
■ Information Assurance Research Group ■ 1

Meeting Critical Security Objectives
with Security-Enhanced Linux

Peter A. Loscocco

Information Assurance Research Group

National Security Agency

Co-author: Stephen D. Smalley, NAI Labs

■ Information Assurance Research Group ■ 2

Presentation Outline

• Operating system security

• The Flask architecture

• Security-enhanced Linux

• Example security server

• Meeting critical security objectives

• Future Direction

■ Information Assurance Research Group ■ 3

The Need for Secure OS

• Increasing risk to valuable information

• Dependence on OS protection mechanisms

• Inadequacy of mainstream operating systems

• Key missing feature: Mandatory Access Control (MAC)
– Administratively-set security policy

– Control over all subjects and objects in system

– Decisions based on all security-relevant information

■ Information Assurance Research Group ■ 4

Why is DAC inadequate?

• Decisions are only based on user identity and ownership

• No protection against malicious software

• Each user has complete discretion over his objects

• Only two major categories of users: superuser and other

• Many system services and privileged programs must run with
coarse-grained privileges if not as superuser

■ Information Assurance Research Group ■ 5

What can MAC offer?

• Strong separation of security domains

• System and data integrity

• Ability to limit program privileges

• Protection against tamper and bypass

• Processing pipelines guarantees

• Authorization limits for legitimate users

■ Information Assurance Research Group ■ 6

MAC Implementation Issues

• Must overcome limitations of traditional implementations
– More than just Multilevel Security

– Address integrity, least privilege, separation of duty issues

– Complete control using needed security relevant information

– Control relationships between subjects and code

• Policy flexibility required
– One size does not fit all!

– Ability to change the model of security

– Ability to express different policies within given model

– Separation of policy from enforcement

• Maximize security transparency

■ Information Assurance Research Group ■ 7

Customize according to need

• Separation policies
– Establishing Legal Restrictions on data

– Restrictions to classified/compartmented data

• Confinement policies
– Restricting web server access to authorized data

– Minimizing damage from viruses and other malicious code

• Integrity policies
– Protecting applications from modification

– Preventing unauthorized modifications of databases

• Invocation policies
– Guaranteeing that data is processed as required

– Enforcing encryption policies

■ Information Assurance Research Group ■ 8

Security Solutions with Flexible MAC

• Confines malicious code
– Can safely run code of uncertain pedigree

– Constrains code inserted via buffer overflow attacks

– Limits virus propagation

• Allows effective decomposition of root
– Root no longer all powerful

– Limits each root function to needed privilege

– Eliminates most privilege elevation attacks

• Allows effective assignment of privilege
– Servers need not run with complete access

– Servers and needed resources can be isolated

– Separate protections for system logs

■ Information Assurance Research Group ■ 9

Toward a New Form of MAC

• Research by NSA with help from SCC

• Generalized from prior Type Enforcement work

• Provide flexible support for security policies

• Cleanly separate policy from enforcement

• Address limitations of traditional MAC

• DTMach, DTOS, Flask

■ Information Assurance Research Group ■ 10

The Flask Security Architecture

• Cleanly separates policy from enforcement.

• Well-defined policy interfaces.

• Support for policy changes.

• Allows users to express policies naturally.

• Fine-grained controls over kernel services.

• Caching to minimize performance overhead.

• Transparent to applications and users.

■ Information Assurance Research Group ■ 11

The Flask Security Architecture

Subject, object,
class, requestedObject Manager

Policy
Enforcement

Object/SID
Mapping

Security Server

Policy
Decisions

SID/Context
Mapping

Access
Vector
Cache

Yes/no Access
vector

■ Information Assurance Research Group ■ 12

Policy Decisions

• Labeling Decisions: Obtaining a label for a new subject or
object.

• Access Decisions: Determining whether a service on an object
should be granted to a subject.

• Polyinstantiation Decisions: Determining where to redirect a
process when accessing a polyinstantiated object.

■ Information Assurance Research Group ■ 13

Policy Changes

• Interfaces to AVC for policy changes

• Callbacks to Object Managers for retained permissions

• Sequence numbers to address interleaving

• Revalidation of permissions on use

■ Information Assurance Research Group ■ 14

Controlled Services

• Permissions are defined on objects and grouped together into
object classes

• Examples
– Process: code execution, transitions, entrypoints, signals, wait, ptrace,

capabilities, etc.

– File: fd inheritance and transfer, accesses to files, directories, file systems

– Socket: accesses to sockets, messages, network interfaces, hosts

– System V IPC: accesses to semaphores, message queues, shared
memory

– Security: accesses to security server services

■ Information Assurance Research Group ■ 15

Security Server Interface

• Object Labeling
– Request SID to label a new object

• int security_transition_sid(ssid, tsid, tclass, *out_sid)

– Example of usage for new file label

• error = security_transition_sid(current->sid, dir->i_sid, FILE, &sid);

■ Information Assurance Research Group ■ 16

Security Server Interface (cont.)

• Access Decisions
– Request Access Vector for a given object class/permission

• int security_compute_av(ssid, tsid, tclass, requested, *allowed, *decided,
*seqno);

– Ignores access vectors for auditing and requests of notifications of
completed operations

■ Information Assurance Research Group ■ 17

Security Server Interface (cont.)

• Access Vector Cache (AVC)
– security_compute_av() called indirectly through AVC

• int avc_has_perm_ref(ssid, tsid, tclass, requested, *aeref, *auditdata)

– aeref is hint to cache entry. If invalid then security_compute_av() is called

• File permission check shortcuts
– int dentry_mac_permission(struct dentry *d, access_vector_t av)

■ Information Assurance Research Group ■ 18

• unlink from fs/namei.c:vfs_unlink()
error = dentry_mac_permision(dentry, FILE_UNLINK);

if (error)

return error;

– Additional directory-based checks for search and remove_name permissions

• Process to socket check from net/ipv4/af_inet:inet_bind()
lock_sock(sk);

ret = avc_has_perm_ref(current->sid,sk->sid,sk->sclass,

SOCKET_BIND &sk->avcr);

release_sock(sk);

if (ret) return ret;

Permission Checking Examples

■ Information Assurance Research Group ■ 19

Permission Checking Examples
• execve() from fs/exec.c:prepare_binprm()

• Also checks file:execute, fd:inherit, process:ptrace

if (!bprm->sid) {
 retval = security_transition_sid(current->sid, inode->i_sid,

SECCLASS_PROCESS, &bprm->sid);
 if (retval) return retval;}
if (current->sid != bprm->sid && !bprm->sh_bang){
 retval = AVC_HAS_PERM_AUDIT(current->sid, bprm->sid,

PROCESS, TRANSITION, &ad);
 if (retval) return retval;
 retval = process_file_mac_permission(bprm->sid, bprm->file,

PROCESS_ENTRYPOINT);
 if (retval) return retval;}
retval = process_file_mac_permission(bprm->sid, bprm->file,

PROCESS_EXECUTE);
if (retval) return retval;

■ Information Assurance Research Group ■ 20

API Enhancements

• Existing Linux API calls unchanged

• New API calls for security-aware applications: execve_secure,
mkdir_secure, stat_secure, socket_secure, accept_secure, etc.

• New API calls for application policy enforcers:
security_compute_av, security_transition_sid, etc.

■ Information Assurance Research Group ■ 21

Example Security Server

• Implements combination of Role-Based Access Control, Type
Enforcement, optional Multi-Level Security.

• Labeling, access, and polyinstantiation decisions defined
through set of configuration files.

• Example policy configuration provided.

■ Information Assurance Research Group ■ 22

Example Policy Configuration:
TE Concepts

• Domains for processes, types for objects.

• Specifies allowable accesses by domains to types.

• Specifies allowable interactions among domains.

• Specifies allowable and automatic domain transitions.

• Specifies entrypoint and code execution restrictions for domains.

■ Information Assurance Research Group ■ 23

Type Enforcement: Domains
init_t

init_exec_t

getty_t
getty_exec_t

login_t
login_exec_t

user_t
shell_exec_t

user_netscape_t
netscape_exec_t

initrc_t
initrc_exec_t

sendmail_t
sendmail_exec_t

klogd_t
klogd_exec_t

■ Information Assurance Research Group ■ 24

Type Enforcement: Types

/:
root_t

bin:
bin_t

var:
var_t

log:
var_log_t

wtmp:
wtmp_t

login:
login_exec_t

kmem:
memory_device_t

dev:
device_t

■ Information Assurance Research Group ■ 25

Sample TE Rules

allow sendmail_t smtp_port_t:tcp_socket name_bind;

type_transition getty_t login_exec_t:process local_login_t;

■ Information Assurance Research Group ■ 26

Example Policy Configuration:
RBAC concepts

• Roles for processes

• Specifies domains that can be entered by each role

• Specifies roles that are authorized for each user

• Initial domain associated with each user role

• Role transitions are typically explicit, e.g. login or newrole

■ Information Assurance Research Group ■ 27

Role-Based Access Control: Roles

system_r
init_t

getty_t

klogd_t

sendmail_t

user_r
user_t

user_netscape_t

passwd_t

sysadm_r
sysadm_t

insmod_t

fsadm_t

■ Information Assurance Research Group ■ 28

Example Policy Configuration:
Security Objectives

• Protect kernel integrity, including boot files, kernel modules,
sysctl variables

• Protect integrity of system software, configuration files, and logs

• Protect administrator role and domain

• Confine system processes and privileged programs

• Protect against execution of malicious software

■ Information Assurance Research Group ■ 29

Limiting raw access to data

• Controlling fsck and related utilities

allow fsadm_t fsadm_exec_t:process
{ entrypoint execute };

allow fsadm_t fixed_disk_device_t:blk_file
{ read write };

allow initrc_t fsadm_t:process transition;

allow sysadm_t fsadm_t:process transition;

■ Information Assurance Research Group ■ 30

Limiting raw access to data

• Granting access to klogd

allow klogd_t klogd_exec_t:process
{ entrypoint execute };

allow klogd_t memory_device_t:chr_file
{ read write };

allow initrc_t klogd_t:process transition;

■ Information Assurance Research Group ■ 31

Kernel integrity protection

• Protecting /boot files

allow initrc_t boot_t:dir
{ read search add_name remove_name };

allow initrc_t boot_runtime_t:file
{ create write unlink };

type_transition initrc_t boot_t:file boot_runtime_t;

■ Information Assurance Research Group ■ 32

Kernel integrity protection

• Controlling use of insmod program

allow sysadm_t insmod_exec_t:file x_file_perms;

allow sysadm_t insmod_t:process transition;

allow insmod_t insmod_exec_t:process
{ entrypoint execute };

allow insmod_t sysadm_t:fd inherit_fd_perms;

allow insmod_t self:capability sys_module;

allow insmod_t sysadm_t:process sigchld;

■ Information Assurance Research Group ■ 33

System file integrity protection

• Separate types for system programs
– e.g. bin_t, sbin_t

• Separate types for system configuration files
– e.g. etc_t

• Separate type for shared libraries
– e.g. shlib_t

• Separate types for system logs
– e.g. wtmp_t

• Separate type for dynamic linker
– e.g. ld_so_t

■ Information Assurance Research Group ■ 34

System file integrity protection

• Granting sendmail accesses
allow sendmail_t etc_aliases_t:file { read write };

allow sendmail_t etc_mail:dir
{ read search add_name remove_name };

allow sendmail_t etc_mail_t:file
{ create read write unlink };

• Granting logfile accesses
allow local_login_t wtmp_t:file { read write };

allow remote_login_t wtmp_t:file { read write };

allow utempter_t wtmp_t:file { read write };

■ Information Assurance Research Group ■ 35

Confining privileged processes

• excerpt for sendmail

allow sendmail_t smpt_port_t:tcp_socket name_bind;

allow sendmail_t mail_spool_t:dir
{ read search add_name remove_name };

allow sendmail_t mail_spool_t:file
{ create read write unlink };

allow sendmail_t mqueue_spool_t:dir
{ read search add_name remove_name };

allow sendmail_t mqueue_spool_t:file
{ create read write unlink };

■ Information Assurance Research Group ■ 36

Confining privileged processes

• excerpt for ftpd

allow ftpd_t wtmp_t:file append;

allow ftpd_t var_log_t:file append;

allow ftpd_t ls_exec_t:process execute;

■ Information Assurance Research Group ■ 37

Separating Processes

• Access across domains restricted to privilege processes
– signals, ptrace, /proc

• Access to temporary files controlled
allow user_t tmp_t:dir

{ read search add_name remove_name } ;

allow user_t user_tmp_t:file
{ creat read write unlink };

type_transition user_t tmp_t:file user_tmp_t;

• Similar controls for home directories and terminal devices

■ Information Assurance Research Group ■ 38

Administrator domain protection

• Controlling access to sysadm_t

type_transition getty_t login_exec_t:process local_login_t;

allow local_login_t sysadm_t:process transition;

allow newrole_t sysadm_t:process transition;

• Execution limited to approved types

• Separation from other domains

■ Information Assurance Research Group ■ 39

Malicious software protection

• Example putting netscape in its own domain
type_transition user_t netscape_exec_t:process user_netscape_t;

allow user_t netscape_exec_t:process
{ entrypoint execute } ;

allow user_netscape_t user_netscape_rw_t:file
{ read write create unlink };

■ Information Assurance Research Group ■ 40

Performance

• Initial performance measurements reported at
2001 Usenix Conference

• Benchmark Summary
– Macrobenchmarks showed no measurable overhead

– Microbenchmarks showed small fixed overhead proportional to complexity
of permission checks

– Should be treated as upper bound - no optimization done

• Ongoing performance work (IBM Watson)
– Scalability and locking issues

■ Information Assurance Research Group ■ 41

Ongoing and future work

• Define generalized hooks for kernel (LSM Project)

• Integrate with IPSEC/IKE and extend to support packet labeling
and policy-based protection.

• Implement labeling and controls for NFS.

• Implement complete polyinstantiation support.

• Develop policy specification and analysis tools

■ Information Assurance Research Group ■ 42

Linux Security Module Project

• Goal is to develop common set of kernel hooks to allow security
LKMs to be defined

• Hosted by WireX
– http://lsm.immunix.com/

– linux-security-module@wirex.com

• Status
– Patch to 2.4.6 kernel w/most hooks defined

– Currently working on networking hooks

• SELinux LKM using LSM patch ready
– Available at http://www.nsa.gov/selinux/ soon

■ Information Assurance Research Group ■ 43

Questions?

Available at: http://www.nsa.gov/selinux/

Mailing list: Send ‘subscribe selinux’ to majordomo@tycho.nsa.gov

email: loscocco@tycho.nsa.gov

 ssmalley@nai.com

