Management Of Materials Issues

Chris Crane President & Chief Nuclear Officer, Exelon Nuclear

- Coordinates over \$59.5M in industry sponsored materials research & development
- Prioritization, management and resolution of current and future issues
- Accountability to assure plant safety and reliability

Management of Materials Issues

- Background
- Industry Initiative
- Strategic Plan
- Deliverables
- Accomplishments
- Expectations
- Regulatory Process

Background

NEI Executive Committee Resolution

- Fully support industrywide effort to improve management of materials issue
- Self-Assessment of Materials Programs
 - Driven by recent plant events
 - Develop a more proactive process

Backround

Self-Assessment

- Identify barriers or gaps in current materials programs
- Integrate industry programs
 - SG Management (SGMP)
 - PWR Materials Reliability (MRP)
 - BWR Vessel & Internals (BWR VIP)
 - Fuel Reliability Program (FRP)
 - Chemistry, Corrosion and NDE
 - NSSS Owners Groups

Background

- Self-Assessment Conclusions
 - Limited coordination of industry efforts on materials issues
 - Limited ability to enforce implementation of industry guidance
 - No verification of implementation
 - Inadequate participation and support of Issue Programs (IP)
 - NSIAC Initiative warranted

Background

- Self-Assessment Recommendations
 - Create executive-level and technical oversight groups
 - Establish policy on the management of materials issues
 - Use the NEI Initiative Process
 - Expand INPO's role
 - Enhance communications
 - Define regulatory interface

- The objective is to assure safe, reliable and efficient operation of U.S. nuclear power plants in the management of materials issues.
- Each licensee will endorse, support and meet the intent of NEI 03-08, Guideline for the Management of Materials Issues. This initiative was effective January 2, 2004.

Purpose is to provide

- Consistent management process
- Prioritization of materials issues
- Proactive, integrated and coordinated approaches
- Oversight of implementation

Required actions

- Commitment of Executive leadership and technical personnel
- Commitment of funds for materials issues within scope
- Commitment to implement applicable guidance documents

- Approved by NSIAC in May 2003
- Each licensee will meet the intent of NEI 03-08, Guideline for the Management of Materials Issues
- Initiative effective January 2, 2004
 - Includes \$12M for 2004-2005 to fund high priority materials issues in addition to the \$47.5M currently budgeted by Issue Programs for 2005

NEI 03-08 Guideline

- Establishes two standing committees
 - Executive Oversight
 - Technical Advisory
- Establishes policy
- Defines roles, responsibilities and expectations
- Provides for an integrated approach

Policy Commitment

Policy Statement

• "... the industry will ensure that its management of materials degradation and aging is *forward-looking and* coordinated to the maximum extent practical. Additionally, the industry will *continue* to rapidly identify, react and *effectively respond to emerging issues*. The associated work will be managed to emphasize safety and operational risk significance as the first priority, appropriately balancing long term aging management and cost as additional considerations. To that end, as issues are identified and as work is planned, the groups involved in funding, managing and providing program oversight will ensure that the safety and operational risk significance of each issue is fully established prior to final disposition."

Materials Issue Programs Governed by the Initiative

EPRI

- BWRVIP
- MRP
- SGMP
- Fuel Reliability Program (as impacted by materials management strategies)
- Corrosion Research
- Chemistry Control
- NDE

Materials Issue Programs Governed by the Initiative

- NSSS Owners Group Subcommittees
 - Materials
 - Chemistry
 - RPV
 - NDE
 - Steam Generators

Strategic Plan

- Comprehensive, integrated view of materials issues
- Framework for planning, coordinating and directing efforts
- Contains elements for an effective management program

Strategic Plan

- Defines high priority materials issues and short and long term technical gaps
- Used as industry guidance for prioritizing materials issues
- Revision 0 Issued in March
- Revision 1 planned for Early 2005
 - Degradation Matrix and Issue Management Table

DEGRADATION MATRIX

- Lists all materials within scope of the Materials Initiative
- Identifies potential degradation mechanisms for applicable materials
- Information obtained from materials experts, laboratory R&D, and operating experience

Issue Management Tables

- Addresses significance of material degradation on applicable materials
- Defines where materials are used and consequences of failure
- Identifies existing programs/guidance available for effective management
 - Assessment, inspection/evaluation, mitigation, repair/replacement

Deliverables -Implementation Protocol

- General guidance for implementation of IP work products
- Mandatory, Needed & Good Practice implementation categories defined
- Deviations from Mandatory & Needed action will be tracked in Corrective Action Program
- Executive concurrence required for
 - Mandatory & Needed elements
 - Deviations from Mandatory and Needer

Deliverables - Emergent Issue Protocol

- Oversight and Coordination
 - MTAG phone call when emergent issue occurs
 - Lead and support roles defined and communicated
 - IP will lead technical resolution and NRC interface strategy
 - Keep MTAG informed of status and NRC interactions
 - MTAG / MEOG support if needed

Deliverables

- SG Management
 - License Change Package
- MRP Inspection and Evaluation Guidelines
 - RPV head and bottom mounted instrument nozzles
 - Primary system butt welds
- WOG
 - Pressurizer heater sleeves
 - Boric Acid Corrosion Control Guidelines

Deliverables

- BWR VIP
 - Steam Dryers
- Fuel Reliability
 - AOA Guideline Revision 1
- Performance Metrics
- Overall coordination with ASME

Proposed Performance Metrics

- Unexpected materials related NRC generic correspondence
- New materials degradation operating experience
- Lost capacity or unplanned/extended outages due to materials issues
- INPO materials program related AFIs
- Corrective action program effectiveness
- Issue Program products related to Strategic Plan technical gaps

Materials Initiative Funding

- 20 projects approved for \$9.2 million
 - 7 NDE projects for \$3M
 - 5 MRP projects for \$2.4M
 - 3 BWRVIP projects for \$1M
 - 2 Corrosion Research projects for \$600K
 - 1 Fuels Reliability project for \$1.2M
 - 1 SGMP project for \$615K
 - 1 Chemistry Control project for \$350K

Accomplishments

- NEI Initiative
 - NEI 03-08
- Strategic Plan
- Protocols
- Funded projects

Future Activities

- Complete the Issue Management Tables and revision 1 of the Strategic Plan
- Develop industry performance metrics and self assessment guidance
- Monthly MTAG phone calls materials issue oversight & coordination
- Quarterly meetings with the NRC
- Complete self assessment and report results

Expectations for Industry

- Adopt a proactive approach to materials issues
 - Communication of OE with IP / NEI
- Develop an integrated materials plan that reflects industry's Strategic Plan priorities
- Be prepared to fully implement applicable IP recommendations
- Support materials IPs and their need for technical and leadership personnel
- Support funding to address materials issues
- Self assessment of activities

Changes to Expect

- Industry guidance from IPs will have mandatory and needed actions
- Improved communications on materials issues and related interactions with the NRC
- Improved integration/coordination among IPs
- Improved industry performance relative to materials degradation
- Successful transition to a proactive approach for materials issues

Regulatory Process

- Implementation of mandatory and needed actions that fall within the scope of 10 CFR 50
 - Primary system components
 - Subject to NRC inspection
- Performance-based approach
- Areas of Concern
 - Unnecessary duplication
 - Diversion of resources

Conclusion

Actions Taken by Industry

- Proactive, integrated and coordinated
- Focus to assure plant safety and reliability
- Continuous improvement and feedback

Additional Background

ACRONYMS

- AFI Area For Improvement
- AOA Axial Offset Anomaly
- ASME American Society of Mechanical Engineers
- BWR Boiling Water Reactor
- BWR VIP Boiling Water Reactor Vessel & Internals Program
- CFR Code of Federal Regulations
- EPRI Electric Power Research Institute
- FRP Fuel Reliability Program
- **INPO Institute of Nuclear Power Operations**
- IP Issue Program
- NDE Nondestructive Examination

ACRONYMS

- NEI Nuclear Energy Institute
- NSIAC Nuclear Strategic Issues Advisory Committee
- NSSS Nuclear Steam Supply System
- MEOG Materials Executive Oversight Group
- MRP Materials Reliability Program
- MTAG Materials Technical Advisory Group
- OE Operating Experience
- R&D Research and Development
- **RPV Reactor Pressure Vessel**
- SG Steam Generator
- SGMP Steam Generator Management Program
- WOG Westinghouse Owners Group

Materials Executive Oversight Group (MEOG)

- Chris Crane (*Chairman*) - Exelon
- Jim Levine (*Vice-Chairman*) APS
- Garry Randolph AmerenUE
- Joe Sheppard STP
- Bryce Shriver PPL
- Art Stall FPL
- Gary Taylor Entergy
- David Mauldin APS

- Rodney Webring Energy Northwest
- Jim Klapproth GE
- Nick Liparulo West.
- Gary Mignogna AREVA
- Mark Reddemann INPO
- Dave Modeen EPRI
- Alex Marion NEI

Materials Technical Advisory Group (MTAG)

- Chairman David Mauldin APS
- Vice Chairman Bill Eaton -Entergy
- BWRVIP/BWROG Robin Dyle -SNOC
- MRP Mike Robinson Duke
- SGMP Forrest Hundley SNOC
- FRP Charles Turk Entergy
- WOG/CEOG Greg Gerzen Exelon
- BWOG Dave Whitaker Duke
- EPRI NDE Mike Turnbow TVA
- EPRI Chem John Wilson Exelon
- EPRI Corrosion Craig Harrington – TXU

- At Large Members
 - Joe Donahue Progress Energy
 - Dennis Weakland
 FENOC
 - Bob Hardies Constellation
 - Ralph Phelps OPPD
- MTAG Support
 - EPRI Chuck Welty
 - INPO Steve Johnson
 - NEI Jim Riley

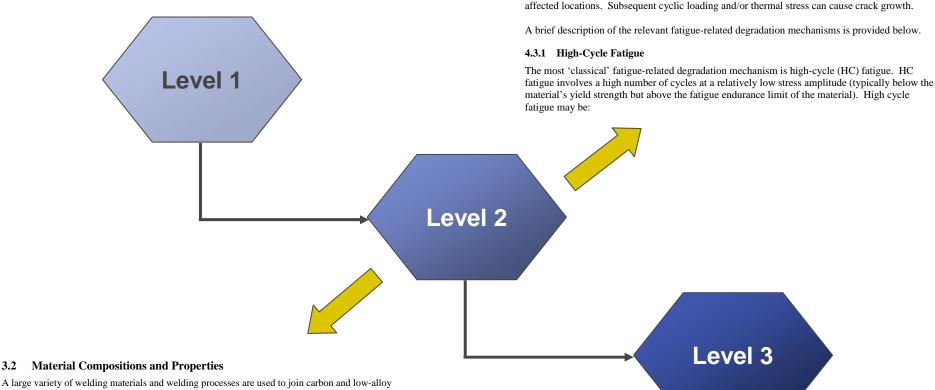
Degradation Matrix

Materials Degradation Matrix

Level 1

		BWR						
PWR Reactor Pressure Vessel	PWR Pressurizer	PWR SG Shell	PWR Reactor Internals	PWR Piping	PWR SG Tubes & Internals	BWR Pressure Vessel	BWR Reactor Internals	BWR Piping

Level 2


PWR	Material	SCC SCC				Corrosion/Wear <u>C & W</u>			Fatigue <u>Fat.</u>		Reduction in Toughness <u>RiT</u>								
Component	Wateria										Aging Irradiation			on					
	¹ Subdivision \rightarrow	IG	IA	TG	LTCP	PW	Wstg	Pit	Wear	FAC	HC	LC/Th	Env	Th	Emb	VS	SR	Th _n	Fl
	<u>C&LAS</u>	? <u>e002</u>	N	? <u>e002</u>	N	? <u>e003</u>	Y e004	N	Ν	Y e005	N	Y <u>e006</u>	Y <u>e007</u>	Y <u>e008</u>	N/A	N/A	N/A	N/A	N/A
PWR Pressurizer	<u>C&LAS</u> <u>Welds</u>	? <u>e002</u>	N	? <u>e002</u>	N	? <u>e003</u>	Y <u>e004</u>	N	N	Y <u>e005</u>	N	Y <u>e006</u>	Y <u>e007</u>	Y <u>e008</u>	N/A	N/A	N/A	N/A	N/A
	<u>Wrought</u> SS	? <u>e012</u>	N	? <u>e012</u>	? <u>e013</u>	? <u>e012</u>	N	N	N	N	N	Y <u>e014</u>	Y <u>e015</u>	N	N/A	N/A	N/A	N/A	N/A
(Including Shell, Surge and Spray	SS Welds & Clad	Y <u>e016</u>	? <u>e017</u>	Y <u>e018</u>	? <u>e013</u>	? <u>e019</u>	N	N	? <u>e020</u>	N	N	? <u>e014</u>	Y <u>e015</u>	Y <u>e022</u>	N/A	N/A	N/A	N/A	N/A
Nozzles, Heater Sleeves and	<u>Wrought</u> Ni Alloys	N	N	N	? <u>e023</u>	Y <u>e023</u>	N	N	N	N	Y <u>e014</u>	Y <u>e014</u>	Y <u>e015</u>	N	N/A	N/A	N/A	N/A	N/A
Sheaths, Instrument Penetrations)	<u>Ni-base</u> <u>Welds &</u> Clad	N	? <u>e024</u>	N	Y <u>e023</u>	Y <u>e025</u>	Ν	N	Ν	Ν	N	Y <u>e014</u>	Y <u>e015</u>	N	N/A	N/A	N/A	N/A	N/A

Level 3

e030 Corrosion-assisted fatigue is a known phenomenon on secondary side (e.g., in the vicinity of girth welds in steam generator shells and in the region of feedwater nozzles) and is not like environmental fatigue described in other areas of this DM. Environmental fatigue research relevant to this specific phenomenon is not ongoing within MRP Fatigue ITG, and is a potential gap.

Materials Degradation Matrix

4.3 Fatigue Degradation Mechanisms and Mitigation Options

Fatigue is the structural deterioration that can occur as the result of repeated stress/strain cycles caused by fluctuating loads or temperatures. After repeated cyclic loading, if sufficient localized micro-structural damage has been accumulated, crack initiation can occur at the most highly

steels, and it is not practical to show typical material compositions and material specifications. Section NB-2431.1 of Section III, Division I of the ASME Code requires that weld materials have tensile strength, ductility and impact properties that match those of either of the base materials being welded, as demonstrated by tests using the selected weld material and the same or similar base materials. Section NB-2432.2 of Section III, Division I of the ASME Code requires that the chemical composition of the welding material be in accordance with an appropriate ASME Code welding specification (in Section II.C of the Code), but leaves the choice of the specific material up to the manufacturer.

3.2

The most common weld processes used to join carbon steel and LAS parts include submerged arc welding, shielded metal arc welding (SMAW), and gas tungsten arc welding (GTAW). Postweld heat treatment is generally required per ASME Code rules after welding of the carbon and low-alloy steels used for reactor coolant system service.

Copyright © 2004 Electric Power Research Institute, Inc. All rights reserved.

4.3 Fatigue Degradation Mechanisms and Mitigation Options

Fatigue is the structural deterioration that can occur as the result of repeated stress/strain cycles caused by fluctuating loads or temperatures. After repeated cyclic loading, if sufficient localized micro-structural damage has been accumulated, crack initiation can occur at the most highly affected locations. Subsequent cyclic loading and/or thermal stress can cause crack growth.

A brief description of the relevant fatigue-related degradation mechanisms is provided below.

4.3.1 High-Cycle Fatigue

The most 'classical' fatigue-related degradation mechanism is high-cycle (HC) fatigue. HC fatigue involves a high number of cycles at a relatively low stress amplitude (typically below the material's yield strength but above the fatigue endurance limit of the material). High cycle fatigue may be:

3.2 Material Compositions and Properties

A large variety of welding materials and welding processes are used to join carbon and low-alloy steels, and it is not practical to show typical material compositions and material specifications. Section NB-2431.1 of Section III, Division I of the ASME Code requires that weld materials have tensile strength, ductility and impact properties that match those of either of the base materials being welded, as demonstrated by tests using the selected weld material and the same or similar base materials. Section NB-2432.2 of Section III, Division I of the ASME Code requires that the chemical composition of the welding material be in accordance with an appropriate ASME Code welding specification (in Section II.C of the Code), but leaves the choice of the specific material up to the manufacturer.

The most common weld processes used to join carbon steel and LAS parts include submerged arc welding, shielded metal arc welding (SMAW), and gas tungsten arc welding (GTAW). Post-weld heat treatment is generally required per ASME Code rules after welding of the carbon and low-alloy steels used for reactor coolant system service.

Issue Management Table

Draft example of <u>BWR</u> component evaluation

Draft BWR Issue Management Table

Equipment	<u>Material</u>	<u>Failure</u> Mechanism	Consequences of Failure	Mitigation	<u>Repair /</u> Replace	<u>I & E</u> Guidance	<u>Gaps</u>	<u>Priority &</u> Basis	Responsible Program(s)
BWR Recirculati on piping	SS (lc and hc), Inconel welds	SCC, fatigue	Leakage, forced outage	Yes, chemical and stress improvement	Yes, replace pipe or weld overlay	Yes, BWRVIP- 75		Low – solution available	BWRVIP, WCC
BWR Vessel	Cs/las, ss clad, welds	IGSCC, IASCC, TGSCC, FIV, Th & Env Fatigue, Emb, Th aging, Fluence	LOCA – loss of asset	Yes – HWC, NMCA	Yes – nozzle repair	Yes – covers embrittleme nt and weld degradation		Low – solution available	BWRVIP
BWR Internals	Ss, cass, cs, welds, Inc	IASCC, IGSCC, FIV, Wear, EF, Emb, Fluence – R&D needed	Core configuration	Yes – some, work needed	Yes – shroud and top-guide, costly – work needed	Yes (interim) – 13 BWRVIP I&E Guidelines – work needed		High – existing and potential unresolved issues	BWRVIP, WCC, FRP, Corrosion Research
Core Shroud	Stainless Steel	IGSCC, IASCC, Reduction in Toughness	This is a function of location. Vertical weld flaws have minor significance unless the intersecting circumferential weld is flawed through-wall. Very flaw	Hydrogen Water Chemistry at moderate levels can protect the shroud at lower levels and some benefit is available at higher levels in some plants. When augmented with Noble Metals, more shroud protect is	The repairs to date have been mechanical clamps that replace some or all of the circumferential welds. This is accomplished by developing high compressive loads on the shroud which	BWRVIP has developed a series of inspection guides that have been combined into one overall document (BWRVIP- 76). This	Fracture toughness decrease with increasing fluence and there is limited data to help the industry understan d long	High priority items for the shroud still exist. Initially was the number one priority. With programs in place for inspection, the needs for	BWRVIP with the Assessment Committee leading

tolerant for	possible due to the	negates the need	document	torm	the shroud	
	need for les			term		
circumferential		for the	includes	issues.	are reduced.	
flaws.	hydrogen due the	circumferential	inspection	Work is		
Significance of	to the catalyst	welds. This	criteria for	underway		
circumferential	effect of the noble	provides	circumferent	to develop		
weld flaws is	metals. Plant-	significant	ial and	additional		
based on	specific	redundancy since	vertical	data prior		
location of the	assessments are	no	welds, and	to the		
weld.	needed to	circumferential	support ring	shrouds		
Limiting	determine the	welds to date	welds, The	reaching		
accident	exact level of	have come near a	criteria also	fluence		
scenario is	protection. Other	360 degree	address both	levels of		
main steam	methods of	through-wall	repaired and	concern.		
line break	protection are	flaw. Repair by	unrepaired	Similarly,		
coupled with	being	welding is very	shrouds	work is		
an earth quake.	investigated/consi	limited in	including	underway		
Even then,	dered such as	prospect due to	repair	to		
shroud	water jet peening	difficulty in	hardware.	properly		
circumferential	etc.	welding on	The	understan		
welds were		highly irradiated	evaluation	d and		
shown to		stainless steels.	criteria exist	characteri		
perform			for all	ze crack		
adequately			locations	growth		
with 90%			and is based	behavior		
through wall			on long	in highly		
flaw, 360° in			standing	irradiated		
circumference.			ASME	stainless		
It is worth			criteria	steels.		
noting that			including			
should a flaw			safety			
develop for the			factors.			
full			Evaluation			
circumference,			methods			
the shroud			also account			
would lift			for the			
enough to			changes in			
"burp" itself			crack			
ourp itsen			CIACK	I	I I	

and provide	growth rate
operators with	and fracture
an indication	toughness a
of a problem	irradiation
and allow safe	damage
shutdown.	increases.
	The methods
	also allow
	for crack
	growth to be
	adjusted
	based on
	water
	chemistry,
	residual
	stresses,
	changing K
	values, etc.