

A DOMAIN DECOMPOSITION APPROACH FOR LARGE-SCALE
SIMULATIONS OF FLOW PROCESSES IN HYDRATE-BEARING

GEOLOGIC MEDIA

Keni Zhang*, George J. Moridis, Yu-Shu Wu, and Karsten Pruess
Earth Sciences Division

Lawrence Berkeley National Laboratory
1 Cyclotron RD, Berkeley, CA 94720, USA

ABSTRACT
Simulation of the system behavior of hydrate-bearing geologic media involves solving fully
coupled mass- and heat-balance equations. In this study, we develop a domain decomposition
approach for large-scale gas hydrate simulations with coarse-granularity parallel computation. This
approach partitions a simulation domain into small subdomains. The full model domain, consisting
of discrete subdomains, is still simulated simultaneously by using multiple processes/processors.
Each processor is dedicated to following tasks of the partitioned subdomain: updating
thermophysical properties, assembling mass- and energy-balance equations, solving linear
equation systems, and performing various other local computations. The linearized equation
systems are solved in parallel with a parallel linear solver, using an efficient interprocess
communication scheme. This new domain decomposition approach has been implemented into the
TOUGH+HYDRATE code and has demonstrated excellent speedup and good scalability. In this
paper, we will demonstrate applications for the new approach in simulating field-scale models for
gas production from gas-hydrate deposits.

 Keywords: gas hydrate, reservoir simulation, domain decomposition, parallel computing

INTRODUCTION
Mathematical models (or numerical models) are
effective tools for understanding the behavior of
gas hydrate systems in nature or in the laboratory.
Numerical modeling can specifically play an
important role in evaluating schemes for gas
production from different types of hydrate
accumulations. Simulation of gas hydrate reservoir
production involves solving a set of highly
nonlinear, coupled fluid-, heat-, and mass-
transport equations, combined with the potential
for formation and/or disappearance of multiple
solid phases in a system typical of common natural
hydrate deposits (either in permafrost or in deep
ocean sediments) within complex geological
media—at any scale (from laboratory to reservoir).
Also, the physical and chemical properties of the
geologic media containing gas hydrate are highly

dependent on the amount of gas hydrate present in
the system at any given time. In most cases,
hydrate dissociation for gas production shows very
strong nonlinearity. In general, modeling of such a
complex system of gas hydrate dissociation and
migration processes requires fine spatial and
temporal discretization, and therefore presents a
significant computational challenge.

There are a limited number of numerical codes for
simulating gas production from hydrate systems.
At present, relatively mature simulators may
include the MH-21 hydrate reservoir simulator,
STOMP-HYD, CMG STARS, and
TOUGH+HYDRATE. Numerous groups have
developed their own simulators for use on specific
examples and classes of laboratory through field
hydrate-related experiments and characterizations.

Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008),
Vancouver, British Columbia, CANADA, July 6-10, 2008.

One of the most widely used gas hydrate
simulators is TOUGH+HYDRATE [1], a module
of the TOUGH+ code. TOUGH+ is the successor
to the TOUGH2 suite of codes [2]. Moridis et al.
[3] developed EOSHYDR, a TOUGH2 module for
the simulation of dissociating simple methane
hydrates under equilibrium conditions in both
permafrost and marine accumulations. In 2003,
EOSHYDR was enhanced to EOSHYDR2 for the
simulation of binary hydrates reacting under both
equilibrium and kinetic conditions. EOSHYDR2
was further improved to the current version of
TOUGH+HYDRATE [1].

The TOUGH+ HYDRATE simulator has been
successfully used for the simulation of gas
production from hydrates under a variety of
geologic and thermodynamic conditions, and
involving various production strategies [4, 5, 6, 7].
The current version of the code can simulate both
equilibrium and kinetic models of hydrate
formation and dissociation. The model accounts
for heat and up to four mass components (water,
CH4, hydrate, and water-soluble inhibitors such as
salts or alcohols). These are partitioned among
four possible phases (gas phase, liquid phase, ice
phase, and hydrate phase). Hydrate dissociation or
formation, phase changes, and the corresponding
thermal effects are fully described, as are the
effects of inhibitors. TOUGH+ HYDRATE can
describe all possible hydrate dissociation
mechanisms—depressurization, thermal
stimulation, salting-out effects, and inhibitor-
induced effects. Because of the complexity of
subsurface flow processes and phase changes,
most simulations for gas production from hydrate
accumulations are limited to systems of up to
several thousand gridblocks. For field scale
applications or refined experimental models,
however, hundred thousands and even millions of
gridblocks may be needed to represent geologic
heterogeneities, multiphase flow, phase behavior,
and, multicomponent flow structures on different
scales.

In this study, we discuss the development of a
parallel numerical modeling approach for large-
scale simulations of flow processes in hydrate-
bearing geologic media. This new development is
based on the current version of
TOUGH+HYDRATE code. Parallelization of the
TOUGH+ framework uses a similar approach to
that used in the development of TOUGH2-MP, the

parallel version of TOUGH2 [8,9]. A domain
decomposition approach and MPI (Message
Passing Interface) are used for the parallel
implementation. In this approach, the simulation
domain, defined by an unstructured grid, is
partitioned into a number of subdomains using a
partitioning algorithm from the METIS software
package [10]. Each subdomain is handled by one
processor for updating thermophysical properties,
assembling mass- and energy-balance equations,
solving linear equation systems, and performing
other local computations. Local linear-equation
systems are solved in parallel by multiple
processes with the Aztec linear solver package
[11].

The efficiency and scalability of the developed
parallel scheme are demonstrated by examples of
various applications. These examples indicate that
the parallel simulator enables much larger
problems to be solved, as well as significantly
improving modeling capability in terms of
simulation time and problem size. The code also
demonstrates excellent scalability. In this paper,
we present a high-resolution simulation of gas
production from a Class 3 hydrate accumulation.

MATHEMATICAL MODELS
It is well known that under suitable conditions of
low temperature and high pressure, a hydrocarbon
gas will react with water to form hydrates
following the reaction:

OHNXOHNX HH 22 •=+ (1)

where NH is the hydration number. For CH4-
hydrate, X represents methane. The hydrate
number varies between 5.75 (for complete
hydration) and 7.2 [12] for CH4-hydrate.
According to the thermodynamic condition of a
system, the amount of gas hydrate created or gas
released can be determined from the reaction
represented by Equation (1). Natural hydrates may
consist of multiple gases. TOUGH+HYDRATE
simulates the formation of a composite hydrate
according to [1]:

OHNNGCH

OHNGOHNCH

GGmmGm

GGmm

24

224

)(

][][

χχχχ
χχ

+++
=+++

 (2)

where G is the second hydrate-forming gas, N is
the hydration number, is the mole fraction in the
binary hydrate, and the subscripts m and G denote
methane and the second gas, respectively.
Obviously, m + G =1. The gas G may be CO2,
H2S, N2, or another gaseous alkane.

A hydrate-bearing geologic system can be fully
described by mass-balance equations and an
energy-balance equation. The mass components
are partitioned among different phases. The
parallel simulation solves the same equation
systems as those solved by the original
TOUGH+HYDRATE. The basic mass- and
energy-balance equations solved can be written in
the general integrated form [2]:

∫∫∫ +Γ•=
Γ nnn V

nnn

V

dVqddV
dt

d κκκ nFM (3)

The integration is over an arbitrary subdomain Vn
of the flow system under study, which is bounded
by the closed surface n. The quantity M appearing
in the accumulation term (left-hand side)
represents mass or energy per volume, with k= 1,
..., NK the mass components, and k= NK + 1 the
heat “component.” F denotes mass or heat flux, q
denotes sinks and sources, and n is a normal
vector on surface element dn, pointing inward
into Vn.

In hydrate simulation, the components of hydrate,
water, CH4, water-soluble inhibitor (salt or organic
substance) and the flow of heat are considered.
These components can assume any of the
following four phases: solid hydrate, aqueous,
gaseous, and solid ice. In Equation (3), the mass
accumulation term is evaluated by summing over
all fluid phases for each mass component. The
advective flux for the mass flux term in the
equation is computed with a multiphase version of
Darcy’s law; the diffusive flux is computed by
Fick’s Law. Readers may refer to [1] for detailed
discussions of the evaluation of mass and flux
terms in the code.

Time and space discretization for Equation (3)
results in a set of coupled nonlinear equations,
which can be written in a residual form [2]:

0})({

)()()(

1,1

11

=+∆
−−=

++

++

∑ t
nn

t
nm

m
nm

n

t
n

t
n

t
n

qVxFA
V

t

xMxMxR

κκ

κκκ

 (4)

where the vector xt consists of primary variables at

time t, κ
nR is the residual of component κ for

block n, M denotes mass or thermal energy per
unit volume for a component, Vn is the volume of
the block n, q denotes sinks and sources of mass or
energy, t∆ denotes he current time step size, t + 1
denotes the current time, Anm is the interface area
between blocks n and m, and Fnm is the flow
between them. Equation (4) is solved by
Newton/Raphson iteration, leading to

)x(R)xx(
x

R
p,i

1t,
np,i1p,i

pi i

1t,
n +κ

+

+κ

=−
∂

∂−∑ (5)

where xi,p represents the value of ith primary
variable at the pth iteration step.

To solve Equation (5), a set of primary variables
for each gridblock/elements will be obtained at
each iteration/time step. The thermophysical
properties, named secondary variables, are
calculated from the latest updated primary
variables obtained by solving Equation (5) at the
current iteration step. The secondary variables are
then used to assemble the mass- and energy-
balance equations for all volume elements for next
iteration/time-step calculation.

PARALLELIZATION SCHEMES
Domain decomposition methods (DDM) are used
as a divide-and-conquer strategy for solving large
or time-consuming problems. The idea behind this
approach is to divide the computational domain
into a series of subdomains. Through the local
solutions on the subdomains, a global solution is
formed. Solutions for subdomains can be sought
simultaneously. Therefore, this approach is
suitable for parallel computations as long as the
computational work can be evenly distributed.

We use DDM for the TOUGH+HYDRATE
parallelization. The parallel implementation for
solving Equation (3) first partitions the simulation
domain. After domain decomposition,
computations (including assembling the Jacobian

matrix, solving linear equations, and updating
thermophysical properties) are done at local
subdomain level by different processors. All
processors involved in solving Equation (3) will
solve similar equation systems for different
subdomains. This technique guarantees that large
sections of sequential TOUGH+HYDRATE code
are reused. Each processor solves only part of the
entire modeling domain; however, the best
convergence performance of Newton iteration can
only be achieved when the local equation systems
are solved simultaneously as part of the whole
system. Doing so therefore requires a parallel
linear solver that facilitates intensive and
expensive communication among neighboring
processors.

In addition, during the simulation, communication
between processors is needed for updating border
thermophysical properties, collecting extreme
values, conditioning across the whole simulation
domain, and input/output. Extensive global
communication may lead to poor scalability of the
parallel code. Therefore, efficiency of the parallel
code depends on code efficiency in both
computation and communication. Equation (3)
shows that only the flow term needs information
from neighboring gridblocks for mass and energy
conservation computation. The mass accumulation
terms and sink or source terms are element-by-
element and independent of neighboring domains.
Computations related to the two terms do not
require communication between neighboring
processors. Because we use similar computation
schemes in the parallel code and the serial code, as
long as the computational work is evenly
distributed, parallel speedup of the code is
predominantly determined by communication
efficiency.

Domain partitioning
Developing an efficient and effective method for
partitioning unstructured grid domains is a first
and critical step for a successful parallel scheme.
To obtain optimal performance, the partitioning
algorithm should ideally take the following five
issues into account: (1) balancing computational
load; (2) minimizing the average volume of
interdomain communication; (3) balancing
communication volume load; (4) minimizing the
average number of neighboring processors; and (5)
balancing the number of neighboring processors
across all domains. To find an optimal trade-off

among these five issues, computer system
characteristics, such as floating-point performance,
bandwidth and the latency of the communication
subsystem, all must be taken into account.
Commonly used algorithms and software for
partitioning large grids do not generally take all
these five issues into account. The typical current
practice finds a trade-off between computational
load balancing and maintaining low total
communications volume, even though the result
may not be theoretically optimal.

In a TOUGH+HYDRATE simulation, a model
domain is represented by a set of three-
dimensional gridblocks (or elements) and the
interfaces between any two gridblocks are
represented by connections. The entire connection
system of gridblocks is treated as an unstructured
grid. We utilize one of the three partitioning
algorithms provided by the METIS package [10]
for partitioning the grid domain. The three
algorithms have different objectives: for
minimizing the number of edges that straddle
different partitions and for minimizing the total
communication volume. METIS provides an
effective approach for unstructured grid
partitioning for large-scale simulations.

Assembly of Jacobian matrix
In the TOUGH+HYDRATE formulation,
discretization of mass and energy conservation
equations in space and time using the integral
finite-difference (IFD) method leads to a set of
strongly coupled nonlinear algebraic equations,
solved by the Newtonian method. The resulting
system of linear equations is then solved using a
linear solver.

The Jacobian matrix needs to be recalculated at
each Newton iteration step, and thus the
computational effort may be considerable for a
large-scale simulation. In the parallel code, the
assembly of the linear equation system is shared
by all the processors, with each processor
responsible for computing the rows of the Jacobian
matrix that correspond to the block assigned to the
processor. Computation of the elements in the
Jacobian matrix is performed in two parts.

• Computations related to individual blocks
(mass accumulation, and source/sink
terms). Such calculations are carried out
using the information stored on the current

processor; no communications with other
processors are needed.

• All computations related to the
connections or flow terms. Calculation of
flow terms for gridblocks located at the
border of a subdomain requires
information from its neighboring
subdomain, which in turn requires
communication with neighboring
processors. Before performing these
computations, an exchange of relevant
primary variables is necessary.

Solving of linear equations
The linearized equation system arising after each
Newton step is solved using a parallel iterative
linear solver from the Aztec package [11]. This
package includes several different solvers and
preconditioners, including conjugate gradient,
restarted generalized minimal residual, conjugate
gradient squared, transposed-free quasi-minimal
residual, and bi-conjugate gradient with
stabilization methods. The work of solving the
global linearized equation is shared by all
processors, with each processor responsible for
performing calculations within its own portion of
the partitioned subdomain.

During a simulation, time steps are automatically
adjusted (increased or reduced) depending on the
convergence rate. In the parallel
TOUGH+HYDRATE code, the time-step size is
calculated by the master processor, after necessary
data are collected from all other processors (since
the convergence rates may be different in different
processors). Only when all processors reach
stopping criteria will the algorithm proceed to the
next time step. Periodic output of simulation
results is handled by the master processor, which
gathers data from each domain and compiles the
system-wide output files.

Updating thermophysical properties

The thermophysical properties of the system
(secondary variables) that are needed for
assembling the governing mass- and energy-
balance equations are calculated at the end of each
Newton iteration step, based on the updated set of
primary parameters. At the same time, phase
conditions are evaluated for all gridblocks, the
appearance or disappearance of phases are
recognized, and primary variables are switched

and properly re-initialized in response to any
change of phase. All these tasks must be done
gridblock by gridblock across the whole
simulation domain. The computational work for
these tasks is readily parallelized, as each
processor handles its corresponding subdomain.
Some overlapping computations are needed for
gridblocks that lie at subdomain borders, although
this avoids additional communication for
secondary variables.

Communication among processors
The exchange of data among processors working
on connected gridblocks that span different
domains is an essential component of the parallel
algorithm. Moreover, global communication is
also required to compute norms of vectors,
contributed by all processors, for checking the
convergence. In addition to the communication
occurring inside the linear solver routine to solve
the linear equation system, communication among
neighboring processors is necessary to update
primary variables. A communications subroutine
is used to manage data exchange among
processors. When this subroutine is called by a
given processor, the code performs an exchange of
vector elements of the gridblocks (at that
processor’s subdomain border) with the connected
gridblocks within the adjacent domains. During
time stepping or Newton iteration, exchange of
external variables is required for the vectors
containing the primary variables. More discussion
on the prototype scheme used for data exchange is
given in Elmroth et al. [13]. In addition, we have
further improved the schemes by introducing
nonblocking communication to the Aztec package
and Newton iterations [14].

All data input and output are carried out through
the master processor. For extremely large-scale
problems, outputs may be performed by all
processors involved in the computation, with each
processor outputting its own portion of the
simulation results. This approach can avoid
excessive communication during data output
intervals. For the time series outputs, a
time/memory trade-off scheme is used to avoid
heavy communication. This scheme stores time-
series outputs in memory for a certain number of
time steps (for example, 1,000 time steps); then
the outputs are all sent simultaneously to the
master processor and written out. This method is

extremely efficient for high-latency computer
systems.

In this parallel approach, the most time-consuming
computation work (assembling the Jacobian
matrix, updating thermophysical parameters,
solving the linear equation systems, and
computing chemical reactions) is distributed
among all processors. The memory requirements
(relative to the size of the grid and the number of
coupled equations) are also distributed between
multiple processors. Distributing both computing
and memory requirements is essential for solving
large-scale field problems and obtaining better
parallel simulation performance.

APPLICATION EXAMPLES
Performance of the parallel simulator is
investigated through two examples. The first
example is adopted from an example in [1]. We
use this first example to validate the parallel code
against the existing serial TOUGH+HYDRATE.
Parallel performance of the simulator is then
demonstrated through comparison with
performance of the serial version of the code. The
second example demonstrates the application of
the parallel code to a large-scale, high-resolution
simulation of gas production from a Class 3
hydrate accumulation.

Equilibrium hydrate dissociation in a 2D
system
The first example demonstrates a two-dimensional
simulation for gas production from an areal
hydrate-bearing formation. The 2D domain
consists of a square system with a side of 50 m and
a formation thickness of 10 m. The simulation
domain is considered to be one quarter of a larger
square system with a production well located at its
center. Because of symmetry, it is sufficient to
simulate one quarter of the large square domain. In
the simulation domain, the well is located at one
domain corner. The simulation domain is
discretized into 2,500 gridblocks with 4,900
connections. Each gridblock has a size of 1×1 m.
The four sides, top, and bottom of the domain are
all treated as no flow boundaries. By ignoring heat
contribution from the boundaries, this simulation
provides the worst-case scenario of gas production
from such a hydrate accumulation.

The porous formation has a porosity = 0.3 and a
permeability of 2.96×10-13m2. In the presence of

the ice and hydrate solid phases, the critical mobile
porosity (below which the porous medium
becomes impermeable) is 0.05, and the porosity
reduction exponent is 3. A pore compressibility of
10-8 1/Pa and a thermal conductivity of 3.1
W/m/oK are assigned to the porous medium. In
hydrate simulation, evolution of solid phases of
lower density (such as ice and hydrate) can lead to
extraordinarily high pressures, because the
aqueous phase disappears if pore compressibility
is small.

The hydrate properties for this simulation,
including thermal conductivity, specific heat and
density of the CH4 hydrate, are from Sloan [12],
and are constants, because no information is
available on their dependence on temperature
and/or pressure. The simulator assumes that the
constant input density of the CH4 hydrate is that
at the quadruple point, and the hydrate density in
the simulations is internally adjusted by assuming
that its compressibility and thermal expansivity are
the same as those of ice. No inhibitor is used, and
only equilibrium dissociation is considered in this
example.

In this deposit, water, gas, and hydrate are initially
at equilibrium, and the pressure is the hydration
pressure corresponding to T = 12.5oC. The initial
gas-, aqueous-, and hydrate-phase saturations are
SG = 0.1, SA = 0.3 and SH = 0.6, respectively.
Fluids are withdrawn at a mass flow rate of Q =
0.1 kg/s through the production well, and are
distributed in the production stream according to
their mobilities. The fluid withdrawal causes a
pressure decline that leads to the depressurization-
induced release of CH4. The production flow rate
remains constant, and is certain to lead to
temperature decline and ice appearance because of
the endothermic nature of dissociation.

Simulations were conducted on a 10-node Linux
cluster, with each node equipped with two INTEL
Xeon 3.60 GHz CPUs. The simulation was run for
100 days. Both the serial and parallel simulators
are used for the simulation. Figure 1 shows the
cumulative volume of CH4 released from
dissociation in the domain in the first 100 days of
production. The results obtained with different
number of processors are almost identical. During
the simulation period, the increase of gas
production rate was observed with a rate around
2,000 ST m3 per day at the beginning to 6,000

STm3 per day at the end. This increasing rate may
be caused by the fact that at the beginning, only
“free” gas can be produced, and later both free gas
and gas from surrounding hydrate dissociation are
released. The gas release rate is expected to
change at later times, when exhaustion of the free
gas and hydrate resources in the reservoir will
inevitably lead to a worse production performance.
Figure 2 shows simulated distribution of gas-
hydrate saturation at 100 days by parallel
simulator. By comparing to the corresponding
result from the serial simulator, we observe that
the results are not obviously different. The figure
indicates severe hydrate dissociation happened
within a range of 16 m. Outside of this range, we
find a hydrate saturation of 0.4–0.45, which is
around 2/3 of the initial gas hydrate saturation.

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

0.0 20.0 40.0 60.0 80.0 100.0
Time (days)

C
u

m
ul

at
iv

e
C

H4

R
el

ea
se

d
 (

m
3)

1 PE

2 PEs

4 PEs
8 PEs

Figure 1. Simulation results of cumulative volume
of CH4 released from dissociation using different
numbers of processors. The 1-processor case was
run with the serial code; other cases were run with

the parallel simulator.

Number of
processor

1* 2 4 8 14

Total time for
the simulation

(s)

148 104 36 24 19

Total time
steps

195 232 156 194 225

*run by the serial code
Table 1. Total time and Newton steps for the

simulation with different number of processors

Table 1 shows performance of the parallel code
compared to the serial code for solving this
problem. The parallel simulator performs well for
even such a small problem. Total execution time
drops from 148 seconds using 1 processor to 19
seconds using 14 processors. Time reduction is

thus quite significant, considering the small size of
the problem.
The simulator uses an automatic adjustment of
time-step size based on the convergence behavior
of Newton iterations: time-step size will increase
for fast convergence and decrease for slow
convergence. Note (Table 1) that the total time
steps are different with different numbers of
processors. In general, when a subdomain is too
small (i.e., too few gridblocks), more time steps
are needed for the same length simulation. The
total number of time steps for the simulation may
also be influenced by the domain decomposition
method. We notice that the simulation needs 232
time steps when using 2 processors with a default
K-way domain partitioning method [10]. If the
VK-way or a recursive method is used, total time
steps and execution time will be different. The
VK-way needs 180 time steps over 81 seconds,
and the recursive method needs 216 time steps
over 98 seconds to finish the run. Total time steps
needed for the simulation may also be influenced
by selection of linear solver, preconditioner, or
other options for solving the linear equations. This
indicates that a careful selection of different
options for domain decomposition or solving
linear equations may improve the code
performance.

X (m)

Y
(m

)

0 10 20 30 40 50
0

10

20

30

40

50

0.39
0.36
0.33
0.3
0.27
0.24
0.21
0.18
0.15
0.12
0.09
0.06
0.03

Shyd

Hydrate Saturation

Figure 2. Hydrate saturation distribution in the

reservoir at time =100 days

Gas Production from a Class 3 Hydrate
Accumulation
The geologic system of this example is based on
the Tigershark deposit [15], located in the

Alaminos Canyon Block 818 of the Gulf of
Mexico. At this location, there is an 18.25 m thick
sandy HBL (hydrate-bearing layer) with a porosity
of about 0.30 and Darcy-range intrinsic
permeability, at a location where the water depth is
about 2,750 m. Initial estimates of gas hydrate
saturation derived from geophysical methods
indicated 0.6 < SH0 < 0.8. Preliminary calculations
indicated that the base of the gas hydrate stability
zone at this location is located at or slightly below
the base of the HBL.

The properties and conditions pertaining to the
reference geologic system can be found in Moridis
et al. [16]. The system was conceptualized as a
Class 3 deposit, for which accumulations are
composed of a single zone, the HBL, and are
characterized by the absence of an underlying zone
of mobile fluids [17]. The system has a 30 m thick
impermeable upper boundary, an 18.25 m thick
HBL, and a 45 m thick impermeable lower
boundary (Figure 3). The horizontal well system
used in this study has an area of 1000 m×1000 m.
Because of symmetry involving adjacent wells,
no-flow (of fluids and heat) boundaries are located
at x = 0 and x = 500 m, thus necessitating
simulation of only half of the domain. In this case,
the only horizontal well we considered is at
Location WT (Figure 3), which has a radius rw =
0.1 m.

The 2D domain in Figure 3 was discretized into
200×107 = 21,400 gridblocks, of which 21,200
were active (the remaining being boundary cells).
The vicinity of the wellbore uses a very fine
discretization along the x direction with x =< 7
m. The uppermost and lowermost layers
correspond to constant-temperature no-flow
boundaries, whereas the layers corresponding to
the top and bottom confining layers are
impermeable, but allow heat exchange between the
deposit and its surroundings. The HBL was
subdivided into segments of z = 0.25 m each
along the z-direction. For the initial conditions, the
pressures in the oceanic subsurface were assumed
to follow a hydrostatic distribution. The initial
temperature distribution was estimated by using
the known temperature at the mud line (reported as
5oC) and the local geothermal gradient (dT/dz =
0.03464 K/m). Gas is produced by placing a
horizontal well at the top of the HBL (location
WT) in which a constant pressure PW = 3 MPa was
maintained until the exhaustion of the hydrate.

Detailed discussion of the problem setup was
presented in Moridis et al. [16].

Underburden Hu

Figure 3. Geometry and configuration of Example

2. (Modified from [16])

To investigate the parallel simulator’s
performance, both parallel and serial version of
TOUGH+HYDRATE were run on a cluster
equipped with Intel Woodcrest 2.66 GHz dual-
core processors. Figure 4 shows speedup of the
parallel code for the first 300-day simulation. The
speedup was calculated by comparing to the serial
code performance, which was assumed to be 1.0.
Total time needed for the simulation using one
processor is 29,100 seconds with the serial code,
using 32 processors with the parallel code, reduced
the time to 1,366 seconds. In general, the parallel
performance is good. Super liner speedup
phenomenon can be observed for doubling
processor number from 8 to 16 and from 16 to 32,
by reducing simulation run time by more than half.
Total time steps for running the 300-day
simulation with different numbers of processors
are in a range of less than 5% difference (around
860 time steps). All simulation runs use the same
domain partitioning algorithm and linear solver
options. The scalability of the code is good for the
current problem up to 32 processors (without
further tests with more processors, due to the
limitation on available processors in that cluster).
We have tested the code for another example with
one-half million gridblocks; speedup can be seen
on as many as several hundred processors.

0

5

10

15

20

25

0 5 10 15 20 25 30 35
Processor number

S
pe

ed
up

Figure 4. Speedup of the parallel simulation

compared to serial code performance

X (m)

Z
(m

)

0 100 200 300 400 500
-50

-48

-46

-44

-42

-40

-38

-36

-34

-32

-30
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

SH

Figure 5. Simulated hydrate saturations at

time=300 days

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

0 500 1000 1500 2000 2500 3000

Time (days)

 G
as

 P
ro

d
u

ct
io

n
 (

S
T

 m
3 /s

)

 Figure 6. Evaluation of gas production rate from
the HBL through the constant pressure well

Figures 5 shows simulated hydrate saturation SH at
time=300 days. The figure indicates smooth
saturation gradients and the evolution of the two
horizontal interfaces along the top and bottom
boundary of the HBL that are typical of
depressurization. Figure 6, showing evaluations of
gas production rate from the well (WT) with
constant pressure, indicates a relatively high initial
production increasing to maximum rate at about t
= 450 days, from which it then rapidly declines.

These results are identical to results obtained from
the serial code simulation.

CONCLUSIONS
A domain decomposition parallel simulation
approach for large-scale modeling studies of flow
processes in hydrate-bearing geologic media has
been developed and implemented into the current
version of the TOUGH+HYDRATE simulator.
The developed parallel simulator is a
multidimensional, fully implicit model that solves
large, sparse linear systems arising from
discretization of the partial differential equations
for mass and energy balance in the porous and
fractured media of hydrate-bearing formations.
The simulator retains all the process-modeling
capabilities, input/output setup, error handling, and
other features of the original
TOUGH+HYDRATE, guaranteeing robustness of
the parallel simulator.

The developed parallel simulator is shown to be
computationally efficient. The efficiency and
scalability of the code were demonstrated by field-
scale examples, which show that gas production
from different hydrate-bearing formation with
different production schemes can be effectively
simulated using the parallel simulator. It is
possible to save more than 90% simulation time
for a middle size model by running the code on a
typical cluster with a couple dozen processors. The
new simulator provides a powerful tool with which
to tackle larger-scale, more complex problems
than can be solved currently by sequential codes.
The parallel simulator will enhance modeling
capacity in terms of model size and simulation
time by 1–3 orders of magnitude.

ACKNOWLEDGMENTS
The authors would like to thank Matthew Reagan
and Dan Hawkes for their review of this paper.
This work was supported by the Assistant
Secretary for Fossil Energy, Office of Natural Gas
and Petroleum Technology, through the National
Energy Technology Laboratory, under the U.S.
Department of Energy, Contract No. DE-AC02-
05CH11231.

REFERENCES
 [1] Moridis, G.J., Kowalsky, M.B., Pruess, K.,
TOUGH-Fx/HYDRATE v1.0 User’s Manual: A
Code for the Simulation of System Behavior in
Hydrate-Bearing Geologic Media, Report LBNL-

3185, Lawrence Berkeley National Laboratory,
Berkeley, CA, 2005.
[2] Pruess, K, Oldenburg, C. and Moridis, G.,
TOUGH2 User’s Guide, V2., Lawrence Berkeley
National Laboratory Report LBNL-43134,
Berkeley, CA, 1999.
[3] Moridis, G.J., Apps, J., Pruess, K., and Myer
L., EOSHYDR: A TOUGH2 Module for CH4-
Hydrate Release and Flow In the Subsurface,
Report LBNL-42386, Lawrence Berkeley
Laboratory, Berkeley, CA, 1998.
[4] Moridis, G.J., Numerical studies of gas
production from methane hydrates; Society of
Petroleum Engineers Journal, 2003, 32 (8), 359–
370.
[5] Moridis, G.J. and Collett, T., Gas Production
from Class 1 Hydrate Accumulations, in Recent
Advances in the Study of Gas Hydrates, C. Taylor
and J. Qwan, Editors, Kluwer Academic/Plenum
Publishers (Section I, Chapter 6, pp. 75–88), 2004.
[6] Moridis, G.J., Reagan, M.T., Kim, S.J., Seol,
Y., and Zhang, K., Evaluation of the gas
production potential of marine hydrate deposits in
the Ulleung Basin of the Korean East Sea, SPE
118859, 2007 SPE Asia Pacific Oil & Gas
Conference and Exhibition held in Jakarta,
Indonesia, 30 October–1 November 2007.
[7] Reagan, M.T., Moridis, G.J., Zhang, K.,
Sensitivity analysis of gas production from Class 2
and Class 3 hydrate deposits, OTC 19554, 2008
Offshore Technology Conference, Houston, Texas,
U.S.A., 5–8 May 2008.
[8] Zhang, K., Wu, Y.S., Ding, C., Pruess, K., and
Elmroth, E., Parallel computing techniques for
large-scale reservoir simulation of multi-
component and multiphase fluid flow, Paper SPE
66343, Proceedings of the 2001 SPE Reservoir
Simulation Symposium, Houston, Texas, 2001.
[9] Wu, Y.S., Zhang, K., Ding, C., Pruess, K.,
Elmroth, E., and Bodvarsson, G.S., An efficient
parallel-computing scheme for modeling
nonisothermal multiphase flow and
multicomponent transport in porous and fractured
media, Advances In Water Resources, 2002, 25,
243–261.
[10] Karypsis, G. and Kumar, V., METIS: A
Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices, V4.0,
Technical Report, Department of Computer
Science, University of Minnesota, 1998.
[11] Tuminaro, R.S., Heroux, M., Hutchinson,
S.A. and Shadid, J.N., Official Aztec User’s Guide,

Ver 2.1, Massively Parallel Computing Research
Laboratory, Sandia National Laboratories,
Albuquerque, NM, 1999.
[12] Sloan, E.D., Clathrate Hydrates of Nautral
Gases. Marcel Decker, Inc., New York, NY, 1998.
[13] Elmroth, E., Ding, C., and Wu, Y.S., High
performance computations for large-scale
simulations of subsurface multiphase fluid and
heat flow, The Journal of Supercomputing, 2001,
18(3), 233–256.
[14] Zhang, K. and Wu, Y.S., Enhancing
scalability and efficiency of the TOUGH_MP for
Linux clusters, Proceedings of TOUGH
Symposium 2006, Berkeley, CA, 2006.
[15] Smith, S., Boswell, R., Collett, T., Lee, M.,
Jones, E., Alaminos Canyon Block 818: A
documented example of gas hydrate saturated
sand in the Gulf of Mexico, Fire in the Ice, NETL
Methane Hydrates R&D Program Newsletter, Fall
2006.
[16] Moridis, G.J., Reagan, M.T., and Zhang, K.,
On the performance of Class 2 and Class 3
hydrate deposits during co-production with
conventional gas, OTC 19435, 2008 Offshore
Technology Conference, Houston, Texas, U.S.A.,
5–8 May, 2008
[17] Moridis, G.J., and Collett, T.S., Strategies for
gas production from hydrate accumulations under
various geologic conditions, Report LBNL-52568,
Lawrence Berkeley National Laboratory,
Berkeley, CA, 2003.

