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Outline

• IIASA Modeling Framework

• Combining “Top-down” and “Bottom-up”

• Endogenizing non-convex technical change

• Conclusions



3/22

The IIASA Modeling Framework

“Storyline”
- Economic Development
- Demographic Projections
- Technological Change
- Environmental Policies

- Energy Intensity

Scenario Generator
-Economic and Energy Development

RAINS
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Impacts Model

BLS
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National Agricultural 
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- EDGAR etc.

MAGICC
Model for the Assessment of 
GHG-Induced Climate Change

Soft 
Link
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Other Models Used at IIASA-ECS

ERIS
Small-scale model

Endogenous Technical 
Change

-Learning-by-Doing
-Learning-by-Searching
Technology Policy, R&D

ISPA
Stochastic Meta-model for 

Multi-Objective
Policy Analysis

MERGE
Model for Evaluating 

Regional and
Global effects of GHG 

Policies
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The MESSAGE-MACRO Link-1

• Iterative link between the “bottom-up” 
MESSAGE and “top-down” MACRO models

• The link keeps consistency between 
demand and supply cost curves and thus 
between scenarios

• The models are solved independently

–Nonlinearities are collected in one place

–High flexibility
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The MESSAGE-MACRO Link-2

MESSAGE MACRO

Scenario Generator
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The MESSAGE Model

• Includes 400 individual energy conversion 
and end-use technologies

• 11 World Regions

• Calculates least-cost optimal energy supply 
technology structure, which satisfies a 
given useful-energy demand

• Technological progress in different path 
dependent directions according to the 
scenario specification
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11 World Regions in MESSAGE

1 NAM

2 LAM

3 WEU

4 EEU

5 FSU

6 MEA

7 AFR

8 CPA

9 SAS

10 PAS

11 PAO

1 NAM North America
2 LAM Latin America & The Caribbean
3 WEU Western Europe
4 EEU Central & Eastern Europe

5 FSU Former Soviet Union
6 MEA Middle East & North Africa
7 AFR Sub-Saharan Africa
8 CPA Centrally Planned Asia & China

9 SAS South Asia
10 PAS Other Pacific Asia
11 PAO Pacific OECD
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Examining Carbon Scrubbing
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Exploring Hydrogen Futures
The B1H2 Scenario
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The ERIS Model

• ERIS (Energy Research and Investment 
Strategy)

• Small-scale model with endogenized
learning curves (learning-by-doing and 
learning-by-searching)

• Flexible tool to assess approaches to 
endogenize technological change

• Global, multi-region, electricity generation 
model with CO2 trading
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Two-Factor Learning Curves

• R&D should be examined as a technological 
learning mechanism

• Specific cost as function of Cumulative 
Capacity and Knowledge Stock
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c: Learning-by-searching elasticity
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Learning Rates of Energy 
Technologies 
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Endogenizing Learning Curves

• Non-linear, non-convex optimization 
problem

• Multiple locally optimal solutions: 
Alternative paths the energy system may 
follow

• Globally optimal solution: Least-cost 
energy system path

• No guarantee of globally optimal solution 
with conventional NLP solvers
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Solving the Problem

– Mixed Integer Programming (MIP) if other 
nonlinearities do not exist

– “Guided” optimization with conventional 
NLP algorithms (different solvers/starting 
points)

– Global optimization algorithms (e.g. 
BARON)
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Different Model Outcomes 
with Learning
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ERIS and Spillovers of Learning

• Multi-regional ERIS endogenizing learning-
by-doing using MIP approach 

• Learning investments in one region may 
drive to cost reductions also in others

• With spillovers of learning deploying a 
technology in a region can affect  
technology choices in other regions

• This phenomenon cannot be captured by 
models with exogenous technical change
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Spillovers of Learning
Carbon Emissions in Non-Annex B
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Finding Globally Optimal Solutions

• BARON: Branch and Reduce Optimization 
Navigator (Sahinidis, 2000)

• General purpose global optimization 
software

• Combines enhanced branch and bound with 
range reduction techniques

• GAMS/BARON
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Example: 4 Locally Optimal Solutions
R&D Expenditures (Mill. US$90)

Wind Turbine Solar PV
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Globally Optimal R&D Expenditures
Example with two Technologies
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Conclusions

• MESSAGE-MACRO provides a flexible 
combination of top-down and bottom-up 
approaches and allows consistent 
quantification of E3 scenarios

• ERIS endogenizes learning-by-doing and 
learning-by-searching mechanisms and 
allows investigating energy technology 
dynamics 


