

Modeling the Impacts of Voluntary Agreements & Information Programs on US Industry's Energy Intensity

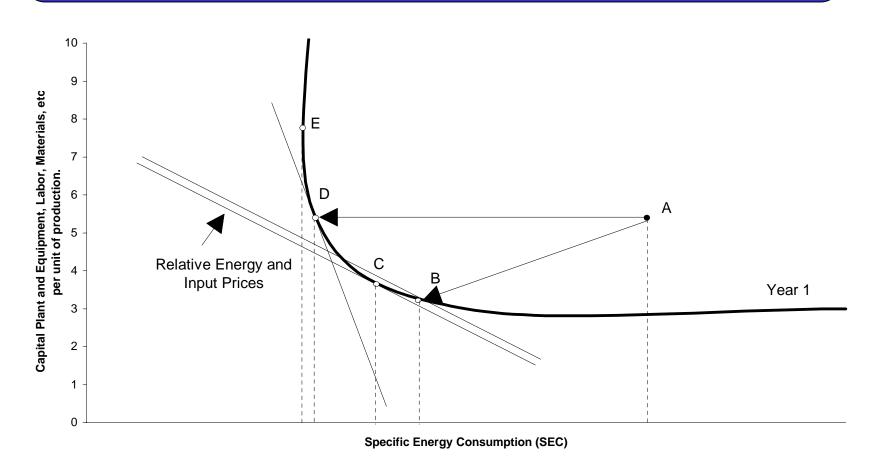
Presented to

National Energy Modeling System Conference March 12, 2002

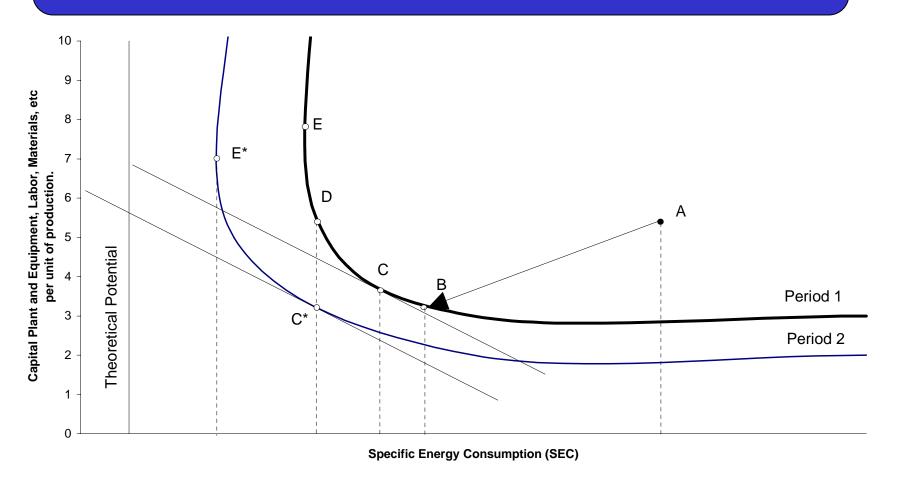
Gale A. Boyd
Argonne National Laboratory

Modeling Voluntary Agreements & Information Programs (VAIP) Face a Series of Challenges

- There are a wide variety of VAIP
 - R&D³
 - R&D technology introduction
 - D&D technology adoption
 - **Regulatory Relief**
- Translation to Modeling
 - Quantify new technological possibilities
 - **Quantify penetration**
 - Distinguish from other 'economic and technical' drivers
 - Goals of specific VAIP
 - Lower 'barriers' and 'no regrets'
 - Social optimum
- Assessing performance of VAIP
 - Payoff for R&D is high
 - DSM assessments and case studies Decision and Information Sciences Division



Top-down and Bottom-up Modeling Approaches Both Have Similar Challenges


- Characterizing the status quo
 - Static: Actual performance / state of practice
 - Dynamic: "autonomous" change
- Characterize technical possibilities
 - Static: Difference between actual and potential performance
 - Dynamic: Changing over time
- Operationalize the observed behavior
 - Optimization or Statisficing
 - Stock adjustment?

In Economic Terms, these Challenges can be Represented Via Frontier Production Functions

New technology shifts the picture

Different Models Provide Placeholders to Represent the Impact of VAIP

- The status quo in LIEF is characterized by the 'Gap'
 - The Gap is the ratio of actual to 'ideal' energy intensity
 - Ideal energy intensity is function of
 - Capital Recovery Factor and
 - Energy price
- Dynamic elements in LIEF include
 - Penetration (stock turnover, etc.) which represents 'closing the gap'
 - **Autonomous shifts**
- Compared to NEMS
 - TPC and UEC combines notions of the Gap and autonomous shift but without price effects
 - Stock turnover provides a similar modeling role to penetration
- LIEF and NEMS produce similar results in the 5-Lab study
 - LIEF double penetration and cut CRF from 33% to 15%
 - **NEMS** double stock turnover and TPC

The Real Challenge to Modeling is in Assessing the Performance of VAIP

- Information on participants, but not non-participants
 - Sample selection bias
 - Case studies cannot be relied upon to generalize to a population
 - Separating the role of other economic drivers from program effects
- VAIP do something, but how much?
 - Morgenstern & Al Jurf (1999) Information accelerates adoption
 - DeCanio & Watkins (1998) Participation related to firm characteristics
 - Other environmental literature (TRI 33/50)
 - Analysis of IAC show that rebates also serve signaling function
- Market transformation

Combining Participant and Non-participant Data at the Census Provides a Research Opportunity

- Past research has measured the range of plant level energy and productivity performance in many industries
- Separating a variety of effects, e.g. vintage, energy prices, and learning by doing, on productivity and energy efficiency is feasible.
- New research for EPA EnergyStar identifies the range of performance within an industry for benchmarking purposes, i.e. identifying the status quo and potential.
- Identifying program participants vs. non-participants within an industry group can measure:
 - Between group differences, controlling for external factors
 - Within group performance over time
 - Representations of the "GAP", autonomous change, CSC, TPC, etc.
 - The impact of VAIP participation on these estimates.

