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ABSTRACT 
Simulation of the system behavior of hydrate-bearing geologic media involves solving fully 
coupled mass- and heat-balance equations. In this study, we develop a domain decomposition 
approach for large-scale gas hydrate simulations with coarse-granularity parallel computation. This 
approach partitions a simulation domain into small subdomains. The full model domain, consisting 
of discrete subdomains, is still simulated simultaneously by using multiple processes/processors. 
Each processor is dedicated to following tasks of the partitioned subdomain: updating 
thermophysical properties, assembling mass- and energy-balance equations, solving linear 
equation systems, and performing various other local computations. The linearized equation 
systems are solved in parallel with a parallel linear solver, using an efficient interprocess 
communication scheme. This new domain decomposition approach has been implemented into the 
TOUGH+HYDRATE code and has demonstrated excellent speedup and good scalability. In this 
paper, we will demonstrate applications for the new approach in simulating field-scale models for 
gas production from gas-hydrate deposits.  
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INTRODUCTION 
Mathematical models (or numerical models) are 
effective tools for understanding the behavior of 
gas hydrate systems in nature or in the laboratory. 
Numerical modeling can specifically play an 
important role in evaluating schemes for gas 
production from different types of hydrate 
accumulations. Simulation of gas hydrate reservoir 
production involves solving a set of highly 
nonlinear, coupled fluid-, heat-, and mass-
transport equations, combined with the potential 
for formation and/or disappearance of multiple 
solid phases in a system typical of common natural 
hydrate deposits (either in permafrost or in deep 
ocean sediments) within complex geological 
media—at any scale (from laboratory to reservoir). 
Also, the physical and chemical properties of the 
geologic media containing gas hydrate are highly 

dependent on the amount of gas hydrate present in 
the system at any given time. In most cases, 
hydrate dissociation for gas production shows very 
strong nonlinearity. In general, modeling of such a 
complex system of gas hydrate dissociation and 
migration processes requires fine spatial and 
temporal discretization, and therefore presents a 
significant computational challenge. 
 
There are a limited number of numerical codes for 
simulating gas production from hydrate systems. 
At present, relatively mature simulators may 
include the MH-21 hydrate reservoir simulator, 
STOMP-HYD, CMG STARS, and 
TOUGH+HYDRATE. Numerous groups have 
developed their own simulators for use on specific 
examples and classes of laboratory through field 
hydrate-related experiments and characterizations.   
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One of the most widely used gas hydrate 
simulators is TOUGH+HYDRATE [1], a module 
of the TOUGH+ code. TOUGH+ is the successor 
to the TOUGH2 suite of codes [2].  Moridis et al. 
[3] developed EOSHYDR, a TOUGH2 module for 
the simulation of dissociating simple methane 
hydrates under equilibrium conditions in both 
permafrost and marine accumulations. In 2003, 
EOSHYDR was enhanced to EOSHYDR2 for the 
simulation of binary hydrates reacting under both 
equilibrium and kinetic conditions. EOSHYDR2 
was further improved to the current version of 
TOUGH+HYDRATE [1].  
 
The TOUGH+ HYDRATE simulator has been 
successfully used for the simulation of gas 
production from hydrates under a variety of 
geologic and thermodynamic conditions, and 
involving various production strategies [4, 5, 6, 7]. 
The current version of the code can simulate both 
equilibrium and kinetic models of hydrate 
formation and dissociation. The model accounts 
for heat and up to four mass components (water, 
CH4, hydrate, and water-soluble inhibitors such as 
salts or alcohols). These are partitioned among 
four possible phases (gas phase, liquid phase, ice 
phase, and hydrate phase). Hydrate dissociation or 
formation, phase changes, and the corresponding 
thermal effects are fully described, as are the 
effects of inhibitors. TOUGH+ HYDRATE can 
describe all possible hydrate dissociation 
mechanisms—depressurization, thermal 
stimulation, salting-out effects, and inhibitor-
induced effects. Because of the complexity of 
subsurface flow processes and phase changes, 
most simulations for gas production from hydrate 
accumulations are limited to systems of up to 
several thousand gridblocks. For field scale 
applications or refined experimental models, 
however, hundred thousands and even millions of 
gridblocks may be needed to represent geologic 
heterogeneities, multiphase flow, phase behavior, 
and, multicomponent flow structures on different 
scales.   
 
In this study, we discuss the development of a 
parallel numerical modeling approach for large-
scale simulations of flow processes in hydrate-
bearing geologic media. This new development is 
based on the current version of 
TOUGH+HYDRATE code. Parallelization of the 
TOUGH+ framework uses a similar approach to 
that used in the development of TOUGH2-MP, the 

parallel version of TOUGH2 [8,9]. A domain 
decomposition approach and MPI (Message 
Passing Interface) are used for the parallel 
implementation. In this approach, the simulation 
domain, defined by an unstructured grid, is 
partitioned into a number of subdomains using a 
partitioning algorithm from the METIS software 
package [10]. Each subdomain is handled by one 
processor for updating thermophysical properties, 
assembling mass- and energy-balance equations, 
solving linear equation systems, and performing 
other local computations. Local linear-equation 
systems are solved in parallel by multiple 
processes with the Aztec linear solver package 
[11].  
 
The efficiency and scalability of the developed 
parallel scheme are demonstrated by examples of 
various applications. These examples indicate that 
the parallel simulator enables much larger 
problems to be solved, as well as significantly 
improving modeling capability in terms of 
simulation time and problem size. The code also 
demonstrates excellent scalability. In this paper, 
we present a high-resolution simulation of gas 
production from a Class 3 hydrate accumulation.  
 
MATHEMATICAL MODELS  
It is well known that under suitable conditions of 
low temperature and high pressure, a hydrocarbon 
gas will react with water to form hydrates 
following the reaction: 
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where NH is the hydration number. For CH4-
hydrate, X represents methane. The hydrate 
number varies between 5.75 (for complete 
hydration) and 7.2 [12] for CH4-hydrate. 
According to the thermodynamic condition of a 
system, the amount of gas hydrate created or gas 
released can be determined from the reaction 
represented by Equation (1). Natural hydrates may 
consist of multiple gases. TOUGH+HYDRATE 
simulates the formation of a composite hydrate 
according to [1]: 
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where G is the second hydrate-forming gas, N is 
the hydration number,  is the mole fraction in the 
binary hydrate, and the subscripts m and G denote 
methane and the second gas, respectively. 
Obviously, m + G =1. The gas G may be CO2, 
H2S, N2, or another gaseous alkane. 
 
A hydrate-bearing geologic system can be fully 
described by mass-balance equations and an 
energy-balance equation. The mass components 
are partitioned among different phases. The 
parallel simulation solves the same equation 
systems as those solved by the original 
TOUGH+HYDRATE. The basic mass- and 
energy-balance equations solved can be written in 
the general integrated form [2]: 
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The integration is over an arbitrary subdomain Vn 
of the flow system under study, which is bounded 
by the closed surface n. The quantity M appearing 
in the accumulation term (left-hand side) 
represents mass or energy per volume, with k= 1, 
..., NK the mass components, and k= NK + 1 the 
heat “component.” F denotes mass or heat flux, q 
denotes sinks and sources, and n is a normal 
vector on surface element dn, pointing inward 
into Vn.  
 
In hydrate simulation, the components of hydrate, 
water, CH4, water-soluble inhibitor (salt or organic 
substance) and the flow of heat are considered. 
These components can assume any of the 
following four phases: solid hydrate, aqueous, 
gaseous, and solid ice. In Equation (3), the mass 
accumulation term is evaluated by summing over 
all fluid phases for each mass component. The 
advective flux for the mass flux term in the 
equation is computed with a multiphase version of 
Darcy’s law; the diffusive flux is computed by 
Fick’s Law. Readers may refer to [1] for detailed 
discussions of the evaluation of mass and flux 
terms in the code. 
 
Time and space discretization for Equation (3) 
results in a set of coupled nonlinear equations, 
which can be written in a residual form [2]:  
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where the vector xt consists of primary variables at 

time t, κ
nR  is the residual of component κ for 

block n, M denotes mass or thermal energy per 
unit volume for a component, Vn is the volume of 
the block n, q denotes sinks and sources of mass or 
energy, t∆ denotes he current time step size, t + 1 
denotes the current time, Anm is the interface area 
between blocks n and m, and Fnm is the flow 
between them. Equation (4) is solved by 
Newton/Raphson iteration, leading to 
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where xi,p represents the value of ith primary 
variable at the pth iteration step. 
 
To solve Equation (5), a set of primary variables 
for each gridblock/elements will be obtained at 
each iteration/time step. The thermophysical 
properties, named secondary variables, are 
calculated from the latest updated primary 
variables obtained by solving Equation (5) at the 
current iteration step. The secondary variables are 
then used to assemble the mass- and energy-
balance equations for all volume elements for next 
iteration/time-step calculation.  
 
PARALLELIZATION SCHEMES  
Domain decomposition methods (DDM) are used 
as a divide-and-conquer strategy for solving large 
or time-consuming problems. The idea behind this 
approach is to divide the computational domain 
into a series of subdomains. Through the local 
solutions on the subdomains, a global solution is 
formed. Solutions for subdomains can be sought 
simultaneously. Therefore, this approach is 
suitable for parallel computations as long as the 
computational work can be evenly distributed.  
 
We use DDM for the TOUGH+HYDRATE 
parallelization. The parallel implementation for 
solving Equation (3) first partitions the simulation 
domain. After domain decomposition, 
computations (including assembling the Jacobian 



matrix, solving linear equations, and updating 
thermophysical properties) are done at local 
subdomain level by different processors. All 
processors involved in solving Equation (3) will 
solve similar equation systems for different 
subdomains. This technique guarantees that large 
sections of sequential TOUGH+HYDRATE code 
are reused. Each processor solves only part of the 
entire modeling domain; however, the best 
convergence performance of Newton iteration can 
only be achieved when the local equation systems 
are solved simultaneously as part of the whole 
system. Doing so therefore requires a parallel 
linear solver that facilitates intensive and 
expensive communication among neighboring 
processors.   
 
In addition, during the simulation, communication 
between processors is needed for updating border 
thermophysical properties, collecting extreme 
values, conditioning across the whole simulation 
domain, and input/output. Extensive global 
communication may lead to poor scalability of the 
parallel code. Therefore, efficiency of the parallel 
code depends on code efficiency in both 
computation and communication. Equation (3) 
shows that only the flow term needs information 
from neighboring gridblocks for mass and energy 
conservation computation. The mass accumulation 
terms and sink or source terms are element-by-
element and independent of neighboring domains. 
Computations related to the two terms do not 
require communication between neighboring 
processors. Because we use similar computation 
schemes in the parallel code and the serial code, as 
long as the computational work is evenly 
distributed, parallel speedup of the code is 
predominantly determined by communication 
efficiency.   
  
Domain partitioning  
Developing an efficient and effective method for 
partitioning unstructured grid domains is a first 
and critical step for a successful parallel scheme. 
To obtain optimal performance, the partitioning 
algorithm should ideally take the following five 
issues into account: (1) balancing computational 
load; (2) minimizing the average volume of 
interdomain communication; (3) balancing 
communication volume load; (4) minimizing the 
average number of neighboring processors; and (5) 
balancing the number of neighboring processors 
across all domains. To find an optimal trade-off 

among these five issues, computer system 
characteristics, such as floating-point performance, 
bandwidth and the latency of the communication 
subsystem, all must be taken into account. 
Commonly used algorithms and software for 
partitioning large grids do not generally take all 
these five issues into account. The typical current 
practice finds a trade-off between computational 
load balancing and maintaining low total 
communications volume, even though the result 
may not be theoretically optimal. 
 
In a TOUGH+HYDRATE simulation, a model 
domain is represented by a set of three-
dimensional gridblocks (or elements) and the 
interfaces between any two gridblocks are 
represented by connections. The entire connection 
system of gridblocks is treated as an unstructured 
grid. We utilize one of the three partitioning 
algorithms provided by the METIS package [10] 
for partitioning the grid domain. The three 
algorithms have different objectives: for 
minimizing the number of edges that straddle 
different partitions and for minimizing the total 
communication volume. METIS provides an 
effective approach for unstructured grid 
partitioning for large-scale simulations.  
 
Assembly of Jacobian matrix 
In the TOUGH+HYDRATE formulation, 
discretization of mass and energy conservation 
equations in space and time using the integral 
finite-difference (IFD) method leads to a set of 
strongly coupled nonlinear algebraic equations, 
solved by the Newtonian method. The resulting 
system of linear equations is then solved using a 
linear solver. 
 
The Jacobian matrix needs to be recalculated at 
each Newton iteration step, and thus the 
computational effort may be considerable for a 
large-scale simulation. In the parallel code, the 
assembly of the linear equation system is shared 
by all the processors, with each processor 
responsible for computing the rows of the Jacobian 
matrix that correspond to the block assigned to the 
processor. Computation of the elements in the 
Jacobian matrix is performed in two parts.  

• Computations related to individual blocks 
(mass accumulation, and source/sink 
terms). Such calculations are carried out 
using the information stored on the current 



processor; no communications with other 
processors are needed.  

• All computations related to the 
connections or flow terms. Calculation of 
flow terms for gridblocks located at the 
border of a subdomain requires 
information from its neighboring 
subdomain, which in turn requires 
communication with neighboring 
processors. Before performing these 
computations, an exchange of relevant 
primary variables is necessary.  

 
Solving of linear equations 
The linearized equation system arising after each 
Newton step is solved using a parallel iterative 
linear solver from the Aztec package [11]. This 
package includes several different solvers and 
preconditioners, including conjugate gradient, 
restarted generalized minimal residual, conjugate 
gradient squared, transposed-free quasi-minimal 
residual, and bi-conjugate gradient with 
stabilization methods. The work of solving the 
global linearized equation is shared by all 
processors, with each processor responsible for 
performing calculations within its own portion of 
the partitioned subdomain.  
 
During a simulation, time steps are automatically 
adjusted (increased or reduced) depending on the 
convergence rate. In the parallel 
TOUGH+HYDRATE code, the time-step size is 
calculated by the master processor, after necessary 
data are collected from all other processors (since 
the convergence rates may be different in different 
processors). Only when all processors reach 
stopping criteria will the algorithm proceed to the 
next time step. Periodic output of simulation 
results is handled by the master processor, which 
gathers data from each domain and compiles the 
system-wide output files. 
 
Updating thermophysical properties 
 
The thermophysical properties of the system 
(secondary variables) that are needed for 
assembling the governing mass- and energy-
balance equations are calculated at the end of each 
Newton iteration step, based on the updated set of 
primary parameters. At the same time, phase 
conditions are evaluated for all gridblocks, the 
appearance or disappearance of phases are 
recognized, and primary variables are switched 

and properly re-initialized in response to any 
change of phase. All these tasks must be done 
gridblock by gridblock across the whole 
simulation domain. The computational work for 
these tasks is readily parallelized, as each 
processor handles its corresponding subdomain. 
Some overlapping computations are needed for 
gridblocks that lie at subdomain borders, although 
this avoids additional communication for 
secondary variables.  
 
Communication among processors 
The exchange of data among processors working 
on connected gridblocks that span different 
domains is an essential component of the parallel 
algorithm. Moreover, global communication is 
also required to compute norms of vectors, 
contributed by all processors, for checking the 
convergence. In addition to the communication 
occurring inside the linear solver routine to solve 
the linear equation system, communication among 
neighboring processors is necessary to update 
primary variables.  A communications subroutine 
is used to manage data exchange among 
processors. When this subroutine is called by a 
given processor, the code performs an exchange of 
vector elements of the gridblocks (at that 
processor’s subdomain border) with the connected 
gridblocks within the adjacent domains. During 
time stepping or Newton iteration, exchange of 
external variables is required for the vectors 
containing the primary variables. More discussion 
on the prototype scheme used for data exchange is 
given in Elmroth et al. [13]. In addition, we have 
further improved the schemes by introducing 
nonblocking communication to the Aztec package 
and Newton iterations [14]. 

 
All data input and output are carried out through 
the master processor. For extremely large-scale 
problems, outputs may be performed by all 
processors involved in the computation, with each 
processor outputting its own portion of the 
simulation results. This approach can avoid 
excessive communication during data output 
intervals. For the time series outputs, a 
time/memory trade-off scheme is used to avoid 
heavy communication. This scheme stores time-
series outputs in memory for a certain number of 
time steps (for example, 1,000 time steps); then 
the outputs are all sent simultaneously to the 
master processor and written out. This method is 



extremely efficient for high-latency computer 
systems.  
 
In this parallel approach, the most time-consuming 
computation work (assembling the Jacobian 
matrix, updating thermophysical parameters, 
solving the linear equation systems, and 
computing chemical reactions) is distributed 
among all processors. The memory requirements 
(relative to the size of the grid and the number of 
coupled equations) are also distributed between 
multiple processors. Distributing both computing 
and memory requirements is essential for solving 
large-scale field problems and obtaining better 
parallel simulation performance. 
 
APPLICATION EXAMPLES 
Performance of the parallel simulator is 
investigated through two examples. The first 
example is adopted from an example in [1]. We 
use this first example to validate the parallel code 
against the existing serial TOUGH+HYDRATE. 
Parallel performance of the simulator is then 
demonstrated through comparison with 
performance of the serial version of the code. The 
second example demonstrates the application of 
the parallel code to a large-scale, high-resolution 
simulation of gas production from a Class 3 
hydrate accumulation. 
 
Equilibrium hydrate dissociation in a 2D 
system 
The first example demonstrates a two-dimensional 
simulation for gas production from an areal 
hydrate-bearing formation. The 2D domain 
consists of a square system with a side of 50 m and 
a formation thickness of 10 m. The simulation 
domain is considered to be one quarter of a larger 
square system with a production well located at its 
center. Because of symmetry, it is sufficient to 
simulate one quarter of the large square domain. In 
the simulation domain, the well is located at one 
domain corner. The simulation domain is 
discretized into 2,500 gridblocks with 4,900 
connections. Each gridblock has a size of 1×1 m. 
The four sides, top, and bottom of the domain are 
all treated as no flow boundaries. By ignoring heat 
contribution from the boundaries, this simulation 
provides the worst-case scenario of gas production 
from such a hydrate accumulation. 
 
The porous formation has a porosity = 0.3 and a 
permeability of 2.96×10-13m2. In the presence of 

the ice and hydrate solid phases, the critical mobile 
porosity (below which the porous medium 
becomes impermeable) is 0.05, and the porosity 
reduction exponent is 3. A pore compressibility of 
10-8 1/Pa and a thermal conductivity of 3.1 
W/m/oK are assigned to the porous medium. In 
hydrate simulation, evolution of solid phases of 
lower density (such as ice and hydrate) can lead to 
extraordinarily high pressures, because the 
aqueous phase disappears if pore compressibility 
is small.  
 
The hydrate properties for this simulation, 
including thermal conductivity, specific heat and 
density of the CH4  hydrate, are from Sloan [12], 
and are constants, because no information is 
available on their dependence on temperature 
and/or pressure. The simulator assumes that the 
constant input density of the CH4  hydrate is that 
at the quadruple point, and the hydrate density in 
the simulations is internally adjusted by assuming 
that its compressibility and thermal expansivity are 
the same as those of ice. No inhibitor is used, and 
only equilibrium dissociation is considered in this 
example. 
 
In this deposit, water, gas, and hydrate are initially 
at equilibrium, and the pressure is the hydration 
pressure corresponding to T = 12.5oC. The initial 
gas-, aqueous-, and hydrate-phase saturations are 
SG = 0.1, SA = 0.3 and SH = 0.6, respectively. 
Fluids are withdrawn at a mass flow rate of Q = 
0.1 kg/s through the production well, and are 
distributed in the production stream according to 
their mobilities. The fluid withdrawal causes a 
pressure decline that leads to the depressurization-
induced release of CH4. The production flow rate 
remains constant, and is certain to lead to 
temperature decline and ice appearance because of 
the endothermic nature of dissociation.   
 
Simulations were conducted on a 10-node Linux 
cluster, with each node equipped with two INTEL 
Xeon 3.60 GHz CPUs. The simulation was run for 
100 days. Both the serial and parallel simulators 
are used for the simulation. Figure 1 shows the 
cumulative volume of CH4 released from 
dissociation in the domain in the first 100 days of 
production. The results obtained with different 
number of processors are almost identical. During 
the simulation period, the increase of gas 
production rate was observed with a rate around 
2,000 ST m3 per day at the beginning to 6,000 



STm3 per day at the end. This increasing rate may 
be caused by the fact that at the beginning, only 
“free” gas can be produced, and later both free gas 
and gas from surrounding hydrate dissociation are 
released. The gas release rate is expected to 
change at later times, when exhaustion of the free 
gas and hydrate resources in the reservoir will 
inevitably lead to a worse production performance. 
Figure 2 shows simulated distribution of gas-
hydrate saturation at 100 days by parallel 
simulator. By comparing to the corresponding 
result from the serial simulator, we observe that 
the results are not obviously different. The figure 
indicates severe hydrate dissociation happened 
within a range of 16 m. Outside of this range, we 
find a hydrate saturation of 0.4–0.45, which is 
around 2/3 of the initial gas hydrate saturation. 
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Figure 1. Simulation results of cumulative volume 
of CH4 released from dissociation using different 
numbers of processors. The 1-processor case was 
run with the serial code; other cases were run with 

the parallel simulator. 
 

Number of 
processor 

1* 2 4 8 14 

Total time for 
the simulation 

(s) 

148 104 36 24 19 

Total time 
steps 

195 232 156 194 225 

*run by the serial code 
Table 1. Total time and Newton steps for the 

simulation with different number of processors 
 
Table 1 shows performance of the parallel code 
compared to the serial code for solving this 
problem. The parallel simulator performs well for 
even such a small problem. Total execution time 
drops from 148 seconds using 1 processor to 19 
seconds using 14 processors. Time reduction is 

thus quite significant, considering the small size of 
the problem.  
The simulator uses an automatic adjustment of 
time-step size based on the convergence behavior 
of Newton iterations: time-step size will increase 
for fast convergence and decrease for slow 
convergence. Note (Table 1) that the total time 
steps are different with different numbers of 
processors. In general, when a subdomain is too 
small (i.e., too few gridblocks), more time steps 
are needed for the same length simulation. The 
total number of time steps for the simulation may 
also be influenced by the domain decomposition 
method. We notice that the simulation needs 232 
time steps when using 2 processors with a default 
K-way domain partitioning method [10]. If the 
VK-way or a recursive method is used, total time 
steps and execution time will be different. The 
VK-way needs 180 time steps over 81 seconds, 
and the recursive method needs 216 time steps 
over 98 seconds to finish the run. Total time steps 
needed for the simulation may also be influenced 
by selection of linear solver, preconditioner, or 
other options for solving the linear equations. This 
indicates that a careful selection of different 
options for domain decomposition or solving 
linear equations may improve the code 
performance.  
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Figure 2. Hydrate saturation distribution in the 

reservoir at time =100 days 
 

Gas Production from a Class 3 Hydrate 
Accumulation 
The geologic system of this example is based on 
the Tigershark deposit [15], located in the 



Alaminos Canyon Block 818 of the Gulf of 
Mexico. At this location, there is an 18.25 m thick 
sandy HBL (hydrate-bearing layer) with a porosity 
of about 0.30 and Darcy-range intrinsic 
permeability, at a location where the water depth is 
about 2,750 m. Initial estimates of gas hydrate 
saturation derived from geophysical methods 
indicated 0.6 < SH0 < 0.8. Preliminary calculations 
indicated that the base of the gas hydrate stability 
zone at this location is located at or slightly below 
the base of the HBL.  
 
The properties and conditions pertaining to the 
reference geologic system can be found in Moridis 
et al. [16]. The system was conceptualized as a 
Class 3 deposit, for which accumulations are 
composed of a single zone, the HBL, and are 
characterized by the absence of an underlying zone 
of mobile fluids [17]. The system has a 30 m thick 
impermeable upper boundary, an 18.25 m thick 
HBL, and a 45 m thick impermeable lower 
boundary (Figure 3). The horizontal well system 
used in this study has an area of 1000 m×1000 m. 
Because of symmetry involving adjacent wells, 
no-flow (of fluids and heat) boundaries are located 
at x = 0 and x = 500 m, thus necessitating 
simulation of only half of the domain. In this case, 
the only horizontal well we considered is at 
Location WT (Figure 3), which has a radius rw = 
0.1 m. 
 
The 2D domain in Figure 3 was discretized into 
200×107 = 21,400 gridblocks, of which 21,200 
were active (the remaining being boundary cells). 
The vicinity of the wellbore uses a very fine 
discretization along the x direction with x =< 7 
m. The uppermost and lowermost layers 
correspond to constant-temperature no-flow 
boundaries, whereas the layers corresponding to 
the top and bottom confining layers are 
impermeable, but allow heat exchange between the 
deposit and its surroundings. The HBL was 
subdivided into segments of z = 0.25 m each 
along the z-direction. For the initial conditions, the 
pressures in the oceanic subsurface were assumed 
to follow a hydrostatic distribution. The initial 
temperature distribution was estimated by using 
the known temperature at the mud line (reported as 
5oC) and the local geothermal gradient (dT/dz = 
0.03464 K/m). Gas is produced by placing a 
horizontal well at the top of the HBL (location 
WT) in which a constant pressure PW = 3 MPa was 
maintained until the exhaustion of the hydrate. 

Detailed discussion of the problem setup was 
presented in Moridis et al. [16]. 
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Figure 3. Geometry and configuration of Example 

2. (Modified from [16]) 
 
To investigate the parallel simulator’s 
performance, both parallel and serial version of 
TOUGH+HYDRATE were run on a cluster 
equipped with Intel Woodcrest 2.66 GHz dual-
core processors. Figure 4 shows speedup of the 
parallel code for the first 300-day simulation. The 
speedup was calculated by comparing to the serial 
code performance, which was assumed to be 1.0. 
Total time needed for the simulation using one 
processor is 29,100 seconds with the serial code, 
using 32 processors with the parallel code, reduced 
the time to 1,366 seconds. In general, the parallel 
performance is good. Super liner speedup 
phenomenon can be observed for doubling 
processor number from 8 to 16 and from 16 to 32, 
by reducing simulation run time by more than half. 
Total time steps for running the 300-day 
simulation with different numbers of processors 
are in a range of less than 5% difference (around 
860 time steps). All simulation runs use the same 
domain partitioning algorithm and linear solver 
options. The scalability of the code is good for the 
current problem up to 32 processors (without 
further tests with more processors, due to the 
limitation on available processors in that cluster). 
We have tested the code for another example with 
one-half million gridblocks; speedup can be seen 
on as many as several hundred processors. 
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Figure 4. Speedup of the parallel simulation 

compared to serial code performance 
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Figure 5. Simulated hydrate saturations at 

time=300 days 
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 Figure 6. Evaluation of gas production rate from 
the HBL through the constant pressure well 

 
Figures 5 shows simulated hydrate saturation SH at 
time=300 days. The figure indicates smooth 
saturation gradients and the evolution of the two 
horizontal interfaces along the top and bottom 
boundary of the HBL that are typical of 
depressurization. Figure 6, showing evaluations of 
gas production rate from the well (WT) with 
constant pressure, indicates a relatively high initial 
production increasing to maximum rate at about t 
= 450 days, from which it then rapidly declines. 

These results are identical to results obtained from 
the serial code simulation. 
 
CONCLUSIONS 
A domain decomposition parallel simulation 
approach for large-scale modeling studies of flow 
processes in hydrate-bearing geologic media has 
been developed and implemented into the current 
version of the TOUGH+HYDRATE simulator. 
The developed parallel simulator is a 
multidimensional, fully implicit model that solves 
large, sparse linear systems arising from 
discretization of the partial differential equations 
for mass and energy balance in the porous and 
fractured media of hydrate-bearing formations. 
The simulator retains all the process-modeling 
capabilities, input/output setup, error handling, and 
other features of the original 
TOUGH+HYDRATE, guaranteeing robustness of 
the parallel simulator.  
 
The developed parallel simulator is shown to be 
computationally efficient. The efficiency and 
scalability of the code were demonstrated by field-
scale examples, which show that gas production 
from different hydrate-bearing formation with 
different production schemes can be effectively 
simulated using the parallel simulator. It is 
possible to save more than 90% simulation time 
for a middle size model by running the code on a 
typical cluster with a couple dozen processors. The 
new simulator provides a powerful tool with which 
to tackle larger-scale, more complex problems 
than can be solved currently by sequential codes. 
The parallel simulator will enhance modeling 
capacity in terms of model size and simulation 
time by 1–3 orders of magnitude. 
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