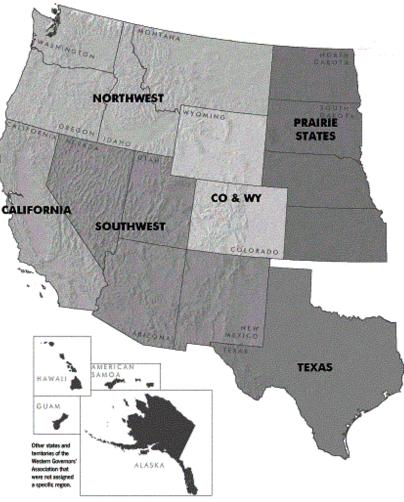


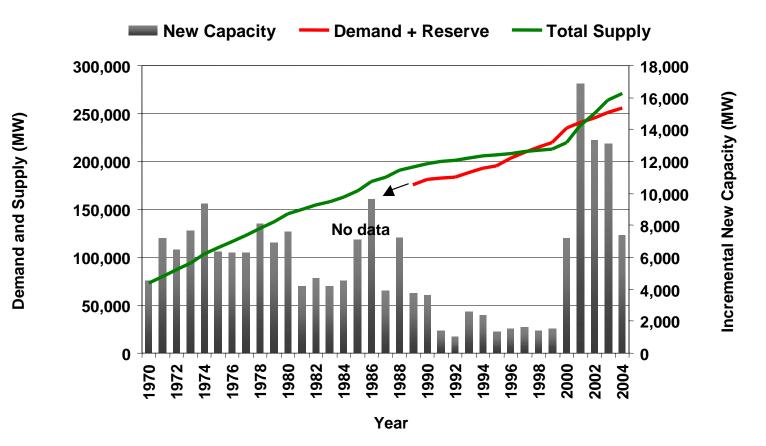
The Potential of Wind, Solar, Geothermal for the West


eia.doe.gov NEMS/Annual Energy Outlook 2002 Conference

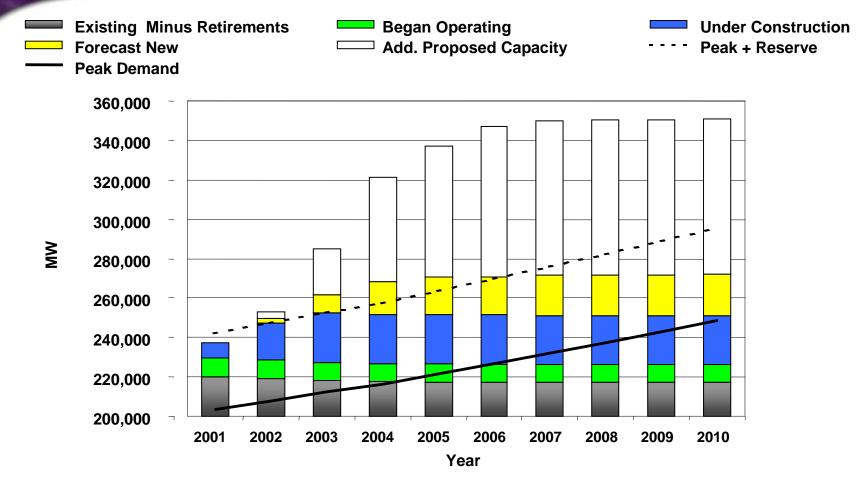
Dr. Arnold Leitner, Senior Consultant

March 12, 2002 Washington, D.C.

Regions of the "West"



The 16 states of the Western Governors' Association in the Lower 48.


Source: RDI Consulting, POWERmop

In 2001 Electricity Supply in the West Remained Tight

 Supply additions in the nineties fell far short of demand growth, and demand eventually outgrew supply.

Forecast Demand and Supply Balance in the West 2001-2010

- RDI
- By 2010, an additional 23,000 MW of new capacity (beyond the 55,277 MW expected by RDI Consulting) are needed.

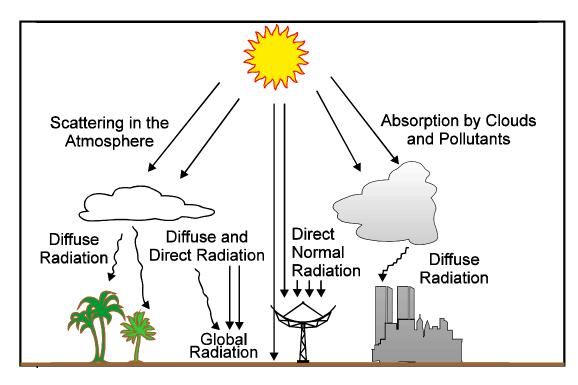
Western Renewable Energy Options

Solar

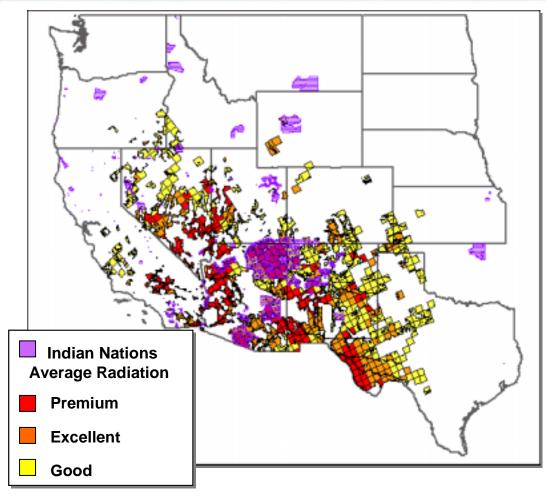
 Large resources, close to load centers, sunshine can be forecast well, concentrating solar power (CSP) can use heat storage or fossil-fuel hybridization for around the clock generation, considerable cost reduction potential for CSP.

Wind

- Approaching cost competitiveness against conventional generating technologies, intermittent, typically far from load.
- Geothermal
 - Where geothermal resources available, good choice.
- Biomass
 - Must have agricultural or forestry waste products, "energy crops" need water, generation causes emissions.
- Hydro
 - Little hydro potential left, significant environmental impact, highly controversial.



Solar


Concentrating Solar Power (CSP) Uses Direct Normal Radiation

Source: Status Report on Solar Thermal Power Plants , Pilkinton Solar International, 1996. Used by permission.

- The West receives large amounts of direct normal radiation.
- This is not a limiting factor for the deployment of CSP.

Direct Normal Solar Resources in the West

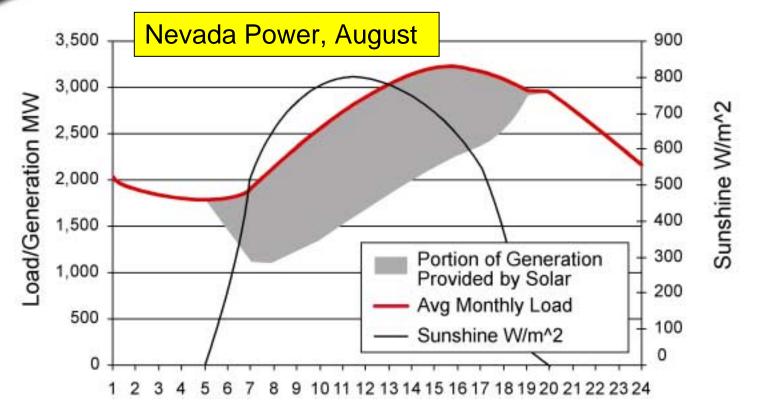
 Solar resources ≥ 7.0 kWh/m²/day are considered premium, 6.5–7.0 excellent, and 6.0–6.5 good.

Solar Resource Methodology

- Geographic information system analysis excludes:
 - Military bases
 - Wilderness areas; Fish & Wildlife Service, National Park Service and National Forest Service land
 - Cropland
 - Major highways, railroads, navigable waterways and lakes;
 - Major urbanized areas
 - Locations of 9,000 ft above sea level (with a 4.5-mile buffer around each point)
- GIS establishes various buffer zones of up to five miles
- Of this potential resources consider only
 - 3% of premium;
 - 2% of excellent; and
 - 1% of good solar resources.

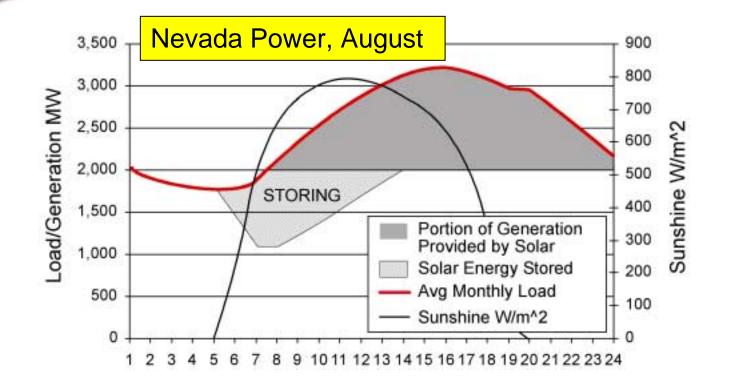
CSP Performance Figures of Merit

- 1 MW of solar power per 5 acres
- Solar field capacity factors
 - 25% in premium
 - 22.5% in excellent
 - 20% in good


Western Solar Energy Potential

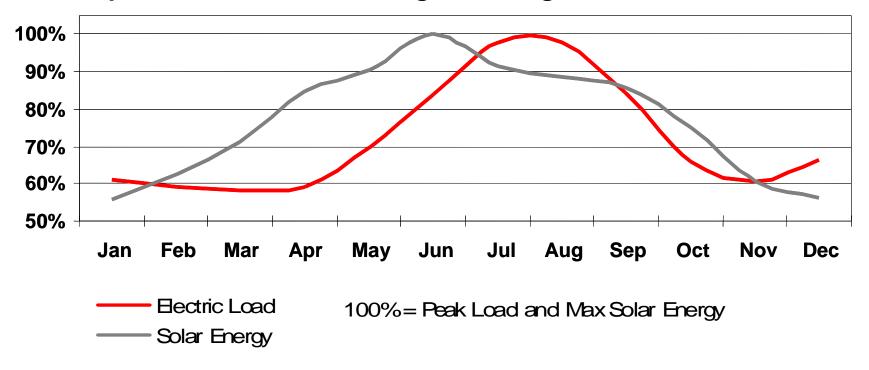
	Solar Resources GWh						
				Land as % of			
Region	Premium	Excellent	Good	Region			
Northwest	-	3,529	26,995	0.03%			
CO & WY	5,504	36,313	42,388	0.20%			
California	134,942	29,189	38,093	0.50%			
Southwest	825,956	417,600	273,536	1.40%			
Prairie							
States	-	4,105	8,288	0.02%			
Texas	85,064	99,892	67,039	0.40%			
TOTAL	1,051,466	590,627	456,340	0.50%			
2001			-				
Demand	1,	N/A					

- On only 0.2% of western land, premium solar resources could meet nearly all of Western demand.
- Premium solar capacity equals 480,121 MW, more than twice the western peak demand.



Dealing with the 'Nightly Outage'

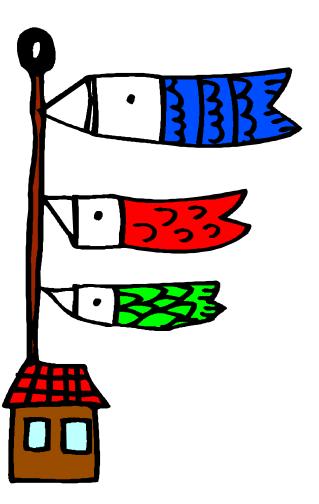
- Assume 1,250 MW of (instantaneous) solar power in Nevada Power's market.
- After dark demand has only dropped by 125 MW from the peak, but solar generation is unavailable.


Heat Storage Allows Generation After Dark

 Generation of 1,250 MW of solar with 3.5 hours of storage can displace 1,000 MW of capacity from Nevada Power's market.

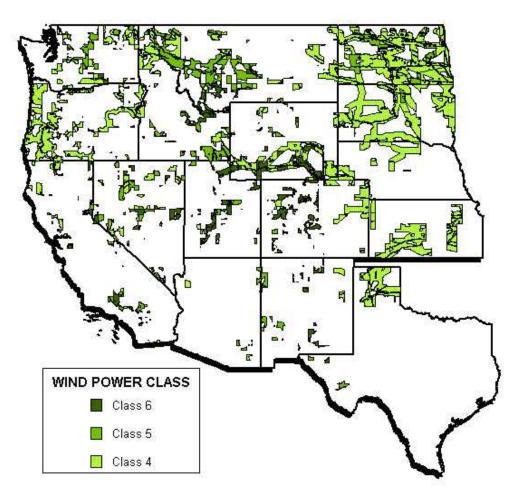
Seasonality of Load and Solar Energy

Solar plant located near Las Vegas serving Nevada Power


• Solar energy and load generally well matched.

Solar Power Take Away

- Large resources, potentially the best in the world.
- Solar resources are close to load centers.
- Solar radiation can be forecast well.
- Heat storage allows around-the-clock generation.
- Concentrating solar power (CSP) is the least expensive from of solar power.
- Needs incubation period to become cost competitive.



Wind

Wind Resources in the West

Wind Resource Methodology

- Made following changes compared to solar resource assessment
 - Only wind resources of Class 4 and 5 and higher were considered.
 - Cropland was included as potential land for wind power development.
 - Only land within a 10-mile corridor adjacent to a transmission line of 100 kV or greater was considered.
 - For Class 4 and 5 wind resources we assume that 5% of the land could be used for wind power and 10% for wind resources of Class 6 and higher.

Wind Power Figures of Merit

- 20 MW wind power per square mile
- Wind capacity factors
 - 35% in Class 4
 - 38% in Class 5
 - 45% in Class 6

Western Wind Energy Potential

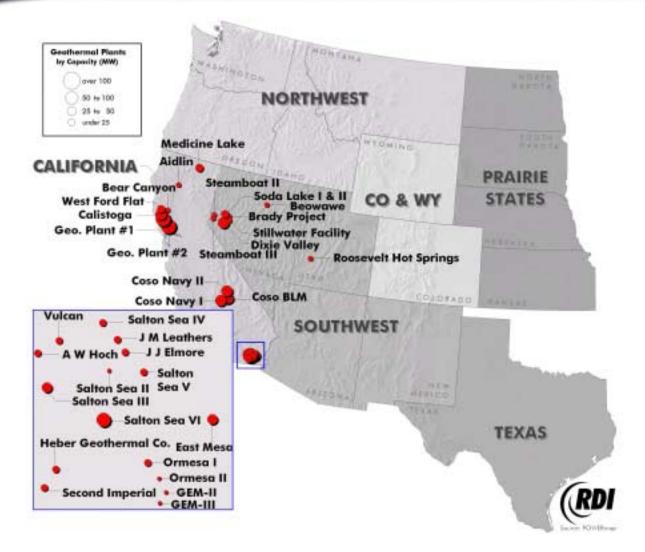
	Wind Resources GWh					
				Land as % of		
Region	Class 6	Class 5	Class 4	Region		
Northwest	43,418	90,805	139,070	1.06%		
CO & WY	97,484	3,733	62,179	1.10%		
California	12,834	6,970	11,115	0.30%		
Southwest	78,163	30,234	20,597	0.40%		
States	-	23,104	278,583	1.59%		
Texas	1,494	2,533	28,138	0.20%		
TOTAL	233,393	157,379	539,682	0.80%		
2001 Demand	1,092,160			N/A		

RD

•Wind energy resources of 0.8% of Western land are about 85% of Western electric energy needs.

Wind Power Take Away

- Power cost in 2001 is below \$40/MWh, before the federal production tax credit PTC.
- Capacity factors at top wind sites have reached 48% and are poised to reach 52% in new projects.
- Little impact on land use.
- From GIS analysis, wind resources appear smaller than solar, but are likely underestimated. Example, Texas.
- Intermittent and often far from loads.



Geothermal

Geothermal Power in the West

Geothermal Take Away

- There are 53 geothermal power stations with a combined nominal capacity of 3,276 MW.
- Need geothermal resources.
- With a production tax credit commensurate with wind, geothermal power would be nearly cost competitive today.
- Great uncertainty with regards to resource potential.
- Advanced drilling technology could greatly enhance geothermal resources.
- Geothermal resources are clustered and not always near load centers.

Summary

- Wind and solar power can make a significant contribution to Western electricity supply.
- Heat storage for thermal solar power can greatly mitigate intermittence issues.
- Search for geothermal resources could be valuable energy policy goal

Questions and Answers

