476	100,500
101,539	92,677	112,677	100,677
87,107	79,625	79,625	87,000
329,761	374,053	363,655	350,953
38,598	48,986	51,489	56,489
4,870	5,000	5,000	6,800
1,282,635	1,318,651	1,377,585	1,369,803
	76,317 101,539 87,107 329,761 38,598 4,870 1,282,635	76,517 97,581 101,539 92,677 87,107 79,625 329,761 374,053 38,598 48,986 4,870 5,000 1,282,635 1,318,651	76,317 97,381 96,476 101,539 92,677 112,677 87,107 79,625 79,625 329,761 374,053 363,655 38,598 48,986 51,489 4,870 5,000 5,000 1,282,635 1,318,651 1,377,585

Science in the Industrial Sector (

- Advanced Materials; Advanced Processes
 - o Longer lifetimes, substitutes; advanced processing techniques
- Efficient, high temperature separations
 - o High temperature membranes, filters; Separation in multicomponent systems
- Improved process control
 - o Sensors (high operating temperatures, sensitivities)
- Chemical, petroleum refining operations
 - o Heterogeneous catalysis/surface chemistry; homogeneous catalysis/metalorganic chemistry; separation science; materials properties/synthesis; diagnostics
- Boilers, furnaces, gasifiers
 - o Efficiency, emissions, gas cleanup: Combustion science; chemistry
- Industrial process flows, heat transfer, etc.
 - o Multiphase flows, heat transfer, etc.: Computational fluid dynamics.
- Metal castings
 - o Alloys: alloy chemistries, properties, processing: Materials Science
 - o Rapid, non-destructive evaluation of alloy chemistry/properties: Diagnostics

U.S. Solar Resource (PV)

- R&D has reduced of PV power from \$2.00 per kilowatthour in 1980 to the current range of 20-38 cents per kilowatt-hour.
- 2020 target: 5 cents per kilowatthour.

U.S. Wind Resource

- R&D has reduced cost of wind power from 80 cents per kilowatt-hour in 1979 to a current range of 4-6 cents per kilowatthour (Class 6).
- 2010 target: 3 cents per kilowatt hour (in Class 4 and above regimes.
- New R&D focus: low speed wind tech.; x20 resource; x5 proximity

Science in the Power Sector

Photovoltaics

- Materials, growth, characterization,
- multi-junction thin films—interface chemistry, physics, defects, materials compatibility; Quantum dot cells, multiple quantum well devices, etc.
- Geothermal
 - Geoscience: formation/flow of fluids through fractured media; characterizing geology; geochemistry; remote sensing
- Wind
 - Computational fluid dynamics to model turbulent flow for wind turbine design
 - Modeling meso-scale atmospheric phenomena for wind forecasting for utilities
 - Composite materials-materials strength, fatigue properties
- HTS
 - Materials, cryogenics
- Remote sensing
 - algorithms for determining atmospheric and surface properties (aerosol optical depth, surface insolation, surface winds, bioenergy resources)

Time Constants

Consensus building	~ 2-20+
Science	~10+
 Technical R&D 	~10+
Production model	~ 4+
Financial	~ 2+
Market penetration	~10-20+
Capital stock turnover	~15-100+
- Cars	15
- Appliances	10-20
 Industrial equipment/facilities 	10-30/40+
- Power plants	40
- Buildings	40-80
– Urban form	100's
Lifetime of Greenhouse Gases	~100's-1000's
Reversal of Land Use Change	~100's
Reversal of Extinctions	Never