Commission Briefing on GSI-191

Industry Perspectives on GSI-191

October 25, 2006

Industry Panel

Tony Pietrangelo
VP Regulatory Affairs, NEI

Joe Donahue

VP Nuclear Engineering and Services, Progress Energy Chairman, PWR Owners Group Executive Committee

Amir Shahkarami
Sr. VP Engineering and Technical Services, Exelon

Overview

- A highly conservative, deterministic approach was developed to address GSI-191
- Conservative test methods are also being applied
- Licensees are moving forward with significant design and operational enhancements
- Industry wants to achieve closure expeditiously

Evaluation Methodology (NEI-04-07)

- Developed as a conservative screening tool to identify areas for licensee action
- Necessary to bound spectrum of plant configurations and materials
- Did not include guidance on chemical effects and downstream effects
 - Resolution activities initiated in parallel with joint industry/NRC chemical effects testing

Examples of Bounding Assumptions

- Instantaneous double-ended break of largest pipe at worst location (< 1 E-7/yr)
 - Maximize head loss
 - No credit for Leak Before Break
- Spherical zone of influence (up to 28.6 D)
- All non-qualified coatings inside containment assumed to fail
- 100% transport to screens

Chemical Effects

- Joint industry/NRC tests demonstrated need to consider chemical precipitants
- PWROG developed guidance for plant-specific chemical effects treatment
 - Conservative estimation of precipitant formation
 - Neglects inhibition effects
- Combination of high fiber load, high precipitant formation leads to prediction of high head loss
- Industry pursuing range of actions to resolve
 - Combination of refinements to methodology, test protocols and design changes

Industry Resolution Activities

- Analysis and mock-up testing being performed in support of strainer replacements
- Plant activities extend well beyond installation of larger strainers
- Plant-specific designs are a driver in the resolution path taken
- Installation of new screens has begun and will continue to 1st Quarter 2008

Licensee Actions Taken or Considered

- Install very large screens
- Utilize alternate buffers
- Install trash racks/debris interceptors
- Remove fibrous insulation
- Numerous compensatory actions
- Water management initiative

PWROG Activities

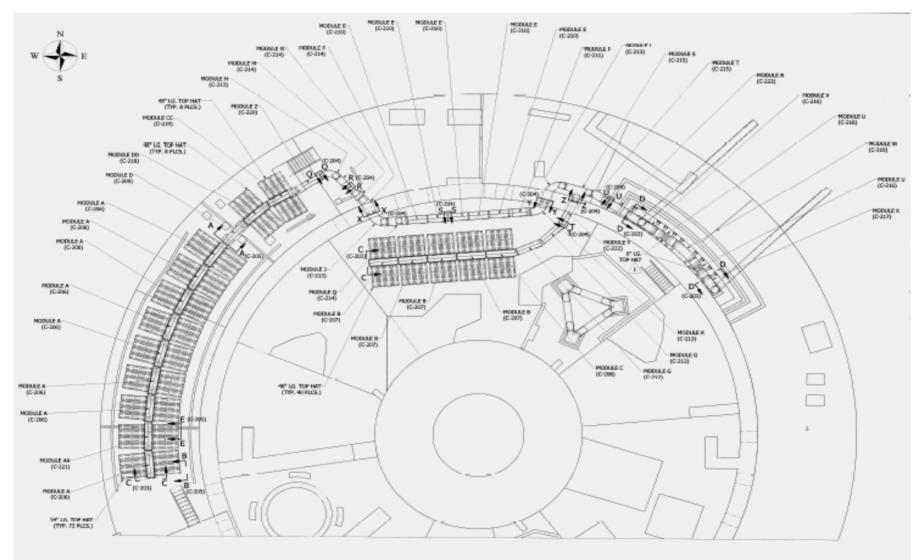
- Industry guidance documents have been developed to address
 - Debris generation and transport
 - Downstream effects evaluation
 - Chemical effects
 - Alternate buffers
- Conservative treatment of individual phenomena and operational parameters
 - Overall result is highly conservative

Progress Energy Activities

Crystal River

- Original sump screen:
 - Design: Wire mesh with 1/4" square openings
 - Size: 86 ft²
- Replacement sump screen:
 - Design: Concentric rolled and perforated plates (tophat design) with 1/8" diameter holes
 - Size: 1140 ft² (thirteen times larger than original)
 - 50% screen head loss margin reserved for chemical effects
- Separate flow diverter and debris interceptor upstream of screen
- Status: Installed in fall 2005

Progress Energy Activities Crystal River Tophat Strainers


Progress Energy Activities

H. B. Robinson

- Original sump screen:
 - Design: Wire mesh with 7/32" square openings
 - ◆ Size: 116 ft²
- Replacement sump screen:
 - Design: Tophat with 3/32" diameter holes and integral woven mesh to minimize debris penetration
 - Size: 4200 ft² (thirty-six times larger than original)
 - >50% screen head loss margin reserved for chemical effects
- Status: Will be installed in spring 2007

H. B. Robinson Strainer Layout

PLAN VIEW

Progress Energy Activities

- Material head loss testing
- Screen penetration testing
- Coating destruction pressure (ZOI) testing
- Chemical effects
 - Working closely with NEI and PWROG to resolve chemical effects issue
 - Additional testing may be required to quantify head loss impact
 - Using industry predictive spreadsheet to identify actions most effective in reducing chemical precipitates

EXELON PWRs

- Byron Station Units 1 and 2
- Braidwood Station Units 1 and 2
- Three Mile Island Unit 1
- Salem Units 1 and 2

- Byron & Braidwood Stations
 - Original sump screen:
 - Design: Wire mesh with 3/16" square openings
 - 150 ft² total both sumps Size:
 - Replacement sump screen
 - Design: "Pocket" design with 1/12" holes
 - 3000 ft²/sump, 6000 ft² total Size:
 - Design complete including head loss and chemical effects testing
 - Status:

 - Byron Unit 1 : installed Sept. 2006
 - Braidwood Unit 2 : will be installed Oct. 2006

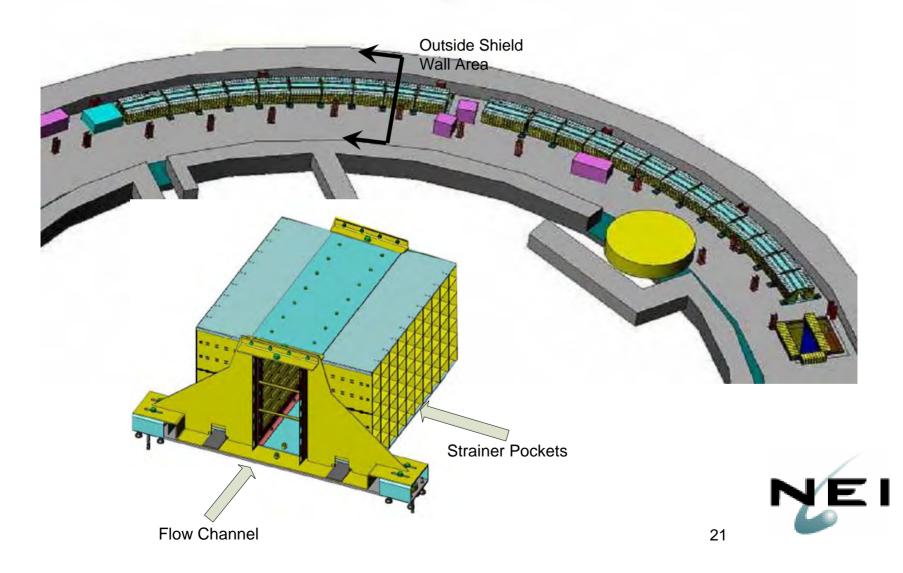
 - Byron Unit 2 : will be installed April 2007
 - Braidwood Unit 1 : will be installed Oct. 2007

Byron & Braidwood Stations

- Additional Hardware Modifications
 - Remove/replace fiberglass insulation within ZOI with Reflective Metal Insulation
 - Install trash racks for large debris interception
 - Replace ECCS throttle valve trim
- Operational Modifications
 - Improved loose debris surveillances
 - EOP changes for increased cool down rates for Small Break LOCA (Bulletin 2003-01)

Byron/Braidwood Replacement Sump Screen

- Salem Units 1 and 2
 - Original sump screen:
 - Design: Wire mesh with 1/8"x1/8" square openings
 - Size: 85 ft²
 - Replacement sump screen
 - Design: "Pocket" design with 1/12" holes
 - Size: 5000 ft² total
 - Screen design complete
 - Chemical effects testing scheduled for Nov. 2006
 - Status:
 - Unit 2 will be installed October 2006
 - Unit 1 will be installed February 2007



Salem Units 1 and 2

- Additional Hardware Modifications:
 - Remove/replace Calcium Silicate and Min K insulation within ZOI with Reflective Metal Insulation
 - Install trash racks for large debris interception
- No equipment modifications anticipated to address Downstream Effects

Salem Replacement Strainers

Closure = Reasonable Assurance of Long Term Cooling

- GSI-191 in context
 - Low risk significant event
 - Significant safety enhancements
- Chemical effects is the challenge
 - No silver bullet
 - Screens sized with margin
 - Working with staff on more realistic treatment
- Closure is recognition that the above actions achieve reasonable assurance

