

Real-time clock estimation for precise orbit determination of LEO-satellites

André Hauschild

IGS Workshop, June 4th 2008

Agenda

- ➤ Background and Motivation
- ➤ Introduction of the Clock Estimation Algorithm
- → Results of a Precise Orbit Determination

Background and Motivation

- German Spaceflight Operations Center (GSOC) routinely performs precise orbit determination for current missions
- Near real-time precise orbit determination (decimeter level) required for
 - Occultation measurements
 - Altimeter missions (e.g. Sentinel-3)
- ✓ IGS ultra rapid predicted products:
 - Orbits: several centimeter accuracy
 - Clocks: several decimeter accuracy

Precise GPS clock estimation in real-time is currently established at GSOC to support upcoming space-missions

Clock Estimation Algorithm

- → <u>Real-Time</u> <u>Clock</u> <u>Estimation</u> (RETICLE) algorithm based on Kalman filter
- → Data from global NTRIP-Network (~25 stations) in real-time
- Processing of ionosphere-free pseudo-ranges and carrier-phases
- Estimation parameters:
 - GPS clock offset & drift
 - station clock offset
 - trop. zenith delay
 - carrier-phase biases
- Clock parameters based on most recent IGU predicted orbits

RETICLE network (E_min 10.00deg, 24 Stations)

Clock Estimation Algorithm (cont.)

- ➤ Modeled observations include corrections for:
 - solid earth tides
 - (ocean loading)
 - polar tides
 - tropospheric delay
 - phase center offsets and variations
 - differential code biases (P1-C1)
 - phase wind-up
- ✓ Generation of SP3-file as clock/orbit product with 30s epochs

Assessment of Clock Product Quality

- POD with iterative least-squares fit using un-differenced measurements
- CODE final/rapid products used to generate TerraSar-X reference orbit
- LEO orbit generated with real-time products are compared to reference orbit

Assessment of Clock Product Quality (cont.)

- ✓ Comparison of pseudo-range and carrier phase post-fit RMS residuals
- → Pseudo-range: ~70-75 cm for CODE, JPL and DLR

~100 cm for IGU

Conclusions and Future Work

- ✓ RETICLE orbit and clock products fulfill requirements for LEO-POD
- ✓ Further improvements:
 - Exclude GPS satellites during maneuvers
 - Eliminate effects of noon turns and eclipse phases
 - Refine data editing (accuracy vs. robustness)
- ✓ Current NTRIP-network is sufficient for global precise clock estimation
- ✓ Additional stations beneficial for improving global coverage
- ➤ Check consistency between daily Rinex-files and data streams

