
UNCLASSIFIED

UNCLASSIFIED

Report Number: I731-008R-2006

Guide to Microsoft
.NET Framework

2.0 Security
Systems and Network Attack Center

Updated: December 21, 2006

National Security Agency
9800 Savage Road

Ft. George G. Meade, MD 20755-6704

securew2k@dewnet.ncsc.mil
w2kguides@nsa.gov
snacguides@nsa.gov

UNCLASSIFIED

ii
UNCLASSIFIED

Warnings

Do not attempt to implement any of the settings in this guide without first testing in a
non-operational environment.

This document is only a guide containing recommended security settings. It is not
meant to replace well-structured policy or sound judgment. Furthermore this guide
does not address site-specific configuration issues. Care must be taken when
implementing this guide to address local operational and policy concerns.

The security recommendations described in this document only apply to Microsoft
.NET Framework installed on Microsoft Windows 2000, Windows XP, Windows
Server 2003 systems. This document does not apply to the .NET Compact
Framework.

This document applies only to Microsoft .NET Framework version 1.0, 1.1 and 2.0.
See Microsoft Corporation at www.microsoft.com for the latest updates and
versions of the .NET Framework.

Citation of a work in this document does not imply endorsement by the National
Security Agency of the content of such a work, including its accuracy, applicability,
or suitability for use in operational environments. This document does not provide a
comprehensive bibliography of resources.

Reference to an information security standard or guideline does not imply a claim that
the .NET Framework is in conformance to that standard or guideline. In particular,
this guide makes no claim about the conformance of the .NET Framework to
Standard ECMA-335, nor does this guide apply to any other implementation of
Standard ECMA-335.

This guide makes reference to fictitious Web sites and domain names in its examples.
These names are for demonstration purposes only and do not endorse any actual Web
sites or domain names.

Trademark Information

Microsoft, MS-DOS, Windows, Windows 2000, Windows XP, and .NET are either
registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and other
countries. All other names are registered trademarks or trademarks of their respective
companies.

Some parts of this document use Microsoft copyrighted materials with their
permission.

UNCLASSIFIED

iii
UNCLASSIFIED

Table of Contents
Warnings.. ii
Trademark Information... ii
Table of Contents ... iii
Table of Figures.. xvi
Table of Tables .. xx
Introduction... xxii

Purpose.. xxii

Assumptions.. xxii

Conventions Used In This Guide... xxiii

Document Summary .. xxiii

.NET Framework Overview... 1
What Is the .NET Framework? ... 1

Security Principles and the .NET Framework .. 2
Accountability ... 3

Availability.. 3

Confidentiality... 4

Integrity ... 5

The .NET Framework Security Model ... 5
.NET Framework Security Model Components .. 6

Mediated Access to Resources.. 7

Walking the Call Stack ... 7

Running with Multiple Versions of the Framework ... 7
Side-by-Side Execution... 8

Updating Software... 8

Parallel Execution.. 8

Features of the .NET Framework Security Model .. 11
Assemblies .. 11

Evidence-Based Access Control.. 12

Types of Assembly Evidence .. 12

Intrinsic Assembly Evidence .. 12

Location Assembly Evidence ... 13

UNCLASSIFIED

iv
UNCLASSIFIED

.NET Framework Protected Resources... 14
Protected Local Machine Resources ... 15

File System... 16

File IO.. 16

File Dialog... 17

Isolated Storage File.. 17
Local Assembly Data Stores .. 19

Local Application Data Stores ... 20

Roaming Assembly and Application Data Stores .. 21

User Interface Elements ... 22

Windowing ... 22

Clipboard... 23

Reflection ... 23

X.509 Store... 25

Key Container... 25

Data Protection ... 26

Protected Network Resources ... 27

Printers ... 27

Domain Name System (DNS) .. 27

Network Sockets... 28

Web Access .. 28

Simple Mail Transfer Protocol (SMTP) ... 29

Network Information.. 29

Message Queues ... 30

Distributed Transactions... 31

Windows Services .. 31

Databases.. 32

Version 1.0 of the .NET Framework .. 33

Version 1.1 of the .NET Framework .. 33

Version 2.0 of the .NET Framework .. 34

OLE DB ... 38

ODBC .. 40

Oracle Client.. 40

SQL Client.. 41

Protected Administrative Resources ... 42

UNCLASSIFIED

v
UNCLASSIFIED

Security Settings ... 42

Runtime Environment ... 42
Extend Infrastructure ..43

Enable Remoting Configuration ...43

Enable Serialization Formatter ...44

Enable Thread Control..45

Allow Principal Control..45

Create and Control Application Domains...46

Execution.. 46
Enable Assembly Execution ...46

Skip Verification...47

Allow Calls to Unmanaged Assemblies ...48

CAS Policy.. 48
Allow Policy Control ..49

Allow Domain Policy Control ..49

Allow Evidence Control ...49

Assert Any Permission That Has Been Granted ...50

Performance Counters... 50

Environment.. 53

Event Logs .. 57

Registry... 58

Directory Services... 59

Summary ... 60

Recommendations in This Section.. 60

CAS Policy.. 65
Code Groups and Membership Conditions ... 65

Union Code Groups and First Match Code Groups.. 69

File Code Groups and Net Code Groups .. 70

Copying File Code Groups and Net Code Groups... 70

Named Permission Sets ... 72

Policy Levels ... 76

Permission Resolution... 77

Level Permission Set .. 77

Allowed Permission Set.. 78

Granted Permission Set... 78

UNCLASSIFIED

vi
UNCLASSIFIED

Assembly Permission Requests .. 79

Computation of the Granted Permission Set ... 79

Code Group Attributes ... 80

Exclusive .. 80

Level Final ... 80

Policy Enforcement... 81

Summary... 82

Recommendations in This Section ... 83

Deploying .NET Framework CAS Policy Using Group Policy... 84
Deployment Options ... 84

Creating a Windows Installer Package for CAS Policy Deployment............................... 85

Deploying CAS Policy Using Group Policy Objects ... 87
Creating or Selecting a GPO Using the Active Directory Users and Computers Console 87

Creating or Selecting a GPO Using the Group Policy Management Console 89

Adding an Installer package to a GPO Using the Group Policy Object Editor 89

Deployment Modes of Group Policy .. 91

Synchronous and Asynchronous Modes .. 91

Foreground Policy Application .. 92

Fast Logon Optimization ... 92
Disabling Fast Logon Optimization... 92

Background Policy Application ... 92

Summary .. 93

Group Policy Processing... 93
Group Policy Processing Precedence.. 93

Precedence of Active Directory Containers ... 93

Group Policy Processing Example 1 ... 93

Precedence of Linked GPOs... 94

Group Policy Processing Example 2 ... 95

Precedence of Software Installation Packages ... 95

Group Policy Processing Example 3 ... 96

Loopback Processing .. 96

Forcing Policy Deployment .. 97

Forcing Policy Deployment Locally .. 97

Forcing Policy Deployment Remotely ... 97

UNCLASSIFIED

vii
UNCLASSIFIED

Uninstalling CAS Policy... 99

Summary ... 99
Recommendations in This Section .. 99

URL Security Zones and the .NET Framework Zone Membership Condition............ 102
URL Security Zone Settings ... 104

Internet Explorer Enhanced Security Configuration... 105

URL to Zone Mappings .. 105

Summary ... 107
Recommendations in This Section .. 107

Cryptographic Localization in the .NET Framework... 108

The <cryptoClass> element ... 119

The <nameEntry> element... 120

The <oidEntry> element.. 121

Cryptographic Localization Examples.. 123
Cryptographic Localization Example 1... 123

Cryptographic Localization Example 2... 124

Cryptographic Localization Example 3... 125

Summary ... 126
Recommendations in This Section .. 126

Administrative Tasks and Tools .. 127
Administrative Tools Summary.. 127

Security-Related Administrative Tasks Summary.. 128

Task Descriptions.. 130
General .NET Framework Tasks... 130

List the .NET Framework versions installed .. 130

Global Assembly Cache tasks ... 131

Enable or disable the Assembly Cache Viewer .. 131

View cache contents ... 131

Add an assembly to the GAC, Delete an assembly from the GAC, View properties of an
assembly installed in the GAC.. 131

View or modify GAC properties, Clear the Download Cache.. 132

Isolated Storage tasks .. 132

List Isolated Storage File stores (including roaming) for the current user, Remove all
Isolated Storage File stores (including roaming) for the current user............................. 132

UNCLASSIFIED

viii
UNCLASSIFIED

Code Access Security policy tasks ... 132

Migrate CAS policy from one .NET Framework version to another 132

Create a CAS policy deployment package ... 133

Enable or disable CAS policy .. 133

Enable or disable Execution permission checking ... 133

Build a CAS policy cache file .. 133

Reset all CAS policy levels to default settings... 133

Recover the previous settings for a CAS policy level .. 134

View Code Groups, Add or remove a Code Group, Rename a Code Group, Set or clear
the Exclusive or Level Final attribute of a Code Group, Change a Code Group’s
Membership Condition, Change a Code Group’s associated Named Permission Set, View
Named Permission Sets, Add or remove a Named Permission Set, Modify a Named
Permission Set .. 134

View Policy Assemblies, Enroll or withdraw a Policy Assembly 134

List Code Groups to which an assembly belongs, View an assembly’s Allowed
Permission Set .. 135

Adjust the Allowed Permission Set for an assembly, Create a tailored Code Group, Use
the Trust an Assembly Wizard ... 135

Creating a Tailored Code Group... 136

System security tasks .. 138

View publisher certificate verification settings, Adjust publisher certificate verification
settings.. 138

Setting 1: Trust Test Root Certificates... 139

Setting 2: Check for Expired Certificates .. 139

Setting 3: Check for Revoked Certificates ... 140

Settings 4-7: Automatically Trust Certificates Whose Revocation Status Cannot Be
Determined... 140

Setting 8: Invalidate Version 1 Signed Objects ... 141

Setting 9: Check for Revoked Timestamp Signer Certificate 141

Setting 10: Only Trust Items Found in the Personal Trust Database...................... 142

Set the CSP used by the CLR when strong-naming assemblies..................................... 142

Assembly tasks ... 142

Validate and verify an assembly... 142

View an assembly’s strong name, View the public key token corresponding to a public
key .. 144

Strong name an assembly ... 144

Verify an assembly’s strong name ... 144

UNCLASSIFIED

ix
UNCLASSIFIED

Enroll an assembly for strong name simulation, Withdraw an assembly from strong name
simulation, List assemblies enrolled for strong name simulation 145

View an assembly’s publisher certificate ... 145

Verify the trust associated with an assembly’s Authenticode digital signature.............. 146

View an assembly’s permission requests and declarative permission constraints.......... 146

View the list of configured assemblies, Configure an assembly, Delete the configuration
information for an assembly ... 148

Introduction to Binding Policy ... 148

Application Policy .. 148

Publisher Policy ... 149

Machine Policy... 149

Summary... 150

Application configuration tasks... 150

Add an application to be configured, Configure application properties 150

View assembly dependencies for an application, View list of assemblies configured for
an application, Configure an assembly for an application, Fix an application (roll back
application Binding Policy) .. 150

Configure Remoting Services for an application.. 150

Summary ... 151
Recommendations in This Section .. 151

Administrative Tools Reference .. 154

caspol.exe – .NET Framework Code Access Security Policy Tool 154

Syntax.. 154

Tasks.. 155

Enable or disable CAS policy ... 156

Enable or disable Execution permission checking.. 156

Build a CAS policy cache file... 156

Reset all CAS policy levels to default settings ... 157

Recover the previous settings for a CAS policy level .. 157

View Code Groups.. 157

Add or remove a Code Group... 158

Rename a Code Group.. 159

Set or clear the Exclusive or Level Final attribute of a Code Group 159

Change a Code Group’s Membership Condition.. 160

Change a Code Group’s associated Named Permission Set ... 160

UNCLASSIFIED

x
UNCLASSIFIED

View Named Permission Sets .. 161

Add or remove a Named Permission Set.. 161

Modify a Named Permission Set.. 161

View Policy Assemblies... 162

Enroll or withdraw a Policy Assembly... 162

List Code Groups to which an assembly belongs... 162

View an assembly’s Allowed Permission Set .. 163

Create a tailored Code Group... 163

certmgr.exe – Microsoft Certificate Manager Tool 163

Syntax ... 164

Tasks ... 164

View an assembly’s publisher certificate ... 164

chktrust.exe – Microsoft Authenticode Signature Verification Tool ... 164

Syntax ... 165

Tasks ... 165

Verify the trust associated with an assembly’s Authenticode digital signature 165

explorer.exe/shfusion.dll – Windows Explorer/ Assembly
Cache Viewer.. 165

Tasks ... 166

View cache contents... 166

Add an assembly to the GAC ... 167

Delete an assembly from the GAC... 168

View properties of an assembly installed in the GAC.. 168

View or modify GAC properties .. 169

Reset all CAS policy levels to default settings... 170

gacutil.exe – .NET Global Assembly Cache Utility................................. 171

Syntax ... 171

Tasks ... 171

View cache contents... 171

Add an assembly to the GAC ... 172

Delete an assembly from the GAC... 174

Example ... 175

Clear the Download Cache... 176

UNCLASSIFIED

xi
UNCLASSIFIED

migpol.exe – CAS Policy Migration Tool .. 176

Syntax.. 176

Tasks.. 177

List the .NET Framework versions installed .. 177

Migrate CAS policy from one .NET Framework version to another.............................. 177

mscorcfg.msc – .NET Framework Configuration Tool........................... 178

permview.exe – .NET Framework Permission Request Viewer................ 180

Syntax.. 180

Tasks.. 181

View an assembly’s permission requests and declarative permission constraints.......... 181

peverify.exe – .NET Framework PE Verifier.. 181

Syntax.. 181

Tasks.. 182

Validate and verify an assembly ... 182

regedit.exe – Registry Editor .. 182

Syntax.. 182

Tasks.. 182

Change a registry setting from the console... 183

Enable or disable the Assembly Cache Viewer .. 183

secutil.exe – Microsoft .NET Framework Security Utility 183

Syntax.. 183

Tasks.. 184

View an assembly’s strong name.. 184

View an assembly’s publisher certificate ... 184

setreg.exe – Software Publishing State Tool.. 184

Syntax.. 184

Tasks.. 185

View publisher certificate verification settings .. 185

Adjust publisher certificate verification settings .. 185

sn.exe – .NET Framework Strong Name Utility ... 188

Syntax.. 188

UNCLASSIFIED

xii
UNCLASSIFIED

Tasks ... 188

Enroll an assembly for strong name simulation ... 189

Withdraw an assembly from strong name simulation .. 189

List assemblies enrolled for strong name simulation ... 190

Verify an assembly’s strong name ... 190

View the public key token corresponding to the public key in an assembly’s manifest 190

Strong name an assembly ... 190

Set the CSP used by the CLR when strong-naming assemblies..................................... 191

storeadm.exe – .NET Framework Isolated Storage Tool 191

Syntax ... 191

Tasks ... 191

List all local or roaming data stores associated with the current user 192

Remove all local or roaming data stores associated with the current user 192

Summary ... 192
Recommendations in This Section.. 192

mscorcfg.msc – The .NET Framework Configuration Tool......... 194

 Assembly Cache... 196
Assembly Cache Tasks ... 196

View cache contents... 196

Add an assembly to the GAC ... 198

Delete an assembly from the GAC... 198

View properties of an assembly installed in the GAC.. 199

 Configured Assemblies.. 199
Configured Assemblies Tasks... 200

View the list of configured assemblies... 200

Configure an assembly ... 200

Using the Properties Dialog Box... 202

Delete the configuration information for an assembly ... 203

 Remoting Services ... 204
Terminology ... 204

Remoting Services Tasks.. 205

Remoting Services Configuration Files .. 205

UNCLASSIFIED

xiii
UNCLASSIFIED

The<application> element .. 207

Well-known (Service-activated) objects... 208

Client-activated objects... 208

The<client> element .. 208

The<service> element... 210

Remoting Services Configuration Example 1... 211

Remoting Services Configuration Example 2... 212

Service .. 212

Client .. 212

Remoting Services Configuration Example 3... 213

Service .. 213

Client .. 213

The<channel> element... 213

The <clientProviders> and <serverProviders> elements........................ 217

The <provider> and <formatter> elements ... 218

includeVersions .. 219

strictBinding ... 219

typeFilterLevel ... 219

Default channels in the Remoting Services configuration.. 220

The<lifetime> element... 221

leaseTime ... 221

leaseManagerPollTime... 221

renewOnCallTime .. 222

sponsorshipTimeout ... 222

The<soapInterop> element... 222

interopXmlElement.. 223

interopXmlType ... 223

preLoad.. 223

 Runtime Security Policy .. 224
Runtime Security Policy tasks... 225

Create a CAS policy deployment package.. 226

Reset all CAS policy levels to default settings ... 227

UNCLASSIFIED

xiv
UNCLASSIFIED

View Code Groups ... 227

Add or remove a Code Group .. 227

Interactively defining a new Code Group.. 228

Importing a Code Group definition from an XML file... 229

Rename a Code Group ... 230

Set or clear the Exclusive or Level Final attribute of a Code Group.............................. 230

Change a Code Group’s Membership Condition ... 232

Change a Code Group’s associated Named Permission Set... 233

Adjust Zone Security.. 234

View Named Permission Sets .. 235

Add or remove a Named Permission Set.. 235

Interactively defining a new Named Permission Set.. 236

Importing a Named Permission Set definition from an XML file............................. 238

Modify a Named Permission Set.. 239

View Policy Assemblies... 240

Enroll or withdraw a Policy Assembly... 240

List Code Groups to which an assembly belongs... 241

View an assembly’s Allowed Permission Set .. 242

Create a tailored Code Group... 242

Use the Trust an Assembly Wizard .. 243

 Applications ... 245
Applications Tasks.. 245

Add an application to be configured .. 246

Configure application properties .. 246

Garbage Collection Concurrency.. 247

Publisher Policy Safe Mode... 247

Probing Path.. 247

View assembly dependencies for an application.. 248

View list of assemblies configured for an application ... 248

Configure an assembly for an application .. 249

Using the Properties Dialog Box... 250

Fix an application (roll back application Binding Policy).. 251

Configure Remoting Services for an application ... 253

Summary ... 254

UNCLASSIFIED

xv
UNCLASSIFIED

Recommendations in This Section .. 254

Summary of Recommendations and Checklist .. 255
Summary of Recommendations.. 255

CAS Policy Checklist ... 262
First Steps to Configuring CAS Policy ... 262

Know how you will support the policy... 262

Know what the policy needs to do for you ... 263

Know the code .. 263

Know the environment.. 264

Know the resources .. 264

CAS Policy Creation ... 265

General Guidelines ... 265

Policy Refinement Process ... 266

CAS Policy Review... 267

Host Policy Review .. 267

Security Architecture Review... 268

Summary ... 268

Works Cited... 271

UNCLASSIFIED

xvi
UNCLASSIFIED

Table of Figures
Figure 1. Components of .NET Framework Execution on a Windows Platform. 2

Figure 2. Composite Policy Enforcement Using the .NET Framework. 6

Figure 3. Parallel Execution in the .NET Framework. .. 9

Figure 4. XML for Specifying Version 2.0 of the .NET Runtime... 9

Figure 5. Evidence-Based Access Control... 12

Figure 6. Local Assembly Data Stores. ... 20

Figure 7. Local Application Data Stores.. 21

Figure 8. Local Data Stores for a Managed Application that Directly Uses Isolated Storage.
... 21

Figure 9. Roaming Assembly and Application Data Stores. ... 22

Figure 10. XML for Granting the Open and Sign Permission to a Key Container................ 26

Figure 11. XML Structure of a Database Permission in Version 1.0. 33

Figure 12. XML Structure of a Database Permission in Version 1.1. 34

Figure 13. XML Structure of a Database Permission in Version 2.0. 35

Figure 14. XML Structure of a <connectionStrings> Element in Version 2.0. 35

Figure 15. XML Structure of an OLE DB Data Provider <keyword> Element................... 39

Figure 16. Properties Button in perfmon.exe Window.. 52

Figure 17. System Monitor Properties Dialog Box. .. 52

Figure 18. Add Counters Dialog Box. ... 53

Figure 19. Default Code Groups at the Machine Level in Version 1.1 and 2.0 of the .NET
Framework. ... 68

Figure 20. Custom Code Group Tab for Intranet_Same_Site_Access in Version 2.0. 71

Figure 21. Create Code Group Dialog Box. .. 71

Figure 22. Assigning Assembly Permissions... 76

Figure 23. Creation of a Level Permission Set. ... 77

Figure 24. Creation of the Allowed Permission Set. ... 78

Figure 25. The Stack Walk. ... 82

Figure 26. Deployment Package Wizard. .. 86

Figure 27. Active Directory Users and Computers Microsoft Management Console Snap-in.
... 88

Figure 28. Group Policy Objects Linked to a Container. .. 88

UNCLASSIFIED

xvii
UNCLASSIFIED

Figure 29. Displaying GPOs Linked to an Organizational Unit with the Group Policy
Management Console.. 89

Figure 30. Viewing Software Installation Packages in the Group Policy Object Editor. 90

Figure 31. Deploy Software Dialog Box. .. 90

Figure 32. Displaying the Order of Precedence of GPOs Linked to an Organizational Unit
with the Group Policy Management Console. .. 94

Figure 33. Custom Software Installation Item Names for CAS Policy Installer Packages. .. 95

Figure 34. Setting Loopback Processing Mode. .. 97

Figure 35. Forcing Software Installation for Unchanged GPOs.. 98

Figure 36. XML Structure of the Cryptography Settings in machine.config. 118

Figure 37. XML Structure of the <cryptographySettings> Element. 119

Figure 38. Cryptographic Localization Example 1.. 124

Figure 39. Cryptographic Localization Example 2-A.. 125

Figure 40. Cryptographic Localization Example 2-B.. 125

Figure 41. Cryptographic Localization Example 3.. 126

Figure 42. Relationship between validation and verification. ... 143

Figure 43. Viewing the GAC and Zap Cache in Windows Explorer using the Assembly
Cache Viewer.. 167

Figure 44. Assembly Properties Dialog Box. .. 168

Figure 45. Cache Properties Dialog Box. .. 170

Figure 46. The .NET Framework Configuration Console (mscorcfg.msc). 194

Figure 47. GAC Display in mscorcfg.msc... 198

Figure 48. Adding a Configured Assembly. .. 201

Figure 49. Assembly Properties Dialog Box – General Tab. .. 202

Figure 50. Assembly Properties Dialog Box – Binding Policy Tab. 202

Figure 51. Assembly Properties Dialog Box – Codebases Tab. .. 203

Figure 52. XML Structure of the Remoting Services Configuration................................... 207

Figure 53. XML Structure of the <application> Element. ... 208

Figure 54. XML Structure of the <client> Element. ... 209

Figure 55. Remoting Services Properties Dialog Box – Remote Applications Tab............ 210

Figure 56. XML Structure of the <service> Element. .. 210

Figure 57. Remoting Services Properties Dialog Box – Exposed Types Tab. 211

Figure 58. Remoting Services Configuration Example 2. ... 212

UNCLASSIFIED

xviii
UNCLASSIFIED

Figure 59. Remoting Services Configuration Example 3. ... 213

Figure 60. Remoting Services Properties Dialog Box – Channels Tab............................... 215

Figure 61. XML Structure of the <channel> Element. ... 215

Figure 62. XML Structure of the <channel> Element with Security Attributes (v2.0) 217

Figure 63. XML Structure of the <provider> and <formatter> Elements. 218

Figure 64. Default Remoting Services Channels. .. 220

Figure 65. Remoting Services Properties Dialog Box – Channels Tab............................... 221

Figure 66. XML Structure of the <lifetime> Element. ... 221

Figure 67. XML Structure of the <soapInterop> Element. .. 223

Figure 68. Runtime Security Policy Node. .. 225

Figure 69. Create Code Group Dialog Box. .. 228

Figure 70. Example of a Membership Condition To Be Imported. 228

Figure 71. Example of a Code Group To Be Imported.. 229

Figure 72. Code Group Properties Dialog Box: General Tab.. 231

Figure 73. Code Group Properties Dialog Box: Membership Condition Tab. 232

Figure 74. Code Group Properties Dialog Box: Permission Set Tab. 233

Figure 75. Security Adjustment Wizard. ... 234

Figure 76. Adjusting the Security Level for Each Zone. ... 235

Figure 77. Create Permission Set Dialog Box. .. 236

Figure 78. Assign Permissions to a Named Permission Set. ... 237

Figure 79. Example of a Permission To Be Imported. .. 238

Figure 80. Example of a Named Permission Set To Be Imported....................................... 239

Figure 81. Evaluate an Assembly Dialog Box... 241

Figure 82. Trust an Assembly Wizard. .. 244

Figure 83. Membership Condition Selection in the Trust an Assembly Wizard. 244

Figure 84. Named Permission Set Selection in the Trust an Assembly Wizard.................. 245

Figure 85. Application Properties Dialog Box. ... 247

Figure 86. Configure an Assembly for an Application Dialog Box. 249

Figure 87. Enable Publisher Policy Check Box... 251

Figure 88. ConfigWizards Dialog Box. ... 251

Figure 89. .NET Application Restore Dialog Box – Managed Applications. 252

Figure 90. .NET Application Restore Dialog Box – Restore Points. 253

UNCLASSIFIED

xix
UNCLASSIFIED

Figure 91. Example Relationship Between Functions and Resources................................. 266

UNCLASSIFIED

xx
UNCLASSIFIED

Table of Tables
Table 1. Released Versions of the .NET Framework. ... 8

Table 2. Key Container Permission Flags.. 26

Table 3. Combined Effect of <add> Element Attributes. .. 38

Table 4. Summary of Trust Requirements for Data Providers. ... 41

Table 5. Information Protected by the Environment Permission.. 56

Table 6. Default Named Permission Sets in the .NET Framework. 75

Table 7. .NET Framework Zone Membership Conditions and URL Security Zones. 102

Table 8. Default Code Groups and Named Permission Sets for Zone Membership
Conditions. .. 103

Table 9. Default Permissions for Named Permission Sets Associated with Zone Code
Groups... 103

Table 10. URL Security Zone Settings That Impact Managed Code Execution. 104

Table 11. URL Security Zone Registry Keys. ... 106

Table 12. Types of cryptographic services in the .NET Framework version 1.1 and 2.0. .. 109

Table 13. Recommended default cryptographic algorithms. ... 110

Table 14. Named cryptographic services and their default behavior in the .NET Framework
version 1.1 and 2.0. ... 117

Table 15. Default Friendly Names for OIDs in the .NET Framework version 1.1. 122

Table 16. Default Friendly Names for OIDs in the .NET Framework version 2.0. 123

Table 17. Administrative Tools. .. 128

Table 18. Security-Related Administrative Tasks. .. 130

Table 19. Discriminating Power of Membership Conditions. ... 138

Table 20. Software Publishing State Settings. ... 138

Table 21. caspol.exe Membership Condition Arguments. ... 158

Table 22. Assembly Properties Viewable Through the Assembly Cache Viewer. 169

Table 23. XML Files for .NET Framework CAS Policy... 170

Table 24. gacutil.exe Reference Data Values. .. 173

Table 25. setreg.exe Command Examples. .. 185

Table 26. Formatter Sink Attributes. ... 219

Table 27. CAS Policy File Locations. ... 224

Table 28. Named Permission Sets Associated with “Levels of Trust”................................ 235

UNCLASSIFIED

xxi
UNCLASSIFIED

Table 29. Summary of Recommendations... 261

UNCLASSIFIED

xxii
UNCLASSIFIED

Introduction

Purpose

The purpose of this document is to inform administrators responsible for systems and
network security about the configurable security features available in the .NET Framework.
To place some of the configuration options in context, a brief introduction to the .NET
Framework security model and its components is provided. For further information about
security in the .NET Framework, many resources are available; for example, see [Microsoft,
MSDN], [Microsoft, .NET Framework], [LaMacchia, et al., 2002], or [Watkins and Lange,
2002].

The security features of the .NET Framework are highly extensible and configurable. While
this document describes some of the default settings, it cannot address all possible
circumstances or scenarios administrators may experience. This guide is intended to assist
the administrator in exercising discriminating judgment in the configuration of the .NET
Framework in response to variations in organizational security policies and operational
environments.

This guide does not address Microsoft Windows operating system security issues that are not
specifically related to the .NET Framework.

Assumptions

The following assumptions have been made about the environment in which the
recommendations included in this guide will be implemented.

The network consists only of computers running Microsoft Windows 2000 Server,
Windows 2000 Professional, Windows XP Professional, and Windows Server 2003.

All disk volumes are formatted using NTFS (NT File System).

Domain Controllers are Windows 2000 Server or Windows Server 2003 running
Active Directory.

The latest Windows service packs and hot fixes have been installed.

All operating systems are configured using their respective default NSA security
templates. NSA security templates are available at http://www.nsa.gov.

Users of this guide are familiar with the Windows 2000, Windows XP and Windows
2003 operating systems, and have system administration skills sufficient to manage
host-based and network security.

UNCLASSIFIED

xxiii
UNCLASSIFIED

Conventions Used In This Guide

URLs, UNC paths, file names, file system paths, text and XML examples are
presented in a fixed-pitch typeface for enhanced readability. Examples:

http://www.nsa.gov

\\server1\myshare

c:\winnt\microsoft.net\framework\v1.1.4322\mscorlib.dll.

When a URL, UNC path, file name, file system path, text or XML example is too
long to fit on a single line, the symbol () will be used at the end of a line to indicate
that a line break has been inserted to accommodate the text to the page width, but the
next line is actually a continuation of the current line. Example:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnnetsec/html/netframesecover.asp

When examples include placeholders for user-supplied text, the placeholder will be
surrounded by braces. For example, in the following XML, both the label and value
of an XML attribute are supplied by the user. “short name” and “fully-qualified
name” are descriptive placeholders that should be replaced by the user with context-
dependent values.

<cryptoClass {short name}=”{fully-qualified name}”/>

Document Summary

This document contains the following chapters:

Chapter 1, .NET Framework Overview, provides a high level description of the .NET
Framework.

Chapter 2, Features of the .NET Framework Security Model, provides a description
of the components of the .NET Framework access control system, and how the
administratively configured policy gets applied and enforced.

Chapter 3, Deploying .NET Framework CAS Policy Using Group Policy, discusses
network deployment issues and explains how to use Group Policy to deploy policy
configuration files.

Chapter 4, URL Security Zones and the .NET Framework Zone Membership
Condition, discusses the interaction between the .NET Framework and the Windows
URL Security Zones settings.

Chapter 5, Cryptographic Localization in the .NET Framework, provides a discussion
of the configurable settings for the use of cryptographic algorithms in managed code.

UNCLASSIFIED

xxiv
UNCLASSIFIED

Chapter 6, Tasks and Tools, describes common .NET Framework administrative
tasks.

Appendix A, Administrative Tools Reference, describes various tools and how to use
them to perform common administrative tasks.

Appendix B, mscorcfg.msc – The .NET Framework Configuration Tool, describes
the most full-featured administrative tool, mscorcfg.msc, and how to use it to
perform common administrative tasks.

Appendix C, Summary of Recommendations and Checklist, lists all the
recommendations contained in this document. A checklist is also provided that lists
steps that should be performed when administering the .NET Framework as a security
control.

Appendix D, Works Cited, contains bibliographic entries for works cited in this
document.

UNCLASSIFIED

xxv
UNCLASSIFIED

This page has been intentionally left blank.

UNCLASSIFIED

1
UNCLASSIFIED

Chapter

1
.NET Framework Overview

What Is the .NET Framework?

The .NET Framework is a virtual execution system that supports platform independent,
distributed applications. From a security perspective, it provides isolation for executing
software to protect code from corruption and offers granular access control to resources to
protect information from exploitation by local and distributed applications.

The .NET Framework is Microsoft’s implementation of Standard ECMA-335, Common
Language Infrastructure (CLI) [ECMA-335, 2002]. Any CLI implementation will support
the creation and execution of platform-independent code; however, the .NET Framework
leverages the diverse set of operating system and network resources available on Windows
platforms to support the development of applications that take advantage of the security
features of a CLI and are also fully integrated into the Windows environment.

The .NET Framework is implemented in the context of an operating system process, and
includes the Common Language Runtime (CLR) and supporting software libraries. A
Windows process that loads the CLR and creates the execution environment in which .NET
applications run is called a Runtime Host. Within the Runtime Host process, the CLR and its
libraries work together in conjunction with administratively configured policy data to provide
isolated execution environments called application domains which manage and execute
platform-independent code compiled with a .NET Framework-enabled compiler. Code
management includes security policy enforcement, resource allocation, and tightly controlled
separation of resource usage to prevent inadvertent or malicious data corruption. Programs
compiled into platform-independent code that is subject to the constraints of the .NET
Framework are called managed code and are implemented in specially formatted executable
files called assemblies. Some of the internals of the CLR itself are managed code and most
of the interaction with platform-specific system resources is provided through a set of
managed software libraries distributed with the .NET Framework that developers can link to
their own programs.

UNCLASSIFIED

2
UNCLASSIFIED

Figure 1. Components of .NET Framework Execution on a Windows Platform.

Security in this architecture is provided by the operating system and the CLR enforcing a
composite security policy. Although the execution environment of the .NET Framework is
layered on top of the operating system security mechanisms, it is administered separately.
Figure 1 illustrates the security components used in the .NET Framework. Separation is
enforced by the operating system at the level of a Windows process and by the .NET
Framework at the level of an application domain. Access control is enforced by the CLR
and, ultimately, by the operating system, in keeping with each layer’s security policies and
configurations.

The remainder of this chapter will introduce the features of the .NET Framework security
model and how they are designed to work together to create a configurable execution
environment that provides support for key security principles.

Security Principles and the .NET Framework

When deploying an IT system, system designers and administrators generally consider a
number of factors to ensure smooth operation. These typically include functional and
information flow requirements, ease of use and scalability requirements, security
requirements, and cost. When considering security requirements, designers and
administrators should understand the composite security policy being enforced by the whole
system as well as the role each individual component plays in that overall enforcement.
Numerous guidelines offer insight on how to implement general security planning and

Supporting
Libraries

myapp.exe

Application Domain Application Domain

Common Language Runtime (CLR)

Application Domain

run.exe

Supporting
Libraries

CLR

Administratively configured security
policies

Runtime Host (Windows Process) Runtime Host

Windows Operating System

mylib.dll report.exe

Assembly Assembly Assembly

Supporting Managed Software
Libraries

Assembly

UNCLASSIFIED

3
UNCLASSIFIED

address general security architectural issues. See, for example, [BS/ISO/IEC 17799, 2000],
[Fraser (RFC 2196), 1997], [GAO/AIMD-12.19.6, 1999], [GASSP, 1999], [Swanson and
Guttman (NIST SP 800-14), 1996], [Swanson (NIST SP 800-18), 1998], and [Weise and
Martin, 2001].

Developers and administrators can use the security features of the .NET Framework to
support security principles such as Accountability, Availability, Confidentiality, and
Integrity. However, the .NET Framework does not explicitly support all these properties
equally and it must be carefully integrated with the underlying operating system security
policy to ensure that a sound composite policy is implemented. The rest of this section
describes these various policies at a high level and offers some insight on the role the .NET
Framework could play in a composite architecture and what the administrator should
consider in the context of its integration.

Accountability

Accountability is a property that enables activities on a system or network to be traced to
individuals or entities that may then be held responsible for their actions. An important goal
for a composite accountability policy is for the administrator to be able to review a security
log, discover actions that took place in a given time frame, and identify the individual or
entities responsible for those actions. Traditionally, achieving accountability requires four
components: identification and authentication (I/A), auditing, and non-repudiation.

The .NET Framework execution environment itself does not implement user I/A, user
auditing, or user non-repudiation. Users or code do not have to “log on” to the .NET
Framework. However, the .NET Framework provides supporting libraries that applications
can use to implement their own I/A, audit, and non-repudiation mechanisms and use the
built-in capabilities of the Windows operating system.

In addition, the access control system of the .NET Framework is based on the classification
of code in terms of characteristics (“evidence”) that form a type of credential that managed
code presents before being granted access to resources. In some cases, these credentials
strongly identify a particular assembly (cryptographic hash) or the software developer who
created the assembly (software publisher’s digital certificate). Unfortunately, there is no
robust built-in auditing capability that would record noteworthy events and the associated
code identity information.

Availability

Availability is a property that ensures that resources and services are available for use when
they are needed. Availability is typically achieved through redundancy with isolation, quotas
on resource usage, or finally on fault-tolerant code or equipment.

The availability of the .NET Framework itself is based on built-in Windows separation
features. Since the .NET Framework is loaded into a Windows process, the Windows
protected mode of execution ensures that one instance of the execution environment may fail
without affecting other instances.

UNCLASSIFIED

4
UNCLASSIFIED

The availability of information and services provided by managed code that runs in the
context of the .NET Framework is facilitated in three ways. First, the .NET Framework
enables a distributed application architecture which could be used to implement redundancy
with respect to application components. Second, the stability and fault tolerance of managed
code execution is enhanced by the .NET Framework’s strict control of resource usage and
support for exception handling. Finally, the access control mechanism can be used to deny
resources to some managed code. Unlike a resource quota mechanism, which supports
availability by constraining code to an appropriate use of resources, a fine-grained access
control mechanism supports availability by constraining code to the use of appropriate
resources.

Confidentiality

Confidentiality is a property that offers assurance that information is shared only among
authorized entities. It typically consists of I/A, access control, and cryptography.

I/A and access control in the .NET Framework are discussed under Availability above, but
have some further implications for confidentiality. Confidentiality is served by an access
control mechanism that protects file contents and properties, configuration data, sensitive
system information, direct access to memory contents, and other resources from unauthorized
disclosure. The .NET Framework’s evidence-based access control is a departure from
general purpose operating system controls in that authorization is not necessarily tied to an
authenticated identity or role, but is based on one or more indicators of trustworthiness. The
administrator classifies code in advance based on types of evidence (defines Code Groups),
and authorizes access to resources based on those classifications (associates to each Code
Group a Named Permission Set that lists resource access permissions). The CLR then
enforces this policy for each assembly while it is executing. This mechanism is called Code
Access Security (CAS) and will be discussed in more detail in chapter 2. Note that access to
resources will ultimately be subject to the access control mechanism of the Windows
operating system, which is based on the identity of the user account associated with the
Windows process hosting the .NET Framework.

The .NET Framework does not use cryptography to protect its internal data, but relies on its
code separation enforcement to prevent managed code from accessing or modifying the state
of the execution environment itself in unauthorized ways. It does provide cryptographic
services to assemblies through its managed libraries. These services are fully extensible and
configurable by an administrator if additional or substitute cryptographic modules are
required. For protecting U.S. Government information, only approved cryptographic
modules should be configured. Appropriate government authorities should be consulted for
guidance in cryptographic module deployment. The National Institute of Standards and
Technology is responsible for cryptographic policy for all Federal information systems
except national security systems. The National Security Agency is responsible for
cryptographic policy for systems processing national security information. See [FISMA,
2002] and [Barker (NIST SP 800-59), 2003] for more details. Appendix D contains full
references to works cited in this document.

UNCLASSIFIED

5
UNCLASSIFIED

Integrity

Integrity is a property that offers assurance that information is accurate, reliable, and
consistent. To maintain information integrity, a system must prevent, detect, and/or correct
the unauthorized or inadvertent modification of data and executables. The code separation
mechanism of the .NET Framework is intended to prevent one assembly from directly
modifying another assembly’s internal state. In addition, cryptographic hashes and digital
signatures are an integral part of the .NET Framework’s CAS system. Hash values can be
used to show whether an assembly has been corrupted or modified since it was created.
Digital signatures may also identify the creator of the assembly. The CLR relies on these
technologies to determine whether an assembly is allowed to execute and what resources it
may access. This protection extends to all the managed software components of the .NET
Framework itself. Managed code can use these services as well to maintain the integrity of
its own data over time.

The .NET Framework Security Model

This section, which introduces the security model and its components, will lay the
groundwork for the discussion of the configuration and management of the security
properties of the .NET Framework in later chapters. The security model employed by the
.NET Framework has some significant differences from that employed by traditional
operating system security. In traditional operating system security models, programs run in
the context of a user account, and are authorized to access resources based on the access
rights defined for that user account. When a user account is granted access to a resource, that
authorization is extended to all software the user executes. The basic premise of such a
model is that the security mechanisms exist to protect the system from discretionary actions
by users. One side effect of such an environment is that malicious code can cause greater
damage when executed by an administrator than when executed by a non-administrator, since
all software requests for resources are assumed to be at the discretion and authorization of the
user.

The .NET Framework security model allows permissions to be granted to executable code
based on characteristics of the code itself. This is achieved by the CLR working to enforce
permissions granted by an administratively configured CAS policy. These permissions or
their absence will be enforced regardless of the user account in which the code is running.
For example, if an application is not granted permission to write to a file by the .NET
Framework CAS policy, the application will be unable to write to the file even if run by a
user who has Windows write access to the file. Conversely, if an application is granted
permission to access a resource by CAS policy, but the user who runs the code is denied
access by Windows security, any attempted access will fail. The basic premise of the .NET
Framework security model is that the security mechanisms exist to protect the user from
discretionary actions by software.

Figure 2 illustrates this concept. A user executes the managed application myapp.exe in the
context of an operating system process. When myapp.exe attempts to access a protected

UNCLASSIFIED

6
UNCLASSIFIED

resource, the CLR checks the access permissions of myapp.exe based on the .NET
Framework CAS policy (steps 1 and 2). Since the assembly is granted access to the resource
by CAS policy, the CLR passes the access request through to the Windows operating system.
The operating system then checks the access permissions of the user based on the security
credentials associated with the Windows process that is hosting the managed code (steps 3
and 4). Since the user does not have permission to access the resource, access is denied.

Figure 2. Composite Policy Enforcement Using the .NET Framework.

.NET Framework Security Model Components

The .NET Framework security model consists of the following components:

Assemblies (managed executables). Assemblies are the unit of access control. A
.NET Framework application may include a number of different assemblies, each of
which may be granted different access rights.

Protected resources that assemblies may want to use. These predefined sets of
resources determine the access rights that may be granted to an assembly.

An administratively controlled Code Access Security (CAS) policy. This policy
contains administratively controlled rules that determine which assemblies or groups
of assemblies have which sets of access permissions. Additional fixed rules
determine how permissions are combined when an assembly is a member of multiple
groups.

An access monitor internal to the CLR. This CLR component serves as an oracle that
software can query to determine access rights to resources. The access monitor

Common
Language
Runtime

myapp.exe

Runtime Host Process

Windows Operating System Security

1. Does myapp.exe
have permission
according to .NET
Framework security
policy to access this
protected resource?

3. …Does the user’s
account have permission
according to the
operating system
security settings to
access this protected
resource?

4. No, access is
denied.

2. Yes, but…

User’s O/S Security Credentials

UNCLASSIFIED

7
UNCLASSIFIED

determines access rights by comparing the requested access type and resource identity
against the permissions associated with an assembly.

CAS policy is applied whenever an assembly is loaded to associate access permissions with
the assembly. During execution, the CLR’s access monitor can perform access rights checks
on behalf of executing code. Note that software that desires to use a resource can decide not
to check access rights through the access monitor, and if it does query for access rights, can
act on the result of the query, or choose to ignore it. Security in such a scheme is provided
by mediated access to resources and “walking” the call stack.

Mediated Access to Resources

The CLR’s software libraries function as highly privileged components of the .NET
Framework’s security mechanisms. While user code can avoid or ignore the access monitor,
any attempt to access resources must pass through the supporting libraries, which are trusted
(based on trust in Microsoft’s software development and distribution processes) to query for
the appropriate access rights and to not disregard the query results when attempting to use
resources.

Note that an administrator may grant an assembly the right to directly access resources by
invoking native code that is not subject to CAS policy. In such a case, the assembly is being
treated as a privileged extension to the CLR.

Walking the Call Stack

When the access rights of software are checked, all of the assemblies in the chain of
execution, starting from the initial application to the assembly performing the access rights
query, are checked for the appropriate access permission. This process is known as walking
the call stack. If any assembly in the chain is not authorized to access the requested resource,
the access check will fail. Privileged code such as the CLR’s libraries will be granted access
to all resources, but they will not be able to access resources on behalf of less privileged
code.

In many cases, the CLR will need to access protected resources to store internal state
information or perform its functions, but these resources are not exposed to other code. The
CLR’s libraries can make a special request for access to these resources even though less
trusted code is part of the call stack. This bypassing of the stack walk is a privileged
operation that is typically granted only to CLR libraries or other code of trusted origin.

Running with Multiple Versions of the Framework

There are several versions of the .NET Framework being used to develop software. See Table
1 for complete list of all versions released. There are several strategies for dealing with older
applications and newer Framework releases. These strategies include:

UNCLASSIFIED

8
UNCLASSIFIED

Side-by-Side Execution
Updating Software
Parallel Execution

Common Name Version Number Date Released
.NET Framework 1.0 1.0.3705.0 February, 2002
.NET Framework 1.0 SP1 1.0.3705.209 March, 2002
.NET Framework 1.0 SP2 1.0.3705.288 August, 2002
.NET Framework 1.0 SP3 1.0.3705.6018 August, 2004
.NET Framework 1.1 1.1.4322.573 February, 2003
.NET Framework 1.1 SP1 1.1.4322.2032 August, 2004
.NET Framework 2.0 2.0.50727.42 November, 2005

Table 1. Released Versions of the .NET Framework.

Side-by-Side Execution

The .NET Framework was designed to allow multiple concurrent versions of the CLR to run
on a given system. However, only one version of each major release may be installed on a
system at one time. Side-by-Side execution allows older applications to run against the
Framework version they were developed for without the need to use parallel execution, or
update and recompile the application against a newer Framework. Side-by-Side execution
provides the greatest and surest execution method for older applications since they run
against their expected Framework. However, administrators will need to be mindful that
Framework updates only apply to one version of a Framework and will not impact other
versions of the Frameworks on the system. For example, a security update for version 2.0 of
the Framework will have no impact on version 1.1 of the Framework. Therefore,
administrators will want to limit the number of installed Frameworks and track each
independently in update cycles.

Updating Software

Applications written for the .NET Framework are bound to the version of the Framework
they were created against. This causes a conflict between the desire to use older .NET
applications, and the desire or policy to limit the number of Frameworks simultaneously
installed on a given system. When parallel execution is not available and side-by-side
execution is limited, the only option is to update the software to use a newer version of the
.NET Framework. Administrators will need to work with the developer of an application to
ensure a software update will allow them to remove older Framework versions.

Parallel Execution

Parallel execution is feature of the side-by-side model that allows newer versions of the
Framework runtime to execute software written against an earlier version of the Framework
when certain conditions are met (see Figure 3).

UNCLASSIFIED

9
UNCLASSIFIED

Figure 3. Parallel Execution in the .NET Framework.

The parallel execution model relies on two conditions. First, no incompatible components
were used in the application. While Microsoft in general offers backwards compatibility in
newer versions of the Framework, they will deviate from this commitment to fix certain
operational and security issues. Second, the application configuration file has been updated to
use the newer Framework. See Figure 4 for an example of configuring the Framework to use
version 2.0 of the .NET runtime.

<configuration>
 <startup>
 <supportedRuntime version=”v2.0.50727” />
 </startup>
</configuration>

Figure 4. XML for Specifying Version 2.0 of the .NET Runtime.

Recommendation: Limit the number of installed versions of the .NET Framework
to versions that are actually needed to run applications.

The next chapter will discuss the association of permissions with code by introducing some
of the details of the assemblies, resources, and policy components of the .NET Framework
security model.

UNCLASSIFIED

10
UNCLASSIFIED

This page has been intentionally left blank.

UNCLASSIFIED

11
UNCLASSIFIED

Chapter

2
Features of the .NET Framework Security
Model
The administratively configurable features of the .NET Framework security model consist
essentially of three components: assemblies, protected resources, and CAS policy that
defines access control rules by which assemblies may be granted or denied access to those
resources. The access control rules defined by the administrator in the CAS policy are based
on the nature of the evidence presented by code and the nature of the access and resource
types available through the CLR libraries. Therefore the following discussion of assemblies
and protected resources is an important context for the final discussion of CAS policy.

Assemblies

An assembly is the basic unit of software deployment. A managed application executes in
the context of a Windows process and may consist of multiple assemblies; an assembly, in
turn, may consist of multiple executable files that have been linked together into a self-
describing logical collection. The self-description information is called the assembly
metadata and is contained in an assembly manifest.

The manifest contains references to all of the executable files and resources that constitute
the assembly. In addition, each executable file in an assembly has a manifest that contains
information that allows it to interact with other assembly components without relying on
external configuration or installation data such as registry keys.

Assemblies are also the basic unit of software access control. CAS policy rules are applied
to assemblies or groups of assemblies rather than to individual executable files (even when
the assembly consists of exactly one executable file component).

Assemblies may be private or shared. A private assembly is deployed in the same directory
as the application that uses it, is visible only to that application, and cannot be accessed by
any other application or assembly outside its directory. A shared assembly is structurally
identical to a private assembly, but may be used by other applications executing on the same
computer. A shared assembly is exposed for general use by installation into a machine-wide
repository called the Global Assembly Cache (GAC).

UNCLASSIFIED

12
UNCLASSIFIED

Evidence-Based Access Control

In much the same way that users must present evidence (i.e., identification and authentication
credentials) to the operating system before they are granted access to system resources,
assemblies present their attributes as evidence to the CLR so that it can have a basis upon
which to determine assembly access to protected resources. In addition, the application
domain into which the .NET Framework loads the assembly contributes some evidence about
where and how the assembly was obtained. When an assembly is loaded for execution, the
CLR assigns permissions to assemblies by weighing the presented evidence against an
administratively defined CAS policy. These assigned permissions are then checked during
code execution by the CLR’s access monitor to resolve all queries for access rights to desired
resources.

Figure 5. Evidence-Based Access Control.

Figure 5 illustrates the association of permissions with an assembly at load-time based on
evidence. When the assembly is loaded by the CLR into an application domain (step 1), both
the Runtime Host and the assembly itself present evidence to the CLR (step 2) that describes
the origin and content of the assembly. From the CAS policy, the CLR determines the
membership of the assembly in evidence-based groups and the sets of access permissions
granted to group members (step 3). These permissions are then associated with the assembly
for later use when checking access rights to specific protected resources.

Types of Assembly Evidence

Evidence used by the .NET Framework can be intrinsic or location evidence.

Intrinsic Assembly Evidence

Intrinsic evidence consists of properties that describe the assembly itself.

Runtime Host Process

myapp.exe

CAS
policyCLR

Application Domain

myapp.exe

Allowed Permission Set

2. Evidence

1. The assembly
is loaded. 3. Access

permissions are
determined.

UNCLASSIFIED

13
UNCLASSIFIED

Hash: A cryptographic hash of an assembly. CAS policy supports both the MD5 and
SHA-1 hash algorithms. An assembly can always present hash evidence, as a new
hash value can be computed at will by the CLR.

Publisher: The (successfully validated and verified) Authenticode digital signature of
the assembly. This is a digital signature using a Software Publisher’s digital
certificate: it consists of a cryptographic hash of the assembly which is encoded using
a vendor’s private key. The corresponding public key, which is included in the
assembly’s manifest, is then used to decode the hash and check it against a newly
computed hash of the assembly. If the encoded hash value and the newly computed
hash value differ, then the assembly will not present any publisher evidence. In
addition, if the digital certificate fails the Windows certificate verification process, no
publisher evidence will be used.

Strong Name: The strong name of an assembly is an extended cryptographic identity
for a specific assembly distribution. It is designed to solve some of the conflict
problems of referring to executables simply by filename. It precisely identifies an
assembly down to the bit, so different release versions or even different language
versions of the same assembly will have different strong names. The strong name
consists of the assembly’s filename, version, culture (language) information, a digital
signature (encrypted hash value), and the public key corresponding to the private key
used to digitally sign the assembly. The assembly will present strong name evidence
if the digital signature is valid, i.e., the public key is used to decrypt the original hash
value and it matches a new hash computation of the assembly.

Note that in order for a strong name to serve as a legitimate basis for granting access
to resources, the public key must be associated with a known source. Simply having
a valid digital signature does not imply that it was signed by a trustworthy party.
Some method, such as a well-designed and maintained public key infrastructure, of
associating the public key with a known source must be used to verify the assembly’s
origin. These methods are outside the scope of the .NET Framework execution
environment.

Location Assembly Evidence

Location evidence consists of properties that describe how and from where the assembly was
obtained. This evidence is provided to the CLR by the Runtime Host process.

URL: The specific URL, UNC, or file system path from which the assembly
originates. An assembly originating from http://www.example.com/test/
myapp.exe would present the full URL including the protocol (http://) as
evidence. Assemblies referenced through UNC or file system paths would include
the file protocol in their URL evidence, e.g., an assembly located at
c:\dev\myapp.exe would present file://c:\dev\myapp.exe as URL
evidence.

UNCLASSIFIED

14
UNCLASSIFIED

Site: The Website from which the assembly was obtained. Assemblies loaded from
the local computer or the local intranet do not present site evidence. The Website is
the domain name part of the URL. For example, an assembly originating from
http://research.example.com:8080/test would present the site name
research.example.com as evidence.

Note that the site evidence does not necessarily identify the developer of the code, as
it may be obtained from a mirror site or other software distribution point. It merely
identifies where the assembly was obtained this time.

Zone: The Windows URL Security Zones (typically associated with Internet
Explorer) including My Computer, Local Intranet, Trusted Sites, Internet, and
Restricted Sites. Note that assemblies downloaded and cached by Internet Explorer
are still associated with the Zone from which they were downloaded, even though
they may be loaded from the cache on the local machine when executed at a later
date.

GAC: Using the GAC or Global Assembly Cache as evidence is new in version 2.0 of
the .NET Framework. An assembly executed from the GAC will present evidence
that it is executing from the GAC.

Application Directory: The base directory or URL associated with an application
domain. This evidence is supplied by the application domain and can be used in
conjunction with the assembly’s URL evidence to define access control rules based
on whether an assembly is considered a component of the current application or not
(i.e., whether its URL evidence is a sub-path of the application domain’s base
directory or URL).

.NET Framework Protected Resources

The CLR provides access control over resources that software may need to use, but whose
unrestricted use by malicious or unstable code may expose the user or system to risk.
Permission by code to access these resources is provisionally granted based on the CAS
policy defined using the administrative tools provided with the .NET Framework (i.e.,
mscorcfg.msc or caspol.exe). Permission is provisional because the CLR’s access
control mechanism is layered on top of the Windows operating system access control system.
Access by managed code to a resource is subject to both CAS policy and the privilege level
of the user account in which the managed code is executing. The effect of this layered
approach is that code can be constrained on a case-by-case, user-independent basis using the
fine-grained CAS policy resource permissions, allowing more code with richer features to be
safely executed than ever before.

The resources that the .NET Framework security mechanisms protect fall into three basic
categories:

UNCLASSIFIED

15
UNCLASSIFIED

Protected Local Machine Resources

Protected Network Resources

Protected Administrative Resources

Protected Local Machine Resources are data or service resources available on the local
machine. Protected Network Resources are those resources that are accessed on either local
or remote hosts or provide networking services. Protected Administrative Resources are
those resources that are used by programs to operate the system in a secure and predictable
manner. These resources are typically managed by administrators responsible for
maintaining the security and integrity of the system.

Each type of protected resource has an associated type of permission that can be granted to
code. A permission generally consist of an identification of a specific instance of a protected
resource and a type of allowed access to that resource. The way that resource instances are
identified and the types of access that are possible vary from resource to resource. In
addition to these resource-specific permission parameters, each type of protected resource
also has an Unrestricted permission that allows full access to all instances of the resource.
Many resources (for example, the file system) are also protected by operating system
mechanisms, so permissions granted through CAS policy simply define the greatest possible
access to resources available to code, that is, the access available when executing under the
most privileged user account.

In addition to granting access to specific resources, the .NET Framework also supports a
blanket grant of Unrestricted access to all protected resources. This is known as “Full Trust.”
Any code that is not given this blanket permission is said to be “partially trusted,” even if the
actual permissions granted consist of Unrestricted access to each individual permission.

Protected Local Machine Resources

Local Machine Resources are resources that are typically associated with a single machine:

File System

User Interface Elements

Reflection

X.509 Store

Key Container

Data Protection

UNCLASSIFIED

16
UNCLASSIFIED

File System

The CLR offers assemblies persistent storage through use of the local file system. Access to
persistent storage in a local file system is controlled through three basic permissions:

File IO: permission to invoke general file system functions,

File Dialog: permission to invoke file system dialog boxes,

Isolated Storage File: permission to store data in a special file system-based virtual
storage cache.

File IO

Assemblies may be granted access to named files, folders, or drives via the File IO
permission. Access types include NoAccess, Read, Write, Append, Path Discovery, and
AllAccess, which is equivalent to the combination of the Read, Write, Append, and Path
Discovery access types to the specific named file system resource. In addition, the
Unrestricted permission grants an assembly full access to all file system resources. Read
access includes permission to determine whether a file exists and to read file metadata such
as the file size, creation time, last access time, etc. Write access includes permission to
delete or overwrite a file, but does not include permission to read from the file. Write access
also includes permission to set file attributes such as hidden, read only, archive, compressed,
etc. Append access grants only the ability to add data to the end of a file. Append also does
not grant read access to the file. Path Discovery includes permission to determine the parent
or enumerate the contents of a folder.

Permission to read or write to a file is checked only when the file access is first requested.
Once a file has been opened by an assembly with Read access, the assembly may then allow
other code to read from the file as well. Likewise, an assembly that has Write access to a file
may allow code that doesn’t have Write access to that file to write to it. Thus, granting Read,
Write, or Append access to an assembly will potentially grant the same access to all other
code with which the assembly can communicate. Granting File IO permission requires a
degree of trust that the code will behave responsibly and not allow other code unauthorized
access to file system resources.

In keeping with the principle of least privilege, File IO access should be granted only to the
specific file system objects that are necessary for an assembly to function. The File Dialog
permission (see below) may be used instead to grant access to a wide range of discretionary
(user-specified) file system resources. The Isolated Storage File permission (see below) may
be used instead to permit access to user or session-specific information such as customized
settings or data needed to resume a previous state.

UNCLASSIFIED

17
UNCLASSIFIED

Recommendation: Only grant the File IO access permissions Read, Write, or
Append to code that is trusted not to allow unauthorized access to file system
resources. Grant File IO access to the most restrictive set of files and folders
possible. Do not grant File IO access to file system roots or other broadly specified
resources simply because they contain a few scattered files of interest. In many
cases, the File Dialog or Isolated Storage File permissions are viable alternatives.

File Dialog

Dialog boxes may be used by assemblies to obtain access to files and folders through
interaction with a user. Since the file system resource is specified by a user, this is a safer
way to provide file system access than by allowing direct access using the File IO
permission. Moreover, the use of a file dialog box does not expose the identity (full path and
file name) of the selected object(s) to the code invoking the dialog box, unless that code also
has the AllAccess File IO permission to all the selected objects, so information about or
derived from the structure of the file system cannot be obtained by partially trusted code.

Access through the File Dialog permission includes None, Open, Save, and OpenSave. By
default, code from the Internet Zone has only Open permission, which allows read-only
access to files specified by the user. Note that read access to the file specified by the dialog
box is checked only when the file is opened. As with the File IO Read permission, any
assembly that opens a file using a dialog box may allow other code to read from that file.
Nevertheless, because code may not have access to the file identity, this is safer than the
corresponding File IO permission, even though code must be trusted to behave responsibly.

Since the Save File dialog box does not allow append access, the File Dialog permission
cannot be used by code that needs to incrementally write to a log file. In this case, a partially
trusted assembly may either be granted File IO permission to a specific file, or the more
restrictive Isolated Storage File permission (see below).

Recommendation: Grant the File Dialog permission to code that needs user-
discretionary access to files and folders. Use the File Dialog permission to allow
the user rather than partially trusted code to browse the file system to the desired
items. Where Append access is necessary or direct file system access cannot be
allowed, the Isolated Storage File permission may be a viable alternative.

Isolated Storage File

The Isolated Storage File facility provides a way for partially trusted assemblies to save
information for later use without directly accessing local machine resources such as the file
system or registry (similar to “cookies” used by Web applications). The “File” designation
distinguishes this resource from other means of implementing Isolated Storage, for example,
in an external storage network, in the registry, in a database, etc. Isolated Storage File is a
protected resource in the .NET Framework that is implemented through a folder tree within
each user’s local and/or roaming profile folder. There is no system-wide Isolated Storage
File area. All Isolated Storage File data stores are associated with a user account and some

UNCLASSIFIED

18
UNCLASSIFIED

form of identifying evidence (Publisher’s digital signature, Strong name, URL, Site, Zone)
for an assembly and possibly also a managed application.

Access types for the Isolated Storage File permission include None, Assembly Isolation by
User, Assembly Isolation by Roaming User, Domain Isolation by User, Domain Isolation by
Roaming User, Administer Isolated Storage by User, and the Unrestricted permission. All of
the permissions except None and Unrestricted, contain a Disk Quota setting that limits the
maximum amount of data the current assembly can store.

When an assembly creates an Isolated Storage File data store, it is one of four types:

A Local Assembly Data Store corresponding only to some identifying evidence of the
assembly. This type of data store may be created by an assembly with the Assembly
Isolation by User access type.

A Local Application Data Store corresponding to some identifying evidence of the
assembly and some identifying evidence of a managed application. This type of data
store may be created by an assembly with the Domain Isolation by User access type.

A Roaming Assembly Data Store corresponding only to some identifying evidence of
the assembly. This type of data store may be created by an assembly with the
Assembly Isolation by Roaming User access type.

A Roaming Application Data Store corresponding to some identifying evidence of the
assembly and some identifying evidence of a managed application. This type of data
store may be created by an assembly with the Domain Isolation by Roaming User
access type.

The Assembly Data Stores provide the least protection. A shared library that is granted this
permission may read and write data to this storage area regardless of the application context
in which it is executing. This permission is designed to allow access to data that is needed by
many applications. Note that access will still be limited to the data stored by the shared
library. The Application Data Stores provide greater protection. A shared library that is
granted this permission may read and write data only to a storage area associated to this
library running on behalf of a specific application. When the library is invoked by a different
application, it will create a different Isolated Storage data store. This is useful when the
assembly only processes data that is specific to an application. The Administer Isolated
Storage by User permission allows browse access to all data stores created for the user in
either the local or roaming profile, as well as read and write access to the assembly’s own
Assembly data stores. Browse access to a user’s data stores permits the enumeration of the
names of the directories and files contained in any data store for the current user.

UNCLASSIFIED

19
UNCLASSIFIED

Recommendation: Grant Administer Isolated Storage by User access only to highly
trusted administrative tools. Grant Assembly Isolation by User/Roaming User
access only to assemblies that need to use user-specific data applicable to many
applications, and do not use application-specific data. Grant Domain Isolation by
User/Roaming User access to all other assemblies. Note that this recommendation
entails a separation of duties among assemblies: those that process data of common
relevance to multiple applications should not also process application-specific data
and vice versa.

In the current implementation of Isolated Storage File, the file system folders created by the
Isolated Storage File libraries are often given names that are cryptographically derived from
the appropriate identifying evidence of an assembly or managed application. This is a
convenience that allows short (but cryptic) folder names to represent complex identity
information. Because folders names are generated in this way, the Isolated Storage File file
system should only be manipulated through the .NET Framework libraries (including the
storeadm.exe tool, which uses the .NET Framework libraries). Attempting to directly
modify the files and folders of the Isolated Storage File file system would probably lead to
corrupt and unusable data. Moreover, the actual implementation of the Isolated Storage File
data stores may change in future versions of the .NET Framework. Therefore, the discussion
below of an assembly’s available data stores is a simplified abstraction of the actual file
system hierarchy employed by the .NET Framework libraries.

Local Assembly Data Stores

Local Assembly Data Stores (see Figure 6) are folders in the user’s local profile area that are
each tied to some identifying evidence of an assembly. The Isolated Storage File permission
“Assembly Isolation by User” is required to access this kind of data store. There will only be
one data store of this type for a given form of identifying evidence, and all assemblies with
the same evidence can share this data store. Thus, a strong-named assembly will use the
same data store, whether it was loaded from the Global Assembly Cache on the local host or
invoked through a Web URL. Two different assemblies (including assemblies with the same
name but not strong-named) will only be able to share the data stores for identifying evidence
that they have in common. An assembly loaded from the local host could create a data store
based only on Zone evidence that would be shareable by any assembly in the MyComputer
Zone. Similarly, an assembly executed from the Internet Zone with the required permission
could store data in a Site-based data store that other such assemblies from the same Website
could access.

UNCLASSIFIED

20
UNCLASSIFIED

Figure 6. Local Assembly Data Stores.

When the “Assembly Isolation by User” permission is granted to a library assembly, it can
read information that it had previously stored, regardless of the managed application on
whose behalf it had previously written the data. Thus, these data stores are useful for holding
non-application-specific data that an assembly might need to handle for multiple
applications. For example, an address book assembly might hold contact information here
for a number of telecommunication applications, but not data for particular messages.
Similarly, an auditing library might aggregate logging or performance data for multiple
applications here, but not data for particular application events.

Local Application Data Stores

Local Application Data Stores (see Figure 7) are folders in the user’s local profile area that
are each tied to some identifying evidence of an assembly and contained in a grouping tied to
some identifying evidence of a managed application. The Isolated Storage File permission
“Domain Isolation by User” is required to access this type of data store. These data stores
are used to hold information that is specific to a managed application, even though it may be
stored and retrieved through a shared library. An assembly may create multiple application-
scope data stores, each contained in some managed application’s Isolated Storage File data
store. Note that there is no application-wide data store; data stores must be tied to some
identity evidence of an assembly invoked by the application. If an application depends on
two different managed libraries (say, ShoppingBasketHelper.dll and
WishListHelper.dll) that both use Isolated Storage File by URL, there will be two
application-scope data stores created, one by each library, and the libraries will not be able to
access each other’s data stores.

User’s Local Profile

Assembly Data Store: Strong name = x.dll, version 1.0, culture en-us, public key 0xabcd…

Folders and Files

Folders and Files

Folders and Files

Assembly Data Store: URL = http://www.example.com/y.dll

Assembly Data Store: Zone = LocalIntranet

Etc.

UNCLASSIFIED

21
UNCLASSIFIED

Figure 7. Local Application Data Stores.

Even when a managed application directly uses Isolated Storage File without a helper library,
the assembly-scope and application-scope data stores are distinct. Figure 8 shows assembly
and application-scope data stores for a managed application that directly accesses Isolated
Storage. If the application is granted only the “Assembly Isolation by User” permission, only
the assembly-scope data store will be accessible, and similarly for the “Domain Isolation by
User” permission. If the application has unrestricted use of Isolated Storage or, equivalently,
has the “Administer Isolated Storage by User” permission, both data stores will be
accessible.

Figure 8. Local Data Stores for a Managed Application that Directly Uses Isolated Storage.

Roaming Assembly and Application Data Stores

The Roaming Data Stores (see Figure 9) differ from the Local Data Stores only in their
location within the host or network. The Roaming Data Stores are located in the user’s
roaming profile, which is a combination of data in a central network location and a locally
cached working copy which updates the remotely stored profile at logout. The Local Data
Stores are only located in the user’s profile directory on the local host. Local and Roaming
Data Stores are completely independent of one another. The corresponding Isolated Storage

User’s Local Profile

Application Data Store: URL = \\appserver\officeapps\Calendar.exe

Etc.
Folders and Files

Assembly Data Store: URL = \\appserver\officeapps\Calendar.exe

Folders and Files

Managed Application: URL = \\appserver\officeapps\Calendar.exe

User’s Local Profile

Application Data Store: Strong name = x.dll, version 1.0, culture en-us, public key 0xabcd…

Managed Application: Strong name = Tracker.exe, version 1.0, culture en-us, public key 0x1234…

Application Data Store: URL = http://www.example.com/y.dll

Etc.

Folders and Files

Application Data Store: Zone = LocalIntranet

Folders and Files

Folders and Files

Managed Application: URL = \\appserver\officeapps\Calendar.exe

UNCLASSIFIED

22
UNCLASSIFIED

File permissions that are required for access to the Roaming Data Stores are “Assembly
Isolation by Roaming User” and “Domain Isolation by Roaming User.” Note that there is no
built-in facility to synchronize the Local and Roaming Data Stores.

Figure 9. Roaming Assembly and Application Data Stores.

User Interface Elements

Users interact with applications through graphical interface elements that provide convenient
and standardized means to supply input data or present output data. Because users may make
security-relevant decisions or supply input data based on the state of the application as it is
presented through the user interface elements, these items are protected by the CLR to
prevent the user from being tricked into disclosing information. In addition, the transfer of
data through the Windows system clipboards is protected. Access to these resources is
controlled by two independent settings of the User Interface permission:

Windowing: access to various types of window elements and associated events

Clipboard: access to cut/paste operations between applications

Windowing

Control over windowing elements is granted using the four access types: No windows, Safe
subwindows, Safe top-level windows, and All windows and events. A “safe” window has
some unmodifiable features that prevent code from controlling the appearance of the
window. A top-level window is a main window of an application. Its parent is the operating
system desktop, and it may serve as a parent for other windows created by the application,
including message windows, dialog boxes, or forms. When an assembly runs in a browser
window, all assembly windows are subwindows of the browser window.

The All windows and events permission allows an assembly to create and modify all aspects
of windows that have been created by the assembly. This includes unrestricted access to all
events and windows properties (such as location, shape, size, window titles, button-click
events, etc.) for top-level windows and subwindows.

User’s Roaming Profile

Application Data Store: Strong name = x.dll, version 2.3, culture en-us, public key 0x4a…

Etc.
Folders and Files

Assembly Data Store: URL = http://www.example.com/y.dll

Folders and Files

Managed Application: Strong name = abc.exe, version 1.0, culture en-us, public key 0xab12…

UNCLASSIFIED

23
UNCLASSIFIED

With the Safe top-level windows permission, all the windows associated with the application
are “safe” windows as described above. The assembly may draw and have access to user
input events within the windows, but is not able to change the visual layout of the window
itself, such as its size, shape, opacity, and location.

The Safe subwindows permission further restricts window access, as an assembly with this
permission may not have any access to top-level windows (including user input events), and
is still prohibited from modifying the layout of subwindows.

The most restrictive access type is No Windows permission which denies the ability for an
assembly to provide any windowing interface.

Recommendation: Code with limited trust should be granted at most Safe
subwindows permission. Highly trusted code that accepts user authentication
information or allows the user to authorize program actions through a graphical
interface should be granted at most Safe top-level windows permission.

Clipboard

The Windows Clipboard is a familiar mechanism to users who routinely cut and paste
information from one application to another. There are three types of clipboard access that
can be granted by the .NET Administrator: No Clipboard, Own Clipboard and All Clipboard.
The No Clipboard permission disallows assembly access to the system wide clipboard. The
Own Clipboard permission allows an assembly to copy or cut information to the system wide
clipboard, but does not allow the assembly to paste data from the clipboard except when
invoked by Ctrl-v or similar user input. This permission prevents the unauthorized disclosure
of clipboard data. The All Clipboard permission provides unrestricted access to the system
clipboard, allowing the assembly potentially to exchange data with any other application on
the local computer that also has clipboard access.

Recommendation: The clipboard is a convenience for users who wish to change the
presentation context of data or reuse data without retyping it into another
application. It is a “broadcast” channel in that most software can
programmatically read the contents of the clipboard and write data to it whether
initiated by user input or not. Nevertheless, software should use other means to
communicate and reserve the clipboard for discretionary use by the user. Read
access (i.e., through the All Clipboard permission) should be reserved for highly
trusted code.

Reflection

Reflection refers to the capability of an assembly to discover information about itself or other
assemblies while it is executing. Through reflection, an assembly can determine the best way
to save its internal state for later resumption of processing, it can dynamically modify its
behavior by detecting and responding to alternate forms of input data, and it can query the
attributes and methods of other assemblies to find and invoke desired functions. The

UNCLASSIFIED

24
UNCLASSIFIED

reflection permission is not needed to discover public attributes and methods of assemblies.
The capability to use reflection is protected by three permissions:

Type Information

Member Access

Reflection Emit

The Unrestricted permission includes Type Information, Member Access and Reflection
Emit. A more granular access policy can also be granted by setting which specific reflection
permissions an assembly can use.

The Type Information permission allows an assembly to enumerate all the features and
functions of code defined in a different assembly, even those that are part of the assembly’s
internal functional implementation and are not meant to be modified directly (its “private”
details). Although obscuring internal details of an assembly is not a viable strategy to protect
sensitive information, this permission supports a “need-to-know” policy on implementation
details, while exposing the necessary features. Code such as highly trusted software
engineering tools or perhaps some administrative tools may require this permission to
function, but few, if any, other assemblies should need it.

The Member Access permission allows an assembly to access and invoke all the features and
functions of code defined in a different assembly, even its internal features that are not
intended to be publicly exposed. To invoke these functions, their names and invocation
requirements must be known in advance. Since some functions designed for internal use are
not subject to security checks for performance reasons, only highly trusted code should be
granted the Member Access permission.

The Reflection Emit permission allows an assembly to create (“emit”) executable code on the
fly. This might be useful for code that must optimize or restrict its behavior based on
alternate execution environments, or that must interpret or compile a programming language.
The dynamically created assembly does not automatically inherit the evidence of the creating
code. If the creating code has the highly privileged Allow Evidence Control permission, it
can specify what evidence that the dynamic assembly will present. In this case, the CLR will
use this evidence to grant permissions to the dynamic code based on CAS policy. If the
creating code does not have the Allow Evidence Control permission, the dynamic assembly
will simply be granted the same permissions as the creating assembly.

Recommendation: Grant the Type Information permission only to highly trusted
code that requires access to implementation details—typically this is restricted to
software engineering tools or software interoperability services. Grant the Member
Access permission only to highly trusted code.

UNCLASSIFIED

25
UNCLASSIFIED

X.509 Store

New in version 2.0 of the Framework, the X.509 Store permission (also known as the Store
permission) dictates how .NET code can access X.509 certificate stores available on the
system. A certificate store is a file of X.509 certificates in Windows. The .NET Framework
contains the following X.509 permissions that can be set in mscorcfg.msc: Allow removal
of a certificate from a store, Allow adding of a certificate to a store, Allow opening of a store,
Allow enumeration of certificates in a store, Allow deletion of stores, Allow creation of
stores, Allow enumeration of stores.

These X.509 certificates and certificate stores may be used in securing vital communications
between computers. Some assemblies may have a need to open a certificate store in order to
use the certificates stored within it, and others may even have a legitimate need to add
certificates to the store. However, these uses should be looked at on a case-by-case basis.
Most assemblies have no need for this functionality.

Recommendation: Grant the Allow opening of a store permission only to
assemblies that need access to X.509 Certificates. Grant the Allow adding of a
certificate to a store permission to assemblies that are trusted to add only legitimate
certificates to a Windows certificate store. All other permissions in this set should
not be granted unless an assembly is completely trusted to add, modify, and delete
sensitive authentication certificates.

Key Container

The Microsoft Windows Cryptographic API provides facilities for managing cryptographic
keys. These keys are used by Cryptographic Service Providers (CSP) to protect data during
transmission or storage. Key containers are created and used by CSP’s to store cryptographic
keys used by an application.

New in version 2.0 of the Framework, the Key Container permission is used to control access
to CSP-created key containers. Note that Key Containers are different from X.509 certificate
stores. As of version 2.0 of the .NET Framework, the Key Container permission is not
configurable using mscorcfg.msc. Instead, the configuration files must be edited by hand
or the XML must be imported into CAS policy using caspol.exe. Permissions that can be
set are included in Table 2 [Microsoft, MSDN]. An example of XML for granting both the
Open and Sign permission can be seen in Figure 10.

Flag Description
AllFlags Create, decrypt, delete, and open a key container; export and import a

key; sign files using a key; and view and change the access control list
for a key container.

ChangeAcl Change the access control list (ACL) for a key container.
Create Create a key container. Creating a key container creates a file on disk.
Decrypt Decrypt a key container. Decryption should be a privileged operation

because it uses the private key.

UNCLASSIFIED

26
UNCLASSIFIED

Flag Description
Delete Delete a key container.
Export Export a key from a key container.
Import Import a key into a key container.
NoFlags No access to a key container.
Open Open a key container and use the public key. Open does not give

permission to sign or decrypt files using the private key, but it does
allow a user to verify file signatures and to encrypt files. Only the owner
of the key is able to decrypt these files using the private key.

Sign Sign a file using a key.
ViewAcl View the access control list (ACL) for a key container.

Table 2. Key Container Permission Flags.

<IPermission class="System.Security.Permissions.KeyContainerPermission,

mscorlib, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

 version="1"

 Flags="Open, Sign"/>

Figure 10. XML for Granting the Open and Sign Permission to a Key Container.

Recommendation: In following with least privilege, grant the Key Container
permission to the most restrictive set of permissions possible. Only grant Create,
Delete, Import, Export, Sign, Decrypt, and AllFlags to highly trusted code.

Data Protection

Starting with Windows 2000, Microsoft provided the Data Protection API (DPAPI), to
ensure only authorized users are granted the right to “unprotect” data. DPAPI is an operating
system service that provides data protection services to user and system processes. This
service provides methods for cryptologically protecting data in memory or on disk.
Typically, the only user authorized to unprotect data is the user executing the process that
protected the data.

New in version 2.0 of the .NET Framework is the Data Protection permission that controls
access to encrypted data and memory. Access types in the Data Protection permission include
AllFlags, NoFlags, ProtectData, ProtectMemory, UnprotectData, and UnprotectMemory.
This permission is not configurable using mscorcfg.msc. Instead, the configuration files
must be edited by hand or the XML must be imported into CAS policy using caspol.exe.

Recommendation: In following with least privilege, grant the Data Protection
permission to the most restrictive set of permissions possible.

UNCLASSIFIED

27
UNCLASSIFIED

Protected Network Resources

Printers

Domain Name System (DNS)

Network Sockets

Web Access

Simple Mail Transfer Protocol (SMTP)

Network Information

Message Queues

Distributed Transactions

Windows Services

Databases

Printers

Printers have four levels of administratively controlled permissions: No Printing, Safe
Printing, Default Printing and All Printing. The No Printing permission prevents any access
to printers. The Safe Printing permission allows printing only to a destination selected by a
user through the Windows Print dialog box. The Default Printing permission allows the user
to select a printer destination from the dialog box, and also permits code to programmatically
send a document to the default printer. The All Printing permission allows an assembly to
programmatically send documents to any available printer without user interaction through
the Windows Print dialog box. This may be useful for applications that present a highly
customized printing interface, but assumes that code will not take unauthorized actions.

Recommendation: Grant All Printing permission only to highly trusted code.

Domain Name System (DNS)

The .NET Framework provides domain name resolution service through its managed
libraries. Access control is provided through the DNS permission and is either granted
(Unrestricted) or denied. Granting this permission allows an assembly to perform domain
name resolution and associated services through the managed libraries. Host information
may be requested such as the IP addresses and aliases corresponding to a domain name or the
domain name corresponding to an IP address. Note that this permission only controls
requests for information from a DNS service. It does not allow the assembly to create DNS
records or control the DNS service. Thus, it should only be granted to code that originates

UNCLASSIFIED

28
UNCLASSIFIED

either in the local network or from highly trusted external entities. Code from the local
network should be an authorized part of the networking infrastructure (i.e., the code has been
strong-named with a key known to be associated with local network entities).

Recommendation: The DNS permission should typically be granted only to code
that originates from within the local network (evidenced by a strong name with a
public key associated with a local entity) or from a highly trusted external entity.

Network Sockets

The Socket Access permission allows code to receive data at specified ports on a local host
IP address, or to send data to a specified port on a remote host. The permission is either
Unrestricted, or restricted to a list of allowed sockets (IP address and port number pairs).
Connections may be made to any remote socket on the list, and the operating system will
bind the local (receive) endpoint of the connection to an available local IP address and port
number (this may not take place until the first data transmission). If a specific local socket is
desired, access must be explicitly granted to the IP address and port number.

The .NET Framework configuration tool (mscorcfg.msc) currently allows permission to be
granted for TCP only, UDP only, or both transport protocols (specified by selecting both
TCP and UDP). Access may be granted to all ports by specifying a port value of -1.

The Socket Access permission protects the ability to perform low-level data transmission that
is typically reserved for applications that provide network infrastructure functionality, i.e. a
shared component or library. Thus, although the ability to send and receive data across a
network is at the heart of distributed computing, caution should be taken when assigning the
Socket Access permission to assemblies as this permission may be too permissive for many
managed applications. Specialized types of transmission are provided through the Web
Access or Message Queue permissions, and .NET Remoting (the .NET Framework’s native
application-to-application communication facility).

Recommendation: The Socket Access permission should only be granted to highly
trusted code or code that originates from the local network (evidenced by a strong
name with a public key associated with a local entity) and provides networking
services.

Web Access

The Web Access permission allows code to issue HTTP requests to specified URLs.
Unrestricted Web Access also allows code to modify some HTTP settings such as the
maximum allowed HTTP response header length. In the default CAS policy, code that
satisfies the Membership Conditions for the Trusted_Zone, LocalIntranet_Zone, or
Internet_Zone Code Groups (typically code obtained through a Web URL) is automatically
granted Connect access to its site of origin through a Net Code Group. In addition, a Net
Code Group also allows connect access to all URLs of a site, not just the specified subpath.
To enforce the strict separation of web applications, their respective assemblies should be
based in different domains or subdomains and not just subdirectories of the same root.

UNCLASSIFIED

29
UNCLASSIFIED

Unrestricted Web access should only be granted to administrative tools or other highly
trusted networking applications. Connect access to a URL could allow an assembly to
transfer to the remote site any data the assembly is able to read. This permission should only
be granted to code that either does not have access to sensitive data or is trusted enough to
protect the information it can access.

The Accept access permission indicates that the assembly is allowed to accept connections
from a certain Internet URL. This controls which sites or domains are allowed to access web
services from the application. This permission should only be granted to code that serves
web content and is trusted to accept connections from remote hosts.

Recommendation: Grant the Web Access Connect permission for a specified URL
only to code that is denied access to information or resources that should not be
shared with the remote site, or is trusted to protect resources that it can access.
Grant the Web Access Accept permission for a specified URL only to code that
requires incoming web connections and is trusted to accept the connections.
Unrestricted Web Access should only be granted to highly trusted code that
performs networking services.

Simple Mail Transfer Protocol (SMTP)

The SMTP permission is new in version 2.0 of the .NET Framework and protects the sending
of e-mail by using the Simple Mail Transfer Protocol (SMTP), ultimately protecting SMTP
servers. Access types in the SMTP permission include None, Connect,
ConnectToUnrestrictedPort, and Unrestricted. This permission is not configurable using
mscorcfg.msc. Instead, the configuration files must be edited by hand or the XML must be
imported into CAS policy using caspol.exe. Manually editing configuration files could
cause invalid or corrupt XML. CAS policy should be configured using mscorcfg.msc
where possible.

The Connect access type allows code to connect to an SMTP server on the default port only,
port 25. The ConnectToUnrestrictedPort allows a connection to any port on an SMTP server.
Unrestricted also includes the ability to connect to an SMTP server on any port.

Recommendation: Code granted the SMTP permission will be able to compose and
send emails. Thus, only code that needs to send emails should be granted the SMTP
permission.

Network Information

The Network Information permission is new in version 2.0 of the .NET Framework and
protects access to network traffic data, network address information, and notification of
address changes for the local computer. The Network Information permission also protects
access to Ping functionality which can be used to check whether a computer is reachable
across the network. Access types in the Network Information permission include None, Ping,
Read, and Unrestricted. This permission is not configurable using mscorcfg.msc. Instead,

UNCLASSIFIED

30
UNCLASSIFIED

the configuration files must be edited by hand or the XML must be imported into CAS policy
using caspol.exe.

The Read access permission can be used to gather local network information settings such as
IP address, DNS server, Gateway and more. The Ping access permission grants code the
ability to send ICMP packets onto the network and learn about other nodes on the network.
The Ping access type should be granted only to highly trusted code.

Recommendation: The Read access type should typically be granted only to code
that originates from within the local network or from a highly trusted external
entity. Grant the Ping and Unrestricted access types only to highly trusted code.

Message Queues

Message Queuing is a network service maintained by the Windows operating system to allow
applications to perform asynchronous communication with each other across a local network.
The .NET Framework libraries allow managed code with sufficient permissions to use this
facility. Assemblies may send and receive messages as well as browse specific message
queues on local or remote machines. The operating system does not install any Message
Queues by default. The Message Queuing Service can be installed via the Add/Remove
Windows Components in the Control Panel.

Access to these services is controlled by the Message Queue permission which may be
configured for any combination of five Message Queue access types that can be applied to
specific named local or remote message queues: Browse, Send, Peek, Receive, and
Administer.

Browse permission for a queue allows an assembly to read the message headers of all
messages in that queue, but does not allow the assembly to send messages to the queue or to
receive/peek at messages. Browse access to all queues allows an assembly to determine
whether a path is a valid path to a message queue.

Send, Peek, Receive, and Administer access all include Browse access, with additional
authorized actions as follows. Send permission for a queue allows an assembly to append a
message to that queue. Peek permission for a queue allows an assembly to retrieve the next
message from that queue but not to delete the message from the queue. Receive permission
for a queue allows an assembly to retrieve and delete a message from that queue. Administer
permission for a queue includes Send and Receive access and also allows an assembly to set
queue properties or to delete a queue. Unrestricted queue access allows an assembly to
create queues.

Access permissions are associated with specific message queues, identified either by paths or
descriptions. Queue path identifiers have the form “<machinename>/<queuename>”,
where “.” can stand for the local host and “*” for all queues. A queue may also be identified
by descriptive terms such as category and/or labels defined by the queue administrator.
Category names are identifiers that group queues with common features and allow Message
Queue permissions to be granted to all queues in a category. Queue labels are short

UNCLASSIFIED

31
UNCLASSIFIED

descriptive identifiers that are intended to be unique across the entire local network. The
Message Queue service will resolve queue labels to determine the host machine where the
queue resides. If two queues on the same network have the same label, this resolution
process may fail, preventing messages from being sent to those queues.

The CLR library that provides access to message queues (System.Messaging.dll) is not
marked for direct use by partially trusted code, so code that is allowed to use messaging may
still need to rely on a Fully Trusted helper assembly.

Since message queuing is a local network facility, its use should only be granted to code that
originates in the local network, or to code that originates from external parties with prior trust
relationships. In keeping with the principle of least privilege, code should be granted access
only to specific queues or categories of queues, and only the minimum access needed to
function. Code that only needs to send alerting messages should not be granted the Receive
or Peek permission. Since Send access includes the ability to browse message headers, it is
not possible to grant permission to send a message without also granting access to some
message queue information unrelated to the sent message.

Recommendation: The Message Queue permission should only be granted to code
that originates from within the local network (evidenced by a strong name with a
public key associated with a local entity) or from a highly trusted external entity.
Administer access to any single queue and Browse access to all queues on the
system should only be granted to highly trusted administrative tools.

Distributed Transactions

Distributed Transactions are a network service maintained by the Windows operating system
to allow applications to create and participate in transactions with one or multiple
participants. This service is available in Windows 2000 and later.

The Distributed Transaction permission is new in version 2.0 of the .NET Framework and
protects the escalation of a transaction to the Microsoft Distributed Transaction Coordinator
(MSDTC). The access types supported by this permission are None and Unrestricted. This
permission is not configurable using mscorcfg.msc. Instead, the configuration files must
be edited by hand or the XML must be imported into CAS policy using caspol.exe.

Recommendation: The Distributed Transaction permission should only be granted
to code that originates from within the local network (evidenced by a strong name
with a public key associated with a local entity) or from a highly trusted external
entity.

Windows Services

The Service Controller permission controls access to the control infrastructure of Windows
Services rather than to the consumption of those Services. A Windows Service is controlled
by sending control messages to the Service Control Manager resident on the machine where
the service is running. Access is granted to managed code in three levels, None, Browse, and

UNCLASSIFIED

32
UNCLASSIFIED

Control, that are applied to named services on specified computers. Browse access allows an
assembly to get the current status of a service as well as determine other services that a
service depends on or supports. Control access permits the code to issue commands to a
service such as Start, Stop, Pause, Continue, or service-specific custom commands.

The CLR library that provides access to services (System.ServiceProcess.dll) is not
marked for direct use by partially trusted code, so code that is allowed to issue commands to
Windows services may still need to rely on a Fully Trusted helper assembly.

Since control of services is typically an administrative function that affects service
availability, the Service Controller permission for a Windows service should only be granted
to applications that are as trusted as the service itself.

Recommendation: Grant the Service Controller permission for a Windows service
only to assemblies whose trust is as high as the service itself and commensurate
with the value of the availability of the service.

Databases

The .NET Framework allows an administrator to control assembly access to databases by
restricting connection information used by data providers. A data provider is a software
library that assemblies can use to store and retrieve data in a database. Some data providers
are designed to use a standardized or well-known data access protocol. They are “generic” in
that they can be used to access multiple vendor-specific database formats, provided the
database vendor has built in support for the protocol. These data providers typically interact
with other product-specific data providers. Version 1.0 of the .NET Framework is distributed
with the generic OLE DB data provider and a product-specific data provider for Microsoft
SQL Server (called the “SQL Client” data provider). Two additional data providers, a
generic ODBC provider and an Oracle product-specific data provider (“Oracle Client”), can
be installed separately. Versions 1.1 and 2.0 of the .NET Framework are distributed with all
four of these data providers.

CAS policy is designed to provide access control over the use of data providers. By itself,
this does not control access to any specific database or data sources. Fine-grained access
control to individual databases is configured through the CAS policy settings for each data
provider permission. The standard means of initiating interaction with a specific database is
through a connection string that is processed by the data provider. CAS policy provides
access control over the use of components of connection strings (i.e., (key, value) pairs).
Particular emphasis should be placed on incorporating connection strings in the XML
configuration files instead of placing connection strings in the actual code.

Unfortunately, the .NET Framework Configuration Tool, mscorcfg.msc, does not support
the level of access control that can be implemented in XML in the CAS policy configuration
file. In all versions of the .NET Framework, mscorcfg.msc offers only a limited set of
ways to configure access to data providers or to databases. Currently, no version of
mscorcfg.msc has built-in support for the ODBC or Oracle Client data provider
permissions. In versions 1.0, and 1.1, mscorcfg.msc allows only coarse access control to

UNCLASSIFIED

33
UNCLASSIFIED

the use of connection string components for the OLE DB or SQL Client data providers. In
.NET 2.0, mscorcfg.msc only has built-in support for the SQL Client data provider, but
OLE DB can still be configured manually. Furthermore, when mscorcfg.msc is used to
view database permission settings for permissions that include the more fine-grained access
control features in the XML files, it will discard these elements.

Version 1.0 of the .NET Framework

In version 1.0 of the .NET Framework, the XML structure for a database permission is as
shown in Figure 11:

<IPermission class=“{System.Data.OleDb.OleDbPermission |

System.Data.SqlClient.SqlClientPermission}, System.Data,

 Version=1.0.5000.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089”

 version=“1”

 AllowBlankPassword=“{True | False}”

 Unrestricted=“{True | False}”>

</IPermission>

Figure 11. XML Structure of a Database Permission in Version 1.0.

An optional additional child element <keyword> is available for the OLE DB permission.
This element will be described in more detail in the section on OLE DB.

The class attribute of the <IPermission> element fully identifies the CLR library software
that implements the specified permission. The example above shows the possible values for
the built-in data provider permissions for version 1.0 of the .NET Framework. The
installable ODBC and Oracle Client permissions would be formatted similarly. The
version attribute specifies a version of the IPermission interface. The
AllowBlankPassword attribute indicates whether the assembly granted this permission
will be allowed to specify a blank password in a connection string. In version 1.0 of the
.NET Framework, a connection string is considered to contain a blank password if
“password=;” or “pwd=;” is a connection string component. The Unrestricted
attribute, if set to “True”, indicates that the data provider may be used with any connection
string (including ones with blank passwords).

Version 1.1 of the .NET Framework

In version 1.1, the XML structure for a database permission is as shown in Figure 12:

<IPermission class=“{System.Data.OleDb.OleDbPermission |

System.Data.SqlClient.SqlClient.Permission |

System.Data.Odbc.OdbcPermission}, System.Data,

UNCLASSIFIED

34
UNCLASSIFIED

Version=1.0.5000.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089”

 version=“1”

 AllowBlankPassword=“{True | False}”

 Unrestricted=“{True | False}”>

 <add ConnectionString= “...” KeyRestrictions= “...”

KeyRestrictionBehavior= “{AllowOnly | PreventUsage}”/>

 ...

 <add ConnectionString= “...” KeyRestrictions= “...”

KeyRestrictionBehavior= “{AllowOnly | PreventUsage}”/>

</IPermission>

Figure 12. XML Structure of a Database Permission in Version 1.1.

The Oracle Client data provider permission is similar, except that the class attribute begins
“System.Data.OracleClient.OracleClientPermission,
System.Data.Oracleclient, ...”.

In version 1.1 of the .NET Framework, a connection string is considered to contain a blank
password if there is an explicit blank password, that is, “password=;” or “pwd=;” are
included in the connection string, or an implicit blank password. An implicit blank password
occurs when the user identity is passed as “userid={any value};” or “uid={any
value};”, but no password is provided at all, that is, the keys “password” or “pwd” do not
appear in the connection string.

Version 2.0 of the .NET Framework

In version 2.0, the XML structure for a database permission is as shown in Figure 13:

<IPermission class=“{System.Data.OleDb.OleDbPermission |

System.Data.SqlClient.SqlClient.Permission |

System.Data.Odbc.OdbcPermission |

 System.Data.OracleClient}, System.Data,

Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089”

 version=“1”

 AllowBlankPassword=“{True | False}”

 Unrestricted=“{True | False}”>

 <add ConnectionString= “...” KeyRestrictions= “...”

KeyRestrictionBehavior= “{AllowOnly | PreventUsage}”/>

 ...

 <remove name=“...”/>

 ...

UNCLASSIFIED

35
UNCLASSIFIED

 <add ConnectionString= “...” KeyRestrictions= “...”

 KeyRestrictionBehavior= “{AllowOnly | PreventUsage}”/>

 ...

 <clear/>

</IPermission>

Figure 13. XML Structure of a Database Permission in Version 2.0.

Version 1.1 and 2.0 both provide support for the <add> element. This element is used to
provide access control to specific databases by controlling what components are permissible
in connection strings. When an assembly accesses a database through one of the data
providers, it supplies a connection string that specifies parameters for the access such as the
server name or IP address of the database server, the name of the database, a connection
timeout, a username and password, and so on.

In earlier versions of the .NET Framework, the application settings configuration file handled
connection string configurations. In .NET 2.0, connection strings should be placed in the
<connectionStrings> element defined in the <configuration> section of the CAS policy
file. The <connectionStrings> element also includes the <remove> and <clear> attributes
to undo the effects of connection strings that have been inherited from other policy levels. In
addition the connection string builder classes are also available for each of the database
providers to eliminate processing invalid connection strings at run time. By using the string
builder class the key-value pairs are parsed at compile time for validity. In version 2.0, the
XML structure for the <connectionStrings> section of a configuration file is shown in
Figure 14:

<configuration>

<connectionStrings>

 <add name=”MyConnString=”…”

 KeyRestrictions=”…”

 KeyRestrictionBehavior=”{AllowOnly |PreventUsage} />

 <remove name=“...”/>

 <clear/>

</connectionStrings>

</configuration>

Figure 14. XML Structure of a <connectionStrings> Element in Version 2.0.

When access is attempted with a particular connection string, the CLR will check that the
assembly has the proper data provider permission. If granted access to the desired data
provider, the CLR will then check that there are no restrictions on the (key, value) pairs
specified in the assembly’s connection string. Each <add> element for a data provider
permission defines a connection string template. The ConnectionString attribute
specifies a base set of components. Each <add> element only defines restrictions for

UNCLASSIFIED

36
UNCLASSIFIED

connection strings that contain at least the (key, value) pairs in its ConnectionString
attribute. A missing ConnectionString attribute is equivalent to an empty string, and will
define restrictions that will apply to all connection strings.

The CLR will parse the assembly’s connection string into its component (key, value) pairs
and discard duplicates. When checking for duplicates, the comparison is case-insensitive,
and some alternate forms of key names are taken into consideration. For example, when
specifying the network address of the database server, the key name can be “data source,”
“addr,” “address,” “server,” or “network address.” The last value is kept of any set of
duplicates in the same string.

After parsing the connection string, the CLR checks each <add> element that applies (i.e.,
whose parsed ConnectionString attribute value is a subset of the desired connection
string). If the <add> element has a KeyRestrictionBehavior attribute of
“PreventUsage”, then the key names listed in the KeyRestrictions attribute are
prohibited from appearing in the assembly’s connection string. If the <add> element has a
KeyRestrictionBehavior attribute of “AllowOnly”, then any key names not listed in
the KeyRestrictions attribute are prohibited. Alternate key names are taken into account
– if a key name is allowed or prohibited, so are any alternate forms.

The <add> element does not restrict key values. The key values present in the
ConnectionString attribute determine the base connection string to which the defined
restrictions will apply. If a connection string includes the same key names as the
ConnectionString attribute, but has different values, the <add> element will not apply.
If a connection string does not contain the base (key, value) pairs from the
ConnectionString attribute for any <add> element, it is prohibited. The <add> element
can thus be considered permission to use the base connection string specified by the
ConnectionString attribute with the potential addition of certain other key names (having
any corresponding values). Table 3 illustrates the combined effect of <add> element
attributes. The leftmost columns represent the value of the ConnectionString,
KeyRestrictions, and KeyRestrictionBehavior attributes, respectively. In this
table, the uppercase letters “X,” “Y,” and “Z” represent disjoint sets of (key, value) pairs,
while lowercase letters “x,” “y,” and “z” represent the corresponding sets of key names only.
Sets may be empty. A missing ConnectionString or KeyRestrictions attribute is
equivalent to an empty string.

CS KR KRB Combined Effect
“” “” AllowOnly Only the empty connection string is permitted,

which is equivalent to denying access to all
databases, since this <add> element will apply to
all connection strings.

“” “” PreventUsage All connection strings are permitted. Any
connection string will contain the base (empty)
string, and no additional keys are prevented.

“” x AllowOnly Permit only connections strings whose key names
are all listed in x.

UNCLASSIFIED

37
UNCLASSIFIED

CS KR KRB Combined Effect
“” x PreventUsage Permit only connection strings that do not contain

any key names listed in x.
X “” AllowOnly Permit the exact connection string X but reject any

connection string that contains X plus additional
components.

X “” PreventUsage Permit all connection strings that contain at least
the (key, value) pairs in X. Any additional (key,
value) pairs are permitted.

X y AllowOnly Permit all connection strings that contain all the
(key, value) pairs in X, with the possible addition
of key names listed in y (with any corresponding
values).

X y PreventUsage Permit all connection strings that contain all the
(key, value) pairs in X, with the possible addition
of key names that are not listed in y (with any
corresponding values).

X+Y x AllowOnly In this combination, the key names in the
KeyRestrictions attribute also appear in the
ConnectionString attribute. Permit the exact
connection string X+Y but reject any connection
string that contains X+Y plus additional
components.

X+Y x PreventUsage In this combination, the key names in the
KeyRestrictions attribute also appear in the
ConnectionString attribute. This <add>
element cannot permit any connection strings,
since the very connections strings to which it
applies (those containing all the (key, value) pairs
from X+Y), also contain prohibited key names by
definition. Thus, this combination will cause the
rejection of all connection strings that contain at
least the (key, value) pairs in X+Y.

X+Y y+z AllowOnly In this combination, some key names in the
KeyRestrictions attribute appear in the
ConnectionString attribute. Permit
connections strings that contain all the (key, value)
pairs in X+Y, with the possible addition of key
names listed in z (with any corresponding values).

UNCLASSIFIED

38
UNCLASSIFIED

CS KR KRB Combined Effect
X+Y y+z PreventUsage In this combination, some key names in the

KeyRestrictions attribute appear in the
ConnectionString attribute. This <add>
element cannot permit any connection strings,
since the very connection strings to which it
applies (those containing all the (key, value) pairs
from X+Y), also contain prohibited key names by
definition. Thus, this combination will cause the
rejection of all connection strings that contain at
least the (key, value) pairs in X+Y.

Table 3. Combined Effect of <add> Element Attributes.

An assembly’s connection string must be permitted by all <add> elements that apply to it.
Thus, multiple <add> elements combine to create more complex access control rules.
Element and attribute names are case-sensitive in XML, so if the CLR finds misspelled or
wrong-case elements or attributes, they will be ignored and their default values used instead.
For example, the <add> element

<add ConectionString=“database=mydb;server=myserver”

KeyRestrictionBehavior=“PreventUsage”/>

may have been intended to allow only connection strings that contain at least the pairs
(database, mydb) and (server, myserver), but instead will allow any connection string
whatsoever. The misspelling of “ConnectionString” makes this equivalent to:

<add ConnectionString=“” KeyRestrictions=“”

KeyRestrictionBehavior=“PreventUsage”/>

If any attribute values are unexpected or misspelled, a policy exception will result whenever
the corresponding permission is parsed by the CLR during its policy resolution process. This
may also cause mscorcfg.msc to discard the containing <PermissionSet> element.
mscorcfg.msc may discard <add> elements whenever the properties of a database
permission are viewed through that tool and the OK button is clicked (even if no changes
were made). Thus, manual editing of the CAS policy files is a challenge, but it is the only
way to insert <add> elements to create a fine-grained access control policy for database
access.

OLE DB

Native OLE DB data providers are available to support a wide variety of databases, including
Microsoft SQL Server, Oracle, and Microsoft Access. These native libraries are available
through the OLE DB data provider, the use of which is controlled by the OLE DB
permission.

UNCLASSIFIED

39
UNCLASSIFIED

In version 1.0 of the .NET Framework, the OLE DB permission may be configured to allow
specific native OLE DB data providers as well as to specify whether or not blank passwords
are permitted. The optional <keyword> element is used to specify native OLE DB data
providers (Figure 15):

<keyword name=“provider”>

 <value value=“...”/>

 ...

 <value value=“...”/>

</keyword>

Figure 15. XML Structure of an OLE DB Data Provider <keyword> Element.

If the list of allowed providers is empty, either by having no <value> elements or by having
no <keyword> element, then all providers are allowed. In version 1.1 and above, this
behavior changes if there are <add> elements. The presence of <add> elements, even ones
that do not apply to a particular connection string, will cause a “fail secure” behavior. For
example, if no <add> elements apply to and allow a connection string, the connection string
will be rejected. This replaces the blanket access granted by the absence of a <keyword>
element or a <keyword> element containing no <value> elements.

In version 1.1, the <add> elements are used by mscorcfg.msc to implement the function of
the <keyword> element (although the <keyword> element is still used). mscorcfg.msc
will create <add> elements of the form

<add ConnectionString=“provider={provider name}” KeyRestrictions=“”

KeyRestrictionBehavior=“PreventUsage”/>

which will allow any connection string that contains the specified provider as a value for the
“provider” key name. It will also discard any <add> elements that do not correspond to
<value> elements under the <keyword> element.

The connectionStrings attribute of the OLE DB data provider in .NET version 2.0 is
required to have the “provider” keyword to specify which provider is going to be used to
access the database. The connection string

Data Source=”C:\test\testdb.mdb” Provider=Microsoft.Jet.OLEDB.4.0;

is an example of including the provider keyword when creating a connection string for the
OLE DB data provider.

In version 1.0 of the .NET Framework, the calling assembly (but not all other assemblies in
the call stack) must be Fully Trusted to invoke the managed OLE DB data provider library.
This prevents any partially trusted code from accessing the OLE DB data provider directly –
access must be through a Fully Trusted intermediate assembly that has been written to

UNCLASSIFIED

40
UNCLASSIFIED

securely provide data access services to partially trusted code (for example, by fully
validating all user input and making appropriate demands for the OLE DB permission). In
version 1.1, additionally, the calling assembly and its callers, all the way up the call stack,
must have Full Trust. This forces the intermediate library to explicitly assert its permission
to access data providers on behalf of partially trusted code. In version 2.0, all the data
providers can be used in partially trusted environments. In this case, a partially trusted
assembly can run if the appropriate database permission and the execution permission has
been granted.

ODBC

The capability to use native ODBC data providers is included in .NET Framework version
1.1 or later, and is available for .NET Framework version 1.0 as a separate managed data
provider download. In version 1.1 and 2.0, the ODBC permission provides access control
over connection string components. As of version 1.1 of the .NET Framework, the ODBC
permission is not configurable using mscorcfg.msc. Instead, the configuration files must
be edited by hand or the XML must be imported into the CAS policy files using
caspol.exe. In version 1.0 of the .NET Framework, an assembly (but not all the other
assemblies in the call stack) must be Fully Trusted to invoke the ODBC data provider library.
For version 1.1, every assembly in the call stack must be Fully Trusted while using the
managed ODBC data provider. In version 2.0 the ODBC data provider can be used in a
partially trusted environment.

Oracle Client

The Oracle Client data provider can connect to Oracle databases through Oracle client
software versions 8.1.7 or later. This provider is not distributed with version 1.0 of the .NET
Framework, but is available as a separate download. The Oracle Client data provider is
included in version 1.1 and 2.0 of the Framework.

In version 1.0, an assembly invoking the Oracle Client data provider must have Full Trust to
invoke the managed library. In version 1.1, this is further restricted by requiring that the
entire call stack have Full Trust while using the Oracle Client data provider. In version 2.0
the Oracle Client data provider can be used in a partially trusted environment.

The Oracle Client data provider has a built-in list of allowed key names and their alternates.
Only key names from this list can be used, regardless of any permission settings. If the CAS
policy files are edited to include a permission for the Oracle Client data provider that uses a
key name not found in this list, a policy exception will occur, and the assembly whose
permissions are being granted will not be allowed to execute. Mscorcfg.msc will discard
any permission set that contains an Oracle Client permission with an invalid key name
specified in either the connectionString or KeyRestrictions attributes of an <add>
element.

UNCLASSIFIED

41
UNCLASSIFIED

SQL Client

The SQL Client data provider allows access to Microsoft SQL Server version 7.0 or later.
Earlier versions of SQL Server can be accessed through its OLE DB interface. In version 1.0
of the .NET Framework, an assembly and its entire call stack must be Fully Trusted at run
time to use the SQL Client data provider. In version 1.1 and 2.0 of the .NET Framework,
partially trusted assemblies may use SQL Server databases if the SQL Client permission is
granted. As with the Oracle Client data provider, SQL Client has a built-in list of allowed
key names and alternates. For version 1.1 and 2.0, mscorcfg.msc will always set the
AllowBlankPassword attribute to “False” for this permission.

Summary of Trust Requirements

Table 4 summarizes the level of Trust required to use each data provider in the different
versions of the .NET Framework.

Data Provider Partially Trusted
assemblies

Demands Full Trust at
link time (only the
calling assembly must
be Fully Trusted)

Demands Full Trust at run
time (all assemblies in the
call stack must be Fully
Trusted)

.NET Framework version 1.0
SQL Client X
OLE DB X
ODBC X
Oracle Client X
.NET Framework version 1.1
SQL Client X
OLE DB X X
ODBC X X
Oracle Client X X
.NET Framework version 2.0
SQL Client X
OLE DB X
ODBC X
Oracle Client X

Table 4. Summary of Trust Requirements for Data Providers.

Since automated tool support is lacking for the fine-grained access control features offered
by the CLR, misconfiguration becomes a greater risk. Always make a backup copy of
security configuration files before manually editing any database permissions.
Misconfiguration is partially mitigated by the Full Trust requirements in version 1.1 for the
OLE DB, ODBC, and Oracle Client data providers. This is not the case in .NET version 2.0
because partially trusted callers can access data providers if they have been granted the
proper permissions. However, since administrative tool support is centered around a more
coarsely-grained configuration that does not allow access control over connection

UNCLASSIFIED

42
UNCLASSIFIED

parameters, it may be preferable to prevent database access except through highly trusted
code.

Recommendation: Only grant the database permissions to assemblies that are
highly trusted and need access to database resources.

Protected Administrative Resources

Protected Administrative Resources are resources that aid assemblies in operating smoothly
or more efficiently, aid administrators in measuring system performance, or aid
administrators in configuring the system.

Security Settings

Performance Counters

Environment

Event Logs

Registry

Directory Services

Security Settings

The .NET Framework has 13 security permissions that manage the security environment of
assemblies. Unlike other resource permissions that control access to data or services on a
local or remote host, these permissions allow or disallow specific actions by assemblies that
could have a significant impact on the security posture of the system. The Security
permissions can be grouped into categories of control:

Runtime Environment

Execution

CAS Policy

Runtime Environment

Permissions that affect the runtime environment of the .NET Framework are those that allow
code to act as an extension of the CLR’s trusted library base, or to configure and manage the
execution environment. These permissions include:

Extend Infrastructure

Enable Remoting Configuration

UNCLASSIFIED

43
UNCLASSIFIED

Enable Serialization Formatter

Enable Thread Control

Allow Principal Control

Create and Control Application Domains

Extend Infrastructure

The ability to extend the .NET Framework “infrastructure” allows an assembly to insert
custom code into the handling chain that sends and receives messages between managed
applications (whether local or remote), or to serve as part of the chain. The .NET Framework
provides the ability to create custom message handlers to support distributed applications
whose transaction and messaging requirements are too specialized to be served by the
provided CLR libraries. The Extend Infrastructure permission essentially allows code to
become or to create a trusted intermediary that can intercept cross-application messages as
they are processed, perform some additional or substitute processing, or discard and replace
the original messages altogether, and then pass the results on to the next party in the
communication process. This requires the code itself to be trusted to perform only its
intended function. Code that is serving as part of the communications infrastructure is
unlikely to require access to a broad range of protected resources, and should be granted only
those additional permissions it requires.

Code that provides infrastructure extensions is typically not called directly by other
applications. It should only be referenced by highly trusted code. This can be achieved
through the software development process by making implicit or explicit demands that
callers have Full Trust, are strong named with a private key or digitally signed with a
publisher’s certificate associated with a highly trusted party.

Recommendation: Grant the Extend Infrastructure permission only to code that is
trusted to have complete control over message processing.

Enable Remoting Configuration

An application’s Remoting Services configuration determines the type and properties of the
communications channels that the application will use, and the code components with which
it may communicate. The configuration settings are stored in the application’s configuration
file in its installation directory. In addition, some settings may be stored in the machine-wide
configuration file machine.config for a particular .NET Framework version. The
machine-wide configuration is automatically applied by the CLR, but may be overridden by
an application’s configuration file if the application is granted the Enable Remoting
Configuration permission. The Remoting Services configuration contained in
machine.config is applied to all applications, and thus will typically define common
communication channels rather than specify individual software components that will send or
receive messages.

UNCLASSIFIED

44
UNCLASSIFIED

An application’s own configuration file is available for use only when granted this
permission, that is, the Enable Remoting Configuration permission grants an assembly the
ability to load the settings in its own configuration file. Since these override settings in
machine.config, this is a privileged action and should be granted only to software that is
from a highly trusted source.

In order to achieve this access control granularity, CAS policy should be structured to
prevent this permission from being granted to code in a specified set. CAS policy does not
allow the specification of explicit denials of a permission, and omitting this permission in the
Named Permission Set associated with one Code Group does not prevent it from being
granted through another Code Group. One alternative is to create assembly-specific Code
Groups based on strong name or hash for each assembly that should not receive this
permission and grant exactly the permissions that code is authorized to receive (the Exclusive
attribute must be set on the Code Group). If this is infeasible, then CAS policy should be
configured so that the Enable Remoting Configuration permission is not granted based on a
broadly defined Membership Condition, such as Zone or Site.

Recommendation: The Enable Remoting Configuration permission should be
granted only to software from a highly trusted source with a narrowly defined
membership condition. The same considerations apply that would govern the
granting of Unrestricted Web access or Unrestricted network socket access. If this
is not feasible, then Enable Remoting Configuration should not be granted based
on a broadly defined Membership Condition, such as Zone or Site.

Enable Serialization Formatter

Serialization is the process of converting structured (but not necessarily sequential) data in
memory into a form that can be stored or transmitted as a sequence of bits. This sequence
may then be converted back (deserialized) into the proper structure at a later time or in a
different context. This process may also be used to create an exact clone of structured data
(software “objects” or collections of objects) that may be passed to and used by a different
assembly. Serialization records all of the data needed to recreate an object, even the internal
values that are not meant to be directly accessible. Thus, the sequence of bits that is stored or
transmitted could contain internal state information of the original object.

Assemblies may contain publicly accessible serialization code that defines how its internal
data is meant to be serialized. Software objects usually do not initiate their own serialization;
rather, this code is typically used by the trusted CLR libraries to store or transmit data as
needed. Unless protected, it may also be called by any other code to transform the internal
state of an object to a sequence of bits and then inspect or modify those bits in unauthorized
ways. The serialization code must be marked during the software development process to
require that any code attempting to serialize an object must have the Serialization Formatter
permission. Thus, the effectiveness of the Serialization Formatter permission as an access
control relies on a partnership with software developers. Nevertheless, it can be used to
protect the confidentiality and integrity of the many objects in the .NET Framework libraries
that do demand this permission.

UNCLASSIFIED

45
UNCLASSIFIED

Serialization is a process internal to the execution environment of the .NET Framework –
assemblies that perform serialization of other objects should be considered extensions of the
CLR infrastructure. Thus, Serialization Formatter permission should only be granted to
highly trusted code.

Recommendation: Grant Enable Serialization Formatter permission only to highly
trusted code that will be considered an extension to the CLR’s trusted library base.

Enable Thread Control

Assemblies may spawn multiple threads that may simultaneously execute. In addition, the
CLR maintains a pool of worker threads that can execute code from any assembly as needed.
This pool of threads is unrelated to applications which run with multiple threads. Code with
the Enable Thread Control permission may abort, suspend, or resume the thread it currently
runs in. These types of activities are privileged operations. The ability to manipulate a
thread should only be granted to code that is equal or higher in trust than the threads that it
can manipulate. Since code may run in the context of CLR worker threads that are Fully
Trusted, the Enable Thread Control permission should be granted only to code that is Fully
Trusted. Note that this permission is not necessary for code to provide normal multithreaded
operations.

Recommendation: Grant Enable Thread Control permission only to Fully Trusted
code.

Allow Principal Control

Role-based access control (RBAC) is supported in the .NET Framework through CLR library
software that assemblies can use to determine information about its own Principal. A
Principal is the user context under which an assembly is executing and consists of the user
identity plus the roles that the user has assumed for the current logon session. User roles can
be the ones corresponding to the built-in Windows operating system groups of “User,”
“Administrator,” “Guest,” “AccountOperator,” “BackupOperator,” etc., or custom
roles/groups. The assembly may then decide to grant access to resources based on the roles
that the current user holds.

The Allow Principal Control permission allows an assembly to determine the default
Principal that will be associated with a new thread of execution, to determine the identity of
the current Windows user, to impersonate another user, or to change the Principal associated
with itself. Note that this permission is not necessary for code to use RBAC to determine
what actions it will perform. It is only necessary for code that intends to impersonate another
user. Thus, it should be granted only to code that is trusted at least as much as the most
trusted Principal (user identity and role) available on the system.

Recommendation: Grant the Allow Principal Control permission only to code that
is trusted at least as much as the most trusted user account on the system.

UNCLASSIFIED

46
UNCLASSIFIED

Create and Control Application Domains

The .NET Framework uses Application Domains to provide isolation between managed
applications. When a runtime host application starts, it loads the CLR into its process space,
creates an Application Domain, and then loads and executes assemblies within the
Application Domain. Other Application Domains may be created as needed for assemblies
that must be kept isolated from one another. More than one Application Domain may exist
within a single operating system process. One task of the CLR is to maintain separation and
isolation of memory and other resources between Application Domains.

The Create and Control Application Domains permission allows an assembly to isolate other
assemblies in separate domains, or to load multiple, isolated instances of the same assembly.
Created Application Domains will not have any AppDomain level CAS policy unless one is
provided by the Application Domain’s creator (this requires the Allow Domain Policy
Control permission). A blank AppDomain level CAS policy is ignored by the CLR when
determining permissions.

No recommendation for this permission.

Execution

The following Security permission settings determine how tightly “managed” an assembly
will be, that is, how strictly the CLR will be able to control its execution:

Enable Assembly Execution

Skip Verification

Allow Calls to Unmanaged Assemblies

Code that is not granted at least one of these permissions cannot execute at all. Code with
the Enable Assembly Execution permission but not the other two permissions is strictly
managed by the CLR, and will not be allowed to run unless it passes a verification process
designed to ensure that it is strictly manageable. Code with the Skip Verification permission
is allowed to run even if it contains some code that the CLR cannot manage. In this case,
some program instructions may be executed even though the CLR cannot verify the validity
of the instruction parameters. Code with the Allow Calls to Unmanaged Assemblies
permission can invoke software that is outside the sphere of the CLR’s management
capability. In this case, code management by the .NET Framework is effectively suspended
until the unmanaged software returns control to the assembly that invoked it. These three
permissions are described more fully below.

Enable Assembly Execution

The Enable Assembly Execution permission allows code to execute. This permission
supports a performance enhancement of the CLR that checks for this permission during the
assembly load process and aborts the process if this permission is not granted. This avoids

UNCLASSIFIED

47
UNCLASSIFIED

wasting resources on managed code that will never be allowed to execute. It also serves to
create a more finely grained security mechanism, as execution itself can be abstracted away
from access to other resources. The default Execution Named Permission Set facilitates this
separation. The permissions that control access to resources should be granted in keeping
with the principle of least privilege or separation of duties; however, the Execution
permission is not tied to any specific functional requirements of code, but is a statement of
the trustworthiness of the code’s origin. As such, this permission should be tied to some
policy-driven threshold of assembly evidence that provides assurance of trusted origin. If the
organizational security policy is to consider Internet code untrusted, then granting this
permission based on membership in the Internet URL Security Zone is a violation of policy.
Instead, code from the Internet should present some additional evidence by which to
determine trust.

In general, the Assembly Execution permission is tied to origin, not to functionality, and as
such should probably be granted based on a known public key used to create an assembly’s
strong name or a publisher’s digital signature, rather than based on the assembly’s purpose.
If the origin is later determined to be untrusted, all code from that source may be denied
execution regardless of what each assembly from that source claims to do.

Recommendation: The Enable Assembly Execution permission should be granted
based on the level of trust associated with the assembly’s origin, as established by
evidence stronger than URL Security Zone. If possible, separate the Enable
Assembly Execution permission from resource access permissions, so that the
former is tied to origin and embodies a trust relationship, while the latter are tied to
functional requirements of code and embody the principle of least privilege. This
recommendation is violated by the default CAS policy.

Skip Verification

Managed code is considered “type safe” if it only accesses data through carefully defined and
restricted means and only converts data between compatible forms. The code isolation and
access control features of the .NET Framework assume that code is type safe. When a
managed assembly is about to execute, the CLR attempts to verify its type safety. This is not
a completely reliable determination – the verification process may fail if it encounters code
that cannot be unambiguously determined to be type safe. Thus, code could actually be type
safe, but still fail the verification process. Nevertheless, if it cannot be verified to be type
safe, there is no assurance that CAS policy can be reliably enforced, and it will not be
allowed to execute.

Some programming languages and compilers (such as the Microsoft Visual C++ compiler)
regularly produce non-verifiably type safe code. Yet it may be necessary for operational
reasons to use such code. In this case, the Skip Verification permission may be granted to
allow non-verifiable code to execute.

The decision to grant the Skip Verification permission should be applied based on the origin
of the code, not on any claimed functionality. In this regard, this permission is similar to the
Enable Assembly Execution permission, and is best abstracted away from permissions that

UNCLASSIFIED

48
UNCLASSIFIED

provide access to resources. The default SkipVerification Named Permission Set facilitates
this separation. Granting the Skip Verification permission is a strong statement about the
relationship of trust between the organization and the source of the code. This is a much
stronger permission than Execution, and should never be granted to code that is not highly
trusted. Although this permission is based on the level of trust in its source, it is still
advisable to grant it only where necessary rather than broadly to all code with a given trusted
origin. Thus, it should be tied to an assembly’s strong name evidence that includes a public
key known to be associated with the trusted source, as well as the assembly’s name and
version.

Recommendation: Skip Verification should be granted only to highly trusted code
based on a hash identity or strong name evidence that includes the assembly’s
name, version, and public key associated to a trusted party. If possible, separate the
Skip Verification permission from resource access permissions, so that the former
is tied to a specific assembly from a trusted point of origin and embodies a trust
relationship, while the latter are tied to functional requirements of code and
embody the principle of least privilege. This recommendation is violated by the
default CAS policy.

Allow Calls to Unmanaged Assemblies

Unmanaged code refers to software that runs outside the CLR’s execution environment and
thus is not constrained by the security enforcement mechanisms of the .NET Framework. All
code is unmanaged unless it is compiled for the .NET Framework by a .NET-aware compiler.
Currently, most office automation applications, networking utilities, Web browsers, etc., as
well as most of the Windows libraries that support them, are unmanaged code. As such, they
are not subject to CAS policy. Unmanaged code runs with the rights of the user it is
executing under, and is subject only to Windows operating system security. Unmanaged
code may view, use, modify, or delete any resource available to the user, and thus is
particularly risky.

Managed code can invoke unmanaged code if it is granted the Unmanaged Assemblies
permission. Thus, this permission should only be granted to highly trusted code, since the
unmanaged components will execute with the same privilege as the user account.

Recommendation: The Allow Calls to Unmanaged Assemblies permission should
be granted only to code that is trusted to execute with the same privileges as the
user’s account under which the code is running.

CAS Policy

The CAS Policy settings allow an assembly to control the configuration or application of
security policy. These permissions include:

Allow Policy Control

Allow Domain Policy Control

UNCLASSIFIED

49
UNCLASSIFIED

Allow Evidence Control

Assert any Permission that Has Been Granted

Allow Policy Control

The Allow Policy Control permission allows an assembly to view and modify the current
CAS policy settings, including the ability to turn CAS policy off. Obviously, this is a
powerful permission that should only be granted to highly trusted administrative tools.

Recommendation: The Allow Policy Control permission should be granted only to
highly trusted .NET Framework administrative tools.

Allow Domain Policy Control

The Allow Domain Policy Control permission allows an assembly to set the CAS policy for
its own Application Domain or one that it creates. This would allow an assembly to override
any CAS policy for the AppDomain level that has been configured by the Runtime Host
process, or to simulate the assembly loading functions of a Runtime Host. This is an
appropriate function for trusted administrative tools. Partially trusted code may receive this
permission when CAS policy at the AppDomain level is not used by a Runtime Host to
implement organizational security policy, but is reserved for custom use by assemblies that
need to create and maintain Application Domains (this is the default case). In this case, the
Enterprise, Machine, and User level CAS policies are used to enforce policy, with the
AppDomain level providing additional restrictions appropriate to the code that will be loaded
into the new Application Domain.

Recommendation: If custom Runtime Host applications are in use that implement
organizational policy using the AppDomain CAS policy level, then the Allow
Domain Policy Control permission should be granted only to code that is highly
trusted. In other cases (including the typical default installation), this permission
should be granted only to code that is designed to dynamically launch other
applications that may be less trusted than itself.

Allow Evidence Control

The Allow Evidence Control permission allows an assembly to supply or modify the
evidence that will be associated with itself, other assemblies it loads, or Application Domains
it creates. Since the supplied evidence will be used by the CLR in conjunction with CAS
policy to determine access to resources, this effectively allows control over the .NET
Framework’s security system. This permission is appropriate for code that provides access
control services as an extension of the trusted CLR base libraries. For example, software that
implements custom permissions that are used to extend the CAS policy system must have
this permission.

Code that is designed to extend the trusted CLR base libraries must be developed using
secure coding practices. For a more detailed discussion of these practices, see [LaMacchia,

UNCLASSIFIED

50
UNCLASSIFIED

et al., 2002], [Microsoft, 2002], or [Meier, et al., 2003]. This permission should only be
granted to software developed by trusted parties that have a demonstrated secure
development process.

Recommendation: The Allow Evidence Control permission should be granted only
to code developed by trusted parties with demonstrated secure coding practices.
Code granted this permission effectively becomes an extension of the CLR’s access
control system. Assemblies that implement custom permissions are an example of
the type of code that may need to be granted this permission.

Assert Any Permission That Has Been Granted

Permissions granted to an assembly through the application of CAS policy are not
necessarily usable during code execution, because access to a resource is granted only if the
assembly plus the code that invoked it both have the required permission. If multiple
assemblies are in the “calling chain,” then all will have to have the permission. Thus, Fully
Trusted library code that has wide-ranging access to resources may safely expose its
functionality to partially trusted code without the partially trusted code being able to access
any resources that it has not been authorized to access. There are times when a more trusted
assembly may need to access a resource that any less trusted callers shouldn’t be able to
access directly, for example, to look up an internal setting in a registry key. In these cases,
the more trusted assembly may temporarily assert its privilege to access the registry key even
though its caller may not have permission to do so. The CLR will allow access to the
registry while the assertion is in effect. This ability to temporarily assert privilege is granted
by the Assert any Permission that Has Been Granted setting.

Code that asserts a granted permission must be developed using secure coding practices.
While asserting a permission, the code must not provide discretionary access to the protected
resource, or the trusted code has effectively transferred its access to the resource to less
trusted code and violated the security policy that the CAS policy implements. This is the
software equivalent of “piggybacking” through a physical checkpoint. Thus, assertion of a
permission is only appropriate when code must access pre-defined resources that are used
internally and will not be exposed to other code or to users.

Recommendation: The Assert any Permission that Has Been Granted permission
should be granted only to software that is from a trusted developer with
demonstrated secure coding practices. Typically, this permission is granted to
highly trusted extensions to the CLR base libraries, such as a shared component
that is intended to be available to all managed code.

Performance Counters

Performance Counters are a Windows feature that allows applications to capture and publish
performance information about the system and itself. The CLR libraries provide support for
managed code to access the Windows performance counters. Performance counters monitor
the performance of physical system components such as processors, disks, and memory,

UNCLASSIFIED

51
UNCLASSIFIED

system objects such as processes and threads, and services and applications such as Web or
FTP services or print queues.

Performance counters are grouped into categories that form the basis for .NET Framework
access control. Access is granted to a named category of performance counters on a named
network host. A performance counter category may have several instances that represent
different subjects of performance information. For example, the Process category will have
an instance for each process running on the system. Each performance counter in a category
provides separate data values for each instance (although there may be an instance that
represents an aggregate of all other instances). When access is granted to a category, it is
granted to every performance counter for every available instance in the category.

In version 1.0 and 1.1 of the Framework access is granted in four levels, None, Browse,
Instrument, and Administer (Administer is equivalent to the Unrestricted state). In version
2.0 of the Framework access is granted in a similar four levels but the level names have
changed to, None, Read, Write and Administer. In version 2.0 Read is the equivalent of
Browse, and Write is the equivalent of Instrument.

Browse/Read access allows an assembly to enumerate the instances and performance
counters and to read the current value of any performance counter in the permitted category.
It will also allow the enumeration of the available categories on any host if access is granted
to the “*” category. Note that host-independent code may use “.” as a substitute for the local
machine name. Instrument/Write access allows an assembly the additional ability to write to
a non-read-only counter. The Windows system performance counters are all read-only, but
custom categories and counters may be defined that allow managed code with
Instrument/Write access to function as a performance monitor and write data that can be
consumed by other managed code with Browse/Read access to the named custom counter.
Administer access allows read and write of existing counters and the creation of custom
categories and counters.

Since the Performance Counter permission is configured with the text names of performance
counter categories, the exact name of the category must be used. Available performance
counter categories and counters on the system can be identified by executing the
perfmon.exe tool. To see a list of the system performance counters, perform the following
steps:

Run perfmon.exe.

Click the properties button on the toolbar (see Figure 16).

UNCLASSIFIED

52
UNCLASSIFIED

Figure 16. Properties Button in perfmon.exe Window.

Select the Data tab in the System Monitor Properties dialog box (see Figure 17), and
click Add... to open the Add Counters dialog box (see Figure 18).

Figure 17. System Monitor Properties Dialog Box.

The performance counter category names are listed in the dropdown box labeled
Performance object. The names of the individual performance counters within the
selected category appear in the Select counters from list list box, while the names of any
performance counter instances appear in the Select instances from list list box. Each
named performance counter will provide separate values for each available instance.

UNCLASSIFIED

53
UNCLASSIFIED

Figure 18. Add Counters Dialog Box.

As with other finely-grained access control mechanisms, the principle of least privilege
should govern the use of this permission.

Recommendation: Grant Performance Counter access to the most restrictive set of
performance counter categories possible. Grant Instrument, Write or Administer
access only to trusted code that provides or administers a monitoring service.

Environment

Sensitive information about the execution environment is protected by the Environment
permission. The .NET Framework configuration tool (mscorcfg.msc) refers to this
permission as the Environment Variables permission, although more is protected than just
environment variables. Each permission entry is specified by an access type and a resource
name. These permission semantics are basic to access control systems and are found in many
other types of CAS permissions. In the Environment permission, access types include
NoAccess, Read, Write, and AllAccess (Read and Write). In addition, Unrestricted access
grants AllAccess permission to all resource names. Resource names in the Environment
permission are case-insensitive. When the resource name is the name of an environment
variable, the specified access is granted to the value of that variable. However, the resource
name could be any text, and an assembly could use the existence of a specified (access type,
resource name) pair to authorize access to any type of resource.

Note that the CLR libraries in the .NET Framework 1.0 and 1.1 do not support adding,
changing, or deleting environment variables. Thus, the Write access type is not used in these
versions of the .NET Framework. In version 2.0 of the Framework new methods have been
added that do support adding, changing, and deleting of environment variables. The Write
access permission is still unused in version 2.0, as only Unrestricted access will allow
adding, changing, and deleting of environment variables. In all versions, the Unrestricted
state grants an assembly access to the values of all environment variables, plus some
additional environment information. A summary of the information protected by the
Environment permission and the corresponding permission setting required for access is
shown in Table 5.

UNCLASSIFIED

54
UNCLASSIFIED

Protected information Required Environment permission entry
Environment variable values. (Read, <variable name>) for access to the

value of <variable name>
Unrestricted for access to all values.

Adding, changing and deleting environment
variable and values.

Unrestricted

Expansion of environment variables. This
refers to the ability to replace defined
environment variables that are embedded in a
string with their current values. The
embedded environment variable names must
be “quoted” with the percent sign ‘%’.

Unrestricted

Command line of the application which loaded
the current assembly. Note that in Windows
98 and Windows ME, the command line
includes the full path of the application
executable, a potentially much more sensitive
piece of information.

(Read, “Path”)
Note that the value of the PATH
environment variable is not actually used to
get the command line – it is the existence of
this permission that is used to authorize
access to the command line data.

NetBIOS name of the current host, or the
NetBIOS name of the virtual server if this
computer is a node of a cluster.

Unrestricted

Stack trace data. This consists of the sequence
of software procedure calls that have been
made to this point in the code, excluding
procedures that have completed and returned
control back to their callers. The stack trace
begins with the application’s starting
procedure, includes the currently executing
procedure (i.e., the procedure that requested
the stack trace data), and ends with the code
that actually gets the stack trace.

Unrestricted

Local host or network domain containing the
account of the currently logged-on user. If the
user’s logon name is the name of a local
machine account, then the value of this
property is the name of the local host
computer. If not, the value is the name of the
network domain that contains the user’s
account.

(Read, “UserDomainName”) when accessed
through the System.Environment object.
When accessed through the
System.Windows.Forms.SystemInformation
object, Unrestricted access is required.

User logon account name associated with the
current thread.

(Read, “UserName”) when accessed
through the System.Environment object.
When accessed through the
System.Windows.Forms.SystemInformation
object, Unrestricted access is required.

UNCLASSIFIED

55
UNCLASSIFIED

Protected information Required Environment permission entry
Amount of physical memory mapped to the
current process (this value is not available in
Windows 98 or Windows ME).

Unrestricted

Logical drives on the local computer. Unrestricted
Boot mode (Normal, Safe mode, Safe mode
with networking)

Unrestricted

Debug or release version of the Windows
operating system.

Unrestricted

Security Model. This value indicates whether
the NT Security Model is in use. This model
implements discretionary access control by
associating ACLs with NTFS files, registry
keys, and other objects and checking access to
protected objects with a privileged operating
system component (the Security Reference
Monitor). This model is only in use in the NT
family of operating systems (Windows
NT/2000/XP/Server 2003).

Unrestricted

Temporary Folder. This is the full path of a
folder used by Windows to store temporary
files for the current process. In Windows
NT/2000/XP/Server 2003, this is the first
value found in the sequence: “TMP”
environment variable, “TEMP” environment
variable, “USERPROFILE” environment
variable, and the Windows directory (i.e.,
“C:\WinNT”). This last data source is not tied
to any environment variable. Note that in the
Windows NT family, the value of the
environment variables does not have to be an
existing folder. In Windows 95/98/ME, the
sequence is: “TMP environment variable, if
the value is an existing folder, “TEMP”
environment variable, if the value is an
existing folder, and the current directory.

Unrestricted
Note that this value could also be made
accessible by granting the more restrictive
permission of Read access to specific
environment variables.

Value of the WSID (Workstation ID)
connection string component that was used for
a prior connection to a Microsoft SQL Server
database. This optional component identifies
the name of the local computer making the
connection. If the “wsid=<...>;” component
was not present in the connection string, then
the NetBIOS name of the current host (or the
NetBIOS name of the virtual server if a node
of a cluster) is used.

Unrestricted

UNCLASSIFIED

56
UNCLASSIFIED

Protected information Required Environment permission entry
Default system credential associated with the
current thread. What is protected is an object
that represents the default network credential
(username, password, domain name) that can
be used, for example, with HTTP Web
requests requiring authentication. The system
credential data itself are not viewable by
assemblies.

(Read, “USERNAME”)

Credential data for arbitrary network
credential objects. A network credential
consists of a username, password, and domain
name. The username and domain attributes
are protected by the Environment permission.
The password attribute is protected by the
much stronger Allow Calls to Unmanaged
Assemblies flag of the Security permission.
Note that the system credential consisting of
the logged-on user’s account name, password,
and account domain name are not accessible
through the default credential object. Even
with the noted permissions, these attributes are
merely empty placeholders that are populated
as needed when a Web request is actually
submitted.

(Read, “USERNAME”) to access the
username attribute
(Read, “USERDOMAIN”) to access the
domain attribute

Table 5. Information Protected by the Environment Permission.

Because the environment contains sensitive information about the local host, Unrestricted
access should not be granted indiscriminately. However, it is common for applications to use
environment variables or other platform information to customize their execution for the
local environment. Since this use varies from application to application, it may be difficult to
define generic environment permissions that would satisfy the needs of many applications.
The principle of least privilege requires that access be granted only to the environment
variables (or resource names) used. This can be achieved by granting the Environment
permission through a Code Group whose Membership Condition is based on a strong name,
including the software vendor’s public key and the name of the application but not the
version number. By not including the version in the Membership Condition, this Code
Group would still apply to new versions of the application. By including the application
name, the permissions granted would only apply to the specific application, not to all code
originating from that software vendor. Unrestricted access should only be granted to code
that is from a highly trusted source, either of local origin or from an external party with a
prior trust relationship (identified by a strong name using a key known to be associated with
a trusted entity).

UNCLASSIFIED

57
UNCLASSIFIED

Recommendation: The Environment permission with Unrestricted access should be
granted only to highly trusted code.

Event Logs

The event logging facility in Windows provides a means for different applications, device
drivers, or operating system processes to combine standardized error and event reporting into
a small number of logs that can be easily monitored by an administrator. Windows provides
three built-in event logs (Application, System, Security), and, for Windows 2000 and higher,
the ability to define custom event logs. Since event logs contain sensitive system state
information, their access is controlled by operating system security. For example, an
application must be running under an administrator account to write to the System event log,
or to clear the Application or System event logs. The Security event log is intended for use
by the operating system itself, although policy settings can grant a user account the privilege
of accessing Security log data.

The Event Log permission controls access to event logs through the specification of a host
computer and an access type. In version 1.0 and 1.1 of the Framework the access types of
None, Browse, Audit, Instrument, or Unrestricted are available. In version 2.0 the access
types of None, Write, Administer, or Unrestricted are available. The specified access is
granted to all the event logs registered for the specified machine. Access control cannot be
configured separately for individual event logs.

For version 1.0 and 1.1 of the Framework: Browse, Audit, Instrument

Browse access allows an assembly to determine what event logs are defined for a given
computer, either by browsing a list of defined event logs, or checking the existence of a
specified event log name. The list of defined event logs for a given machine will contain the
built-in logs (Application, System, and Security), as well as any custom event logs. Browse
access also allows an assembly to discover the display name of an event log. This is the text
that is used as the label for its node in the Console Tree pane of the Event Viewer Microsoft
Management Console snap-in (eventvwr.msc). No access type, including Unrestricted,
allows code to browse a list of all the sources registered for each event log; however, Browse
access permits an assembly to determine if a specified source is registered on a given
machine and to which event log it is associated. Browse access is included in the Audit,
Instrument, and Unrestricted access types, so the limited information available only through
Browse access is appropriate for limited administrative tools that report on local or remote
system configurations.

Audit access is designed to allow some administrative control over event logs without the
ability to create or modify individual log entries. Assemblies with Audit access may read
existing event log entries, clear or delete an entire event log, or receive notification when a
new entry has been appended to an event log. This represents a limited supervisory control
over the event logging mechanism rather than the ability to act as a source of event
information. Control is limited in that the CLR libraries do not currently support the creation
of custom event logs, or the creation of backup files when clearing event logs. Since access
can only be granted at the granularity of a host machine, Audit access provides a window

UNCLASSIFIED

58
UNCLASSIFIED

into the behavior and configuration of the host system and many of its installed applications.
It is inappropriate to expose this data to applications that do not perform administrative
monitoring functions or are not of trusted origin. Code that is granted Audit access is trusted
to read and handle system and application state information that can be gleaned from event
log entries. This information may include notification of the termination or malfunction of
security controls or information about new system configurations. Thus, Audit access is
appropriate only for administrative tools from trusted developers that monitor system and
application events.

Instrument access provides an assembly the ability to act as a source of event information for
any existing event log on the specified host machine, subject to operating system security
rules. Instrument access includes Browse but not Audit access, so assemblies with Instrument
access may write to an event log, but not view the entries in the log. Note that the
Unrestricted access state includes both Instrument and Audit access. The Instrument access
type is safe for most code.

For version 2.0 of the Framework: Write, Administer

Write access provides an assembly the ability to act as a source of event information for any
existing event log on the specified host machine, subject to operating system security rules.
Write access does not include the ability to view entries in the log. Note that the Unrestricted
access state includes Write access. Write access is safe for most code.

Administer access is designed to allow administrative control over event logs. Assemblies
with Administer access may read existing event log entries, clear or delete an entire event
log, or receive notification when a new entry has been appended to an event log. Note that
Administer access also includes Write access. Administer access, much like the Instrument
access from versions 1.0 and 1.1, provides a window into the behavior and configuration of
the host system and many of its installed applications. Thus, Administer access is appropriate
only for administrative tools from trusted developers that monitor system and application
events.

Recommendation: The Event Log permission with Audit, Administer or
Unrestricted access should be granted only to administrative tools from trusted
developers that monitor system and application events.

Registry

The CLR grants access to registry hives or keys via the Registry permission. As always,
access is subject to the privileges of the Windows user account under which the managed
code is being executed. Access types in the Registry permission include NoAccess, Read,
Write, Create, AllAccess, and Unrestricted. Permissions are inherited by subkeys and values,
e.g., Read access to a registry key includes permission to read any values in that key as well
as Read access to any subkeys. Read access allows an assembly to enumerate its subkeys
and values and to open subkeys for read-only access. Write access permits code to modify
existing values, to open existing subkeys for writing, and to delete registry keys and values.
Create access allows code to create new subkeys and values.

UNCLASSIFIED

59
UNCLASSIFIED

Read, Write, and Create access types are independent: Create access does not grant code the
ability to modify existing values or to delete keys or values. Write access, while allowing
code to overwrite the contents of an existing value, does not include the ability to read the
original contents, or even to enumerate the existing values by name. AllAccess is the
combination of Read, Write, and Create. Unrestricted is equivalent to AllAccess to all
registry keys.

In keeping with the principle of least privilege, Registry access should be granted only to the
specific registry objects that are necessary for an assembly to perform its authorized
functions.

Recommendation: Grant the Registry permission with the most restrictive access
type and to the most restrictive set of registry keys possible.

Directory Services

Access to the information stores known as directories is provided through Active Directory
Services Interfaces (ADSI), a Windows facility that presents a unified approach to querying
and managing information stored in local or remote directories. The software libraries that
implement ADSI for use by applications are called directory services providers. A provider
hides the underlying structure of the data as it is stored, and presents the data as a hierarchical
tree whose nodes represent objects with associated properties and child objects. Data stored
in a directory is specified by a text path that describes the node of the directory tree
containing the data. The format of a directory node path varies from provider to provider.
The combination of a provider name and a directory node path is known as ADsPath syntax
and has the form <provider name>://<path>. Provider names are case-sensitive, but
paths are not.

The .NET Framework controls access to specific directory nodes by specifying an access
type (None, Browse, and Write) and a path to a directory node in ADsPath syntax. Browse
access allows managed code to read the properties of the specified node and traverse the
directory tree hierarchy that begins with the specified node. Write access includes Browse
access and also allows properties and child nodes to be created, modified, or deleted. It is
also possible to grant Unrestricted access to all directory services.

The Windows operating system uses directory structures to store critical system and network
information such as domain data in Active Directory or Web and FTP server information in
the Microsoft Internet Information Services (IIS) metabase. In addition, applications may
use directories to store configuration settings or other information. The type of information
generally available in the Windows system directories should be restricted to use within an
organization. Thus, Browse access to system directories should be granted only to
assemblies of local origin that need to dynamically locate network resources or rely on
information about domain computers and users to function. Write access to the Windows
directories should be granted only to administrative tools of trusted origin. Access to
application-specific directories should be granted only to code distributed by the application
developer. In all cases, access should be granted to the most specific directory tree node path
that an assembly needs to access.

UNCLASSIFIED

60
UNCLASSIFIED

Recommendation: Grant the Directory Services permission with the most restrictive
access type and to the most restrictive set of directory node paths possible. Grant
Browse access to the Windows system directory services (Active Directory/Global
Catalog, IIS Metabase) only to code of local origin (evidenced by a strong name
with a public key associated with a local entity). Only highly trusted administrative
tools should be granted Write access to the Windows system directory services.

Summary

The .NET Framework provides access control over a wide variety of resources. The
granularity of CAS permissions allows applications from sources with varying degrees of
trust to be granted access commensurate with that trust, in keeping with an organization’s
security policy. The variety and granularity of CAS settings adds a great deal of complexity
to the task of protecting users from code that is unstable, malicious, or promiscuous in its use
of resources. To administer CAS effectively, some compromises will have to be made in the
grouping of permissions into Named Permission Sets and the grouping of code into Code
Groups. It is unlikely that application-specific permission grants can be efficiently
configured and maintained for even a small baseline set of applications. Compromises must
be based on a risk assessment that balances the principle of least privilege against scalability,
with exceptions being made to adhere to specific organizational policy requirements.

The use of strong names to associate code with a known source is an important part of
creating a scalable CAS policy solution. Note that the public keys associated with each
trusted source should never be obtained by examining the properties of an assembly that
claims to be from that source, but should be communicated through a secure channel. Robust
key management and protection should be deployed before using Strong name signing.
Strong names can be used to associate managed code with an ultimate source, regardless of
how the code was obtained or where it currently resides. In addition, an organization may
use code signing to differentiate between assemblies and applications that have different
access requirements, are in different broad functional categories, or originate with different
organizational components. For example, administrative tools that require a wide range of
access may be given strong names using a privileged (and closely guarded) private key,
while office automation applications or libraries might be strong named with a second private
key, and networking libraries might be strong named with a third private key. Code Groups
based on the corresponding public keys can be used to grant sets of permissions appropriate
to the category of software indicated by the strong name.

Recommendations in This Section

Recommendation: Only grant the File IO access permissions Read, Write, or
Append to code that is trusted not to allow unauthorized access to file system
resources. Grant File IO access to the most restrictive set of files and folders
possible. Do not grant File IO access to file system roots or other broadly specified
resources simply because they contain a few scattered files of interest. In many
cases, the File Dialog or Isolated Storage File permissions are viable alternatives.

UNCLASSIFIED

61
UNCLASSIFIED

Recommendation: Grant the File Dialog permission to code that needs user-
discretionary access to files and folders. Use the File Dialog permission to allow
the user rather than partially trusted code to browse the file system to the desired
items. Where Append access is necessary or direct file system access cannot be
allowed, the Isolated Storage File permission may be a viable alternative.

Recommendation: Grant Administer Isolated Storage by User access only to highly
trusted administrative tools. Grant Assembly Isolation by User/Roaming User
access only to assemblies that need to use user-specific data applicable to many
applications, and do not use application-specific data. Grant Domain Isolation by
User/Roaming User access to all other assemblies. Note that this recommendation
entails a separation of duties among assemblies: those that process data of common
relevance to multiple applications should not also process application-specific data
and vice versa.

Recommendation: Code with limited trust should be granted at most Safe
subwindows permission. Highly trusted code that accepts user authentication
information or allows the user to authorize program actions through a graphical
interface should be granted at most Safe top-level windows permission.

Recommendation: The clipboard is a convenience for users who wish to change the
presentation context of data or reuse data without retyping it into another
application. It is a “broadcast” channel in that most software can
programmatically read the contents of the clipboard and write data to it whether
initiated by user input or not. Nevertheless, software should use other means to
communicate and reserve the clipboard for discretionary use by the user. Read
access (i.e., through the All Clipboard permission) should be reserved for highly
trusted code.

Recommendation: Grant the Type Information permission only to highly trusted
code that requires access to implementation details—typically this is restricted to
software engineering tools or software interoperability services. Grant the Member
Access permission only to highly trusted code.

Recommendation: Grant the Allow opening of a store permission only to
assemblies that need access to X509 Certificates. Grant the Allow adding of a
certificate to a store permission to assemblies that are trusted to add only legitimate
certificates to a Windows certificate store. All other permissions in this set should
not be granted unless an assembly is completely trusted to add, modify, and delete
sensitive authentication certificates.

Recommendation: In following with least privilege, grant the Key Container
permission to the most restrictive set of permissions possible. Only grant Create,
Delete, Import, Export, Sign, Decrypt, and AllFlags to highly trusted code.

UNCLASSIFIED

62
UNCLASSIFIED

Recommendation: In following with least privilege, grant the Data Protection
permission to the most restrictive set of permissions possible.

Recommendation: Grant All Printing permission only to highly trusted code.

Recommendation: The DNS permission should typically be granted only to code
that originates from within the local network (evidenced by a strong name with a
public key associated with a local entity) or from a highly trusted external entity.

Recommendation: The Socket Access permission should only be granted to highly
trusted code or code that originates from the local network (evidenced by a strong
name with a public key associated with a local entity) and provides networking
services.

Recommendation: Grant the Web Access Connect permission for a specified URL
only to code that is denied access to information or resources that should not be
shared with the remote site, or is trusted to protect resources that it can access.
Grant the Web Access Accept permission for a specified URL only to code that
requires incoming web connections and is trusted to accept the connections.
Unrestricted Web Access should only be granted to highly trusted code that
performs networking services.

Recommendation: Code granted the SMTP permission will be able to compose and
send emails. Thus, only code that needs to send emails should be granted the SMTP
permission.

Recommendation: The Read access type should typically be granted only to code
that originates from within the local network or from a highly trusted external
entity. Grant the Ping and Unrestricted access types only to highly trusted code.

Recommendation: The Message Queue permission should only be granted to code
that originates from within the local network (evidenced by a strong name with a
public key associated with a local entity) or from a highly trusted external entity.
Administer access to any single queue and Browse access to all queues should only
be granted to highly trusted administrative tools.

Recommendation: The Distributed Transaction permission should only be granted
to code that originates from within the local network (evidenced by a strong name
with a public key associated with a local entity) or from a highly trusted external
entity.

Recommendation: Grant the Service Controller permission for a Windows service
only to assemblies whose trust is as high as the service itself and commensurate
with the value of the availability of the service.

UNCLASSIFIED

63
UNCLASSIFIED

Recommendation: Grant any of the database permissions only to assemblies that
are highly trusted.

Recommendation: Grant the Extend Infrastructure permission only to code that is
trusted to have complete control over message processing.

Recommendation: The Enable Remoting Configuration permission should be
granted only to software from a highly trusted source with a narrowly defined
membership condition. The same considerations apply that would govern the
granting of Unrestricted Web access or Unrestricted network socket access. If this
is not feasible, then Enable Remoting Configuration should not be granted based
on a broadly defined Membership Condition, such as Zone or Site.

Recommendation: Grant Enable Serialization Formatter permission only to highly
trusted code that will be considered an extension to the CLR’s trusted library base.

Recommendation: Grant Enable Thread Control permission only to Fully Trusted
code.

Recommendation: Grant the Allow Principal Control permission only to code that
is trusted at least as much as the most trusted user account on the system.

Recommendation: The Enable Assembly Execution permission should be granted
based on the level of trust associated with the assembly’s origin, as established by
evidence stronger than URL Security Zone. If possible, separate the Enable
Assembly Execution permission from resource access permissions, so that the
former is tied to origin and embodies a trust relationship, while the latter are tied to
functional requirements of code and embody the principle of least privilege. This
recommendation is violated by the default CAS policy.

Recommendation: Skip Verification should be granted only to highly trusted code
based on a hash identity or strong name evidence that includes the assembly’s
name, version, and public key associated to a trusted party. If possible, separate the
Skip Verification permission from resource access permissions, so that the former
is tied to a specific assembly from a trusted point of origin and embodies a trust
relationship, while the latter are tied to functional requirements of code and
embody the principle of least privilege. This recommendation is violated by the
default CAS policy.

Recommendation: The Allow Calls to Unmanaged Assemblies permission should
be granted only to code that is trusted to execute with the same privileges as the
user’s account under which the code is running.

UNCLASSIFIED

64
UNCLASSIFIED

Recommendation: The Allow Policy Control permission should be granted only to
highly trusted .NET Framework administrative tools.

Recommendation: If custom Runtime Host applications are in use that implement
organizational policy using the AppDomain CAS policy level, then the Allow
Domain Policy Control permission should be granted only to code that is highly
trusted. In other cases (including the typical default installation), this permission
should be granted only to code that is designed to dynamically launch other
applications that may be less trusted than itself.

Recommendation: The Allow Evidence Control permission should be granted only
to code developed by trusted parties with demonstrated secure coding practices.
Code granted this permission effectively becomes an extension of the CLR’s access
control system. Assemblies that implement custom permissions are an example of
the type of code that may need to be granted this permission.

Recommendation: The Assert any Permission that Has Been Granted permission
should be granted only to software that is from a trusted developer with
demonstrated secure coding practices. Typically, this permission is granted to
highly trusted extensions to the CLR base libraries, such as a shared component
that is intended to be available to all managed code.

Recommendation: Grant Performance Counter access to the most restrictive set of
performance counter categories possible. Grant Instrument, Write or Administer
access only to trusted code that provides or administers a monitoring service.

Recommendation: The Environment permission with Unrestricted access should be
granted only to highly trusted code.

Recommendation: The Event Log permission with Audit, Administer or
Unrestricted access should be granted only to administrative tools from trusted
developers that monitor system and application events.

Recommendation: Grant the Registry permission with the most restrictive access
type and to the most restrictive set of registry keys possible.

Recommendation: Grant the Directory Services permission with the most restrictive
access type and to the most restrictive set of directory node paths possible. Grant
Browse access to the Windows system directory services (Active Directory/Global
Catalog, IIS Metabase) only to code of local origin (evidenced by a strong name
with a public key associated with a local entity). Only highly trusted administrative
tools should be granted Write access to the Windows system directory services.

UNCLASSIFIED

65
UNCLASSIFIED

CAS Policy

CAS policy rules enforced by the CLR can be set at four policy levels: Enterprise, Machine,
User, and Application Domain. These sets of policy rules are combined to form the CAS
policy for the computer. The .NET Framework security administrator sets policy rules at the
Enterprise and Machine levels. Any user may further refine the policy for assemblies
executing on their behalf by modifying the User level policy. Application Domain policy is
set dynamically by the CLR in conjunction with information provided by the runtime host
process. Application Domain policy is not administratively configurable and will not be
discussed. This section will focus on policy creation and administration for the Enterprise
and Machine levels, but the same principles apply to the User policy level as well. The
actions that an administrator may take for the Enterprise and Machine policy levels may be
taken by a user for the User policy level. User level settings apply only to the currently
logged on user, and persist across logon sessions.

The administrator sets policy rules by defining Code Groups and Named Permissions Sets.
Code Groups are logical groupings of assemblies based on evidence. Named Permission Sets
are predefined sets of access permissions that provide a generic, scalable way of assigning
these groups one or more of the permissions described in the previous section. The rest of
this section describes some of the .NET Framework CAS components and features, and how
these components are combined across all the policy levels in the calculation of an
assembly’s Granted Permission Set.

Code Groups and Membership Conditions

Code Groups define collections of assemblies that will be granted the same permissions
based on a shared characteristic. Code Groups are hierarchically arranged. An assembly
cannot be a member of a Code Group unless it is a member of all parent Code Groups. An
assembly belongs to a Code Group if it satisfies the administratively defined Membership
Condition for that group. An assembly may satisfy the Membership Condition to more than
one Code Group, and thus belong to more than one Code Group at the same time. The way
permissions are granted when an assembly belongs to multiple Code Groups will be
discussed in detail below.

The Membership Condition of a Code Group is typically the value or presence of a single
type of assembly evidence. Thus, the available Membership Conditions closely correspond
to the types of evidence an assembly may present. Exceptions to this rule are the All Code
Membership Condition, and custom Membership Conditions.

All Code: All assemblies satisfy the All Code Membership Condition.

Hash: An assembly will satisfy this Membership Condition if its hash value using the
specified algorithm (MD5 or SHA-1) matches the hash value specified in the policy.
This Membership Condition may be used to create a Code Group which contains
exactly one assembly. A drawback of this Membership Condition is that the hash
value must be updated for each new version of an assembly. Note that the .NET

UNCLASSIFIED

66
UNCLASSIFIED

Framework Configuration tool allows the administrator to browse to the location of
an assembly and import its hash into the policy. This should never be done for
assemblies accessed through the Internet. Instead, use a secure channel of
communication to transfer the hash value or the assembly to the local host.

Publisher: An assembly will satisfy this Membership Condition if it is signed with a
software publisher’s Authenticode X.509v3 digital certificate that can be verified by
the Windows operating system as having a chain of trust that leads to a trusted root
certificate stored in the user’s certificate store. This Membership Condition can be
used to identify an organization, developer, vendor, or other entity as the ultimate
source of the assembly, even if the code itself was obtained from a third party such as
a mirror site. Access to resources may then be granted based on the trust relationship
with the identified entity. The certificate data to include in the Membership
Condition should never be obtained by importing the data from an assembly accessed
through the Internet. Use a secure channel to transfer the certificate data or the
assembly to the local host.

Strong Name: An assembly will satisfy this Membership Condition if its metadata
contains the strongly identifying data associated with the specified strong name. At
the least, this means it has been digitally signed with the private key associated with
the public key recorded in the policy. If specified, it may also mean it has the same
file name and version recorded in the policy. Although culture is also an element of a
strong name, there is no provision to restrict Code Group membership based on
culture. As long as an assembly satisfies the signature, name, and version elements,
any culture is accepted. The Strong Name Membership Condition is the best way to
identify a particular assembly or a particular organization, developer, vendor, or other
entity. By specifying a public key known to be associated with an external or internal
entity, access control decisions may be made based on a prior trust relationship. By
leaving the version data unspecified, the Membership Condition will remain useable
for all future versions of the same assembly.

Note that the presence of a strong name itself does not provide any assurance that
code is trustworthy. It is the association of the public key with a known party that
provides the basis for trust. The public key data to include in the Membership
Condition should never be obtained by importing the data from an assembly accessed
through the Internet. Instead, a secure authenticated channel should be used to
transfer the assembly or the strong name data to the local host. Note also that the
strong name does not use a digital certificate format, and thus is not verifiable
through a chain of trust to a root certificate like the Publisher Membership Condition.
Thus, the public key used in a strong name has no associated expiration date or
revocation status.

When managed software is under development, it may be in a “delay-signed” status.
A delay-signed assembly contains a public key, but has not yet been digitally signed
with the corresponding private key. Software developers who do not have access to
an organization’s private keys may test their software under simulated operational
(i.e., fully signed) conditions, and then submit the final version for digital signing by

UNCLASSIFIED

67
UNCLASSIFIED

the organization’s private key custodians. To register a delay-signed assembly to
simulate a fully-signed version, the assembly name and public key must be stored in a
list in the registry under HKLM\Software\Microsoft\StrongName\Verification. This
list is maintained with the .NET Framework Strong Name Utility (sn.exe). Using
sn.exe, the list may be displayed or cleared, and individual entries may be added or
removed. Wildcards may be used to specify any assembly with a given public key, or
all assemblies. Registration causes the normal strong name verification process to be
bypassed. Delay-signed assemblies corresponding to registered entries will satisfy
the strong name Membership Condition for the public key contained in the assembly
manifest. Computers used for operations must never skip the strong name
verification process.

Recommendation: Strong name verification should never be simulated in an
operational environment.

URL: An assembly will satisfy this Membership Condition if it has been obtained
from the specified URL. The URL associated with an assembly’s origin is provided
by the Runtime Host process that loads the assembly. URL evidence may be a
Website, a UNC local Intranet path, or a local file system path. To satisfy the URL
Membership Condition, the exact URL must be matched, including protocol, domain,
port number (if specified), and path (including file name if specified). If a “*” is
appended as a wildcard, then subpaths will also satisfy the Membership Condition.
This Membership Condition should never be used with a file name to try to restrict
Code Group membership to a specific assembly. Instead, use the Hash or Strong
Name Membership Conditions for this purpose.

Site: An assembly will satisfy this Membership Condition if it has been obtained from
the specified domain or subdomain, as extracted from the assembly’s URL.
Assemblies obtained via a UNC path or local file system path never satisfy a Site
Membership Condition. This Membership Condition is a weak means of identifying
an organization, developer, vendor, or other entity. Where possible, use Publisher or
Strong Name Membership Conditions.

Zone: An assembly will satisfy this Membership Condition if it has been loaded from
the specified URL Security Zone. This is the weakest form of identification (and
conversely, the most scalable). Zone membership may be subject to manipulation
outside the administrative scope of CAS policy. It should not be used for access
control decisions.

GAC: New in version 2.0, the GAC can be used as a Membership Condition. An
assembly will satisfy this condition if it is loaded from the GAC. An assembly can be
installed into the GAC using the gacutil.exe tool. Note that permissions granted
through the GAC Membership Condition will be applied to all assemblies loaded
from GAC.

UNCLASSIFIED

68
UNCLASSIFIED

Application Directory: An assembly will satisfy this Membership Condition if it is a
private assembly of the currently executing application, i.e., if it has been loaded from
a subpath of the directory or URL associated with the current application. This
Membership Condition is automatically satisfied by a managed application itself.
Note that this Membership Condition does not apply to a particular application. To
grant a set of permissions only to the private assemblies of a particular application,
use this Membership Condition with a Code Group that is the child of a parent Code
Group whose Membership Condition is satisfied only by the particular application.

The .NET Framework comes with a number of default Code Groups. The Enterprise and
User policy levels have exactly one default Code Group with the All Code Membership
Condition. The default Code Groups defined for the Machine level in version 1.1, and 2.0 of
the .NET Framework are shown in Figure 19. The Internet_Same_Site_Access Code Group
is not present in version 1.0 of the .NET Framework. Others may be created as needed by
the administrator.

Figure 19. Default Code Groups at the Machine Level in Version 1.1 and 2.0 of the .NET
Framework.

All Code (All Code Membership Condition)

My Computer Zone (Zone Membership Condition)

Microsoft Strong Name (Strong Name Membership Condition)

ECMA Strong Name (Strong Name Membership Condition)

LocalIntranet Zone (Zone Membership Condition)

Intranet Same Site Access (All Code Membership Condition)

Intranet Same Directory Access (All Code Membership Condition)

Internet Zone (Zone Membership Condition)

Internet Same Site Access (All Code Membership Condition)

Restricted Zone (Zone Membership Condition)

Trusted Zone (Zone Membership Condition)

Trusted Same Site Access (All Code Membership Condition)

Code Groups

UNCLASSIFIED

69
UNCLASSIFIED

There are four different types of Code Group that may be defined:

Union Code Group

First Match Code Group

Net Code Group

File Code Group

Union Code Groups and First Match Code Groups

The most common type of Code Group will be the Union Code Group. This is the type of
Code Group created through the .NET Framework Configuration Tool (mscorcfg.msc), the
primary administrative tool distributed with the .NET Framework. When the CLR applies
CAS policy to determine Code Group membership for an assembly, it will walk the Code
Group hierarchy for each policy level. If the assembly fails to satisfy the Membership
Condition of a Code Group, none of that Code Group’s child groups will be checked. If the
assembly satisfies the Membership Condition of a Union Code Group, the Membership
Conditions of every child Code Group will be checked. This is a recursive procedure, so
satisfying the Membership Condition of a child Code Group will continue the process down
the Code Group hierarchy.

If the assembly satisfies the Membership Condition of a First Match Code Group, the
Membership Conditions of the child Code Groups will be checked, but this process will stop
when the first child Code Group is encountered whose Membership Condition is also
satisfied by the assembly.

A tree of Union Code Groups will resolve to the set of all paths of Code Groups in the tree
that correspond to Membership Conditions satisfied by the assembly. A tree of First Match
Code Groups will resolve to a single path consisting of the root Code Group and exactly one
of its child Code Groups, and exactly one of that child Code Group’s children, etc., until no
child Code Group’s Membership Condition is satisfied.

mscorcfg.msc cannot be used to create First Match Code Groups. These must be created
by editing the CAS policy files. Since this may result in a corrupt or invalid policy file, it is
recommended that CAS policy be configured using Union Code Groups. An unparseable
CAS policy file will result in the default CAS policy being applied, which may not be
consistent with local security policy.

Recommendation: Editing CAS policy files to use First Match Code Groups may
create invalid or corrupt XML, as these files are also modified by automated tools
and parsed by the CLR. Thus, it is recommended that CAS policy be configured
using Union Code Groups configured through mscorcfg.msc.

UNCLASSIFIED

70
UNCLASSIFIED

File Code Groups and Net Code Groups

File Code Groups and Net Code Groups behave the same way as Union Code Groups with
respect to how child Code Groups are evaluated for assembly membership. The default Code
Groups contain one File Code Group (Intranet_Same_Directory_Access) and three Net Code
Groups (Intranet_Same_Site_Access, Internet_Same_Site_Access, and
Trusted_Same_Site_Access).

A File Code Group grants access to the directory from where the assembly was loaded and its
subdirectories. This is not the same as the Application Directory Membership Condition,
which is satisfied if the assembly under consideration is being loaded from the same
directory (or a subdirectory) of another assembly. The File Code Group grants permission to
a single assembly to the directory from which it was loaded. The default File Code Group
(Intranet_Same_Directory_Access) uses the All Code Membership Condition, so it relies on
the parent Code Group to determine the conditions under which this access is granted.
Intranet_Same_Directory_Access grants Read and Path Discovery access to the source
directory. These permissions were discussed above in the .NET Framework Protected
Resources section under the File IO permission.

A Net Code Group grants the ability to initiate connections to the Website from which the
assembly was downloaded. The same protocol must be used, with the exception that an
assembly downloaded using the HTTP protocol may connect to its site of origin using either
HTTP or HTTPS. Even though the assembly may have been downloaded from a subpath of
the root URL of the Website, connections may be made to any URL within that Website. For
example, if an assembly myapp.exe was downloaded from http://www.example.com/
apps/new/myapp.exe and satisfies a Net Code Group’s Membership Condition, it will
have the permission to connect to any URL in the www.example.com Website, using either
HTTP or HTTPS. The default Net Code Groups (Intranet_Same_Site_Access,
Internet_Same_Site_Access, Trusted_Same_Site_Access) use the All Code permission, so
they rely on their parent Code Group to determine the conditions under which the connect
access is granted.

Copying File Code Groups and Net Code Groups

File Code Groups and Net Code Groups cannot be created directly through mscorcfg.msc,
but the existing default ones may be safely copied using this tool through the following steps:

Right click on the File Code Group or Net Code Group and click Properties from
the context menu.

Select the Custom Code Group tab. This will display the XML representation of
the Code Group. The display for the Intranet_Same_Site_Access Net Code Group is
shown in Figure 20.

UNCLASSIFIED

71
UNCLASSIFIED

Figure 20. Custom Code Group Tab for Intranet_Same_Site_Access in Version 2.0.

Select the XML text and copy it to a text file.

Click Cancel.

Right click the Code Group under which you want to create a child File Code Group
or Net Code Group, and select New…

Figure 21. Create Code Group Dialog Box.

In the Create Code Group dialog box (shown in Figure 21), select the Import a
code group from a XML file radio button.

UNCLASSIFIED

72
UNCLASSIFIED

Click Browse… and select the text file in which the XML of the source Code Group
was saved.

Click Finish.

This is a safe way to copy File Code Groups and Net Code Groups and is the recommended
technique for adding such groups.

Recommendation: Editing CAS policy files to create File Code Groups or Net Code
Groups may create invalid or corrupt XML, as these files are also modified by
automated tools and parsed by the CLR. Thus, it is recommended that these groups
be avoided or the XML of the default groups be copied and imported using
mscorcfg.msc.

Named Permission Sets

A Named Permission Set is a predefined set of permissions granting access to resources.
Named Permission Sets are created in advance by the administrator and stored in the CAS
policy files. Each Union Code Group or First Match Code Group has an associated Named
Permission Set that defines the access rights granted to members of that Code Group. The
File Code Groups and Net Code Groups do not have associated Named Permission Sets;
instead, they have specific built-in permissions associated with them. A Named Permission
Set may be associated with multiple Code Groups. The default CAS policy has several
predefined Named Permission Sets that cannot be changed by the administrator. These are
shown in Table 6.

Default Named Permission Sets

Nothing

The Nothing Named Permission Set is associated with the All_Code and
Restricted_Zone default Code Groups at the Machine policy level in the .NET
Framework version 1.1 and 2.0. In version 1.0, Nothing is also associated with the
Internet_Zone Code Group at the Machine policy Level. By its association with the
All_Code Code Group at any level, this sets the default permissions granted to code.
In order for code to be granted any permissions, it must satisfy some Membership
Condition associated with another Code Group. This Named Permission Set grants
no access to any resource.

UNCLASSIFIED

73
UNCLASSIFIED

Default Named Permission Sets

Execution

The Execution Named Permission Set is not associated with any default Code Group.
This Named Permission Set only includes the single permission for code to execute.
No other access to resources is granted. This is the weakest Named Permission Set
that grants anything at all. In most cases, this Named Permission Set must be
combined with others granted through other Code Groups in order for an assembly to
perform its intended function.

Internet

The Internet Named Permission Set is associated with the Internet_Zone default Code
Group in .NET Framework version 1.1 and 2.0, and the Trusted_Zone default Code
Group in .NET Framework versions 1.0, 1.1 and 2.0 (all at the Machine policy level).
Permissions in this Named Permission Set include:

Code is allowed to execute.

Code is allowed to read files specified by the user through the Open File
dialog box.

Code may use the Isolated Storage facility to read and store up to 10,240
bytes of data associated with the user account and application that are
executing the assembly. In version 2.0 the storage amount has been
increased to 512,000 bytes of data. Multiple assemblies with this same
permission may share data when executing in the context of the same
application.

Code may print to a printer selected by the user through a Print dialog box.

Code may create windows on the desktop, but may not control some aspects
of their appearance.

Code may put data on the Windows clipboard, but may only copy data from
the clipboard through a user action such as Ctrl-V.

If code was downloaded from a URL, it is allowed to initiate connections to
the originating Website.

LocalIntranet

The LocalIntranet Named Permission Set is associated with the LocalIntranet_Zone
default Code Group. Permissions in this Named Permission Set include:

Code is allowed to execute.

UNCLASSIFIED

74
UNCLASSIFIED

Default Named Permission Sets

Code is allowed to read and write files specified by the user through the
Open File and Save File dialog boxes.

Code is allowed to use the Isolated Storage facility to store virtually any
amount of data associated with the assembly running under the current user
account.

Code may print to a printer selected by the user through a Print dialog box, or
it may send print jobs to the system default printer.

Code is allowed to access DNS information such as IP addresses and host
names, however, the ability to make network connections must be granted
through another Named Permission Set.

Code may control all aspects of the desktop windows that it creates.

Code may cut and paste without restriction to and from the system clipboard.

Code may discover the value of the USERNAME Windows environment
variable.

Code is allowed to write new code and then execute it on the fly. Unless an
assembly is also granted the Allow Evidence Control permission, code
created dynamically by the assembly inherits the permissions of its creator.

Code may write entries to event logs on the local host. Typically this will be
the Windows Application event log, but may include custom event logs as
well. This permission does not allow code to read the entries in the event
logs. In version 2.0 of the Framework the ability to work with the Event Log
has been removed from the LocalIntranet Named Permission Set.

Code may access any resource that it has been granted permission to access,
even if it has been invoked by code that is less trusted. This permission
allows an assembly to access resources it needs to perform its function, but
that will not be exposed for discretionary access to other code.

SkipVerification

The SkipVerification Named Permission Set is not associated with any default Code
Group. This Named Permission Set includes only a single permission: code is
allowed to skip the verification process when it is loaded that confirms that it is a
well-formed program that can be reliably managed by the CLR. If code fails this
process, it is not allowed to execute. Unfortunately, some compilers create safe and
well-behaved code that will nevertheless fail the verification process, so this
permission is sometimes necessary to allow code from a trusted origin to run.

UNCLASSIFIED

75
UNCLASSIFIED

Default Named Permission Sets

Everything

The Everything Named Permission Set is not associated with any default Code
Group. Contrary to its name, the Everything Named Permission Set does not grant
every possible permission. The CAS system is extensible through the creation of
custom libraries that define new evidence types, permission types, and Code Group
types. The Everything Named Permission Set includes all of the built-in permissions
except for the ability to skip code verification, and will also not include any access to
any custom permission. Each permission included in the Everything Named
Permission Set grants unrestricted access to its associated resource.

FullTrust

The FullTrust Named Permission Set is associated with the My_Computer_Zone,
Microsoft_Strong_Name, and ECMA_Strong_Name default Code Groups at the
Machine policy level, and the All_Code default Code Group at the Enterprise and
User policy level. This is the true “everything” permission set in that it allows
unrestricted access to all resources.

Table 6. Default Named Permission Sets in the .NET Framework.

As the CLR walks the Code Group tree to apply CAS policy for an assembly, it will check
the assembly’s evidence against the Membership Conditions of the Code Groups it
encounters. When an assembly satisfies the Membership Condition for a Code Group, the
assembly is granted the permissions contained in the Code Group’s associated Named
Permission Set. If an assembly is a member of multiple Code Groups, the assigned
permissions are calculated as a combination of the permissions in all the associated Named
Permission Sets. Figure 22 illustrates the process by which an assembly is assigned
permissions from more than one Code Group.

UNCLASSIFIED

76
UNCLASSIFIED

Figure 22. Assigning Assembly Permissions.

Policy Levels

Each Code Group or Named Permission Set is defined for only one policy level. For
purposes of permission resolution, these policy levels are hierarchically related. The order of
precedence from highest to lowest is Enterprise, Machine, User, and Application Domain.
Higher policy levels cannot be overridden by lower policy levels. A lower policy may only
further restrict code.

The Enterprise and Machine policy levels are the only two administratively configured
levels. The Enterprise policy level may be used to configure CAS policy for an entire
organization, with host-specific rules defined in the Machine policy level. However, there is
no provision as of .NET Framework version 2.0 for the CLR to load the Enterprise CAS
policy from a network server, so both the Enterprise and Machine policy levels must be
deployed machine by machine.

The default Enterprise CAS policy grants unrestricted access to all code. Any restrictions
placed on code at this highest level cannot be overridden by lower policy levels, so
restrictions placed here should be few and carefully targeted. The Machine level policy is
used to further refine CAS policy to suit the needs of a single host. The default CAS policy
has a complex structure at this level.

The User level policy may add additional restrictions to code. This policy level is
customizable by each logged on user. The Application Domain policy level is not
configurable. It is created by the CLR when an Application Domain is created to host a
managed application.

Code Group A
URL Membership Condition: Code
must come from the URL
http://www.example.com/apps/*

Code Group B
Site Membership Condition: Code
must come from the Web site
www.example.com

Named
Permission
Set X

Named
Permission
Set Y

Assembly downloaded from
http://www.example.com/apps/myapp.exe

Does this assembly meet this
Membership Condition?

Yes. Named Permission Set X will be used in the
assembly’s permission calculation

Does this assembly meet this
Membership Condition?

Yes. Named Permission Set Y will be used in the
assembly’s permission calculation

UNCLASSIFIED

77
UNCLASSIFIED

Permission Resolution

When an assembly is loaded, the CLR determines the assembly’s permissions to access
resources. This is done by computing three types of permission sets:

Level Permission Set

Allowed Permission Set

Granted Permission Set

Level Permission Set

The Level Permission Set is determined by walking each policy level’s Code Group tree in
accordance with the rules for Union Code Groups and First Match Code Groups, evaluating
the assembly’s membership in each Code Group, and combining the associated Named
Permission Sets for each Code Group containing the assembly as a member. This produces a
set of permissions for that assembly that is the union of the assembly’s associated Named
Permission Sets, i.e., the set of all permissions present in any of the assembly’s Named
Permission Sets, even those missing in another Named Permission Set. Figure 23 illustrates
the creation of the Level Permission Set.

Figure 23. Creation of a Level Permission Set.

In Figure 23, since permissions C and E are absent from all three Named Permission Sets,
they are excluded from the Level Permission Set for the Machine policy level. Note that
although permission A is absent from one of the Named Permission Sets, it is present in at
least one Named Permission Set and so it is included in the Level Permission Set for this
policy level.

Machine Policy Level

D

Named Permission Sets
associated with Code Groups
which contain an assembly
as a member.

Level Permission Set: the
union of all permissions for
this policy level.

D

D

B

B

B

A

A

F

F

F G

H

H I

I

A B IHGFD

UNCLASSIFIED

78
UNCLASSIFIED

Allowed Permission Set

The Allowed Permission Set is created by intersecting the Level Permission Sets for each
policy level. This creates a set of permissions that contains each permission present in every
one of the Level Permission Sets. Figure 24 illustrates the creation of the Allowed
Permission Set.

Figure 24. Creation of the Allowed Permission Set.

In Figure 24, since permissions A, C, E, and I are absent from at least one Level Permission
Set, they are not included in the Allowed Permission Set. Intersecting the Level Permission
Sets prevents the settings of any policy level from granting permissions that are denied at any
other level. The Allowed Permission Set is the largest set of permissions available to the
assembly.

Granted Permission Set

The Granted Permission Set is the set of permissions that are actually associated with an
assembly during its execution. This set is the basis for access control decisions made by the
CLR. The Granted Permission Set is created by using the permission requirements expressed
by the assembly itself (Assembly Permission Requests) to further restrict the Allowed
Permission Set.

Machine Policy Level
Level Permission Sets for each
policy level.

Enterprise Policy Level

User Policy Level

Allowed Permission Set: the
intersection of all Level
Permission Sets for this assembly.
A permission must be granted at
each policy level to be included in
the Allowed Permission Set.

A B HC D E F G

A B HD F G I

A B HC D F G I

B HD F G

Application Domain Policy Level

B HD F G I

UNCLASSIFIED

79
UNCLASSIFIED

Assembly Permission Requests

In its metadata, an assembly may explicitly state what set of permissions it requires in order
to minimally function (its Minimum Request), what set of permissions it would prefer to
have to be able to offer all of its features (its Optional Request), and what set of permissions
it refuses, even if granted by CAS policy (its Refuse Request). These three types of
permission requests may further restrict the permissions associated with an assembly, but
will never increase the permissions beyond the Allowed Permission Set, i.e., permissions are
only granted on the basis of CAS policy settings, but they may be taken away if they are not
needed as determined by the assembly permission requests. Assembly permission requests
are specified by the developer of the software and are not configurable by the administrator.
They are a means for developers to communicate to consumers of the code what resources
the code expects to access. The administrator may view an assembly’s permission requests
using permview.exe.

Computation of the Granted Permission Set

The Granted Permission Set is computed by the following sequence of steps:

If an assembly has specified a Minimum and/or Optional set of permissions, then all
permissions not in either the Minimum or Optional requests are removed from the
Allowed Permission Set. These permissions are presumed not to be needed by the
assembly, and therefore will not be granted, in keeping with the principle of least
privilege. If the assembly has not specified either a Minimum or Optional set, then
the Allowed Permission Set is not reduced.

Thus, if any Minimum or Optional permissions are explicitly requested, all other
permissions are considered to be implicitly refused. If no Minimum or Optional
permissions are explicitly requested, all permissions are considered to be implicitly
requested as Optional.

The modified Allowed Permission Set is checked for the permission to execute. This
is a performance-enhancing measure. If not allowed to execute, the CLR will not
load the assembly and will cause an exception to occur. Note that permission to
execute does not need to be explicitly included in the Minimum permisson set. It is
considered an implicit requirement.

The modified Allowed Permission Set is checked for the presence of all the
permissions in the Minimum set. If the permissions have not all been granted, the
CLR will not load the assembly and will cause an exception to occur.

If the assembly has specified a Refuse Request, those permissions are removed from
the modified Allowed Permission Set (even if they were also included in the
Minimum or Optional sets). The result is the Granted Permission Set.

UNCLASSIFIED

80
UNCLASSIFIED

If an assembly does not make any permission requests, then the Granted Permission Set is
simply the Allowed Permission Set. In no case will an assembly’s permission requests cause
the addition of permissions to the Allowed Permission Set.

Although developers may use assembly permission requests to adhere to an organizational
policy about resource usage, a security policy with respect to code privileges should be
implemented with a sound CAS policy configuration, and not based on software self-
regulation.

Recommendation: Although software developers should implement the principle of
least privilege through assembly permission requests, security policy should not rely
on these requests, but should be implemented through CAS policy settings.

Code Group Attributes

The permission resolution process described above can be affected by two Code Group
attributes, Exclusive and Level Final. These attributes are set by the administrator (for the
Enterprise and Machine levels) or the user (for the User level) when the Code Groups are
created.

Exclusive

The Exclusive attribute affects the creation of a Level Permission Set. If an assembly
satisfies the Membership Condition of a Code Group marked Exclusive on a given policy
level, the Level Permission Set for that level will consist of exactly the Named Permission
Set associated with that Code Group and no other permissions. Child Code Groups of the
Exclusive Code Group will also not contribute permissions. More than one Code Group on a
given policy level may have the Exclusive attribute, but an assembly will not be allowed to
execute if it belongs to more than one code group with this attribute.

Since the Exclusive attribute prevents the addition of other permissions on the same policy
level, it is used to set a maximum Level Permission Set for code. Since the Level Permission
Sets are intersected over all the policy levels, this is also a maximum for the entire CAS
policy. This is useful for selectively restricting or disallowing software execution.

Level Final

The Level Final attribute affects the creation of the Allowed Permission Set. If an assembly
satisfies the Membership Condition of a Code Group marked Level Final on a given policy
level, the Allowed Permission Set will be created using only the Level Permission Sets for
this level, higher levels, and the AppDomain level. Other than the AppDomain level, CAS
policy levels below this one will be ignored. More than one Code Group on a given policy
level may have the Level Final attribute, and an assembly may belong to multiple Code
Groups that have this attribute. Note that the Level Final attribute does not affect the
creation of the Level Permission Set for the level on which it is set. Note also that marking a
Code Group Level Final will have no effect on permissions granted to assemblies that are not
members of that Code Group.

UNCLASSIFIED

81
UNCLASSIFIED

The Level Final attribute on the Enterprise policy level is a means of granting a minimum set
of permissions on an assembly, as lower policy levels can only further restrict the
permissions granted to an assembly. On the Machine policy level, it prevents the user from
further restricting the permissions granted by the Enterprise and Machine level policies.

This attribute should only be used if both of the following conditions are true:

The Membership Condition of the Code Group receiving this attribute is narrowly
tailored, such as by a hash or strong name. Since the Level Final attribute moves
counter to security in preventing the tightening of restrictions, the Membership
Condition of the Code Group should be as discriminating as possible.

The functionality of the targeted assemblies must be assured. The Level Final
attribute supports availability by preventing inadvertent modifications in the Machine
or User policy from affecting the granted permissions. This particularly applies
where the default Machine or User CAS policy would prevent the assemblies from
functioning, since a missing or corrupted CAS policy configuration file at the
Machine or User policy level results in the default policy being applied at that level.

Furthermore, this attribute, although “simplifying” the CLR’s internal policy resolution
process, may actually increase the chance of security lapses, as the combined policy becomes
more complex and difficult for administrators to assimilate. Good communication and
coordination of policy changes is particularly important among all those responsible for
maintaining the Enterprise and Machine policy levels, or the combined CAS policy may
become unpredictable.

Recommendation: Code Groups with the Level Final attribute should have
Membership Conditions that are as narrowly defined as possible.

Policy Enforcement

Once an assembly’s evidence has been evaluated against CAS policy and the Granted
Permission Set determined, the CLR and its libraries enforce the Granted Permission Set by
responding appropriately to access rights queries made by code. As mentioned in chapter 1,
an assembly can choose whether or not to query the access monitor of the CLR, and if it
does, whether or not to pay attention to the results. The CLR’s supporting libraries, which
mediate access to resources on behalf of all other managed code, are designed to refuse to
fulfill any request for resources after a failed access check.

The process of checking the access rights of an assembly is performed through a stack walk,
which checks the Granted Permission Set of every assembly in the current logical path
(stack) of code execution, all the way back to the original managed console, Windows GUI,
or Web-based application. Every assembly in the logical path of code execution must have
permission to access the desired resource in its Granted Permission Set, or the CLR will
report a denial of access to the assembly requesting the access rights check. Figure 25
illustrates the stack walk.

UNCLASSIFIED

82
UNCLASSIFIED

Figure 25. The Stack Walk.

In Figure 25, an application myapp.exe has loaded assemblies helper.dll, util.dll,
and the CLR’s library assembly system.dll. During execution, myapp.exe has invoked
code in helper.dll, which in turn has invoked code in util.dll. Since access to
resources is performed by calling the CLR’s library functions, util.dll requests access to
a protected resource through system.dll. Since system.dll is a trusted component of
the .NET Framework, it will first check the CLR Access Monitor to verify that all of the
assemblies in the calling stack have the required permission (in this case, permission B). The
CLR’s access monitor checks each assembly in turn, determines that helper.dll does not
have permission B in its Granted Permission Set, and returns a failure response to
system.dll.

The stack walk prevents privileged code from being tricked into accessing resources on
behalf of less privileged code. In this case, because helper.dll does not have permission
B in its Granted Permission Set, it cannot access the resource itself or ask a more privileged
assembly to access the resource on its behalf. util.dll and system.dll can both be used
by assemblies that do not have permission B without danger of exposing the resource to
unauthorized access.

Summary

CAS policy is a means of granting access permissions to code based on evidence that the
code itself presents, rather than based only on the Windows user account in the context of
which the execution occurs. The policy is administratively configured through the creation
of Code Groups and associated Named Permission Sets. The process of determining the
permissions granted to a specific assembly is complex, so creation of CAS policy should rely
on a consideration of the effect of the entire policy, not just on one Code Group or policy
level.

util.dll has asked the
CLR library system.dll to
access a protected resource on
its behalf.

CLR Access Monitor

The access monitor checks
all assemblies in the
execution path for the
necessary permission (B) to
access the resource. In this
case, the access monitor
reports a failed access check
to system.dll because
the assembly helper.dll
did not have the required
permission.

Flow of
execution

system.dll

util.dll

helper.dll

myapp.exe

Protected Resource

A B D

A E

A B D

A B C D E

Granted Permission Sets

UNCLASSIFIED

83
UNCLASSIFIED

Technology and policy can be mutually constraining. Existing technology can give policy
creators “tunnel vision,” that is, policy specifications can be written, whether consciously or
subconsciously, with existing technical controls in mind. Conversely, an organizational
security policy constrains, in part, what technological measures can be employed to
implement its specifications. The .NET Framework is a new technical control that enables
more fine-grained policy implementation, while providing additional flexibility in policy
specification as well.

Recommendations in This Section

Recommendation: Strong name verification should never be simulated in an
operational environment.

Recommendation: Editing CAS policy files to use First Match Code Groups may
create invalid or corrupt XML, as these files are also modified by automated tools
and parsed by the CLR. Thus, it is recommended that CAS policy be configured
using Union Code Groups configured through mscorcfg.msc.

Recommendation: Editing CAS policy files to create File Code Groups or Net Code
Groups may create invalid or corrupt XML, as these files are also modified by
automated tools and parsed by the CLR. Thus, it is recommended that these groups
be avoided or the XML of the default groups be copied and imported using
mscorcfg.msc.

Recommendation: Although software developers should implement the principle of
least privilege through assembly permission requests, security policy should not rely
on these requests, but should be implemented through CAS policy settings.

Recommendation: Code Groups with the Level Final attribute should have
Membership Conditions that are as narrowly defined as possible.

UNCLASSIFIED

84
UNCLASSIFIED

Chapter

3
Deploying .NET Framework CAS Policy Using
Group Policy
.NET Framework CAS policy is not centrally maintained, but is stored locally on each
computer running the .NET Framework. This allows CAS policy to be tailored to the
operational needs of each host computer, but could also make policy enforcement more
difficult, since organization-wide changes must be deployed to each computer individually.
This section will discuss .NET Framework policy deployment and a few pitfalls to avoid. It
will be assumed that the administrator has some understanding of Active Directory and the
use of Group Policy to distribute software applications.

Deployment Options

Since the configurable part of .NET Framework CAS policy consists of a set of XML files
for the Enterprise, Machine, and User levels of each .NET Framework version, a new policy
can be deployed to a host computer simply by copying new policy files over the old ones.
Since the CAS policy files for Enterprise and Machine level are protected, a local computer
account with elevated privileges is required to change these files. To scale well to even a
small network, it is desirable to have an automated process that runs with sufficient
privileges and uses a centrally stored installation script and policy files.

An installation script and CAS policy file can be bundled as a Windows Installer package
(.msi file). A Windows Installer package is a database containing all the information that
Windows Installer (msiexec.exe) needs to install or uninstall a policy configuration file.
Windows Installer packages can be deployed in several ways:

Processing the .msi file on the computer where the policy is to be deployed, either
from the local disk or from a shared network folder. Double-click the .msi file icon
to invoke Windows Installer, or run

msiexec.exe /i <filename.msi>

from the command line.

Automated installation using Group Policy software installation.

Automated installation using Microsoft Systems Management Server.

UNCLASSIFIED

85
UNCLASSIFIED

Automated installation using logon or startup scripts that reference a shared network
location.

Distribution as an e-mail attachment with subsequent discretionary user processing.

Publishing on a shared network location with subsequent discretionary user
processing.

Of the above methods, only Group Policy and SMS are automated processes that can be
guaranteed to perform the installation with elevated privileges and can be configured to apply
to groups of computers. In this document, we will discuss automated CAS policy
deployment using Windows Installer packages and Group Policy.

Creating a Windows Installer Package for CAS Policy
Deployment

The .NET Framework Configuration tool (mscorcfg.msc) provides a Wizard for creating
Windows Installer packages. The Wizard can create an Installer package that corresponds to
exactly one of the three configurable policy levels (Enterprise, Machine, or User) for the
version of the .NET Framework administered through the tool. Thus, CAS policy
deployment through Installer packages must be performed separately for each policy level
and each .NET Framework version.

The Wizard creates the Installer package using the current policy settings of the computer
where the Wizard executes. For example, to deploy a custom Machine level policy for
version 1.1 of the .NET Framework to a group of computers, you must back up the current
Machine level CAS policy file (security.config) on a computer, use mscorcfg.msc to
configure the Machine level policy for that version, create the Installer package with the
Wizard as described below, and then restore the computer’s original Machine level policy.

When configuring policies for deployment to other machines, the policy back up and
restoration process can be done by creating a Windows Installer package with the original
policy for the configuring host. When all the Installer packages for policies to be deployed
have been created, the host’s original CAS policy can be restored by double-clicking the
corresponding .msi file.

Recommendation: Back up any custom host CAS policy using a Windows Installer
package before configuring different policies for deployment.

Since editing the policy temporarily affects the actual policy enforced on the local computer,
it is recommended that policy configuration for deployment purposes be performed on a
protected host, such as a standalone computer or one with no Internet access.

Recommendation: Configure policy for deployment on a protected host.

UNCLASSIFIED

86
UNCLASSIFIED

To create a Windows Installer package for the current CAS policy level and version, perform
the following steps:

Start the .NET Framework Configuration tool (mscorcfg.msc) for the .NET
Framework version whose policy you wish to deploy.

In the console tree on the left, select Runtime Security Policy.

In the Tasks list in the Code Access Security Policy details pane on the right,
click on Create Deployment Package to open the Deployment Package Wizard
(see Figure 26).

Figure 26. Deployment Package Wizard.

Select a policy level to deploy by selecting one of the radio buttons: Enterprise,
Machine, or User.

Enter a folder and file name (or browse to a location) for the new Windows Installer
package. Note that in order to use Group Policy for deployment, the Installer package
must be located in or copied to a folder that is shared across the domain. A possible
convention for naming CAS policy Installer packages is the format:

cas.{version}.{level}.{yymmdd}.{targeted hosts/users}.msi,

for example, cas.1.0.3705.Machine.20030714.AccountingOU.msi or
cas.1.1.4322.User.20030714.BackupOperatorsGroup.msi.

Using this convention, each Installer package can be easily and uniquely identified.

Select Next and then Finish and the Wizard will create the package in the specified
location.

UNCLASSIFIED

87
UNCLASSIFIED

Deploying CAS Policy Using Group Policy Objects

A Windows Installer package can be deployed to a group of domain computers or domain
user accounts defined by an Active Directory container using Group Policy Objects (GPOs).
Perform the following steps to deploy CAS policy to the computers or users in an Active
Directory container:

Create the Windows Installer package (.msi file) for the desired policy level and
.NET Framework version.

Copy the Installer package to a shared network folder. Share the folder with
appropriate permissions to give access only to authenticated administrators who are
responsible for creating and maintaining the Installer packages. Group Policy
refreshes will still work even when users cannot read the restricted shared folder, as
the refresh process authenticates with a domain machine account rather than a domain
user account. Restricting access to the shared folder supports the “need-to-know”
doctrine appropriate for security configurations by preventing unauthorized users
from determining what CAS policy settings will be deployed to various types of
network hosts.

Recommendation: When using a shared network folder as a software distribution
point for CAS policy, set the folder permissions to restrict access to administrators
or others authorized to maintain .NET Framework CAS policy deployment files.

Either the Active Directory Users and Computers Console (dsa.msc) or the Group Policy
Management Console (gpmc.msc) can be used to create and edit GPOs and manage their
contents and links to Active Directory containers. The gpmc.msc console does not ship with
the operating system but can be downloaded from Microsoft. Both of these consoles invoke
the Group Policy Object Editor Console (gpedit.msc) to add Installer packages to a GPO,
but also support automatically linking new GPOs with Active Directory containers.

Creating or Selecting a GPO Using the Active Directory Users and
Computers Console

Log on to the network as a domain administrator, and start the Active Directory Users
and Computers snap-in (see Figure 27).

Find and select the target container node that is or will be linked to the GPO that will
contain the CAS policy Installer package.

UNCLASSIFIED

88
UNCLASSIFIED

Figure 27. Active Directory Users and Computers Microsoft Management Console Snap-in.

Right-click the container (or select Action from the menu bar) and select
Properties from the shortcut menu.

Select the Group Policy tab. If the Group Policy Management Console is also
installed on this computer, this will simply present a button that will open it, with the
focus preset to the selected container. See the section on using Group Policy
Management Console below for further steps. Otherwise, a list of GPOs linked to the
current container will be displayed (see Figure 28). If the GPO that will contain the
Installer package is not currently displayed, click New to create a GPO that will
automatically be linked to the selected container, or click Add… to link an existing
GPO to this container.

Figure 28. Group Policy Objects Linked to a Container.

UNCLASSIFIED

89
UNCLASSIFIED

Select the GPO that will contain the Installer package and click Edit. This starts the
Group Policy Object Editor and lets you edit the properties of this GPO. To add an
installer package to this object, follow the steps below in Adding an Installer Package
to a GPO Using the Group Policy Object Editor.

Creating or Selecting a GPO Using the Group Policy Management Console

Log on to the network as a domain administrator, and start the Group Policy
Management Console.

Find and select the target container node that is or will be linked to the GPO that will
contain the CAS policy Installer package. The linked GPOs will be shown as
subnodes of the container in the console tree pane (see Figure 29).

Figure 29. Displaying GPOs Linked to an Organizational Unit with the Group Policy
Management Console.

If the GPO that will contain the CAS policy Installer package is not yet linked to the
container, right-click the container (or select Action from the menu bar) and select
Create and Link a GPO Here… or Link an Existing GPO… If you are
creating a new GPO, you will be prompted to give it a name.

Right-click the GPO and select Edit… This starts the Group Policy Object Editor
and lets you edit the properties of this GPO. To add an installer package to this object
follow the steps below.

Adding an Installer package to a GPO Using the Group Policy Object Editor

To deploy Enterprise or Machine level policy, expand the Software Settings node
under Computer Configuration. To deploy User level policy, expand the
Software Settings node under User Configuration (see Figure 30).

UNCLASSIFIED

90
UNCLASSIFIED

Figure 30. Viewing Software Installation Packages in the Group Policy Object Editor.

Right-click Software installation (or select Action from the menu bar) and select
New and then Package…

Browse to the location of the Windows Installer package, select the file, and click
Open.

Even if the Windows Installer package resides on the local hard disk, do not use a
local path (for example, c:\\sharename\path\filename.msi). Instead, use a
UNC path (such as \\servername\sharename\path\filename.msi) to
indicate the location of the Installer package or browse through My Network Places
to the shared folders on the local host. If a local file system path is used, client
computers that try to install the package will look on their own local hard disks in the
location that was indicated. Since they will not find the .msi file at that location, the
installation will fail.

Select a deployment method from the Deploy Software dialog box (see Figure 31).

Figure 31. Deploy Software Dialog Box.

The Published deployment method, available only through the User Configuration
node, permits the Installer package to be made available from the Add New Programs

UNCLASSIFIED

91
UNCLASSIFIED

task of the Add/Remove Programs Control Panel extension. They may then be
installed at the discretion of the user. The Assigned deployment method directs
Group Policy to automatically install the package at the next Group Policy refresh.
Both the Published and Assigned selections set default settings that can be configured
later, including changing the deployment method between Published and Assigned if
this is a User Configuration package. The Advanced option (labeled Advanced
published or assigned in some versions of the snap-in) simply brings up the
properties dialog box to allow the administrator to immediately configure the
deployment method and settings of the package.

Deployment Modes of Group Policy

The actual deployment of the Installer package will take place during the processing of
software installation packages during a Group Policy refresh. Some Group Policy refreshes
may not include this phase. The Group Policy deployment modes determine when and how
Group Policy will be refreshed and when a Group Policy refresh will include the processing
of software installation packages. The point at which a new CAS policy will take effect is
dependent on these factors.

Synchronous and Asynchronous Modes

Group Policy refreshes may occur in synchronous or asynchronous mode. In synchronous
mode, user interaction with the system is blocked for up to 60 minutes while Group Policy is
applied. At computer restart this means that presentation of the logon dialog box will be
delayed up to 60 minutes while computer policy is applied. At user logon, this means that,
after the user is authenticated, the user’s interaction with the desktop will be delayed up to 60
minutes while user policy is applied. In asynchronous mode, user interaction is not blocked.
Thus, the user may immediately log on while computer settings are applied, and a logged-on
user may have immediate interactive access to the desktop while user settings are being
applied.

Software installation only occurs in synchronous Group Policy refreshes. For software under
the Computer Configuration node of a GPO, deployment occurs when any computer in the
linked Active Directory container restarts with Group Policy refresh in synchronous mode.
The deployment of a User Configuration software package will take place when a domain
user in the linked Active Directory container logs on, and Group Policy performs a
synchronous refresh. Note that logging on to a local machine account will not trigger a
Group Policy refresh and thus new software installation packages will not be deployed at that
time.

In addition to computer restart and domain user logon (“foreground” policy application),
Group Policy refresh can also occur at periodic intervals (“background” policy application).
Both types of refresh events are discussed below.

UNCLASSIFIED

92
UNCLASSIFIED

Foreground Policy Application

When settings are applied at restart for Computer Configuration and at logon for User
Configuration, this is referred to as foreground policy application. The way policy is applied
in a foreground refresh depends on the Windows operating system version. For Windows
2000, all foreground processing is synchronous. Windows XP systems support both
synchronous and asynchronous foreground policy processing, including the ability to switch
automatically between the two modes (Fast Logon Optimization, described below).

Fast Logon Optimization

Fast Logon Optimization is available in Windows XP Professional and applies to domain and
workgroup accounts. This feature allows foreground policy application to use asynchronous
(“fast”) mode as a default, but switch to synchronous mode as needed. Since this feature
applies both to computer restart and user logon, a better name would be “Fast Restart/Fast
Logon Optimization.” When this feature is enabled, user logon is asynchronous unless

This is the first time the user has logged on to the computer.

The user is logging on with a roaming profile.

The user has logon scripts that are configured to require synchronous processing.

Asynchronous restart (“Fast Restart”) may still take place even when the Group Policy
refresh at user logon is synchronous. If a pending software installation package is detected
during an asynchronous foreground refresh, then the next restart or logon will automatically
be synchronous, allowing the software installation to proceed. Thereafter, it will switch back
to asynchronous if possible as described above.

The use of Fast Logon Optimization could prevent updated CAS policy settings from being
applied during an interactive logon session even though a new policy is available and
configured for deployment. An asynchronous restart or logon would simply note the
existence of the new CAS policy Installer package, and then initiate the installation at the
next restart or logon.

Disabling Fast Logon Optimization

Fast Logon Optimization in Windows XP may be disabled through the Group Policy Object
Editor. Under the Computer Configuration node, select Administrative Templates,
System, Logon, and then enable the setting Always wait for the network at
computer start and logon.

Background Policy Application

In addition to foreground processing, policy can be applied without restart or logon by the
use of background processing. Background processing is always asynchronous and by
default a background refresh occurs approximately every 90 minutes. A random time of up
to 30 minutes is added to this interval in order to spread out the network traffic associated

UNCLASSIFIED

93
UNCLASSIFIED

with policy refreshes. Because a background policy refresh is asynchronous, software
installation (including CAS policy installation via a Windows Installer package) is not
performed during a background policy refresh.

Summary

CAS policy deployment via Group Policy software installation occurs only when Group
Policy is refreshed synchronously during computer restart or domain user logon. Under
Windows XP, the occurrence of synchronous refreshes may be subject to changing
conditions that may make CAS policy deployment difficult to predict. To make policy
deployment occur as soon as possible and in a predictable way, disable Fast Logon
Optimization.

Recommendation: When CAS policy is deployed via Group Policy software
installation, disable Fast Logon Optimization.

Group Policy Processing

Group Policy Processing Precedence

When multiple CAS policy Installer packages are deployed through Group Policy, the Group
Policy processing rules may affect which CAS policies will take effect. Since CAS policy
installation completely replaces any previous CAS policy, the order in which conflicting
policies are installed is important.

Precedence of Active Directory Containers

Group Policy is cumulative in that GPOs applied later may override some settings of GPOs
applied earlier, but settings not explicitly overridden are generally retained from the earlier
GPOs. GPOs linked to the various levels of the container hierarchy are processed and
applied in the following order of containers: Local, Site, Domain, Organizational Unit, Child
Organizational Unit. For the order of application of multiple GPOs linked to the same
container, see the section Precedence of Linked GPOs below. As a result of the container
precedence, child containers generally inherit all policy from parent containers that they
don’t explicitly override. The Block Inheritance and No Override properties of containers
can be used to modify this process, but a full description of Group Policy processing is
outside of the scope of this document. For a complete description of Group Policy
processing please review [Haney, 2001] and [Sanderson and Rice, 2000] or Microsoft’s
online documentation at msdn.microsoft.com [Microsoft, MSDN].

Group Policy Processing Example 1

The Active Directory Domain container for example.com has a linked GPO that
contains a Machine level CAS policy for .NET Framework version 1.1 under its
Computer Configuration node. This policy includes a custom Code Group called
“DomainAppsCodeGroup”. This Domain container contains an Organizational Unit

UNCLASSIFIED

94
UNCLASSIFIED

container called “Research Department” that has a linked GPO containing a Machine
level CAS policy for the same version under its Computer Configuration node that
contains a custom Code Group called “ResearchToolsCodeGroup”.

When any computer within the “Research Department” container is restarted, the
Domain policy is applied first and then the Organizational Unit policy. Since CAS
policy installation is simply the replacement of one XML file with another, the policy
installed with the Domain container is completely overwritten by the “Research
Department” policy. The two policies are not merged and only the Code Group
“ResearchToolsCodeGroup” will appear in the final Machine level CAS policy.

If the two policy packages were for different CAS policy levels or different versions
of the .NET Framework, then there is no conflict and both custom Code Groups
would be present in their respective policies.

Precedence of Linked GPOs

When multiple GPOs are linked to the same Active Directory container, their order of
application is determined by their order as configured in the Group Policy snap-in. This
order can be modified by the administrator using the Management Consoles. The entries are
applied from the bottom of the list to the top (i.e., the policy labeled “1” is applied last), so
the GPOs higher in the list have greater precedence. Note that when installing multiple CAS
policy packages through Group Policy, the last policy deployed for a given level and version
will completely overwrite any policy previously installed (see Figure 32).

Figure 32. Displaying the Order of Precedence of GPOs Linked to an Organizational Unit
with the Group Policy Management Console.

UNCLASSIFIED

95
UNCLASSIFIED

Group Policy Processing Example 2

An Active Directory container is linked to two GPOs which have the order of
precedence 1) “Enterprise CAS Policy High” and 2) “Enterprise CAS Policy
Medium”. “Enterprise CAS Policy High” will install an Enterprise level policy for
.NET Framework version 1.0 that assigns the Nothing+Level Final+Exclusive
permissions to a custom Code Group “RestrictedAppsCodeGroup,” and “Enterprise
CAS Policy Medium” installs a policy at the same level and .NET Framework version
that assigns the Internet+Level Final+Exclusive permissions to the same Code Group.

Since Group Policy processing installs GPOs for a single container from the bottom
to the top of the linked GPOs, the .NET Framework Enterprise level policy is
installed from “Enterprise CAS Policy Medium” first and then that policy is
overwritten by the installation of “Enterprise CAS Policy High.” The final .NET
Framework policy thus assigns Nothing+Level Final+Exclusive permissions to the
Code Group “RestrictedAppsCodeGroup” at the Enterprise level.

Precedence of Software Installation Packages

When Windows Installer packages are added to a GPO, the default name assigned by the
Group Policy snap-in to the software installation entry is the software product name as
recorded in the Installer package’s internal database. For Installer packages created with
mscorcfg.msc, this product name is set to “.NET Framework <policy level> Code Access
Security Policy”. If more than one software installation entry in the same GPO has the same
internal product name, the names of the additional entries are listed as “.NET Framework
<policy level> Code Access Security Policy (2)”, etc. These policy installations will all be
installed when the GPO is processed during a Group Policy refresh. The order of installation
is the alphabetical order of the software installation entries. As with multiple GPOs linked to
one container, the last policy to be installed will overwrite any previously installed policy for
the same level and version (see Figure 33).

Figure 33. Custom Software Installation Item Names for CAS Policy Installer Packages.

UNCLASSIFIED

96
UNCLASSIFIED

Group Policy Processing Example 3

Windows Installer packages “.NET Framework Enterprise Code Access Security
Policy” and “.NET Framework Enterprise Code Access Security Policy (2)” are
created using mscorcfg.msc for the Enterprise level for .NET Framework versions
1.0, 1.1, and added to the same GPO. An additional Windows Installer package
“.NET Framework Enterprise Code Access Security Policy (3)” is created for the
Enterprise level for version 1.1 and added to the same GPO. When the GPO is
deployed, the policies will be applied in alphabetical order. If the names of the
Installer packages are not changed from their defaults, “.NET Framework Enterprise
Code Access Security Policy (3)” will be applied last, and will overwrite the policy
previously installed for version 1.1.

The names of the software installation entries may be changed after creation to set a
particular CAS policy installation precedence.

Loopback Processing

When a user logs on to a domain account, a Group Policy refresh is triggered that applies the
User Configuration settings for all GPOs linked to Active Directory containers that contain
the user’s domain account. The Group Policy engine will create an ordered list of all the
applicable GPOs based on its precedence rules, and the User Configuration settings will be
applied in that order. Active Directory containers that contain only the host computer will
not contribute to this process, nor will any Computer Configuration settings for any GPO.

In some situations, it may be desirable for all users logging on to a particular host computer
to be subject to a machine-wide policy, rather than their user account policy. This is called
Loopback processing and relies on the User Configuration settings for the host computer’s
Active Directory containers rather than (or in addition to) the User Configuration settings
associated with the user’s domain account. Loopback provides a way to keep CAS policy
consistent on machines that are used by a wide population, such as kiosks or classroom
workstations, or machines that require special protection, such as servers. Loopback
processing can be set to one of two modes, Merge or Replace, which determine how the
machine-wide and user policies are combined.

In Merge mode, Loopback applies the User Configuration settings for GPOs linked to Active
Directory containers that contain the user’s domain account, and then the User Configuration
settings for GPOs linked to Active Directory containers that contain the host computer.
Since later settings take precedence, the computer policy will override the user policy
wherever there are conflicts, but non-conflicting user policy settings will still take effect. In
Replace mode, Loopback applies only the User Configuration settings for GPOs linked to
Active Directory containers that contain the host computer. Group Policy settings associated
with the user’s domain account are ignored. In both Merge and Replace mode, the computer
settings will be applied for all users. Since CAS policy installation consists of simple file
replacement, any Installer package associated with the computer will completely determine
the final policy for the CAS policy level installed.

UNCLASSIFIED

97
UNCLASSIFIED

To configure Loopback processing, the User Group Policy loopback processing
mode must be enabled as either Merge or Replace on the Computer Configuration node of
a GPO linked to the targeted host (see Figure 34). Then, when the host restarts or Group
Policy is otherwise refreshed, the host will be configured to apply user policy using
Loopback in the specified mode.

Figure 34. Setting Loopback Processing Mode.

Forcing Policy Deployment

Forcing Policy Deployment Locally

To ensure that an Installer package is deployed to a particular host, a user or administrator
may run

secedit /refreshpolicy {machine_policy | user_policy} /enforce

or

gpupdate /force

from the command line of that host. gpupdate.exe is available on Windows XP and later
versions. When running gpupdate.exe, the user will be asked for permission to restart the
computer. Select Yes and the package will be installed on restart.

Forcing Policy Deployment Remotely

After installation and while a Group Policy Object is still linked to a container, the Installer
package will remain eligible for subsequent reinstallation on the target computers associated
with that container. During each Group Policy software installation, the installed programs
list on the targeted computer is consulted and the Installer package is reapplied if it has been

UNCLASSIFIED

98
UNCLASSIFIED

removed. This ensures that as long as a policy object exists, it will be continually reapplied
if necessary at each restart or logon.

Software installation relies on the names of the packages to determine if a given package has
been removed and needs to be reinstalled. If a Group Policy Object is updated to include a
new Installer package with the same name as a prior package, its behavior will be as if it had
not changed, that is, it will not be installed on any host that has the prior package still
installed. If the Group Policy Object simply points to a generically named package on a
Software Distribution Point, replacing the Installer package with a new CAS policy
deployment package with the same name will not trigger a deployment. To automatically
deploy CAS policy through Group Policy Objects, new CAS policy deployment packages
should be given unique names and explicitly linked to a Group Policy Object.

An alternative to using a naming convention to force the deployment of new versions of CAS
policy is to configure Group Policy to install/reinstall software installation packages whether
or not the named packages are already installed on the targeted machines. This will ensure
that the deployed CAS policy overwrites any local modifications at each restart. To
configure the software installation behavior of a GPO to reinstall every time, perform the
following steps in the Group Policy Object Editor. Under the Computer Configuration
node, select Administrative Templates, System, Group Policy, and then open
Software Installation policy processing property dialog box. Check Enable to
configure software installation policy processing and then check Process even if the
Group Policy objects have not changed (see Figure 35). Note that this will apply to
all software installation packages, not just CAS policy.

Figure 35. Forcing Software Installation for Unchanged GPOs.

UNCLASSIFIED

99
UNCLASSIFIED

Uninstalling CAS Policy

Windows Installer packages may contain a defined rollback process that can be used to
uninstall the package contents. Each Installer package added to a GPO can be configured as
an installation or an uninstall/remove task. However, the Installer packages created through
mscorcfg.msc do not define a rollback process. Therefore, their uninstall task will actually
do nothing, although the message dialog may state that the package is being uninstalled.

CAS policy rollback must be performed by reinstalling the previous policy. For this reason,
copies of the Windows Installer packages for prior CAS policy deployments (including the
default CAS policies) should be archived as restoration points for use when rollback is
desired.

Recommendation: Archive Windows Installer packages for all CAS policy
deployments, including the default CAS policy, for use as restoration points when
rollback to a prior policy state is desired.

Summary

.NET Framework CAS policy can be deployed by using mscorcfg.msc to create Windows
Installer packages for a given policy level and .NET Framework version. The Active
Directory Users and Computers Console or Group Policy Management Console can be used
to associate these packages with GPOs linked to Active Directory containers. These GPOs
are deployed when a Group Policy refresh occurs for a given domain computer (normally at
restart) or for a domain user (normally at logon). They are applied in the order of highest
container GPOs to lowest container GPOs within the Active Directory container hierarchy.
Within a given container, the ordered list of linked GPOs is applied bottom to top, and within
a GPO, Windows Installer packages are applied in the alphabetical order of the name of their
software installation entries.

Rollback of a deployed CAS policy is achieved by reinstalling the previous policy through a
separate Windows Installer package.

Recommendations in This Section

Recommendation: Backup any custom host CAS policy using a Windows Installer
package before configuring different policies for deployment.

Recommendation: Configure policy for deployment on a protected host.

Recommendation: When using a shared network folder as a software distribution
point for CAS policy, set the folder permissions to restrict access to administrators
or others authorized to maintain .NET Framework CAS policy deployment files.

UNCLASSIFIED

100
UNCLASSIFIED

Recommendation: When CAS policy is deployed via Group Policy software
installation, disable Fast Logon Optimization.

Recommendation: Archive Windows Installer packages for all CAS policy
deployments, including the default CAS policy, for use as restoration points when
rollback to a prior policy state is desired.

UNCLASSIFIED

101
UNCLASSIFIED

This page has been intentionally left blank.

UNCLASSIFIED

102
UNCLASSIFIED

Chapter

4
URL Security Zones and the .NET Framework
Zone Membership Condition
Microsoft Windows provides a facility to classify URLs into predefined groups called URL
Security Zones. The URL to zone mapping information is contained in the registry and is
also available to applications through a programming interface. Its most common use is by
Microsoft Internet Explorer to limit the capabilities of code embedded in Web pages. The
.NET Framework also uses this data to implement a family of Zone Membership Conditions
based on the URL from which an assembly is loaded. Table 7 shows the five built-in Zone
Membership Conditions that correspond to the five predefined URL Security Zones used by
Internet Explorer.

Zone Membership Condition URL Security Zone

My Computer My Computer

Local Intranet Local intranet

Trusted Sites Trusted sites

Internet Internet

Untrusted Sites Restricted sites

Table 7. .NET Framework Zone Membership Conditions and URL Security Zones.

When the CLR loads an assembly through a URL reference, it is associated with a URL
Security Zone by checking the mapping data stored in the registry. This zone, along with all
other evidence about the assembly, is then used to determine Code Group membership and
the set of access permissions the assembly will be granted.

The default Machine level policy contains a Code Group for each of the five built-in Zone
Membership Conditions. These default Code Groups and their associated Named Permission
Sets are listed in Table 8. Note that the default Named Permission Set for the Internet_Zone
Code Group has changed from version 1.0 to version 1.1 of the .NET Framework. The
default permissions associated with these Named Permission Sets are listed in Table 9.

UNCLASSIFIED

103
UNCLASSIFIED

Zone Membership Condition Code Group Named Permission Set
My Computer My_Computer_Zone FullTrust
Local Intranet LocalIntranet_Zone LocalIntranet
Trusted Sites Trusted_Zone Internet
Internet Internet_Zone Nothing (1.0), Internet (1.1 and 2.0)
Untrusted Sites Restricted_Zone Nothing

Table 8. Default Code Groups and Named Permission Sets for Zone Membership
Conditions.

Named Permission Set Default Permissions
Nothing None
Internet Security: Enable Code Execution

File Dialog: Open
Isolated Storage File: Usage Allowed = Domain Isolation By

User, Disk Quota = 10240 (version 1.0 and 1.1),
 Disk Quota = 512,000 (version 2.0)
User Interface: Windowing = Safe top-level windows,

Clipboard = Own Clipboard
Printing: Safe Printing
Web Access: If downloaded from a URL, code may connect

to the Web site from which it was downloaded
LocalIntranet Security: Enable Code Execution, Assert any permission that

has been granted
Environment Variables: USERNAME = Read
File Dialog: Unrestricted
Isolated Storage File: Usage Allowed = Assembly Isolation

By User, Disk Quota = 9,223,372,036,854,775,807 = 263-1
(the largest 64 bit signed integer value)

Reflection: Reflection Emit
DNS: Access permitted
User Interface: Unrestricted
Printing: Default Printing
Event Log: Instrument access to the local host (in version 2.0

the Event Log has been removed from LocalIntranet)
Web Access: If downloaded through a protocol other than

file://, code may connect to the Web site from which it
was downloaded.

File IO: If loaded from a file:// protocol, such as through a
UNC path or a local file system path, code is granted Read
and Path Discovery access to the directory from which it
was loaded.

FullTrust All permissions are in the unrestricted state.

Table 9. Default Permissions for Named Permission Sets Associated with Zone Code
Groups.

UNCLASSIFIED

104
UNCLASSIFIED

URL Security Zone Settings

Windows maintains security settings for each zone that are used by Internet Explorer to
“sandbox” code embedded in or referenced by Web pages. The security settings for each
URL Security Zone determine whether Internet Explorer will allow itself to host code
managed by the .NET Framework. Each zone can be configured independently to allow or
disallow the execution of managed controls, i.e., assemblies referenced by <object>
HTML tags in a Web page. In addition, managed controls that are signed with an
Authenticode digital certificate can be configured differently than unsigned managed
controls. Table 10 shows the URL Security Zone settings that impact the execution of
managed controls. These settings are configurable through Internet Explorer.

URL Security Zone Setting Impact on Managed Code Execution
.NET Framework-reliant components
Run components not signed with
Authenticode

This setting must be enabled to permit the
execution of managed code that is not
digitally signed with a software publisher’s
certificate.

Run components signed with Authenticode This setting must be enabled to permit the
execution of managed code that is digitally
signed with a software publisher’s certificate.

ActiveX controls and plug-ins
Run ActiveX controls and plug-ins This ActiveX setting also applies to managed

controls and must be enabled to permit their
execution.

Script ActiveX controls marked safe for
scripting

This ActiveX setting also applies to managed
controls and must be enabled to permit
scripts that are part of a Web page to invoke
code supplied by managed controls.

Table 10. URL Security Zone Settings That Impact Managed Code Execution.

Note that an assembly loaded directly through a URL to a managed executable will not be
governed by these settings. Although its execution must be explicitly permitted through an
open/save dialog box, once allowed to run, it will simply execute under the restrictions
imposed by the current CAS policy configuration.

Once Internet Explorer begins hosting managed code in accordance with the above settings,
access to resources is based on the access control mechanism in the .NET Framework rather
than on the browser security configuration. The Named Permission Sets associated with the
Code Groups to which an assembly belongs will determine the level of access granted.
Although the above settings may determine whether managed code gets to run at all, once it
is running, the mapping of URLs to zones is the only aspect of Windows URL Security
Zones that is used to determine .NET Framework resource permissions.

UNCLASSIFIED

105
UNCLASSIFIED

The zone security settings that allow or disallow the execution of signed or unsigned
managed code components add a coarsely-grained authorization layer before the .NET
Framework CAS policy is applied. CAS policy provides a much finer degree of control in
that code is authorized to access specific resources. Moreover, CAS policy does not have a
built-in way to grant access to resources based on the mere fact that code was signed by some
Authenticode digital certificate.

An Authenticode digital certificate provides assurance that the code has been distributed
without modification since it was signed. By itself, it does not provide any basis for trusting
the origin of the code, nor does a certificate by itself prove the identity of its claimed origin.
There must be a prior association between the public key used in the digital certificate and a
trusted source. This association must be achieved by the trusted distribution of the public
keys of trusted parties. In addition, digital certificates are subject to revocation in infrequent
cases. Thus, code should not be granted additional access to resources based solely on the
fact that it is signed with an Authenticode digital certificate. In the .NET Framework, access
is granted to code based on the presence of specific Authenticode digital certificates whose
public keys have been previously obtained through an authenticated channel.

Internet Explorer Enhanced Security Configuration

Windows Server 2003 comes with a feature called Internet Explorer Enhanced Security
Configuration (ESC). ESC creates a more restrictive environment for browsing Web pages
containing embedded or referenced executable code, and maintains an alternate zone
mapping. In addition, when ESC is enabled the Windows Update site
http://*.windowsupdate.com and Microsoft’s Online Crash Analysis site
http(s)://oca.microsoft.com are added to the Trusted sites zone, and
http(s)://localhost and hcp://system are added to the Local intranet zone.

A registry setting enables or disables ESC for the Administrators group. Another registry
setting enables or disables ESC for all other groups. To install, enable, or configure ESC, see
the Windows Server 2003 documentation at msdn.microsoft.com..

URL to Zone Mappings

Separate URL to Zone mappings are stored in the Current User (HKCU) and Local Machine
(HKLM) hives of the registry, as shown in Table 11. The Current User mappings are saved
to a roaming user’s network profile.

Registry Key Description
HKLM/Software/Policies/Microsoft/Windows/CurrentVersion/InternetSettings/
Security_HKLM_Only If this key exists and has the value 1, then only the

Local Machine mappings will be used to map a URL
to a zone.

HKLM/Software/Microsoft/Windows/CurrentVersion/Internet Settings/

UNCLASSIFIED

106
UNCLASSIFIED

Registry Key Description
ZoneMap/Domains
ZoneMap/EscDomains

Maps network domains and UNC paths to security
zones. If ESC is installed and enabled for the current
user’s group, EscDomains is used instead of Domains.

ZoneMap/ProtocolDefaults Maps protocols to default security zones. These
settings are used if a mapping is not found for the
domain or IP range.

ZoneMap/Ranges Maps IP address ranges to security zones.
Zones/<zone ID> Defines the security settings and other properties for

each security zone. The zone IDs are:
0 My Computer
1 Local intranet
2 Trusted sites
3 Internet
4 Restricted sites

These settings are easily configured through Internet
Explorer.

HKCU/Software/Microsoft/Windows/CurrentVersion/Internet Settings/
ZoneMap/Domains
ZoneMap/EscDomains

Maps network domains and UNC paths to security
zones. If ESC is installed and enabled for the current
user’s group, EscDomains is used instead of Domains.

ZoneMap/ProtocolDefaults Maps protocols to default security zones. These
settings are used if a mapping is not found for the
domain or IP range.

ZoneMap/Ranges Maps IP address ranges to security zones.
Zones/<zone ID> Defines the security settings and other properties for

each security zone. These settings are easily
configured through Internet Explorer.

Table 11. URL Security Zone Registry Keys.

When an assembly is obtained from a URL, the zone mappings in the registry are checked to
determine Zone membership. The Local Machine mappings are checked first for the first
matching entry (or default protocol mapping). Note that domain names are not resolved into
IP addresses, so the same Web site could be in one zone if specified by domain name and in
another zone if specified by IP address. Port number suffixes and resource path components
beyond the domain/IP address are ignored. If user settings are not disabled, the Current User
mappings are then checked and may override the Local Machine settings if there is a conflict.
If ESC is installed and enabled for the current user’s group, then the EscDomains mappings
are used instead of the Domains mappings for both the Local Machine and Current User
settings. ESC does not use a separate set of IP address ranges.

The user has the ability to modify the URL security zones under the Current User (HKCU)
hive in the registry, either through Internet Explorer or by directly editing the registry. Thus,
the user may add any URL to the Trusted sites security zone, or even add arbitrary URLs to
the My Computer zone. This means that .NET Framework CAS policy that grants

UNCLASSIFIED

107
UNCLASSIFIED

permissions based on Zones cannot enforce a machine-wide mapping policy unless user
mappings are disabled using the Security_HKLM_Only value. Where Zone Membership
Conditions are present and user mappings are not disabled, users may allow arbitrary code to
satisfy any Zone Membership Condition.

Recommendation: Do not grant or restrict access to resources based on a Zone
Membership Condition in support of an organizational policy unless user mappings
are disabled.

Recommendation: Only use Zone Membership Conditions as part of a multi-factor
code authorization check that relies on at least one additional type of evidence
before granting access to resources.

One way to implement this recommendation is by removing the Security: Enable Code
Execution flag from any Named Permission Set associated with a Code Group with a Zone
Membership Condition. This will allow Zones to define certain broad types of access, but
the right to actually execute must be based on a more specific form of evidence.

Summary

The .NET Framework Zone Membership Condition relies on the configuration of the URL
Security Zones in the Windows operating system. Thus, the set of permissions granted to
code based on an administratively-configured CAS policy that includes Zone Membership
Conditions is partly determined by an external operating system component that is potentially
configurable by any user. Unlike Windows file permissions or user account restrictions, this
external component (URL to Zone mappings) does not create an additional layer of security,
but interacts with and determines the meaning of CAS policy. This presents a challenge to
the enforcement of organizational policy decisions. This challenge can be addressed by
disabling user settings and designing CAS policy to grant access to resources based on
stronger forms of evidence than Zone membership.

Recommendations in This Section

Recommendation: Do not grant or restrict access to resources based on a Zone
Membership Condition in support of an organizational policy unless user mappings
are disabled.

Recommendation: Only use Zone Membership Conditions as part of a multi-factor
code authorization check that relies on at least one additional type of evidence
before granting access to resources.

UNCLASSIFIED

108
UNCLASSIFIED

Chapter

5
Cryptographic Localization in the .NET
Framework
The CLR libraries include many classes that provided cryptographic services such as hash
functions, asymmetric and symmetric encryption algorithms, and digital signatures. Table 12
shows the types of cryptographic services available in the .NET Framework as of version 2.0.
Note that this document does not address the strength or correctness of the cryptographic
algorithm implementations provided by the .NET Framework libraries. In addition to the
cryptographic services provided in the .NET Framework, cryptographic services in the
Windows operating system may be configured and customized through third-party
Cryptographic Service Providers (CSPs). CSPs are not administered through the .NET
Framework and their configuration is not covered in this document.

Cryptographic Services by Type
Hash

MD5
RIPEMD-160 (new in version 2.0)
SHA-1
SHA-256
SHA-384
SHA-512

Keyed Hash
HMAC
CBC MAC

Symmetric Encryption
DES
Triple DES
RC2
Rijndael (the candidate algorithm selected by NIST for the AES)

Asymmetric Encryption
RSA

Pseudo-Random Number Generation and Related Services
Pseudo-Random Number Generator (PRNG)
Password-Based Key Derivation Function
PKCS #1 MGF1 (Mask Generation Function)

Digital Signature
DSA signature encoded in PKCS #1 version 1.5 digital signature format
RSA signature encoded in PKCS #1 version 1.5 digital signature format

UNCLASSIFIED

109
UNCLASSIFIED

Cryptographic Services by Type
XML Digital Signature Transforms

Canonicalization, with or without comments
Base64 decoding
XSLT transform
XPath filtering
Enveloped signature transform

Key Exchange
RSA encryption of Optimal Asymmetric Encryption Padding (OAEP) encoded key
RSA encryption of PKCS #1 version 1.5 encoded key

Table 12. Types of cryptographic services in the .NET Framework version 1.1 and 2.0.

The .NET Framework provides default algorithm specifications and implementations for
some families of cryptographic functions and also provides the means to selectively override
these defaults. This is done by allowing managed code to request cryptographic functions
through cryptographic service names. These names are resolved by the CLR into specific
execution paths based on administrator-configurable cryptographic settings that map names
to software libraries. Many predefined names exist for common cryptographic services. In
addition, new names and mappings may be defined by the administrator to describe policy-
driven cryptographic standards.

The default cryptographic algorithms must be chosen carefully to provide appropriate
protection for sensitive information. Table 13 shows appropriate defaults for each class of
algorithm from among the built-in cryptographic services available in version 1.1 and 2.0 of
the .NET Framework. Note that operational and mission needs for an information system
may require a higher degree of protection than that afforded by the built-in services of the
.NET Framework; however, custom cryptography should only be obtained from highly
trusted and appropriately accredited expert sources.

Algorithm Type Default Algorithm
Hash SHA-256
Keyed Hash HMAC with SHA-1. HMAC with SHA-256 is

recommended where possible, but this is not available with
the built-in services in version 1.1 of the .NET Framework.

Symmetric Encryption Rijndael with 256-bit cryptovariable (this is the default).
Triple DES (168-bit cryptovariable) may be used where
interoperability with legacy systems is critical.

Asymmetric Encryption RSA with 2048-bit key size
Pseudo-Random Number
Generator

Microsoft Strong Cryptographic Provider. This API is
wrapped by the cryptographic service
System.Security.Cryptography.RNGCryptoServiceProvider.

Digital Signature RSA PKCS #1 version 1.5 digital signature with 2048-bit
key size

XML Digital Signature
Transforms

Any

UNCLASSIFIED

110
UNCLASSIFIED

Algorithm Type Default Algorithm
Key Exchange RSA PKCS #1 version 1.5 key exchange with 2048-bit key

size

Table 13. Recommended default cryptographic algorithms.

Table 14 shows the named cryptographic services in version 1.1 and 2.0 of the .NET
Framework and their default mappings. When cryptographic services are invoked by
software using one of the quoted names, the behavior is as described in the following
paragraph. For example, invoking “MD5” or “System.Security.Cryptography.MD5” results
in the same behavior; namely, to invoke the currently configured default implementation of
the MD5 hash algorithm.

Many names correspond to specific internal software identifiers of cryptographic services.
For example, System.Security.Cryptography.MD5CryptoServiceProvider is an internal
software identifier for a specific implementation of MD5 in the .NET Framework library
mscorlib.dll. This implementation is invoked through the name
“System.Security.Cryptography.MD5CryptoServiceProvider.” In addition to these
implementation-specific names, some generic names are defined for use where a type of
algorithm is needed, but not any particular implementation. As noted above, the names
“MD5” and “System.Security.Cryptography.MD5” are examples of this type of name, as is
“HashAlgorithm.” When managed code requests the generic “HashAlgorithm” service, the
default behavior is to invoke System.Security.Cryptography.SHA1CryptoServiceProvider,
the SHA-1 implementation in mscorlib.dll, but another hash function implementation
could be substituted using the cryptographic configuration settings.

Mapped Behavior of Named Cryptographic Services
Hash

“System.Security.Cryptography.HashAlgorithm”
Invokes the currently configured default hash algorithm. The default is
System.Security.Cryptography.SHA1CryptoServiceProvider in mscorlib.dll.
See the name “System.Security.Cryptography.SHA1CryptoServiceProvider”
below for details.

“MD5”,
“System.Security.Cryptography.MD5”

Invokes the currently configured default MD5 implementation. The default
implementation is System.Security.Cryptography.MD5CryptoServiceProvider
in mscorlib.dll. See the name
“System.Security.Cryptography.MD5CryptoServiceProvider” below for
details.

“RIPEMD160”,
“System.Security.Cryptography.RIPEMD160

RIPEMD-160, 160 bit message digest, .NET Framework library
implementation in mscorlib.dll. This class is new in version 2.0 of the
Framework.

“System.Security.Cryptography.MD5CryptoServiceProvider”

UNCLASSIFIED

111
UNCLASSIFIED

Mapped Behavior of Named Cryptographic Services
MD5, 128 bit message digest. This invokes managed code in mscorlib.dll
(System.Security.Cryptography.MD5CryptoServiceProvider) that wraps the
Windows operating system default CSP implementation of MD5.

“SHA”
Invokes the currently configured default SHA implementation. The default is
System.Security.Cryptography.SHA1CryptoServiceProvider in mscorlib.dll.
See the name “System.Security.Cryptography.SHA1CryptoServiceProvider”
below for details.

“SHA1”,
“System.Security.Cryptography.SHA1”,
“http://www.w3.org/2000/09/xmldsig#sha1”

Invokes the currently configured default SHA-1 implementation. The default
is System.Security.Cryptography.SHA1CryptoServiceProvider in
mscorlib.dll. See the name
“System.Security.Cryptography.SHA1CryptoServiceProvider” below for
details.

“System.Security.Cryptography.SHA1CryptoServiceProvider”
SHA-1, 160 bit message digest. This invokes managed code in mscorlib.dll
(System.Security.Cryptography.SHA1CryptoServiceProvider) that wraps the
Windows operating system default CSP implementation of SHA-1.

“System.Security.Cryptography.SHA1Managed”
SHA-1, 160 bit message digest, .NET Framework library implementation in
mscorlib.dll.

“SHA256”,
“SHA-256”,
“System.Security.Cryptography.SHA256”

Invokes the currently configured default SHA-256 implementation. The
default is System.Security.Cryptography.SHA256Managed in mscorlib.dll.
See the name “System.Security.Cryptography.SHA256Managed” below for
details.

“System.Security.Cryptography.SHA256Managed”
SHA-256, 256 bit message digest, .NET Framework library implementation in
mscorlib.dll.

“SHA384”,
“SHA-384”,
“System.Security.Cryptography.SHA384”

Invokes the currently configured default SHA-384 implementation. The
default is System.Security.Cryptography.SHA384Managed in mscorlib.dll.
See the name “System.Security.Cryptography.SHA384Managed” below for
details.

“System.Security.Cryptography.SHA384Managed”
SHA-384, 384 bit message digest, .NET Framework library implementation in
mscorlib.dll.

UNCLASSIFIED

112
UNCLASSIFIED

Mapped Behavior of Named Cryptographic Services
“SHA512”,
“SHA-512”,
“System.Security.Cryptography.SHA512”

Invokes the currently configured default SHA-512 implementation. The
default is System.Security.Cryptography.SHA512Managed in mscorlib.dll.
See the name “System.Security.Cryptography.SHA512Managed” below for
details.

“System.Security.Cryptography.SHA512Managed”
SHA-512, 512 bit message digest, .NET Framework library implementation in
mscorlib.dll.

Keyed Hash
“System.Security.Cryptography.KeyedHashAlgorithm”

Invokes the currently configured default keyed hash algorithm. The default is
System.Security.Cryptography.HMACSHA1 in mscorlib.dll. See the name
“System.Security.Cryptography.HMACSHA1” below for details.

“HMACSHA1”,
“System.Security.Cryptography.HMACSHA1”

HMAC SHA-1, 160 bit message digest, .NET Framework library
implementation in mscorlib.dll. Any size cryptovariable may be provided or
the “System.Security.Cryptography.RandomNumberGenerator” named
service will be invoked to generate a 64 byte key.

“HMACSHA256”,
“System.Security.Cryptography.HMACSHA256”

HMAC SHA-256, 256 bit message digest, .NET Framework library
implementation in mscorlib.dll. This class is new in version 2.0 of the
Framework.

“HMACSHA384”,
“System.Security.Cryptography.HMACSHA384”

HMAC SHA-384, 384 bit message digest, .NET Framework library
implementation in mscorlib.dll. This class is new in version 2.0 of the
Framework.

“HMACSHA512”,
“System.Security.Cryptography.HMACSHA512”

HMAC SHA-512, 512 bit message digest, .NET Framework library
implementation in mscorlib.dll. This class is new in version 2.0 of the
Framework.

“HMACMD5”,
“System.Security.Cryptography.HMACMD5”

HMAC MD5, 128 bit message digest, using an MD5 algorithm, .NET
Framework library implementation in mscorlib.dll. This class is new in
version 2.0 of the Framework.

“HMAC RIPEMD-160”,
“System.Security.Cryptography.HMACRIPEMD160”

UNCLASSIFIED

113
UNCLASSIFIED

Mapped Behavior of Named Cryptographic Services
HMAC RIPEMD-160, 160 bit message digest, .NET Framework library
implementation in mscorlib.dll. This class is new in version 2.0 of the
Framework.

“System.Security.Cryptography.MACTripleDES”
MAC Triple DES, 64 bit message digest, .NET Framework library
implementation in mscorlib.dll. A 64, 128, or 192 bit cryptovariable may be
provided or the “System.Security.Cryptography.RandomNumberGenerator”
named service will be invoked to generate a 192 bit key. Any named
implementation of Triple DES may be specified, but by default the
“System.Security.Cryptography.TripleDES” named service will be invoked.

Symmetric Encryption
“System.Security.Cryptography.SymmetricAlgorithm”

Invokes the currently configured default symmetric encryption algorithm.
The default is System.Security.Cryptography.RijndaelManaged in
mscorlib.dll. See the name
“System.Security.Cryptography.RijndaelManaged” below for details.

“DES”,
“System.Security.Cryptography.DES”

Invokes the currently configured default DES implementation. The default is
System.Security.Cryptography.DESCryptoServiceProvider in mscorlib.dll.
See the name “System.Security.Cryptography.DESCryptoServiceProvider”
below for details.

“System.Security.Cryptography.DESCryptoServiceProvider”
DES, 56 bit cryptovariable, 64 bit block size. This invokes managed code in
mscorlib.dll (System.Security.Cryptography.DESCryptoServiceProvider) that
wraps the Windows operating system default CSP implementation of DES.
The default mode is CBC, the default padding is zeros.

“3DES”,
“TripleDES”,
“Triple DES”,
“System.Security.Cryptography.TripleDES”

Invokes the currently configured default Triple DES implementation. The
default is System.Security.Cryptography.TripleDESCryptoServiceProvider in
mscorlib.dll. See the name
“System.Security.Cryptography.TripleDESCryptoServiceProvider” below for
details.

“System.Security.Cryptography.TripleDESCryptoServiceProvider”
Triple DES, 112 or 168 bit cryptovariable, 64 bit block size. This invokes
managed code in mscorlib.dll
(System.Security.Cryptography.TripleDESCryptoServiceProvider) that wraps
the Windows operating system default CSP implementation of Triple DES.
The default mode is CBC, the default padding is zeros.

“RC2”,
“System.Security.Cryptography.RC2”

UNCLASSIFIED

114
UNCLASSIFIED

Mapped Behavior of Named Cryptographic Services
Invokes the currently configured default RC2 implementation. The default is
System.Security.Cryptography.RC2CryptoServiceProvider in mscorlib.dll.
See the name “System.Security.Cryptography.RC2CryptoServiceProvider”
below for details.

“System.Security.Cryptography.RC2CryptoServiceProvider”
RC2, 40 bit cryptovariable, 64 bit block size. This invokes managed code in
mscorlib.dll (System.Security.Cryptography.RC2CryptoServiceProvider) that
wraps the Windows operating system default CSP implementation of RC2.
The default mode is CBC, the default padding is zeros.

“Rijndael”,
“System.Security.Cryptography.Rijndael”

Invokes the currently configured default Rijndael implementation. The
default is System.Security.Cryptography.RijndaelManaged in mscorlib.dll.
See the name “System.Security.Cryptography.RijndaelManaged” below for
details.

“System.Security.Cryptography.RijndaelManaged”
Rijndael, 128, 192, or 256 bit cryptovariable (default is 256), 128, 192, or 256
bit block size (default is 128), .NET Framework library implementation in
mscorlib.dll. The default mode is CBC, the default padding is zeros.

Asymmetric Encryption
“System.Security.Cryptography.AsymmetricAlgorithm”

Invokes the currently configured default asymmetric encryption algorithm.
The default is System.Security.Cryptography.RSACryptoServiceProvider in
mscorlib.dll. See the name
“System.Security.Cryptography.RSACryptoServiceProvider” below for
details.

“RSA”,
“System.Security.Cryptography.RSA”

Invokes the currently configured default RSA implementation. The default is
System.Security.Cryptography.RSACryptoServiceProvider in mscorlib.dll.
See the name “System.Security.Cryptography.RSACryptoServiceProvider”
below for details.

“System.Security.Cryptography.RSACryptoServiceProvider”
RSA, default key size is 1024 bits. This invokes managed code in
mscorlib.dll (System.Security.Cryptography.RSACryptoServiceProvider) that
wraps the Windows operating system default “PROV_RSA_FULL” type CSP
implementation of RSA.

Pseudo-Random Number Generation and Related Services
“RandomNumberGenerator”,
“System.Security.Cryptography.RandomNumberGenerator”

Invokes the currently configured default PRNG. The default is
System.Security.Cryptography.RNGCryptoServiceProvider in mscorlib.dll.
See the name “System.Security.Cryptography.RNGCryptoServiceProvider”
below for details.

“System.Security.Cryptography.RNGCryptoServiceProvider”

UNCLASSIFIED

115
UNCLASSIFIED

Mapped Behavior of Named Cryptographic Services
This service invokes managed code in mscorlib.dll
(System.Security.Cryptography.RNGCryptoServiceProvider) that wraps calls
to any specified installed CSP. The default is the “PROV_RSA_FULL” type
implementation for the Microsoft Strong Cryptographic Provider.

“System.Security.Cryptography.PasswordDeriveBytes”
This service invokes managed code in mscorlib.dll
(System.Security.Cryptography.PasswordDeriveBytes) that provides
password-based key derivation functions using either an installed CSP or
iterating a hash algorithm. The default CSP used is the default
“RSA_PROV_FULL” provider. The default iterative hash method is to use
100 iterations of the named service “System.Security.Cryptography.SHA1.”
See this name above for details.

“System.Security.Cryptography.PKCS1MaskGenerationMethod”
PKCS #1 MGF1 (Mask Generation Function), .NET Framework library
implementation in mscorlib.dll. By default, invokes the named service
“SHA1” as the hash component. See this name above for details.

Digital Signature
“DSA”,
“System.Security.Cryptography.DSA”

Invokes the currently configured default DSA implementation. The default is
System.Security.Cryptography.DSACryptoServiceProvider in mscorlib.dll.
See the name “System.Security.Cryptography.DSACryptoServiceProvider”
below for details.

“System.Security.Cryptography.DSACryptoServiceProvider”
DSA, default key size is 1024 bits. This invokes managed code in
mscorlib.dll (System.Security.Cryptography.DSACryptoServiceProvider) that
wraps the Windows operating system default “PROV_DSS_DH” type CSP
implementation of DSA.

“System.Security.Cryptography.DSASignatureFormatter”,
“System.Security.Cryptography.DSASignatureDeformatter”

DSA PKCS #1 version 1.5 digital signature. By default, invokes the named
service “SHA1” as the hash algorithm. See this name above for details. Must
be invoked with a specified implementation of DSA, as no default is defined.

“RSA”,
“System.Security.Cryptography.RSA”

Invokes the currently configured default RSA implementation. The default is
System.Security.Cryptography.RSACryptoServiceProvider in mscorlib.dll.
See the name “System.Security.Cryptography.RSACryptoServiceProvider”
below for details.

“System.Security.Cryptography.RSACryptoServiceProvider”
RSA, default key size is 1024 bits. This invokes managed code in
mscorlib.dll (System.Security.Cryptography.RSACryptoServiceProvider) that
wraps the Windows operating system default “PROV_RSA_FULL” type CSP
implementation of RSA.

UNCLASSIFIED

116
UNCLASSIFIED

Mapped Behavior of Named Cryptographic Services
“System.Security.Cryptography.RSAPKCS1SignatureFormatter”,
“System.Security.Cryptography.RSAPKCS1SignatureDeformatter”

RSA PKCS #1 version 1.5 digital signature. Must be invoked with a named
hash service and any implementation of RSA specified, as no defaults are
defined.

“http://www.w3.org/2000/09/xmldsig#dsa-sha1”
Invokes the currently configured XML digital signature algorithm with DSA
and SHA-1. The default implementation, from the .NET Framework library
system.security.dll, invokes the named services
“System.Security.Cryptography.SHA1CryptoServiceProvider”,
“System.Security.Cryptography.DSACryptoServiceProvider”,
“System.Security.Cryptography.DSASignatureFormatter”, and
“System.Security.Cryptography.DSASignatureDeformatter” for hashing the
data, signing the hash, and encoding/decoding the signature, respectively. See
these names above for details.

“http://www.w3.org/2000/09/xmldsig#rsa-sha1”
Invokes the currently configured XML digital signature algorithm with RSA
and SHA-1. The default implementation, from the .NET Framework library
system.security.dll, invokes the named services
“System.Security.Cryptography.SHA1CryptoServiceProvider”,
“System.Security.Cryptography.RSACryptoServiceProvider”,
“System.Security.Cryptography.RSAPKCS1SignatureFormatter”, and
“System.Security.Cryptography.RSAPKCS1SignatureDeformatter” for
hashing the data, signing the hash, and encoding/decoding the signature,
respectively. See these names above for details.

XML Digital Signature Transforms
“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”

Invokes the currently configured XML canonicalization algorithm that ignores
comments. The default is the .NET Framework library implementation
System.Security.Cryptography.Xml.XmlDsigC14NTransform in
system.security.dll.

“http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments”
Invokes the currently configured XML canonicalization algorithm that
includes comments. The default is the .NET Framework library
implementation
System.Security.Cryptography.Xml.XmlDsigC14NWithCommentsTransform
in system.security.dll.

“http://www.w3.org/2000/09/xmldsig#base64”
Invokes the currently configured Base64 decoding algorithm. The default is
the .NET Framework library implementation
System.Security.Cryptography.Xml.XmlDsigBase64Transform in
system.security.dll.

“http://www.w3.org/TR/1999/REC-xslt-19991116”

UNCLASSIFIED

117
UNCLASSIFIED

Mapped Behavior of Named Cryptographic Services
Invokes the currently configured XSLT transformer. The default is the .NET
Framework library implementation
System.Security.Cryptography.Xml.XmlDsigXsltTransform in
system.security.dll.

“http://www.w3.org/TR/1999/REC-xpath-19991116”
Invokes the currently configured XPath filter processor. The default is the
.NET Framework library implementation
System.Security.Cryptography.Xml.XmlDsigXpathTransform in
system.security.dll.

“http://www.w3.org/2000/09/xmldsig#enveloped-signature”
Invokes the currently configured Enveloped Signature transform (this
transform specifies all the XML elements in the containing document except
the <Signature> element that contains the transform specification itself). The
default is the .NET Framework library implementation
System.Security.Cryptography.Xml.XmlDsigEnvelopedSignatureTransform
in system.security.dll.

Key Exchange
“System.Security.Cryptography.RSAOAEPKeyExchangeFormatter”,
“System.Security.Cryptography.RSAOAEPKeyExchangeDeformatter”

Optimal Asymmetric Encryption Padding. This feature is only available with
Windows XP or later. Must be invoked with a specific implementation of
RSA, as no default is defined.

“System.Security.Cryptography.RSAPKCS1KeyExchangeFormatter”,
“System.Security.Cryptography.RSAPKCS1KeyExchangeDeformatter”

RSA PKCS #1 version 1.5 key exchange. Must be invoked with a specific
implementation of RSA, as no default is defined.

Table 14. Named cryptographic services and their default behavior in the .NET Framework
version 1.1 and 2.0.

Modifications to the cryptographic settings should be based on carefully considered security
policy decisions. Vulnerabilities may be introduced by changing defaults to weaker
algorithms, or by attempting to implement custom cryptographic algorithm implementations
that have not been thoroughly evaluated.

Custom cryptographic configuration settings are stored in XML on each host in the
machine.config file in each .NET Framework version’s config folder. These settings
simply override on a setting-by-setting basis a default cryptographic configuration that is
programmed into the cryptographic libraries. Each version of the .NET Framework must be
configured separately by modifying the corresponding machine.config file. This file
contains configuration settings for a variety of .NET Framework features including assembly
binding (version redirection), assembly remoting (setting up communication channels that
cross application domain, process, or computer boundaries), and ASP.NET. Some of these
features are configurable through the .NET Framework configuration tool (mscorcfg.msc),
but cryptography must be modified by hand. Because parts of this XML file must be

UNCLASSIFIED

118
UNCLASSIFIED

modified by the user and parts are modified by an automated tool, changes should be made
carefully to avoid leaving the file in an unusable state. In addition, the variety of
configuration information stored in this file makes tailored deployment of host or domain-
specific cryptography settings a challenge. The simplest deployment method, file
replacement, may cause configuration data for other features to revert to an outdated or
inappropriate state.

Cryptography settings are stored under the <cryptographySettings> element under
<mscorlib> or <mscorlib version=”{mscorlib assembly version}”>. The
XML fragment in Figure 36 illustrates the relevant portion of the configuration file structure.
Note that <configuration> is the root element of machine.config and the
<configSections> element defines what constitute valid subsections (child elements) of
the root. The <mscorlib>...</mscorlib> section will not be parsed unless there is a
corresponding <section> entry under <configsections> as shown.

<configuration>

 <configSections>

 <section name=”mscorlib”

 type="System.Configuration.IgnoreSectionHandler, System,

 Version=1.0.5000.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089" allowLocation="false" />

 ...

 </configSections>

 <mscorlib version=”1.0.5000.0”>

 <cryptographySettings>

 ...

 </cryptographySettings>

 </mscorlib>

 <mscorlib version=”1.0.3000.0”>

 <cryptographySettings>

 ...

 </cryptographySettings>

 </mscorlib>

 <mscorlib>

 <cryptographySettings>

 ...

 </cryptographySettings>

 </mscorlib>

</configuration>

Figure 36. XML Structure of the Cryptography Settings in machine.config.

UNCLASSIFIED

119
UNCLASSIFIED

Note that the figure shows multiple <mscorlib> elements. These are mutually exclusive –
only one will be used. When the configuration file is parsed, only the settings under the first
<mscorlib> element with a version attribute that matches the assembly version of
mscorlib.dll that is currently loaded in the execution environment are used. Note that
this is the version of the assembly itself, not the .NET Framework version. If such an
element is not present, then the last occurrence of <mscorlib> with no version attribute is
used. If neither of these cases hold, or there is no machine.config file, the built-in default
configuration is used unmodified.

The cryptographic configuration consists of a dictionary of short class names for
cryptographic classes (cryptoClass elements), a list of cryptographic service names
(nameEntry elements), and a list of oidEntry elements. These are structured under
various headings as shown in Figure 37:

<cryptographySettings>

 <cryptoNameMapping>

 <cryptoClasses>

 <cryptoClass .../>

 ...

 <cryptoClass .../>

 </cryptoClasses>

 <nameEntry .../>

 ...

 <nameEntry .../>

 </cryptoNameMapping>

 <oidMap>

 <oidEntry .../>

 ...

 <oidEntry .../>

 </oidMap>

</cryptographySettings>

Figure 37. XML Structure of the <cryptographySettings> Element.

The <cryptoClass> element

These elements have the form

<cryptoClass {short class name}=”{fully-qualified class name}”/>

where a fully-qualified class name can have the form

UNCLASSIFIED

120
UNCLASSIFIED

”{full (namespace-qualified) class name}, {assembly name},

 Culture=’{culture}’, PublicKeyToken={hexadecimal token},

 Version={version a.b.c.d}”

A cryptoClass element associates a short class name with a specific class in a specific
assembly. An unusual aspect of this element is that the user-defined short class name is an
attribute label rather than a value. The set of these elements serves as a dictionary of class
nicknames that can be used in subsequent nameEntry elements. The short class names
defined by the cryptoClass elements in each configuration file should be consistent across
the enterprise. These are simply abbreviated forms of the class name and shouldn’t be used
to describe a policy-driven use for these classes.

Recommendation: Use short class names as abbreviated forms of the algorithm
classes. Do not use short class names to express policy-driven roles such as
algorithm defaults or use conditions.

When creating cryptoClass elements, it is important to precisely specify each component
of the fully-qualified class name. If any component is incorrect, it will fail to be applied, and
the default mappings will be used instead. Correct component values may be obtained from
any assembly installed in the GAC by viewing the GAC using the Assembly Cache Viewer
Explorer shell extension, right-clicking the assembly, and viewing its properties.

The <nameEntry> element

These elements have the form

<nameEntry name=”{friendly name}” class=”{short class name}”/>

A nameEntry element associates a “friendly name” with a pre-defined short class name.
More than one friendly name can be associated with the same class through multiple
nameEntry elements. Each of the cryptographic service names in Table 14 is a friendly
name by default. There are no default short class names.

Software that is written to depend on specific implementations of cryptographic services may
not be portable to environments where those services aren’t available due to policy or
incompatibility. nameEntry elements allow software to be flexible enough to respond to
changes in security policy that affect an organization’s cryptographic standards or guidelines.
Software can adapt the use of cryptography to various local execution environments by
referencing cryptographic resources by names that have locally defined referents. Policy-
driven cryptographic localization is achieved by mapping custom policy-based friendly
names to specific algorithms and overriding the default cryptographic configuration by
remapping existing friendly names to substitute implementations.

A friendly name can express the policy-driven use of the algorithm in an organization or a
host. For example, a nameEntry element can associate the friendly name

UNCLASSIFIED

121
UNCLASSIFIED

“DefaultHashAlgorithm” with a specific hash algorithm implementation through a pre-
defined short class name (“SHA1_MyCryptoLibrary”, “MD5Scheme48”, etc.). Software can
then use the friendly name to invoke the cryptographic service through the library defined by
the associated short class name, without knowing in advance what specific hash algorithm is
the default in the local execution environment.

Recommendation: Use friendly names to express the policy-driven roles played by
particular algorithm classes (identified by their short class names) in the local
execution environment. These roles can be defaults (e.g.,
“DefaultHashAlgorithm”) or use conditions (e.g., “FinancialDataEncryption”).

Although the configuration of friendly names is chiefly designed to support the resolution of
generic friendly names (i.e., “DSA”) into specific library code, even implementation-based
friendly names (i.e., names based on existing library code such as
“System.Security.Cryptography.DSACryptoServiceProvider”) can be configured to invoke a
substitute implementation.

In short, nameEntry elements allow the administrator to specify local cryptographic
standards. Software can then implement these standards by invoking cryptographic resources
by name rather than requesting a specific class and software library. Note that software can
still invoke any CLR-provided cryptographic class directly, so cryptographic localization can
be achieved only through a partnership with trusted software developers.

The <oidEntry> element

These elements have the form

<oidEntry name=”{friendly name}” OID=”{object identifier}”/>

An oidEntry element maps friendly names to ASN.1 object identifiers (OIDs). These are
globally recognized identifiers for cryptographic algorithms or formats. Some standards for
exchanging cryptographic products such as digital certificates between parties allow the use
of arbitrary cryptographic algorithms for hashing or encryption. In order for the receiving
party to verify the data received, they must use the same algorithms that the sending party
used to create the data. By embedding the OIDs of the algorithms used in the data, the
sending party can communicate this information in a standardized way.

An application may need to record the OID of a cryptographic service that it used through a
friendly name. Since the purpose of the friendly name is to allow local cryptographic policy
to determine the algorithms used, the application may not know what algorithm was invoked.
A mapping between friendly names and OIDs must be used to determine what OID to record.
The .NET Framework libraries for version 1.1 come with a default mapping shown in Table
15. The default mappings for version 2.0 are shown in Table 16.

UNCLASSIFIED

122
UNCLASSIFIED

Friendly Name OID
“SHA1” 1.3.14.3.2.26
“System.Security.Cryptography.SHA1” 1.3.14.3.2.26
“System.Security.Cryptography.SHA1CryptoServiceProvider” 1.3.14.3.2.26
“System.Security.Cryptography.SHA1Managed” 1.3.14.3.2.26
“SHA256” 2.16.840.1.101.3.4.1
“System.Security.Cryptography.SHA256” 2.16.840.1.101.3.4.1
“System.Security.Cryptography.SHA256Managed” 2.16.840.1.101.3.4.1
“SHA384” 2.16.840.1.101.3.4.2
“System.Security.Cryptography.SHA384” 2.16.840.1.101.3.4.2
“System.Security.Cryptography.SHA384Managed” 2.16.840.1.101.3.4.2
“SHA512” 2.16.840.1.101.3.4.3
“System.Security.Cryptography.SHA512” 2.16.840.1.101.3.4.3
“System.Security.Cryptography.SHA512Managed” 2.16.840.1.101.3.4.3
“MD5” 1.2.840.113549.2.5
“System.Security.Cryptography.MD5” 1.2.840.113549.2.5
“System.Security.Cryptography.MD5CryptoServiceProvider” 1.2.840.113549.2.5
“System.Security.Cryptography.MD5Managed” 1.2.840.113549.2.5
“TripleDESKeyWrap” 1.2.840.113549.1.9.16.3.6

Table 15. Default Friendly Names for OIDs in the .NET Framework version 1.1.

Friendly Name OID
“SHA1” 1.3.14.3.2.26
“System.Security.Cryptography.SHA1” 1.3.14.3.2.26
“System.Security.Cryptography.SHA1CryptoServiceProvider” 1.3.14.3.2.26
“System.Security.Cryptography.SHA1Managed” 1.3.14.3.2.26
“SHA256” 2.16.840.1.101.3.4.2.1
“System.Security.Cryptography.SHA256” 2.16.840.1.101.3.4.2.1
“System.Security.Cryptography.SHA256Managed” 2.16.840.1.101.3.4.2.1
“SHA384” 2.16.840.1.101.3.4.2.2
“System.Security.Cryptography.SHA384” 2.16.840.1.101.3.4.2.2
“System.Security.Cryptography.SHA384Managed” 2.16.840.1.101.3.4.2.2
“SHA512” 2.16.840.1.101.3.4.2.3
“System.Security.Cryptography.SHA512” 2.16.840.1.101.3.4.2.3
“System.Security.Cryptography.SHA512Managed” 2.16.840.1.101.3.4.2.3
“MD5” 1.2.840.113549.2.5
“System.Security.Cryptography.MD5” 1.2.840.113549.2.5
“System.Security.Cryptography.MD5CryptoServiceProvider” 1.2.840.113549.2.5
“System.Security.Cryptography.MD5Managed” 1.2.840.113549.2.5
“RIPEMD160” 1.3.36.3.2.1
"System.Security.Cryptography.RIPEMD160" 1.3.36.3.2.1
“System.Security.Cryptography.RIPEMD160Managed" 1.3.36.3.2.1
“TripleDESKeyWrap” 1.2.840.113549.1.9.16.3.6

UNCLASSIFIED

123
UNCLASSIFIED

Friendly Name OID
"RC2" 1.2.840.113549.3.2
“System.Security.Cryptography.RC2CryptoServiceProvider" 1.2.840.113549.3.2
“DES" 1.3.14.3.2.7
“System.Security.Cryptography.DESCryptoServiceProvider", 1.3.14.3.2.7
“TripleDES" 1.2.840.113549.3.7
“System.Security.Cryptography.TripleDESCryptoServiceProvider" 1.2.840.113549.3.7

Table 16. Default Friendly Names for OIDs in the .NET Framework version 2.0.

There are some inconsistencies: “SHA-256”, “SHA-384”, and “SHA-512” are default
friendly names, but are not associated by default with the OIDs for their respective
algorithms. Note also that “System.Security.Cryptography.MD5Managed” is associated with
the OID for the MD5 algorithm, but this is not a default friendly name with respect to any
implementation of MD5. In fact, there is no class named
System.Security.Cryptography.MD5Managed in version 1.1.4322 or 2.0.50727 of the .NET
Framework. “TripleDESKeyWrap” is also not defined as a friendly name with respect to any
existing implementation of the Triple-DES Key Wrap algorithm.

The oidEntry elements defined in the cryptographic configuration file can supplement
these default mappings or override them if the friendly names are the same. New oidEntry
elements should be created whenever one of the following is true:

When a friendly name that has a default OID is overridden in a nameEntry element
with a different algorithm. In this case, the oidEntry element must be created to
override the default OID and associate the correct OID to the friendly name.

When a new friendly name is defined, even if it is configured to refer to an existing
cryptographic service that already has an associated OID. In this case, a
corresponding oidEntry element should be created to explicitly map the new name
to its appropriate identifier.

When a new named cryptographic service is installed. Since the name of a
cryptographic service (e.g., “ExampleCorporation.Cryptography.AES256CBC”) may
serve as a default friendly name, it can be used by software to get the corresponding
OID (“2.16.840.1.101.3.4.1.42”) from the mapping defined by the oidEntry
element.

Cryptographic Localization Examples

Cryptographic Localization Example 1

The SHA-512 hash algorithm has been selected by an organization as the default version of
SHA for use by managed code. However, division A has some critical interoperability
requirements with external partners that dictate that SHA-1 be employed when

UNCLASSIFIED

124
UNCLASSIFIED

communicating with those partners. The .NET Framework administrator can support both
policies by configuring cryptography in each .NET Framework version on each host in the
organization to specify the appropriate default algorithms by the names “DefaultSHA” and
“DefaultSHAInterop”. This allows organization-wide software applications to localize their
cryptographic features by explicitly invoking default algorithms by name.

Since the cryptoClass elements should simply define an organization-wide dictionary of
cryptographic services, the administrator defines short class names
“SHA512Managed_v1_0” and “SHA1Managed_v1_0” for implementations of both SHA-
512 and SHA-1, respectively, in all configuration files.

In all configuration files, there is also a nameEntry element that associates the friendly
name “DefaultSHA” with the short class name “SHA512Managed_v1_0”. In the
configuration files for hosts in division A, there is an additional nameEntry element that
associates the friendly name “DefaultSHAInterop” with “SHA1Managed_v1_0”.

Cryptographic configuration common to all hosts:

<cryptoClass SHA512Managed_v1_0=”System.Security.Cryptography.

 SHA512Managed, mscorlib, Culture=’’,

 PublicKeyToken=b77a5c561934e089, Version=1.0.3300.0”/>

<cryptoClass SHA1Managed_v1_0=”System.Security.Cryptography.SHA1Managed,

 mscorlib, Culture=’’, PublicKeyToken=b77a5c561934e089,

 Version=1.0.3300.0”/>

...

<nameEntry name=”DefaultSHA” class=”SHA512Managed_v1_0”/>

<nameEntry name=”SHA” class=”SHA512Managed_v1_0”/>

Figure 38. Cryptographic Localization Example 1.

Note that since “SHA” is a default friendly name, the administrator must also create a
nameEntry element that overrides the default implementation. Hosts in division A have the
additional nameEntry element:

<nameEntry name=”DefaultSHAInterop” class=”SHA1Managed_v1_0”/>

Cryptographic Localization Example 2

In order to support policy-driven rather than developer-driven use of cryptography for
encryption algorithms, an organization has worked with a trusted software supplier to
consistently invoke encryption algorithms through the default friendly names
“System.Security.Cryptography.SymmetricAlgorithm” and
“System.Security.Cryptopgrahy.AsymmetricAlgorithm”. A cryptographic configuration can
then be developed to specify the algorithms employed. If policy is changed to specify a

UNCLASSIFIED

125
UNCLASSIFIED

different set of algorithm, the software will apply the new policy as soon as its corresponding
configuration is deployed.

Short class names are defined for all the algorithm implementations that are permitted by
policy. In this example, the permitted algorithms are
System.Security.Cryptography.RijndaelManaged and a custom implementation of DSA in
the class Example.Security.DSAEncryption, as shown in Figure 39:

<cryptoClass RijndaelManaged=”System.Security.Cryptography.

 RijndaelManaged, mscorlib, Culture=’’,

 PublicKeyToken=b77a5c561934e089, Version=1.0.3300.0”/>

<cryptoClass DSAEncryption=”Example.Security.DSAEncryption,

 ExampleCryptLib, Culture=’’, PublicKeyToken=0011223344556677,

 Version=1.0.0.0”/>

Figure 39. Cryptographic Localization Example 2-A.

nameEntry elements will dictate the behavior invoked by the default friendly names so that
System.Security.Cryptography.RijndaelManaged is invoked anytime a generic symmetric
encryption algorithm is requested, and Example.Security.DSAEncryption is invoked
whenever a generic asymmetric encryption algorithm is requested (Figure 40).

<nameEntry name=”System.Security.Cryptography.SymmetricAlgorithm”

 class=”RijndaelManaged”/>

<nameEntry name=”System.Security.Cryptography.AsymmetricAlgorithm”

 class=”DSAEncryption”/>

Figure 40. Cryptographic Localization Example 2-B.

Cryptographic Localization Example 3

An organizational policy directs that the 256-bit version of the Advanced Encryption
Standard be implemented through a custom cryptographic library CryptLib.dll, and that
this be the default symmetric encryption algorithm. Furthermore, any requests for the
Rijndael algorithm should be redirected to this library. To accomplish this, the short name
“AES256” is associated with a class of the same name in the library.

nameEntry elements are defined that associate the default friendly names
“System.Security.Cryptography.SymmetricAlgorithm”,
“System.Security.Cryptography.Rijndael”, “SymmetricAlgorithm”, “Rijndael”, and
“System.Security.Cryptography.RijndaelManaged” with the short class name “AES256”. In
addition, the new friendly names “BlockCipher” and “AES” are defined (Figure 41).

<cryptoClass AES256=”CryptLib.Algorithms.AES256, CryptLib Culture=’’,

 PublicKeyToken=fedcba9876543210, Version=1.0.0.0”/>

UNCLASSIFIED

126
UNCLASSIFIED

...

<nameEntry name=”System.Security.Cryptography.SymmetricAlgorithm”

 class=”AES256”/>

<nameEntry name=”System.Security.Cryptography.Rijndael” class=”AES256”/>

<nameEntry name=”SymmetricAlgorithm” class=”AES256”/>

<nameEntry name=”Rijndael” class=”AES256”/>

<nameEntry name=”System.Security.Cryptography.RijndaelManaged”

 class=”AES256”/>

<nameEntry name=”BlockCipher” class=”AES256”/>

<nameEntry name=”AES” class=”AES256”/>

Figure 41. Cryptographic Localization Example 3.

Summary

The .NET Framework provides a way to support local cryptographic standards through the
use of a cryptographic configuration section in the machine configuration file for each .NET
Framework version. Because this file contains configuration settings for several aspects of
the .NET Framework, deployment is a challenge. Because the cryptography settings must be
modified by hand, while other parts of the file are modified by automated tools, stability is
also a challenge, and care must be taken to create valid XML. Nevertheless, the ability to
localize the use of cryptography is a valuable feature of the .NET Framework.

The localization is supported administratively through the creation of a dictionary of short
class names that are abbreviated implementation specifications. These are then used in a
many-to-one mapping of friendly names for cryptographic services. Since managed code can
always invoke any specific implementation, localization can only be achieved with the
cooperation of software developers.

Recommendations in This Section

Recommendation: Use short class names as abbreviated forms of the algorithm
classes. Do not use short class names to express policy-driven roles such as
algorithm defaults or use conditions.

Recommendation: Use friendly names to express the policy-driven roles played by
particular algorithm classes (identified by their short class names) in the local
execution environment. These roles can be defaults (e.g.,
“DefaultHashAlgorithm”) or use conditions (e.g., “FinancialDataEncryption”).

UNCLASSIFIED

127
UNCLASSIFIED

Chapter

6
Administrative Tasks and Tools
Administering the .NET Framework involves a number of security-related tasks that cannot
all be accomplished with a single tool. Several tools are distributed with the .NET
Framework or the .NET Framework Software Developer’s Kit (SDK) to perform these tasks.
This chapter will describe some key security-related administrative tasks and list the tools
used to perform each task. Guidelines and procedures for the performance of each task are
included under the description of each tool in Appendix A or B.

Administrative Tools Summary

The .NET Framework is distributed with a number of tools for performing configuration,
deployment, debugging, security, and other types of tasks. Table 18. Security-Related
Administrative Tasks., below lists tools used to perform security-related administrative tasks
in the .NET Framework. Tools distributed with the .NET Framework SDK are indicated by
(SDK) following the tool name. The version of the .NET Framework a tool ships with is
indicated in the Framework Version column.

All of the tools are console applications except for the Assembly Cache Viewer
(shfusion.dll) which is a Windows shell extension, the .NET Framework Configuration
Tool (mscorcfg.msc) which is a Microsoft Management Console snap-in, and
certmgr.exe which presents a GUI interface when invoked from the console with no
parameters. Appendix A contains guidelines and procedures for using these tools to perform
the administrative tasks listed in Table 18. Security-Related Administrative Tasks..

Tool Filename Framework
Version

.NET Code Access Security Policy Tool caspol.exe 1.0, 1.1, 2.0
Microsoft Certificate Manager Tool certmgr.exe (SDK) 1.0, 1.1, 2.0
Microsoft Authenticode Signature Verification
Tool

chktrust.exe (SDK) 1.0, 1.1

Assembly Cache Viewer (Windows shell
extension)

explorer.exe
(shfusion.dll)

1.0, 1.1, 2.0

.NET Global Assembly Cache Utility gacutil.exe (SDK) 1.0, 1.1, 2.0
CAS Policy Migration Tool migpol.exe 1.1
.NET Framework Configuration Tool mscorcfg.msc 1.0, 1.1, 2.0
Minimum Grant Set Determination Tool PermCalc.exe (SDK) 2.0
.NET Framework Permission Request Viewer permview.exe (SDK) 1.0, 1.1

UNCLASSIFIED

128
UNCLASSIFIED

Tool Filename Framework
Version

.NET Framework PE Verifier peverify.exe (SDK) 1.0, 1.1, 2.0
Registry Editor regedit.exe 1.0, 1.1, 2.0
Microsoft .NET Framework Security Utility secutil.exe (SDK) 1.0, 1.1, 2.0
Software Publishing State Tool setreg.exe (SDK) 1.0, 1.1, 2.0
.NET Framework Sign Tool SignTool.exe (SDK) 2.0
.NET Framework Strong Name Utility sn.exe (SDK) 1.0, 1.1, 2.0
.NET Framework Isolated Storage Tool storeadm.exe (SDK) 1.0, 1.1, 2.0

Table 17. Administrative Tools.

Security-Related Administrative Tasks Summary

Table 18 lists some security-related administrative tasks in the .NET Framework and the
tools used to perform them:

Task Tool
General .NET Framework tasks

List the .NET Framework versions installed migpol.exe

Global Assembly Cache tasks
Enable or disable the Assembly Cache Viewer regedit.exe

View cache contents explorer.exe
gacutil.exe
mscorcfg.msc

Add an assembly to the GAC explorer.exe
gacutil.exe
mscorcfg.msc

Delete an assembly from the GAC explorer.exe
gacutil.exe
mscorcfg.msc

View properties of an assembly installed in the GAC explorer.exe
mscorcfg.msc

View or modify GAC properties explorer.exe
regedit.exe

Clear the Download Cache gacutil.exe

Isolated Storage tasks
List all local or roaming data stores associated with the
current user

storeadm.exe

Remove all local or roaming data stores associated with
the current user

storeadm.exe

Code Access Security policy tasks
Migrate CAS policy from one .NET Framework version
to another

migpol.exe

Create a CAS policy deployment package mscorcfg.msc

Enable or disable CAS policy caspol.exe

UNCLASSIFIED

129
UNCLASSIFIED

Task Tool
Enable or disable Execution permission checking caspol.exe

Build a CAS policy cache file caspol.exe

Reset all CAS policy levels to default settings caspol.exe
mscorcfg.msc

Recover the previous settings for a CAS policy level caspol.exe

View Code Groups caspol.exe
mscorcfg.msc

Add or remove a Code Group caspol.exe
mscorcfg.msc

Rename a Code Group caspol.exe
mscorcfg.msc

Set or clear the Exclusive or Level Final attribute of a
Code Group

caspol.exe
mscorcfg.msc

Change a Code Group’s Membership Condition caspol.exe
mscorcfg.msc

Change a Code Group’s associated Named Permission Set caspol.exe
mscorcfg.msc

View Named Permission Sets caspol.exe
mscorcfg.msc

Add or remove a Named Permission Set caspol.exe
mscorcfg.msc

Modify a Named Permission Set caspol.exe
mscorcfg.msc

View Policy Assemblies caspol.exe
mscorcfg.msc

Enroll or withdraw a Policy Assembly caspol.exe
mscorcfg.msc

List Code Groups to which an assembly belongs caspol.exe
mscorcfg.msc

View an assembly’s Allowed Permission Set caspol.exe
mscorcfg.msc

Adjust the Allowed Permission Set for an assembly caspol.exe
mscorcfg.msc

Create a tailored Code Group caspol.exe
mscorcfg.msc

Use the Trust an Assembly Wizard mscorcfg.msc

System security tasks
View publisher certificate verification settings setreg.exe

Adjust publisher certificate verification settings setreg.exe

Set the CSP used by the CLR when strong-naming
assemblies

sn.exe

Assembly tasks
Validate and verify an assembly peverify.exe

View an assembly’s strong name explorer.exe
secutil.exe

Strong name an assembly sn.exe

View the public key token corresponding to the public key sn.exe

UNCLASSIFIED

130
UNCLASSIFIED

Task Tool
in an assembly’s manifest
Verify an assembly’s strong name sn.exe

Enroll an assembly for strong name simulation sn.exe

Withdraw an assembly from strong name simulation sn.exe

List assemblies enrolled for strong name simulation sn.exe

View an assembly’s publisher certificate secutil.exe
certmgr.exe

Verify the trust associated with an assembly’s
Authenticode digital signature

chktrust.exe

Digitally sign files SignTool.exe

Verify the digital signature of files SignTool.exe

Determine the minimum permission sandbox in which a
.Net application can run

Permcalc.exe

View an assembly’s permission requests and declarative
permission constraints

permview.exe

View the list of configured assemblies mscorcfg.msc

Configure an assembly mscorcfg.msc

Delete the configuration information for an assembly mscorcfg.msc

Application configuration tasks
Add an application to be configured mscorcfg.msc

Configure application properties mscorcfg.msc

View assembly dependencies for an application mscorcfg.msc

View list of configured assemblies for an application mscorcfg.msc

Configure an assembly for an application mscorcfg.msc

Fix an application (roll back application Binding Policy) mscorcfg.msc

Configure Remoting Services for an application mscorcfg.msc

Table 18. Security-Related Administrative Tasks.

Task Descriptions

General .NET Framework Tasks

List the .NET Framework versions installed

Since multiple versions of the .NET Framework can be installed side-by-side, the
administrator may need a means to determine which versions of the .NET Framework are
installed on a particular host computer. This task can be performed by navigating to the
folder %Windir%/Microsoft.NET/Framework. Each installed version of the .NET
Framework has a subfolder of this folder. The names of the subfolders correspond to the
.NET Framework version numbers. This task can also be performed in a scriptable manner
using migpol.exe. Only version 1.1 of the .Net Framework includes the migpol.exe tool.

UNCLASSIFIED

131
UNCLASSIFIED

Global Assembly Cache tasks

Enable or disable the Assembly Cache Viewer

Because the file system uses only file names as an identifier, the GAC holds multiple
versions of the same assembly in separate subfolders under the “%WINDIR%\assembly”
folder. When the .NET Framework is installed, a Windows shell extension
(shfusion.dll) is registered that provides a “fused” display in Windows Explorer of all
the assemblies installed in the subfolders that comprise the GAC. When this shell extension
is enabled, multiple assemblies with the same name appear in a unified list. This display can
be enabled or disabled by setting the value of a registry key using the registry editor
regedit.exe. For details, see: shfusion.dll: Enable or Disable the Assembly Cache
Viewer or regedit.exe: Enable or disable the Assembly Cache Viewer in Appendix B.
Note that navigating the file system via the console will show the actual folders and their
contents. The Assembly Cache Viewer shell extension applies only to file system navigation
through Windows Explorer.

View cache contents

The GAC contents can be viewed by navigating to “%WINDIR%\assembly” in Windows
Explorer or the console, through the .NET Framework configuration tool mscorcfg.msc, or
through the GAC console utility gacutil.exe. Navigating to the GAC through the console is
the least useful of these options, since it does not show a combined list of all assemblies
installed in the GAC. Instead, it shows the underlying file system folder tree that enables
side-by-side installation of multiple versions of the same assembly. To list the assemblies
installed in the GAC, it is preferable to view the “fused” display.

This task can be performed using explorer.exe with the Assembly Cache Viewer enabled,
gacutil.exe, or mscorcfg.msc.

Add an assembly to the GAC, Delete an assembly from the GAC, View properties of an
assembly installed in the GAC

The GAC is intended to hold assemblies that will be shared by multiple applications. If an
assembly is for the exclusive use of one application, it should only be stored in the same
directory as the application. Unless granted expansive access to the file system, other
applications and assemblies won’t be able to access the assembly – it is private to its intended
application. On the other hand, GAC assemblies are available for use by any assembly.
Since the file name of an assembly could create naming conflicts, shared assemblies must be
uniquely identified by a strong name before installation into the GAC. This does not provide
any evidence of trustworthiness. It only solves the name collision problem. The default
CAS policy grants unrestricted access to resources to assemblies originating from the local
computer (the My Computer zone), which includes all assemblies installed in the GAC.
However, assemblies in the GAC could run with varying levels of access if CAS policy is
configured that way. These tasks can be performed using explorer.exe with the Assembly
Cache Viewer enabled, gacutil.exe, or mscorcfg.msc.

UNCLASSIFIED

132
UNCLASSIFIED

View or modify GAC properties, Clear the Download Cache

The only GAC property that is configurable is the maximum size of the Download Cache.
The default size of the Download Cache is 4608KB. To modify this property, use
explorer.exe with the Assembly Cache Viewer enabled.

The Download Cache holds assemblies that have been obtained from a remote host via a
local UNC path or via a Web URL. These assemblies are temporarily stored on the local
machine in this cache, but their association with their place of origin is maintained to use as
evidence when applying CAS policy to grant access to resources. Since the Download Cache
has a configurable maximum size, its resource usage does not need to be frequently
monitored. Clearing the Download Cache is more likely to be useful in a development
environment where testing requires the most recent version of an assembly to be used,
especially when Web applications are being developed. This task can be performed using
gacutil.exe.

Isolated Storage tasks

List Isolated Storage File stores (including roaming) for the current user, Remove all
Isolated Storage File stores (including roaming) for the current user

The Isolated Storage facility provides a way for partially trusted assemblies to save
information for later use without directly accessing local machine resources such as the file
system or registry. This facility is similar to “cookies” used by Web applications. Isolated
Storage is a protected resource in the .NET Framework that is implemented through a folder
tree within each user’s local and/or roaming profile folder. The Isolated Storage facility can
be managed using storeadm.exe.

Code Access Security policy tasks

Migrate CAS policy from one .NET Framework version to another

Multiple versions of the .NET Framework can be installed on the same computer at the same
time. Each version will have its own CAS policy. Applications will run with the .NET
Framework version for which they were developed, and will be granted permissions based on
the CAS policy of the version that is managing their execution. Keeping CAS policy settings
consistent across multiple versions of the .NET Framework is a key security-related
administrative task, as changes made to the policy for one version will not automatically be
mirrored on other versions.

Custom software can be developed to extend the CAS policy system by defining new types
of Code Groups, Membership Conditions, or Permissions. This is different from creating
user-defined Code Groups and Named Permission Sets – it involves creating software
libraries that define new types of policy components that behave differently from the built-in
types. For example, a new Membership Condition called WorkingJoeMembershipCondition
could be defined that is satisfied if the code being checked is executing between the hours of
9am and 5pm and is running in the context of a user account named “Joe.”

UNCLASSIFIED

133
UNCLASSIFIED

New CAS policy components are designed to run with specific versions of the .NET
Framework. Each version of the .NET Framework would need to have its own version of
these special software extensions. Thus, it is inappropriate to simply cut and paste references
to these extensions in one CAS policy file into a CAS policy file for a different version of the
.NET Framework. Currently, there is no automated tool that assists the administrator in
migrating configuration file references to CAS policy extensions developed for one version
of the .NET Framework to another version. Where CAS policy contains user-defined Code
Groups and Named Permission Sets that rely only on the built-in policy components, the tool
migpol.exe can be used to migrate policy.

Create a CAS policy deployment package

A Windows Installer package (.msi file) can be created for a particular CAS policy level
and .NET Framework version using mscorcfg.msc. For a discussion of CAS policy
deployment, see Chapter 3.

Enable or disable CAS policy

The entire CAS policy access control system can be disabled, allowing all assemblies to run
as if they were unmanaged native executables. This is clearly a very dangerous thing to do,
and should never be done while a computer is connected to a network, especially the Internet.
New in version 2.0, security can only be disabled as long as the caspol.exe process
remains active. When caspol.exe is terminated security is returned to the "enable" state.
This task can be performed using caspol.exe.

Recommendation: Never disable CAS policy on a computer connected to an
untrusted network such as the Internet.

Enable or disable Execution permission checking

A performance-enhancing feature checks assemblies for Execute permission early in the
policy application process. If this permission is not granted, the assembly will fail to load.
This feature can be disabled, although this would rarely, if ever, be done. This task can be
done using caspol.exe.

Build a CAS policy cache file

The use of CAS policy cache files (.cch) is not documented. Cache files are automatically
created by the CLR when a policy is first used, so administratively building a new cache file
is generally unnecessary. This task can be performed using caspol.exe.

Reset all CAS policy levels to default settings

When CAS policy becomes corrupted or a host computer changes roles and needs its CAS
policy rebuilt from the ground up, the default policy can be restored. This can be done
through mscorcfg.msc or by simply deleting the existing CAS policy configuration files,
but it can also be scripted using the console application caspol.exe.

UNCLASSIFIED

134
UNCLASSIFIED

Recover the previous settings for a CAS policy level

After making a change in the CAS policy configuration through mscorcfg.msc or
caspol.exe, the previous configuration is automatically saved in a backup file. The
previous configuration can be recovered using caspol.exe.

View Code Groups, Add or remove a Code Group, Rename a Code Group, Set or clear
the Exclusive or Level Final attribute of a Code Group, Change a Code Group’s
Membership Condition, Change a Code Group’s associated Named Permission Set,
View Named Permission Sets, Add or remove a Named Permission Set, Modify a
Named Permission Set

Code Groups and Named Permissions Sets can be viewed, added, removed, or modified
using mscorcfg.msc or caspol.exe. Changing the Named Permission Set associated
with one of the built-in Zone-based Code Groups can also be performed using
mscorcfg.msc with the Security Adjustment Wizard. See the Adjust Zone Security task in
mscorcfg.msc for details.

View Policy Assemblies, Enroll or withdraw a Policy Assembly

CAS policy is extensible by design, with the ability to recognize and apply custom software
components such as new Code Group types, Membership Conditions, and resource
permissions. The managed libraries that contain the definitions for these custom elements
are called Policy Assemblies. Policy Assemblies are used by the CLR to apply CAS policy
to executable code, and thus must be Fully Trusted themselves. All Policy Assemblies must
be strong named, installed in the GAC, and enrolled in each CAS policy level configuration
file in which their custom elements are used. This enrollment allows the CLR to find and use
the definitions of security components they contain, as well as to automatically consider them
Fully Trusted at the specified policy level. This means that they will automatically be
granted unrestricted access to resources at that policy level, regardless of Code Group
membership. This access is still subject to intersection with Enterprise, User, and
Application Domain level policies.

If a Policy Assembly needs other assemblies to function, the other assemblies must first be
added as Policy Assemblies. This is true even if the assemblies used are distributed with the
.NET Framework or are from Microsoft.

Since the access control mechanism of the .NET Framework relies on the managed libraries,
built-in or custom, that define the CAS policy elements, Policy Assemblies must be
developed by trusted parties using the best practices for design and coding of security
functions.

The presence of references to custom CAS policy components and their associated Policy
Assemblies may affect the migration of CAS policy from one version of the .NET
Framework to another. See the section on migpol.exe below for details.

UNCLASSIFIED

135
UNCLASSIFIED

Policy Assemblies can be viewed, enrolled, or withdrawn using mscorcfg.msc or
caspol.exe.

List Code Groups to which an assembly belongs, View an assembly’s Allowed
Permission Set

Once created, the effect of a CAS policy configuration on a particular assembly can be
partially tested by resolving Code Group Membership Conditions against an assembly’s
evidence. The resulting set of Code Group memberships or the set of associated permissions
can give an administrator an idea of the actual permissions that would be granted to the
assembly if executed. If the assembly is specified via a URL, this could take into account
Site or URL evidence as well.

Only the administratively configured elements of CAS policy are included in the Allowed
Permission Set test. Permission requests (including refused permissions) made by the
assembly itself are not included in this computation, nor is any Application Domain level
policy, as these elements are not administratively configured. Permission requests are
configured by software developers, and Application Domain policy is set by a hosting
application. However, the set of permissions that an assembly is allowed based on its
evidence and the administratively configured policy will be an upper bound on the final
granted set of permissions. These tasks can be performed using mscorcfg.msc or
caspol.exe.

Adjust the Allowed Permission Set for an assembly, Create a tailored Code Group, Use
the Trust an Assembly Wizard

The Allowed Permission Set for an assembly can be modified by changing the Named
Permission Sets for existing Code Groups to which it belongs, or by creating a new Code
Group that will contribute permissions to its Allowed Permission Set. The Allowed
Permission Set associated with the assembly from the existing Code Groups can be checked
with the View an assembly’s Allowed Permission Set task. If these permissions are
insufficient and the assembly needs additional permissions, the Trust an Assembly Wizard in
mscorcfg.msc can be used to create a new Code Group that allows permissions from one
of the built-in Named Permission Sets. See the Adjust the Allowed Permission Set for an
assembly task under mscorcfg.msc for more details. Alternatively, the CAS policy
settings can be individually configured to allow the desired permissions. To do this, perform
the following for each desired additional permission:

For each existing Code Group that contains the targeted assembly, determine if the
Membership Condition of the Code Group defines a class of assemblies that may
appropriately receive the additional permissions. If so, modify the Named Permission
Set associated with this existing Code Group to include the given permission.

If there are remaining permissions that cannot be supported for the targeted assembly by the
existing Code Group hierarchy, then a new Code Group will have to be created that contains
the targeted assembly and contributes the remaining desired permissions. This is discussed
below under Creating a Tailored Code Group.

UNCLASSIFIED

136
UNCLASSIFIED

If the assembly’s Allowed Permission Set is already too permissive, and the assembly needs
to be restricted, perform the following steps for each unwanted permission:

For each existing Code Group that contains the targeted assembly and allows the
unwanted permission, determine if the permission can be removed from the
associated Named Permission Set without affecting the functioning of other
assemblies contained in the Code Group. If so, then modify the Named Permission
Set (or create a new if the Named Permission Set is one of the built-in sets) to remove
the unwanted permission. If this is not possible, move to the next step.

For every existing Code Group that contains the targeted assembly and must allow
the unwanted permission, determine if the Membership Condition can be modified to
exclude the targeted assembly without excluding other assemblies that the Code
Group was intended to configure. If so, modify the Membership Conditions of all the
Code Groups to exclude the targeted assembly. This must be possible for all such
Code Groups in order to be effective.

If there are remaining unwanted permissions that are allowed by the existing Code Groups,
then create a new Code Group tailored to the targeted assembly and the appropriate
permissions and set the Exclusive attribute. This could be done at either the Enterprise or
Machine level. If this would create more than one Code Group marked Exclusive for this
assembly, review all such Code Groups and refine each Membership Condition until this
condition is removed. The Exclusive attribute should be placed only on Code Groups with
narrowly tailored Membership Conditions.

Creating a Tailored Code Group

To create a Code Group tailored to a specified assembly and a specific set of permissions,
perform the following steps in either caspol.exe or mscorcfg.msc (see the Create a
tailored Code Group task for details):

Create a Named Permission Set containing only the specified permissions, if one does
not already exist.

Create a Code Group whose Membership Condition will discriminate between the
targeted assembly and other assemblies. Set the Membership Condition to
discriminate as little as possible commensurate with operational requirements and
organizational policy. At the same time, insist on cryptography-based identities
unless prohibited by policy constraints. Associate the new Named Permission Set
with this Code Group.

The Membership Conditions identify a class of assemblies based on a spectrum of
identifying information of varying specificity. Table 19 lists the Membership Conditions in
increasing order of discriminating power.

UNCLASSIFIED

137
UNCLASSIFIED

Membership Condition Description
Non-Cryptography-Based Identities
All Code This Membership Condition offers no discriminating

power.
Internet Zone
Local Intranet Zone
My Computer Zone

“Security by Proximity.” The Zone Membership
Conditions of Internet, Local Intranet, and My Computer
define “Security by Proximity.” Code obtained locally is
considered more trustworthy than code obtained from
“far” away. This is the coarsest method of granting access
to resources, and emphasizes extreme scalability over
security.

Trusted and Untrusted Zones
Site
URL

Webspace Identity. These Membership Conditions
define a subspace of the network environment of a host,
including both local host resources as well as networked
resources, including the Internet. Even a URL that
specifies file name X is really specifying the class of all
files that could be named or renamed ‘X’ at that path
location, i.e., all files that could possibly be referenced
through that URL.

Cryptography-Based Identities
Publisher Organizational Identity. This Membership Condition

identifies a particular organization based on a digital
certificate. If the organization develops and distributes
multiple lines of software products, this does not
discriminate between them.

Strong Name without version
Strong Name with version

Functional Identity. These Membership Conditions
identify a particular class of software. The public/private
key pair used to strong name an assembly may identify a
class of software products developed by an organization.
The name of the assembly may further identify a
particular product. The version number identifies a
particular release of the product. This is a functional
identity in that it is based on what the software developers
consider to be functionally equivalent releases of software.
A modified assembly could be released with the same key
pair, name, and version, if the developers consider it to be
the “same” assembly under their criteria. Different
developers may have different strategies for deciding how
much change constitutes a new version of an assembly.
Functional identity indicates equivalence within the
software developer’s versioning scheme.

A strong name Membership Condition without the version
information will apply to all versions of the assembly, and
thus has less discriminating power than specifying an
exact version.

UNCLASSIFIED

138
UNCLASSIFIED

Membership Condition Description
Hash Logical Identity. This Membership Condition identifies

a specific sequence of bytes.

Table 19. Discriminating Power of Membership Conditions.

System security tasks

View publisher certificate verification settings, Adjust publisher certificate verification
settings

A set of registry keys called the Software Publishing State keys govern how Authenticode
digital signatures are verified. These settings affect how Publisher Membership Conditions
are evaluated, which can affect CAS policy application. The ten Software Publishing State
values are listed in Table 20:

Number Description Default Value
1 Trust Test Root certificates. False
2 Check for expired certificates True
3 Check for revoked certificates False if Internet Explorer 3.x is

installed
True if Internet Explorer 4.0 or
later is installed.

4 Offline revocation server OK (individual) False
5 Offline revocation server OK (commercial) False for Microsoft Windows

versions prior to Windows 2000
True for Windows 2000 and
later.

6 Java offline revocation server OK (individual) False
7 Java offline revocation server OK

(commercial)
False for Microsoft Windows
versions prior to Windows 2000
True for Windows 2000 and
later.

8 Invalidate version 1 signed objects False
9 Check the revocation list on time stamp signer False, Only applies if Internet

Explorer 4.0 and later is
installed.

10 Only trust items found in the Personal Trust
Database

False, Only applies if Internet
Explorer 4.0 and later is
installed.

Table 20. Software Publishing State Settings.

Viewing and adjusting publisher certificate verification settings can be performed using
setreg.exe. These settings are discussed in more detail below.

UNCLASSIFIED

139
UNCLASSIFIED

Setting 1: Trust Test Root Certificates

Certificates used for testing and debugging are signed by root certificates designated as being
for test purposes. If this setting is enabled, certificates created for testing and debugging
purposes will be considered trusted. This setting should only be enabled in protected
development networks.

Recommendation: Disable trust of Test Root certificates in an operational
environment.

This setting is only used in Windows versions prior to Windows XP SP1. Windows XP SP1
and Windows Server 2003 never automatically trust the test root. In these operating systems,
the value of this setting is ignored – the system always behaves as if it were false.

Setting 2: Check for Expired Certificates

Virtually all digital certificates are issued with a moderately short lifespan (one year is
common). This helps to decrease loss associated with undetected private key compromise
and, in accord with the security principle of periodic risk assessment, provides a scheduled
review of the need for the certificate and a reconsideration of the trust relationship between
the certificate subject and the issuer. Operational environments should always check for
expired certificates.

Recommendation: Enable checking for expired certificates.

Software that is signed by a publisher’s certificate may be needed for far longer than the
certificate’s lifespan. Either the software must be resigned and redeployed each time the
publisher is issued a new certificate, or the signing process must include a digitally signed
time stamp that can demonstrate that the software was signed before the certificate expired.
The certificate verification process in Authenticode 2.0 (available since Internet Explorer
4.0) supports the assignment of trust in the latter case. Code that has been verifiably signed
within the lifespan of a publisher’s certificate is considered to have a valid signature, even if
the certificate has expired. Note that the time stamp must itself be signed by the time stamp
provider with a non-expired certificate. Setting 9 deals with whether the time stamp
provider’s certificate is checked for revocation.

The .NET Framework is designed to facilitate distributed applications that download
components as needed from Web servers. In this environment, it is not as great a burden on
software publishers to periodically resign code, since deployment through a Web site is
discretionary and “as-needed”. Nevertheless, it is not possible to prevent code that is signed
within the lifespan of a publisher’s certificate from satisfying the Publisher Membership
Condition for a Code Group. For this reason, the Publisher Membership Condition should
only be used for publishers with a well-established history of trustworthiness.

UNCLASSIFIED

140
UNCLASSIFIED

Recommendation: Only use the Publisher Membership Condition for software
publishers with whom your organization has a well-established history of trust.
Access to resources may be granted to code that presents expired certificates, so the
use of the Publisher Membership Condition assumes that the publisher was
trustworthy in the past as well as the present.

Setting 3: Check for Revoked Certificates

Digital certificates used to sign code may be revoked prior to their expiration date. Among
other reasons, this may happen because the certificate subject is no longer trusted, because
information about the certificate subject contained in the certificate has changed, because
private key data has been or may have been compromised, or simply because the certificate is
no longer needed. In any case, a revoked certificate should not be used for identification and
authentication, including checking for membership in any code group that will grant access
to protected resources.

If this setting is enabled, Certificate Revocation Lists will be checked to verify that
certificates presented have not been revoked. Revoked certificates will not be considered
valid. This setting can be modified through Internet Explorer using the Tools | Internet
Options… menu. Select the Advanced tab and check the box in the Security category
labeled Check for publisher’s certificate revocation.

Recommendation: Enable checking for revoked certificates.

Settings 4-7: Automatically Trust Certificates Whose Revocation Status Cannot Be
Determined

Each certificate issuing entity (Certificate Authority/CA) is responsible for providing
information on the revocation status of the certificates it issues. A common way to do this is
to make available a list (Certificate Revocation List/CRL) of its issued certificates that have
been revoked. These lists are published by the CA to CRL Distribution Points (CDPs) on the
local network or Internet. Each certificate issued by the CA contains the URL of one or more
of these CDPs so any application or host verifying the certificate can check the issuer’s lists
to determine if the certificate is still valid. This is typically done by periodically
downloading an updated list from the CDPs and caching it locally. Since each CRL has an
assigned lifespan, it is easy to know when an updated list is needed. Moreover, requesting a
CRL refresh rather than requesting the status of a single certificate only indicates that one
from the set of certificates served by that CRL may be being verified, providing a degree of
anonymity to the request. One issue with using CRLs is that they can become very large for
Certificate Authorities that serve a large community, such as the Department of Defense, or
well-established certificate services vendors. The performance and anonymity benefits of
caching CRLs must be balanced against the large amount of data that must be transferred
regularly and the potential delay in identifying revoked certificates.

An alternative approach to checking for certificate revocation is the use of real-time
certificate status servers (Online Certificate Status Protocol/OCSP). These are network
services hosted by a CA or its designee that provide up-to-the-minute revocation status for

UNCLASSIFIED

141
UNCLASSIFIED

single certificate requests, making the download of large lists unnecessary. The benefits in
performance and timeliness must be balanced against the requirement for reliable network
connectivity. In addition, the disclosure of transaction information such as which certificate
identifier is being verified and when to an external party such as the revocation status server
may be unacceptable.

The use of CRLs or OCSP may be determined by installed custom cryptographic software, so
the actual means of checking revocation may not be known to applications or even to the
operating system. Windows will simply invoke the installed cryptographic software to
perform the revocation check function when appropriate in the certificate verification
process. This ability to install custom cryptographic software supports the implementation of
policy-driven cryptographic services. However, the actual methods used may have an impact
on the ability to provide access control over distributed software such as .NET Framework
assemblies.

The use of the Publisher Membership Condition for managed code assumes the presence and
integrity of a public key infrastructure, including a robust process for certificate verification.
Since decisions about trust are made each time the .NET Framework loads an assembly, the
reliability and availability of the certificate verification process may determine whether code
is able to execute or not when it is needed. Clearly, an OCSP implementation is more
vulnerable to loss of availability than cached CRLs, but even CRLs will periodically expire
and require a refresh. Where connectivity is expected to be intermittent, manual distribution
of updated CRLs may be an option in some cases. However, in general, volatile network
environments that have a critical need for the availability of certain managed applications
may want to grant access to such code based on characteristics that are verifiable on the local
host, such as a strong name or hash.

Where publisher certificates are used as a basis for CAS policy decisions, certificates should
not be trusted unless their revocation status can be determined. If settings 4-7 are enabled,
code signed by a revoked certificate could be automatically trusted if the network connection
is broken or unreliable.

Recommendation: Disable automatic trust for certificates whose revocation status
cannot be determined.

Setting 8: Invalidate Version 1 Signed Objects

If this setting is enabled, software signed using a Windows version 1 certificate will not be
trusted. Windows version 2 certificates are new to Windows Server 2003 (Enterprise and
Data Center).

Setting 9: Check for Revoked Timestamp Signer Certificate

Code that is signed may (and should) contain a time stamp issued by a time stamp provider
that certifies that the code was signed within the lifespan of the publisher’s certificate. The
time stamp itself is digitally signed with the time stamp provider’s certificate. This process
allows some basis for trust to be assigned to software that is still in useful service even

UNCLASSIFIED

142
UNCLASSIFIED

though the publisher’s certificate has expired. This basis is only as good as the verifiability
of the time stamp, which in turn relies on the integrity of the time stamp provider’s
certificate. This certificate should be valid, non-expired, and non-revoked.

Recommendation: Enable checking for revoked time stamp provider’s certificate.

Setting 10: Only Trust Items Found in the Personal Trust Database

If this setting is enabled, software that is not signed by a publisher whose identity is stored in
the user’s Trusted Publishers and Issuers of Credentials database (trust database) will fail the
certificate verification process. The logged-on user’s trust database can be viewed through
Internet Explorer using the Tools | Internet Options… menu. Select the Content tab,
and click the Publishers… button.

Signed managed code will satisfy a Publisher Membership Condition only if it successfully
passes the certificate verification process, so if an assembly is signed by a publisher not
found in the user’s trust database, it will be treated as if the publisher’s signature was not
present. Because such code will not satisfy the Publisher Membership Condition, the
permissions associated with such a Code Group will be ignored and Code Group flags such
as Exclusive or Level Final will not take effect. This setting will only affect the behavior of
the Publisher Membership Condition. Code signed by a software publisher may still receive
permissions by satisfying other types of Membership Conditions.

Set the CSP used by the CLR when strong-naming assemblies

The Cryptographic Service Provider used by the CLR to perform the cryptographic functions
needed to strong name an assembly can be administratively specified. By default, the CLR
uses the operating system’s default CSP. This task can be performed using sn.exe.

Assembly tasks

Validate and verify an assembly

Assembly validation and verification is a process that determines whether an assembly is
provably safe to run, that is, whether it can be known via an automated process if it can be
effectively managed by the CLR or not. The CLR will refuse to execute code that fails the
validation and verification process, unless it has been given the Skip Verification permission.
Code granted the Skip Verification permission will be allowed to execute as long as it passes
validity checks.

An assembly may consist of syntactically correct components, but not be valid. An assembly
is valid if it is internally consistent and conforms to the expected file, metadata, and code
instruction formats. Assemblies must be valid to be allowed to execute, although validity in
and of itself does not indicate that an assembly is safe to run.

Execution safety is determined by the verification process. The .NET Framework performs a
standard set of verification checks that aim to prove an assembly is safe to run. If an

UNCLASSIFIED

143
UNCLASSIFIED

assembly passes all of these checks, it is presumed to be safe. If an assembly fails any of
these checks, it is presumed to be unsafe, even though it may in fact be safe. This ambiguity
is due to the fact that code verifiers may not rely on all the information available about the
assembly’s code, and may assume code is unsafe in the absence of information to the
contrary.

Figure 42 shows the relationship between validation and verification. Code that is given the
Skip Verification permission will be allowed to execute if it falls within the inner three rings.
Code that is not given the Skip Verification permission must fall within the innermost ring.
Thus, the Skip Verification permission may allow code to execute that is in fact unsafe. The
Skip Verification permissions is intended for use in situations where the CLR’s code verifier
cannot certify the safety of an assembly, but where the assembly is known to be safe
nonetheless, due to additional documentation provided by the developers.

Figure 42. Relationship between validation and verification.

Assembly validation and verification is performed automatically by the CLR when an
assembly is loaded. It can also be performed on an assembly file with peverify.exe.

Assembly is verifiably safe to
execute.

Assembly is valid and safe to execute.

Assembly is valid, but not safe to
execute.

Assembly contains an invalid file format,
metadata format, or code instruction.

UNCLASSIFIED

144
UNCLASSIFIED

View an assembly’s strong name, View the public key token corresponding to a public
key

The full strong name of an assembly (name, version, culture, and public key) can be viewed
using explorer.exe with the Assembly Cache Viewer enabled, or with secutil.exe.
The public key token is an abbreviated form of the public key consisting of the last 8 bytes in
reverse order of the SHA-1 hash of the public key data. This token can be viewed using
sn.exe.

Strong name an assembly

Strong names enable the unique identification of shared assemblies that have been installed
in the GAC. To base trust decisions, such as access to resources through CAS policy, on a
strong name requires a known and verified relationship between the public key component of
the strong name and a trustworthy party. The security of a strong name is based on the
difficulty of determining the private key that corresponds to the public key. Although only
the public key is needed to verify a strong name, the private key is necessary to create strong
named assemblies. Thus, a decision to allow access to resources based on a strong name
must also be based on trust that the public/private key owner has taken great care to limit
access to their private key.

Recommendation: Base trust on a strong name only where the public key is
verifiably associated with a trustworthy party, and the public key owner can be
trusted to limit access to the corresponding private key.

To be most helpful to CAS policy configuration, a trusted software creator should use
multiple key pairs that identify classes of assemblies, separate diverse product lines, or
distinguish software from different business units. Through CAS policy, the administrator
could then grant appropriate levels of access to resources based on the purpose of each class
of assembly. For example, operating system components and administrative tools require
broader access than office automation applications. Similarly, networking applications
require access that embedded Web controls do not.

Because the Strong Name Membership Condition can be based on the public key and the
name of the assembly only, while leaving the version variable, CAS policy can easily be
configured to apply across upgrades to an assembly.

An assembly can be strong named using a public/private key pair using sn.exe. Using this
tool, an assembly can also be re-signed with a different key pair, or re-signed to convert a
delay signed assembly to a fully strong named assembly.

Verify an assembly’s strong name

The integrity of an assembly can be checked by verifying its strong name. The strong name
is used to digitally sign an assembly by encrypting a hash of an assembly using the private
key of a public/private key pair. The corresponding public key is then stored with the

UNCLASSIFIED

145
UNCLASSIFIED

assembly and may be used to decrypt the hash value and check it against the bytes of the
assembly as a test for corruptions or unauthorized modifications.

Unless the public key component of the strong name is known through some trusted means to
be associated with a particular entity, this only verifies that an assembly has not been
modified since it was created. It does not determine the origin or trustworthiness of the
assembly’s creators.

When a strong named assembly is loaded by the CLR, its strong name will be verified and it
will not be permitted to execute unless it passes this check. This task can be performed using
sn.exe.

Enroll an assembly for strong name simulation, Withdraw an assembly from strong
name simulation, List assemblies enrolled for strong name simulation

These tasks allow developers to work with delay signed assemblies as if they were strong
named. An assembly is delay signed when it is not actually strong named, but a space is
reserved for the digital signature component of a strong name and contains the public key
representing the public/private key pair that is anticipated to be used in the future for the
actual strong name. Such an assembly would not normally satisfy a strong name
Membership Condition based on the public key, because it is not actually digitally signed by
the corresponding private key. An entry on the strong name simulation list specifies a set of
user account names and a class of assemblies that will successfully “pass” strong name
verification when they are delay signed and executing in the context of one of the named user
accounts. An assembly might not be fully strong named while it is being developed and
undergoing frequent revision. Adding the assembly to this list allows software developers to
simulate a fully strong-named environment without requiring repeated access to an
organization’s private keys. Anyone with access to an organization’s public key can produce
a delay signed assembly with that public key. When an assembly is delay signed, its origin
cannot be derived from the public key alone, and any changes made to the assembly may be
undetectable, so strong name verification should never be simulated in an operational
environment. These tasks can be performed using sn.exe.

Recommendation: Strong name verification should never be simulated in an
operational environment.

View an assembly’s publisher certificate

An assembly signed by a software publisher will contain an embedded Authenticode digital
certificate. A digital certificate contains fields describing the name of the software publisher,
the expiration date of the certificate, the cryptographic algorithms used in the digital
signature process, and the name of the party that issued to certificate to the software
publisher. To view the publisher’s certificate as a sequence of byte values, use
secutil.exe. To view the certificate with its components identified, use certmgr.exe.

UNCLASSIFIED

146
UNCLASSIFIED

Verify the trust associated with an assembly’s Authenticode digital signature

Authenticode digital signatures are the basis for the Publisher Membership Condition. An
assembly will satisfy the Publisher Membership Condition for a specified software publisher,
if it is digitally signed with the publisher’s Authenticode software publisher’s certificate, and
the CLR can verify a chain of trust associated with that signature. Checking the chain of
trust consists of verifying the validity of each digital signature in a chain of signatures
beginning with the signature of the file itself (the lowest level), and continuing through the
digital signatures of each certificate that asserts the identity of the lower-level signer. The
chain is verified as trusted if all the signatures and certificates are valid, and the top-level
signature is by a trusted root certification authority. Signature verification is subject to
policy settings such as the Software Publishing State Keys managed by the setreg.exe
tool, and thus trust decisions will be affected by host-specific policy. Furthermore, some
verification steps require the availability of local or remote network interaction, and thus trust
decisions may be affected by network conditions. This task can be performed using
chktrust.exe.

Digitally sign files, verify signatures in files and timestamp files

In .NET Framework 2.0 the SignTool.exe tool has combined the functionality and
replaced the checktrust.exe, SignCode.exe and SetReg.exe tools. The
SignTool.exe tool digitally signs files with an existing certificate, verifies signatures in
files, and timestamps signed files. SignTool.exe, like chktrust.exe, is the basis of the
Publisher Membership Condition’s validation process. Files seeking trusted status are signed
with an Authenticode digital certificate and the chain of trust is verified. The
SignTool.exe verify command determines whether the signing certificate was issued by a
trusted authority, whether the signing certificate has been revoked, and, optionally, whether
the signing certificate is valid for a specific policy. The result is a path that leads to a trusted
root certificate stored in the user’s certificate store. If the timestamp flag is used, the
timestamp server itself must also have a valid certificate that is signed with the time stamp
provider’s certificate. To sign or verify digitally signatures use SignTool.exe.

View an assembly’s permission requests and declarative permission constraints

An assembly’s permission request consists of three sets of permissions defined by the
software developer: the minimum, optional, and refused sets of permissions. These sets are
intended to guide administrators in determining the minimum level of privilege that code
must have to perform its function. It also provides a guide to the maximum set of privileges
that an assembly should have.

The Minimal Permission Set is a set of permissions required by the application in order to
function adequately. If these permissions are not granted through CAS policy, the assembly
will not execute. The Optional Permission Set consists of those permissions that the
assembly does not need to adequately execute, but could use to provide additional features.
If these permissions are not granted through CAS policy, the application should be able to
fall back to a basic level of functionality. The Refused Permission Set are those permissions
that the developer of the assembly has determined are not necessary for the proper

UNCLASSIFIED

147
UNCLASSIFIED

functioning of any of the features of the assembly, and therefore should be denied to the
assembly via CAS policy in accordance with the principle of least privilege. Note that an
assembly that specifies an Optional Permission Set will have all permissions not in either its
Minimal or Optional Permission Sets implicitly refused.

Permission requests are a claim made by the developer of an assembly and may or may not
reflect the actual use of resources made by the assembly. The minimal set may be overstated,
or it may not reflect actual access requirements added at a later stage of development.
Displaying an assembly’s permission requests is a check on the documented requirements of
the assembly, but is not a substitute for up-to-date software documentation that fully
describes the resources an assembly needs, and why it needs them. Permissions should not
be granted simply because an assembly requests them or claims to require them. Granting
permissions is a trust decision, and an assembly’s permission requests are only as trustworthy
as the origin of the assembly.

In addition to the permission request sets, the authors of the assembly may insert
programming instructions that specify dynamic security constraints such as permission
requirements or explicit refusals of permissions at various points in the code in order to
establish a known security environment in which portions of the code will run. These
runtime environments can only be more restrictive than the permissions granted by CAS
policy to the assembly itself. Thus, a dynamic permission requirement will only check that
the required permission has already been granted before proceeding – it will never result in
the granting of an additional permission.

Some trusted libraries are designed to access protected resources on behalf of less trusted
code. Because the security permissions granted during execution of the library code are the
intersection of the permission sets granted to the less trusted application and those of the
trusted library, the default security environment in this case would be the restricted set of
permissions granted to the less trusted code. However, trusted libraries may selectively relax
these restrictions in order to mediate resource access to their callers.

There are two types of dynamic permission constraints that software developers can use:
declarative constraints and imperative constraints. Declarative constraints are fully described
in the assembly itself, while imperative constraints may be tailored to the current state of the
program. For example, a declarative constraint could check that the File IO permission has
been granted with All access to a application-specific log file. An imperative constraint
could do the same thing, but could also check that the File IO permission has been granted
with Read access to a file or folder previously specified on-the-fly by the user. This task may
be performed by permview.exe.

Determine the minimum permission sandbox in which a .Net application can run

The Minimum Grant Set Determination tool, PermCalc.exe, calculates the least permission
set an assembly must be granted to execute properly. The PermCalc.exe tool is new in
.NET 2.0. Note the permview.exe tool is used to view the minimal, optional and refused
permission set whereas the PermCalc.exe tool computes the minimum permission set
required. The PermCalc.exe tool analyzes all code paths in all related application

UNCLASSIFIED

148
UNCLASSIFIED

assemblies, including all dependency assemblies. To determine the minimum permission set
the tool creates a simulated call stack of the application starting from the entry point to all
code paths through all application assemblies. In addition the shared and system libraries
related to the assembly are also analyzed. PermCalc.exe verifies the existence of link
demands, declarative demands, and declarative stack walk modifiers. This task may be
performed by PermCalc.exe.

View the list of configured assemblies, Configure an assembly, Delete the configuration
information for an assembly

A configured assembly is a versioned family of assemblies that has an associated
administratively-configured Binding Policy.

Introduction to Binding Policy

The .NET Framework allows multiple versions of managed applications or libraries to be
installed at the same time, so applications may request the specific version of a library that
they were developed to use, even if newer versions have since become available. In many
cases, a library is available from multiple sources, or an application does not request a
specific version, or the version requested has been disallowed by policy or deprecated by its
publisher. In this context, a facility called binding refers to the process of determining which
library will satisfy an application’s request. For example, when a software publisher releases
a new version of a library that is backward-compatible with previous versions, requests for
older versions may be redirected to the new version through a Binding Policy created by the
software publisher.

The .NET Framework provides a Binding Policy system that allows software developers and
administrators to change assembly binding behavior through the use of XML configuration
files. These XML files can redirect a reference from one version of an assembly to another,
and indicate the location from which each version of an assembly is to be obtained. The
three forms of Binding Policy are: application policy, publisher policy, and machine policy.
The policy files are processed in the order of application, publisher, and machine to arrive at
a final post-policy assembly reference that the CLR will used to satisfy the assembly request.
The resulting output of each policy stage is used as input to the next policy stage until the
final reference is obtained. A prerequisite for this process is that the assembly is strong
named, as this provides precise version identification that is cryptographically bound to the
assembly.

Application Policy

When an assembly is created, the versions of all libraries that it was developed to use are
recorded in its manifest. When the assembly first tries to invoke one of these libraries, the
CLR checks the application policy XML file to determine if the version of the requested
library has been redirected to a different version. By specifying version redirection in the
application policy, a developer or administrator may reconfigure which version of a strongly-
named assembly should be used by the application without having to recreate the assembly
with a new manifest. In addition, the application policy may specify that publisher binding

UNCLASSIFIED

149
UNCLASSIFIED

policy should not be checked for any assembly references or for a specific assembly
reference (when disabled for all assemblies, this is known as “safe mode”, because
applications may break if the publisher’s claims of backward-compatibility of new versions
are not correct). If publisher policy is checked, it could override the application policy, so
this reverses the policy precedence for a specific dependent assembly.

Publisher Policy

If a publisher policy exists, the CLR examines it after first reviewing the Binding Policy in
the application configuration file (and determining that the publisher policy has not been
disabled). Publisher policies affect all applications using the publisher’s assembly and are
used to deprecate faulty or outdated shared components by redirecting component references
from the old version to a new version. Each assembly can have its own publisher policy that
contains a Binding Policy in XML, and is embedded in a separate special assembly that is
versioned, strong-named with the same key as the assembly, and installed in the GAC.
Publisher policy assemblies not installed in the GAC will not be applied. The name of the
publisher policy assembly must have the form

policy.<major version>.<minor version>.<assembly name>.

If multiple publisher policies are installed for the same assembly, the one with the highest
version will take precedence.

Unless disabled, publisher policy is applied to the current version information that is in the
assembly manifest or that is the result of processing the application binding policy from the
application configuration file. If the application policy redirects the version specified in the
assembly manifest to a new version, then the publisher policy may redirect the new version
to yet a different version. If there is no application policy version redirection, then the
publisher policy is applied to the version specified in the assembly manifest.

It may not always be desirable to redirect references to shared managed components to the
newest available version. New version of software may be buggy or unstable, may not have
been thoroughly tested, or may not be fully backward-compatible. New features introduced
in the new version may introduce security vulnerabilities that did not exist in earlier versions.
In these cases, application policy can use safe mode to disable automatic version redirection
through a publisher policy created by a third-party.

Machine Policy

Versions of assemblies that are disallowed due to identified security flaws or other unwanted
behavior may still be invoked by applications, since the application policy is under the
control of the developer and publisher policy may be bypassed by using safe mode. The
.NET Framework provides an administrator-controlled Binding Policy stored in the machine
configuration file for each .NET Framework version that will override application and
publisher policy to enforce consistent machine-wide binding behavior for any given version
of any assembly.

UNCLASSIFIED

150
UNCLASSIFIED

The machine policy is applied last, cannot be bypassed, and affects all applications, so this is
the appropriate place for version redirection settings driven by organizational security policy.
The machine policy is a component of the machine configuration file machine.config,
located in each .NET Framework version’s config folder. Note that there is no Framework-
wide configuration file. Each machine.config file will only affect the binding policy
applied by the corresponding version of the CLR. In order for the administrator to create an
effective machine-wide binding policy, all of the configuration files must be kept consistent.

Summary

The .NET Framework provides a method of deprecating or disallowing certain versions of an
assembly. This is accomplished through three stages of policy application under the control
of different users. Application policy is under the control of the developer of an application.
Publisher policy is under the control of the publisher of a shared managed component. These
two policies are designed to facilitate software distribution and maintenance. Machine policy
is under the control of the host administrator, and is where security-relevant binding policy
should be placed.

The creation of the machine Binding Policy is known as “configuring” an assembly, and can
be performed using mscorcfg.msc.

Application configuration tasks

Add an application to be configured, Configure application properties

Configuring an application means creating application-specific Binding Policies for the
assembly on which the application depends, and setting up communication channels for the
use of Remoting Services. The first of these two types of tasks can be performed using
mscorcfg.msc. The second can be performed using mscorcfg.msc and by creating or
editing XML configuration files.

View assembly dependencies for an application, View list of assemblies configured for
an application, Configure an assembly for an application, Fix an application (roll back
application Binding Policy)

Application-specific Binding Policies can be created that determine what versions of an
assembly will be used when the assembly is loaded in the context of the specified
application. For a discussion of Binding Policies, see the View the list of configured
assemblies task above. The tasks listed above can be performed using mscorcfg.msc.

Configure Remoting Services for an application

Configuration Remoting Services is best performed through the editing of the XML files that
contain the desired settings. mscorcfg.msc can be used to make some modifications but in
general, it is better suited for displaying some of the current Remoting Services settings for
an application that it is at configuring Remoting Services. Application developers will
typically create application configuration files containing Remoting Services settings that

UNCLASSIFIED

151
UNCLASSIFIED

may be reviewed by the administrator using mscorcfg.msc. mscorcfg.msc will only
display the contents of files named {application file name}.config, however, once
granted the ability to actually use their application-specific Remoting Services settings, an
application may load the settings from any file to which they have access.

To configure Remoting Services for an application, edit the appropriate XML file, using the
discussion of Remoting Services settings in Appendix B: mscorcfg.msc as a general guide.

Summary

The common security-related administrative tasks for the .NET Framework are numerous
and varied. Several tools have been provided, either with the .NET Framework or with the
SDK to assist the administrator. The security-related background for each task is discussed
in this chapter, with detailed procedures for the performance of each task with a particular
tool is included Appendices A and B.

Recommendations in This Section

Recommendation: Never disable CAS policy on a computer connected to an
untrusted network such as the Internet.

Recommendation: Disable trust of Test Root certificates in an operational
environment.

Recommendation: Enable checking for expired certificates.

Recommendation: Only use the Publisher Membership Condition for software
publishers with whom your organization has a well-established history of trust.
Access to resources may be granted to code that presents expired certificates, so the
use of the Publisher Membership Condition assumes that the publisher was
trustworthy in the past as well as the present.

Recommendation: Enable checking for revoked certificates.

Recommendation: Disable automatic trust for certificates whose revocation status
cannot be determined.

Recommendation: Enable checking for revoked time stamp provider’s certificate.

Recommendation: Base trust on a strong name only where the public key is
verifiably associated with a trustworthy party, and the public key owner can be
trusted to limit access to the corresponding private key.

UNCLASSIFIED

152
UNCLASSIFIED

Recommendation: Strong name verification should never be simulated in an
operational environment.

UNCLASSIFIED

153
UNCLASSIFIED

This page has been intentionally left blank.

UNCLASSIFIED

154
UNCLASSIFIED

Appendix

A
Administrative Tools Reference
This appendix contains descriptions of some tools used to administer the .NET Framework.
Each tool’s usage is described, as well as detailed procedures for performing administrative
tasks. Not all tool options will be described in detail. Special attention will be given to
options necessary to perform security-related tasks.

caspol.exe – .NET Framework Code Access Security Policy
Tool

caspol.exe is distributed with the .NET Framework SDK. It is a managed console
application that gives users and administrators the ability to modify .NET Framework CAS
policy. For example, the administrator can configure Code Groups and Named Permission
Sets, extend the CAS policy system by adding Policy Assemblies, and determine the
permissions that would be granted to a specified assembly by the policy. caspol.exe
provides much the same functionality as mscorcfg.msc with respect to CAS policy
configuration.

Each version of caspol.exe is built for a specific version of the .NET Framework and is
located in the corresponding .NET Framework version folder
%windir%\Microsoft.NET\Framework\<version number>. The CAS policy
settings configuration through caspol.exe will apply only to the corresponding version of
the .NET Framework.

In order to function properly, caspol.exe must be granted the equivalent of the
“Everything” Named Permission Set. The tool has a protective mechanism that prevents
CAS policy changes from being made through the tool that would deny caspol.exe itself
the necessary permissions to execute. When caspol.exe is asked to make such a change, it
will display an error message and fail. This mechanism may be overridden using the -
force option.

Syntax
caspol [options] [arguments]

A full list of supported options can be displayed using:

caspol –help

UNCLASSIFIED

155
UNCLASSIFIED

Each option has a corresponding shortcut form (for example, the shortcut form for -help is
-?). See the full list of supported options for details. caspol.exe can be configured to ask
for confirmation whenever a command would result in a change in CAS policy. This setting
is maintained in the registry, so it applies to all commands until it is changed, although it
only affects a particular version of caspol.exe. To enable or disable confirmation for all
subsequent commands, use the command

caspol –polchgprompt {on | off}

To disable confirmation only for the current command, use the option -quiet or -q in
conjunction with the command.

Many caspol.exe tasks can be applied to all CAS policy levels or only to a single CAS
policy level by preceding the option with -all, -enterprise, -machine, -user,
-customuser {file name}, or -customall {file name}. The {file name}
argument is intended to specify the path of a User level CAS policy file for a user other than
the logged-on user, but it could be used to specify any CAS policy file, including an XML
file not currently in use by the .NET Framework. Thus, this option could be used to
administer policy for another user or to administer Enterprise or Machine level policy on a
remote box via a UNC path if the .NET Framework configuration folder is shared. The
-customall option applies any changes to the Enterprise and Machine level CAS policy
files as well as to the file specified by the {file name} argument. When logged-on as an
Administrator, the default behavior is to perform the indicated task on the Machine level
policy only. Otherwise, the default is to perform the indicated task at the User level policy
only.

Tasks

The following tasks can be performed using caspol.exe:

Enable or disable CAS policy

Enable or disable Execution permission checking

Build a CAS policy cache file

Reset all CAS policy levels to default settings

Recover the previous settings for a CAS policy level

View Code Groups

Add or remove a Code Group

Rename a Code Group

Set or clear the Exclusive or Level Final attribute of a Code Group

UNCLASSIFIED

156
UNCLASSIFIED

Change a Code Group’s Membership Condition

Change a Code Group’s associated Named Permission Set

View Named Permission Sets

Add or remove a Named Permission Set

Modify a Named Permission Set

View Policy Assemblies

Enroll or withdraw a Policy Assembly

List Code Groups to which an assembly belongs

View an assembly’s Allowed Permission Set

Create a tailored Code Group

Enable or disable CAS policy

CAS policy enforcement may be disabled for a host computer. Disabling CAS policy will
prevent checks for any managed code for all users. This setting is stored in the registry and
will apply to all versions of the .NET Framework. To enable or disable CAS policy
enforcement, use the command:

caspol -security {on | off}

Enable or disable Execution permission checking

When asked to load an assembly, the CLR will normally check to see whether the assembly
has the Enable Assembly Execution permission. If not, it will not load the assembly. This is
a performance-enhancing feature that can be enabled or disabled by the command:

caspol -execution {on | off}

This setting is stored in the registry and will apply to all versions of the .NET Framework.

Build a CAS policy cache file

The command

caspol -buildcache

will create new CAS policy cache files (.cch) for policy levels modified since the last time
the cache files were built. The policy cache files are used to enhance the performance of the
CAS policy permission resolution process, and their use is not documented.

UNCLASSIFIED

157
UNCLASSIFIED

Reset all CAS policy levels to default settings

Each CAS policy level has a built-in default state that is used whenever the policy
configuration files are missing. One way to revert to the default state is to simply delete the
relevant configuration file. The next time the .NET Framework is invoked by any managed
code, a new configuration file will be created containing the default policy. caspol.exe
can be used to immediately reset CAS policy to its default state. For example,

caspol -enterprise -reset

resets the Enterprise level CAS policy for a particular .NET Framework version to its default
state.

Recover the previous settings for a CAS policy level

When a change is made to CAS policy through mscorcfg.msc or caspol.exe, the
previous CAS policy file for the level that was changed is saved in a backup file with the
extension .old. CAS policy can be rolled back to this prior policy, if it exists. This will
undo exactly one change, as each change made by mscorcfg.msc or caspol.exe is
backed up immediately, overwriting the previous backup file. For example,

caspol -machine -recover

resets the Machine level CAS policy to the contents of the backup file. This will also save
the rolled-back policy as the new “old” policy.

View Code Groups

The commands

caspol -list

caspol -listgroups

caspol -listdescription

display Code Group information for the Machine level CAS policy. The first command
shown also displays all the Named Permission Sets and Policy Assemblies for the given CAS
policy level.

The second command shown above lists the Code Groups by a hierarchical numeric label,
Membership Condition, and associated Named Permission Set. The numeric label identifies
nodes in the Code Group tree. For example, the root Code Group is always All_Code and
has the numeric label 1. Child Code Groups of All_Code have the numeric labels 1.1, 1.2,
etc. When making changes to a Code Group, the targeted Code Group can be identified by
either its name or its numeric label. If more than one Code Group has the same name, the

UNCLASSIFIED

158
UNCLASSIFIED

results may be unpredictable. For consistent results, the numeric labels may be used to
uniquely identify a Code Group.

The third command lists Code Groups by numeric label, name, and description.

Add or remove a Code Group

The command

caspol -addgroup {parent Code Group identifier} {Membership

Condition} {Named Permission Set} [-exclusive {on | off}] [-

levelfinal {on | off}] [-name {“name”}] [-description

{“description”}]

will add a Code Group with the specified properties. The parent Code Group, a Membership
Condition, and an associated Named Permission Set must be specified. Optionally, the new
Code Group may be marked as Exclusive or Level Final, and a name and description
provided. The name and description must be in double quotes. Unlike mscorcfg.msc,
caspol.exe will allow the addition of multiple Code Groups with the same name (or no
name). However, the results can be unpredictable when attempting to remove a Code Group
whose name occurs multiple times. For stability, Code Group names should be unique across
the entire Code Group tree for any given CAS policy level.

Recommendation: Make Code Group names unique across the entire Code Group
tree for any given CAS policy level.

The form of the Membership Condition argument varies depending on the Membership
Condition specified (Table 21):

Membership Condition Argument forms
All Code -all

Zone -zone {MyComputer | Intranet | Internet |
 Trusted | Untrusted}

Site -site {domain name of Web site}

Publisher -pub –cert {certificate file}
-pub –file {signed file containing an embedded
 certificate}
-pub –hex {hexadecimal representation of an
 X.509 certificate}

Strong Name -strong –file {strong-named assembly file}
 {{name} | -noname} {{version} | -noversion}

Hash -hash {MD5 | SHA1} -hex {hash value}
-hash {MD5 | SHA1} –file {assembly file to hash}

Application Directory -appdir

Custom -custom {XML file}

Table 21. caspol.exe Membership Condition Arguments.

UNCLASSIFIED

159
UNCLASSIFIED

For example, the command:

caspol -machine -addgroup All_Code -zone Internet MyPermissions -

name NewCodeGroup

adds a child Code Group to the All_Code Code Group at the Machine level. The new Code
Group will be named “NewCodeGroup,” and will have the Internet Zone Membership
Condition and the Named Permission Set “MyPermissions.”

The command

caspol -remgroup {Code Group identifier}

will remove the specified Code Group and all of its child Code Groups. For example, the
command

caspol -enterprise -remgroup TestCodeGroup

will remove the named group from the Enterprise level CAS policy. If more than one Code
Group exists with the specified name, the results may be unpredictable. To guarantee
consistency when multiple Code Groups exist with the same name, use the numeric labels to
uniquely identify Code Groups within the Code Group tree.

Rename a Code Group

The command

caspol -chggroup MyCodeGroup -name YourCodeGroup

will change the name of the Code Group from MyCodeGroup to YourCodeGroup. A Code
Group can be renamed in conjunction with any other property change. See the Change a
Code Group’s associated Named Permission Set task below for an example.

The description of a Code Group can also be changed using

caspol –chggroup MyCodeGroup –description “What-a-group!”

Set or clear the Exclusive or Level Final attribute of a Code Group

The commands

caspol -chggroup MyCodeGroup -exclusive on

caspol –enterprise -chggroup 1.2.4 -levelfinal off

will set the Code Group MyCodeGroup at the default CAS policy level to be Exclusive and
remove the Level Final attribute from Code Group 1.2.4 at the Enterprise level policy.

UNCLASSIFIED

160
UNCLASSIFIED

Change a Code Group’s Membership Condition

A Code Group’s Membership Condition can be changed using the command

caspol -chggroup {Code Group identifier} {membership

condition}

The form of the Membership Condition arguments depends on the Membership Condition
specified. See the task Add or remove a Code Group above for details. For example, the
command

caspol -chggroup MyGroup -hash SHA1

-hex 31f63c465a058c0684f7cd8877eb85c8093dea7a6

will change the Membership Condition of the named Code Group at the Machine level policy
to a Hash Membership Condition with the specified SHA-1 hash value. The command

caspol -user -chggroup TheLocalNetwork -zone Intranet

will set a Zone Membership Condition for the Local Intranet. A Code Group’s Membership
Condition can be changed in conjunction with any other property change. See the Change a
Code Group’s associated Named Permission Set task below for an example.

Change a Code Group’s associated Named Permission Set

The command

caspol -user -chggroup MyCodeGroup FullTrust

will change the associated Named Permission Set associated with the Code Group
MyCodeGroup in the User level CAS policy to FullTrust. A Code Group’s associated
Named Permission Set can be changed in conjunction with other Code Group property
changes. For example, the command

caspol -enterprise -chggroup MyCodeGroup -hash SHA1

-hex 31f63c465a058c0684f7cd8877eb85c8093dea7a6

OfficeApps –name “YourCodeGroup”

applies to the Code Group MyCodeGroup in the Enterprise level CAS policy. It will change
the Membership Condition to the specified Hash Membership Condition, change the
associated Named Permission Set to OfficeApps, and rename the Code Group to
“YourCodeGroup.”

UNCLASSIFIED

161
UNCLASSIFIED

View Named Permission Sets

The command

caspol -listpset

will display the Named Permission Sets defined for a CAS policy level.

Add or remove a Named Permission Set

The command

caspol -machine -addpset “c:\perms\webaccess.xml”

WebAccessPermissions

will add the Named Permission Set WebAccessPermissions to the Machine level CAS
policy. The permissions contained within WebAccessPermissions are defined in the XML
file c:\perms\webaccess.xml. The XML file must contain a <PermissionSet>
element as the root. If no name is supplied for the new Named Permission Set, the Name
attribute of the <PermissionSet> element will be used as the default name of the Named
Permission Set. If the Name attribute is not present, a name must be supplied on the
command line.

The command

caspol -enterprise -rempset WebAccessPermissions

will remove the given Named Permission Set from the Enterprise level CAS policy. If a
Named Permission Set is currently associated with a Code Group, caspol.exe will not
remove it. caspol.exe will also not remove any of the built-in Named Permission Sets that
are part of the default CAS policy.

Modify a Named Permission Set

The permissions associated with a Named Permission Set can be modified by removing the
Named Permission Set with the -rempset option and adding it again with a different XML
source file with the -addpset option. If the Named Permission Set is currently associated
with a Code Group, caspol.exe will not allow it to be removed. However, caspol.exe
will allow a Named Permission Set to be redefined from an XML file, while retaining all the
associations between the Named Permission Set and Code Groups. For example,

caspol -user -chgpset newdbperms.xml DatabasePermissions

will change the permissions contained in the Named Permission Set DatabasePermissions to
those listed in the XML file newdbperms.xml, without modifying any associations between
the Named Permission Set and Code Groups. The built-in Named Permission Sets that are

UNCLASSIFIED

162
UNCLASSIFIED

part of the default CAS policy cannot be changed using caspol.exe except for the
Everything Named Permission Set.

View Policy Assemblies

The command

caspol -listfulltrust

displays the Policy Assemblies for the default CAS policy level.

Enroll or withdraw a Policy Assembly

The command

caspol -machine -addfulltrust NewMembershipCondition.dll

will enroll the assembly NewMembershipCondition.dll in the Machine level CAS policy
configuration file for the current .NET Framework version. Once enrolled, custom CAS
policy components (in this case, a custom Membership Condition) defined in the assembly
can be referenced by the policy elements of the configuration file. The command

caspol -enterprise -remfulltrust CustomPermission.dll

will remove the assembly CustomPermission.dll from the list of Policy Assemblies
configured for the Enterprise policy level.

List Code Groups to which an assembly belongs

caspol.exe can determine the Code Groups in one or all policy levels for which a given
assembly satisfies the associated Membership Conditions. Unlike other commands, the
default scope is all three policy levels of Enterprise, Machine, and User. Use -enterprise,
-machine, -user, or -customuser {file name} to limit the scope to one policy level.
For example,

caspol -machine -resolvegroup c:\managedcode\myapp.exe

will display the Code Groups at the Machine policy level that contain the specified assembly.
Assemblies may be specified by UNC or local file system paths, but URLs with protocols
other than “file:///” are not supported. To display Code Group membership for assemblies
specified by URLs with other protocols, use mscorcfg.msc.

If the specified assembly satisfies the Membership Condition of more than one Code Group
marked Exclusive at any policy level, the task will fail. On the other hand, if the specified
assembly belongs to an Exclusive Code Group as well as other Code Groups, those other
Code Groups are listed along with the Exclusive Code Group, even though they would not
contribute permissions to the assembly’s Allowed Permission Set (although they could still

UNCLASSIFIED

163
UNCLASSIFIED

affect access if they were marked with the Level Final attribute). If the specified assembly
satisfies the Membership Condition of a Code Group marked Level Final, then lower policy
levels will not be evaluated.

View an assembly’s Allowed Permission Set

caspol.exe can compute the Allowed Permission Set that the current CAS policy will
associate with an assembly. This set may be different from the set of permissions actually
granted to the assembly when it is executing (its Granted Permission Set). The Allowed
Permission Set will take into account Exclusive and Level Final Code Groups, but will not
include any Application Domain policy, as this policy is determined at runtime. The
Allowed Permission Set also does not include permission requests (Minimum, Optional, or
Refused permissions) made by the assembly itself. Furthermore, the Allowed Permission Set
is based on the evidence presented by the specified assembly, and the actual evidence
presented by the assembly at runtime may be different if the assembly is obtained from a
different source. The default scope is the three policy levels of Enterprise, Machine, and
User. To limit the scope to a single level, use the options -enterprise, -machine,
-user, or -customuser {file name}. For example, the command

caspol -resolveperm mylibrary.dll

will determine the Allowed Permission Set associated with the assembly mylibrary.dll
by the current CAS policy.

If the specified assembly satisfies the Membership Condition of more than one Code Group
marked Exclusive at any policy level, the task will fail.

Create a tailored Code Group

To create a Code Group that will associate a particular set of permissions to a particular
assembly, perform the following steps:

Create a Named Permission Set that contains the desired permissions. See the Add or
remove a Named Permission Set task above for details.

Make a Code Group whose Membership Condition will discriminate between the
targeted assembly and other assemblies. Set the Membership Condition to
discriminate as little as possible commensurate with operational requirements and
organizational policy. At the same time, insist on cryptography-based identities
unless prohibited by policy constraints. Associate the new Named Permission Set
with this Code Group. See the Add or remove a Code Group task above for details.

certmgr.exe – Microsoft Certificate Manager Tool

certmgr.exe is distributed with the .NET Framework SDK. It is both a console and a GUI
application that manages certificates stored in files or system stores.

UNCLASSIFIED

164
UNCLASSIFIED

Syntax
certmgr [{action}] [{options}] {items} [{destination}]

The above is an abbreviated form of the full syntax specification. The action can be to add
the specified items to the destination store or file (-add), to delete the items (-del), to copy
the items from a store to a destination file (-put), or to display the items (no action
parameter). Items can be certificates, certificate revocation lists (CRLs), or certificate trust
lists (CTLs) from a specified store or file. A full list of supported options can be displayed
using

certmgr -?

To launch a GUI application that performs some certificate management tasks, use

certmgr

with no parameters. Note that the single certmgr.exe task included in this guide, namely,
viewing a publisher’s certificate embedded in a digitally signed assembly, cannot be
performed using the GUI interface. The command line syntax to perform this task is shown
below.

Tasks

The following tasks can be performed using certmgr.exe:

View an assembly’s publisher certificate

View an assembly’s publisher certificate

The commands

certmgr app.exe

certmgr -v app.exe

will display the Authenticode certificate for the publisher who digitally signed the assembly
app.exe, or an error message if the assembly file does not contain a digital certificate. The
second command will display a more verbose output message.

chktrust.exe – Microsoft Authenticode Signature
Verification Tool

chktrust.exe is distributed with the .NET Framework SDK. It is a console application
that determines the trust associated with an Authenticode digital signature. Trust verification

UNCLASSIFIED

165
UNCLASSIFIED

of digital signatures is dependent on the values of the Software Publishing State Keys that are
managed by the setreg.exe tool. See setreg.exe below for details.

Syntax
chktrust [-q] [-v] {assembly file}

Tasks

The following tasks can be performed using chktrust.exe:

Verify the trust associated with an assembly’s Authenticode digital signature

Verify the trust associated with an assembly’s Authenticode digital signature

The command

chktrust app.exe

will verify the chain of trust associated with a software publisher’s Authenticode digital
signature of app.exe. Checking the chain of trust consists of verifying the validity of each
digital signature in a chain of signatures beginning with the signature of the file itself (the
lowest level), and continuing through the digital signatures of each certificate that asserts the
identity of the lower-level signer. The chain is verified as trusted if all the signatures are
valid, and the top-level signature is by a trusted root certification authority. Unless the -q
option is used, chktrust.exe reports its results in a dialog box.

chktrust –q app.exe

The command shown above will not pop up a dialog box that allows the user to declare trust
in the assembly signer. Instead, a single-line output will report success or failure. If the
assembly is not Authenticode signed, or the signature cannot be verified as trusted,
chktrust.exe will report failure. If the assembly is signed and the signature is verified as
trusted, chktrust.exe will report success.

explorer.exe/shfusion.dll – Windows Explorer/
Assembly Cache Viewer

The Assembly Cache Viewer (shfusion.dll) is a Windows shell extension that is installed
and enabled when the .NET Framework is installed. It presents a special view of the GAC
and Zap Cache (%WINDIR%\assembly) in Windows Explorer (explorer.exe) that
combines all versions of assemblies installed in the GAC in a single list, even though they
reside in different subfolders of the underlying file system tree.

UNCLASSIFIED

166
UNCLASSIFIED

To enable or disable the Assembly Cache Viewer, a registry value must be modified. See the
task Enable or disable the Assembly Cache Viewer under regedit.exe below for details.

Tasks

The following tasks can be performed using explorer.exe:

View cache contents

View or modify GAC properties

Add an assembly to the GAC

Delete an assembly from the GAC

View assembly properties

Reset all CAS policy levels to default settings

View cache contents

When the Assembly Cache Viewer is enabled, the GAC and Zap Cache are shown as a
virtual folder with all installed assemblies in a combined list. To view the contents of the
GAC and Zap Cache, simply navigate in Windows Explorer to %WINDIR%\assembly. If
the Assembly Cache Viewer is disabled, the underlying file system hierarchy that
implements the GAC will be displayed. Since the “raw” file system details are subject to
change, this display is of limited value to the administrator.

Although the GAC and Zap Caches are implemented by a file system tree in which each
version of an assembly is stored in a different folder, the Assembly Cache Viewer presents a
combined view of the GAC and the Zap Cache as a virtual folder with all the assemblies in a
single list. To view the contents of the GAC and the Zap Cache, navigate in Windows
Explorer to the directory %windir%\assembly. Figure 43 shows the presentation of the
GAC and Zap Cache as a virtual folder.

UNCLASSIFIED

167
UNCLASSIFIED

Figure 43. Viewing the GAC and Zap Cache in Windows Explorer using the Assembly
Cache Viewer.

Add an assembly to the GAC

When the Assembly Cache Viewer is enabled, an assembly may be added to the GAC
through Windows Explorer by dragging its icon or by copying and pasting the assembly file
into the GAC folder %WINDIR%\assembly.

An assembly must be strong-named before it can be added to the GAC. The strong name of
an assembly provides a unique identity to a particular version of an assembly that cannot be
confused with other versions (it is cryptographically tied to the actual sequence of bytes of
the file). This allows the installation of multiple versions of an assembly, all of which have
the same file name. Managed code that uses an assembly in the GAC may request the
assembly by its full strong name, thereby ensuring that the referenced code is the exact
version expected.

The GAC is a repository for managed libraries that may be shared by multiple applications.
Once installed in the GAC, an assembly may be used by any managed application.
Assemblies in the GAC are not necessarily granted unrestricted permissions. The strong
name requirement serves to resolve naming ambiguities, and ensure that an assembly has not
been corrupted or modified during distribution. The trust-worthiness of an assembly and its
access to resources through CAS policy is a function of the trust assigned to the parties and
processes involved in its creation and any organizational security policy. Once the degree of
trust has been assessed, the strong name provides a means of ensuring that the code
employed is actually the same code that was assessed.

UNCLASSIFIED

168
UNCLASSIFIED

Delete an assembly from the GAC

When the Assembly Cache Viewer is enabled, an assembly may be deleted from the GAC
through Windows Explorer by right-clicking the assembly entry in the cache folder (see the
View cache contents task above) and choosing Delete from the context menu.
Alternatively, select the assembly entry and select File, Delete from the drop-down menus.

View properties of an assembly installed in the GAC

When the Assembly Cache Viewer is enabled, properties of an assembly may be displayed
through Windows Explorer by right-clicking the assembly entry in the cache folder (see the
View cache contents task above) and choosing Properties from the context menu.
Alternatively, select the assembly entry and select File, Properties from the drop-down
menus. This will display the Properties dialog box for the assembly (see Figure 44).

Figure 44. Assembly Properties Dialog Box.

Table 22 describes the assembly properties viewable through the Assembly Properties dialog
box. The strong name of an assembly consists of the four properties: assembly name,
version, culture, and public key token.

Property Description
Assembly name Part of the assembly’s strong name.
Number of references Number of references associated with this

assembly. References record dependency
information. See gacutil.exe for more
information.

Last modified date The date the assembly’s file was last
modified.

Culture Part of the assembly’s strong name.
Version Part of the assembly’s strong name.

UNCLASSIFIED

169
UNCLASSIFIED

Property Description
Public key token Part of the assembly’s strong name. The

public key token is a cryptographically-
derived short form of the public key
information.

CodeBase The full path of the assembly’s main file
(the file containing the assembly manifest).

File version Version information about the PE file that
contains the assembly.

Description Software publisher-supplied data.
Copyright Software publisher-supplied data.
Comments Software publisher-supplied data.
Company name Name of the software publisher.
Internal name Software publisher-supplied data.
Language Language identification.
Legal trademarks Software publisher-supplied data.
Original filename The name of the file corresponding to this

assembly.
Product name The name of the software product that

installed this assembly.
Product version The version of the software product that

installed this assembly.

Table 22. Assembly Properties Viewable Through the Assembly Cache Viewer.

View or modify GAC properties

View the GAC using Windows Explorer with the Assembly Cache Viewer enabled (see the
View cache contents task above). Click the Configure Cache Settings button on the
toolbar or select Tools, Cache Settings… from the menus. This will open the Cache
Properties dialog box (see Figure 45). The only GAC property modifiable through the
Assembly Cache Viewer is the size of the cache for downloaded assemblies (labeled Store
limits).

UNCLASSIFIED

170
UNCLASSIFIED

Figure 45. Cache Properties Dialog Box.

The default size of the download cache is 4608KB, and although the GUI allows the value to
be changed in units of MB, it is configurable in units of KB through the registry key
HKLM/Software/Microsoft/Fusion/DownloadCacheQuotaInKB.

Reset all CAS policy levels to default settings

To reset CAS policy for a given level, simply delete the XML file that contains the CAS
policy settings. The next time the CLR is started by any process, a new policy file will be
created containing the default settings. Table 23 shows the XML files that correspond to the
three configurable policy levels. There is no default CAS policy for the Application Domain
policy level. Each version of the .NET Framework has its own CAS policy configuration
files. To specify a particular version of the .NET Framework, replace “{version}” with
the desired version data (for example, “1.1.4322”) in the paths shown.

CAS Policy Level XML File
Enterprise %WINDIR%\Microsoft.NET\Framework\v{version}\config\

enterprisesec.config
Machine %WINDIR%\Microsoft.NET\Framework\v{version}\config\

security.config
User %USERPROFILE%\Application Data\Microsoft\

CLR Security Config\v{version}\security.config

Table 23. XML Files for .NET Framework CAS Policy.

UNCLASSIFIED

171
UNCLASSIFIED

gacutil.exe – .NET Global Assembly Cache Utility

The Global Assembly Cache Tool is a console application distributed with the .NET
Framework SDK that allows users and administrators to view and manipulate the contents of
the three .NET Framework caches, the Global Assembly Cache (GAC), the Zap Cache, and
the Download Cache. The GAC holds assemblies installed on the local host that are
available for shared use by other code. The Zap Cache is a sub-cache of the GAC that holds
assemblies that have been precompiled into native machine code. Zap Cache assemblies are
typically Fully Trusted libraries that are used frequently by the CLR itself, so precompilation
boosts performance. The ngen.exe tool can create a native image from an assembly and
install it into the Zap Cache. For more information on this tool, see the .NET Framework
SDK. The Download Cache holds assemblies downloaded from remote sites. When an
assembly is invoked via a URL, a copy is downloaded and temporarily stored in the
Download Cache while it is executing. Although it resides temporarily on the local machine
in this cache, it is granted permissions based on the URL from which it was obtained.

Syntax
gacutil [/silent | /nologo] {option} [{parameters}]

A full list of supported options and their parameters can be displayed using:

gacutil

Tasks

The following tasks can be performed using gacutil.exe:

View cache contents

Add an assembly to the GAC

Delete an assembly from the GAC

Clear the Download Cache

View cache contents

The commands

gacutil /l [{assembly name without file extension}]

gacutil /lr [{assembly name without file extension}]

gacutil /ldl

UNCLASSIFIED

172
UNCLASSIFIED

list the contents of one or more caches in various forms. The /l argument will display all of
the GAC assemblies and Zap Cache executables, or optionally only those with the specified
name. Zap Cache executables will be listed under “The cache of ngen files”. The
/lr argument will also include reference information in the list. GAC references are used to
keep track of assembly dependencies, so that assemblies are not uninstalled while they are
still needed for use by some application. The /ldl argument lists the contents of the
Download Cache.

Add an assembly to the GAC

The commands

gacutil /i myassembly.dll

gacutil /if myassembly.dll

gacutil /ir myassembly.dll {reference scheme} {reference ID}

{reference description}

install the strong named assembly contained in the file myassembly.dll into the GAC.
For multi-file assemblies, the specified file must be the one that contains the assembly
manifest. gacutil.exe requires the assembly name to be the same as the name of the file
(without the file extension). In order for the GAC to make multiple versions of the same
assembly available at the same time, each assembly installed in the GAC must be strong-
named. This provides a unique extended name that is cryptographically tied to the exact
contents of the file and allows assemblies with the same file name to be distinguished. Since
the Windows file system does not recognize strong names, the GAC is currently
implemented by storing similarly named files in different folders. These files are presented
in a merged list through the Assembly Cache Viewer and programming interfaces as if they
were in the same folder.

If the same version of the assembly already exists in the GAC, the installation will not
overwrite it unless the /if argument is used to force the installation.

The /ir option installs the assembly and adds the specified reference information to the
references list in the registry under HKLM\Software\Microsoft\Fusion\References.
If the assembly is already installed in the GAC, it simply adds an additional reference.
References record dependency information by pointing to other assemblies that need to use
the referencing assembly: if assembly app.exe depends on assembly lib.dll, then
lib.dll should be installed with a reference to app.exe. This is useful when installing a
managed application that depends on other shared assemblies. The shared assemblies can be
installed with a reference back to the managed application. Table 24 provides a description
of the reference data values.

UNCLASSIFIED

173
UNCLASSIFIED

Scheme ID Description
FILEPATH The full path to the assembly

that depends on the installed
assembly

Any text

UNINSTALL_KEY Add/Remove Programs token Any text
OPAQUE Any text Any text
WINDOWS_INSTALLER MSI Windows Installer

Table 24. gacutil.exe Reference Data Values.

The reference scheme must be one of the values shown. The meaning of the reference ID
value depends on the specified scheme. A FILEPATH reference can be used to create
references manually or through scripting. The FILEPATH ID value should be the full path to
the referenced assembly. If a partial path is given, then gacutil.exe constructs a full path
as follows:

A value that does not begin with “\” will be appended to the current directory path.
For example, “dir\x” may become “c:\what\example\dir\x”.

A value that begins with “\” will be appended to the current volume. For example,
“\dir\x” may become “c:\dir\x”.

A value that begins with a volume letter will not be changed.

An UNINSTALL_KEY ID value should be the name of a registry key under
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall. This key holds
information about software or data installed through the Add/Remove Programs Control
Panel extension. This type of reference indicates that this assembly should be removed
through a software uninstall via the Add/Remove Programs Control Panel extension.

OPAQUE ID and description values can be any text. These references are not used by the
.NET Framework, but provide a means of storing application-dependent information.
Because the reference records are intended to reflect assembly dependencies, and the
behavior of gacutil.exe is based on this expectation, OPAQUE reference records should
not be used to store other types of metadata.

The WINDOWS_INSTALLER scheme is used by the .NET Framework installation process to
denote assemblies that were added to the GAC when the .NET Framework was installed.
These assemblies should only be removed from the GAC by the .NET Framework’s uninstall
process.

Although the reference description is a required parameter, it can usually take any value.
Reference information cannot differ only by the description field. If a second reference is
specified that matches an existing reference in the scheme and ID values, the description for
the existing reference will be overwritten with the new value.

UNCLASSIFIED

174
UNCLASSIFIED

Installation of a managed application should include adding shared managed libraries to the
GAC with references. This is especially true if the shared libraries may have been added to
the GAC by a previous application install. In such a case, an additional reference record will
be added for the existing library, protecting the new application should the previous
application be uninstalled. When an application is uninstalled, the uninstall of its dependent
libraries should provide the reference data that was specified at install-time. The reference
record will be deleted, but the library will only be removed from the GAC if there are no
more “active” reference records. See the Delete an assembly from the GAC task below for
more details.

Delete an assembly from the GAC

The commands

gacutil /u myassembly,Version=1.2.0.0,Culture=neutral,

PublicKeyToken=1a2b3c4d5e6f7089,Custom=null

gacutil /ur myassembly,Version=2.0.0.0 FILEPATH

“c:\apps\myapp.exe” “myapp”

gacutil /uf myassembly

attempt to remove the assembly myassembly from the GAC. Removal of an assembly from
the GAC if affected by the dependency information recorded in its reference records.
References that contain valid data called “active.” In general, a FILEPATH reference is
active if the ID parameter is the path of an existing file. An UNINSTALL_KEY reference is
active if the ID is the name of an existing subkey of
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall. OPAQUE and
WINDOWS_INSTALLER references are always considered active.

Active references protect an application from being broken by the removal of dependent
libraries. When an assembly has an active reference record, an attempt to remove it from the
GAC will fail (a “force” option can override this). Since assemblies may be uninstalled
without deleting corresponding reference records, these records may become inactive.
Whenever an uninstall is attempted, reference records are cleaned up by the deletion of
inactive references.

The first command shown above provides a full specification of an assembly strong name. If
the specified assembly has been installed in the GAC and has no active references, it will be
removed. If there are active references, it will not be removed, and the active references will
be reported (unless /silent is used).

The second command shown above provides only a partial assembly name. Since multiple
versions of an assembly or assemblies signed with different strong names may coexist in the
GAC, the combination of the simple name myassembly and the version number 2.0.0.0
could match more than one assembly installed in the GAC. For example, several different

UNCLASSIFIED

175
UNCLASSIFIED

software vendors could distribute helper assemblies named Util. Since each version will be
strong named with the vendor’s unique private key, they can coexist in the GAC. When
partial assembly name information is provided, the command will apply to all assemblies
matching the specified information. As with adding an assembly to the GAC, the reference
description value (in this case “myapp”) is required, but not used. Any reference that
matches the scheme and ID values will be removed even if the description does not match the
specified value.

The /ur option attempts to remove the indicated reference. If this is successful and there are
no more active references, the assembly is removed from the GAC as well.
WINDOWS_INSTALLER references cannot be removed by gacutil.exe. Assemblies with
this type of reference will be removed during an uninstall of the .NET Framework version
with which they were distributed.

The third command shown above also provides only a partial assembly name. The command
shown will attempt to remove all assemblies that have the name myassembly. The /uf
option (force) attempts to remove even those with active references. This will fail for
assemblies with WINDOWS_INSTALLER references, as these references cannot be removed.

The command

gacutil /ungen myassembly

removes any native images for assemblies with the name myassembly from the Zap Cache.
The ngen.exe tool that comes with each .NET Framework version must be used to add
assemblies to the Zap Cache. See the .NET Framework SDK for more information on this
tool.

Example

gacutil /i WebCommerce.exe

gacutil /ir ShoppingCart.dll FILEPATH

“c:\www.example.com\WebCommerce.exe” WebCommerce

gacutil /ir Calculator.dll FILEPATH

“c:\www.example.com\WebCommerce.exe” WebCommerce

gacutil /i BudgetMaker.exe

gacutil /ir Calculator.dll FILEPATH

“c:\www.example.com\BudgetMaker.exe” BudgetMaker

A managed application WebCommerce.exe depends on ShoppingCart.dll and
Calculator.dll. After WebCommerce.exe is installed in the GAC,

UNCLASSIFIED

176
UNCLASSIFIED

ShoppingCart.dll and Calculator.dll are also installed with references to
WebCommerce.exe. Another managed application BudgetMaker.exe also depends on
Calculator.dll. After BudgetMaker.exe is installed in the GAC, Calculator.dll
is installed with a reference to BudgetMaker.exe. Since Calculator.dll is already
installed in the GAC, a second reference is recorded for this library.

The following commands will uninstall the application WebCommerce.exe:

gacutil /ur Calculator.dll FILEPATH

“c:\www.example.com\WebCommerce.exe” WebCommerce

gacutil /ur ShoppingCart.dll FILEPATH

“c:\www.example.com\WebCommerce.exe” WebCommerce

gacutil /u WebCommerce.exe

The first command will remove the reference to WebCommerce.exe from Calculator.dll.
Since this is not the only reference (there is also the reference to BudgetMaker.exe),
Calculator.dll will not be removed from the GAC. Next, the reference will be removed from
ShoppingCart.dll. Since this was the only reference, ShoppingCart.dll will then be removed
from the GAC. Lastly, the application WebCommerce.exe will be removed from the GAC.

By keeping track of references that record assembly dependencies, the GAC supports the use
of shared assemblies in a more robust way. Assemblies do not have to be aware of the
dependency requirements of other assemblies.

Clear the Download Cache

The command

gacutil /cdl

will remove all the assemblies from the Download Cache.

migpol.exe – CAS Policy Migration Tool

migpol.exe is a console application available in .NET Framework version 1.1. This tool
allows the administrator to migrate Enterprise and Machine level CAS policy from one
version of the .NET Framework to another.

Syntax
migpol {-migrate {toVersion} [{fromVersion}] | -listversions}

UNCLASSIFIED

177
UNCLASSIFIED

A full list of supported options can be displayed using:

migpol

Tasks

The following tasks can be performed using migpol.exe:

List the .NET Framework versions installed

Migrate CAS policy from one .NET Framework version to another

List the .NET Framework versions installed

The command

migpol –listversions

displays the versions of the .NET Framework installed on the current host.

Migrate CAS policy from one .NET Framework version to another

The commands

migpol –migrate 1.0.3705 1.1.4322

migpol –migrate 1.1.4322 1.0.3705

migpol –migrate 1.1.4322

attempt to migrate Enterprise and Machine CAS policy from one .NET Framework version to
another. The first command shown above attempts to migrate policy from the newer version
(1.1.4322) to the older version (1.0.3705), while the second command attempts to migrate
CAS policy from the older version to the newer version. The third command assumes that
only two versions of the .NET Framework have been installed. The CAS policy of the
specified version will be updated to match the policy of the unspecified version. If more than
two versions of the .NET Framework are installed, the source version must be specified or
migpol.exe will fail and report an error message. Because migpol.exe will overwrite the
existing CAS policy files, both the source and the target policies should be backed up before
running migpol.exe.

Recommendation: Back up both the source and the target CAS policies at the
Enterprise and Machine levels before running migpol.exe.

The CAS policy system can be extended by the development of custom Code Group,
Membership Condition, or Permission types. This is not the same as defining a new Code
Group or Named Permission Set, but involves the use of custom software. For example, an

UNCLASSIFIED

178
UNCLASSIFIED

assembly could be developed that defines a new type of Code Group beyond the built-in
Union, First Match, File, and Net Code Group types. The assemblies that define these types
must be strong-named and recorded as policy extension assemblies (see the Add a policy
assembly task under mscorcfg.msc or caspol.exe for details). Extending the CAS
policy system may prevent policy migration through migpol.exe. If either the Enterprise
or Machine level policy of either the source .NET Framework version or the target .NET
Framework version contains a custom Code Group type or a standard Code Group with a
custom Membership Condition, migpol.exe will not migrate the policy (although it will
still report “success”). In contrast, if the only custom CAS policy extensions are custom
Permission types, they will be simply discarded from the migrated policy. Named
Permission Sets that contain the custom Permission types will be migrated without the
custom types.

After running migpol.exe, check the resulting migrated policy to ensure that it conforms to
any organizational security policy and that the migrated policy represents an appropriate
configuration for the target version of the .NET Framework. Do not assume that an
organizational policy-conforming CAS policy migrated via migpol.exe will remain
conforming after migration. migpol.exe is an aid to maintaining policy consistency across
versions of the .NET Framework that should be used in conjunction with administrative
review.

Recommendation: Review any policy migrated using migpol.exe to ensure that it
conforms to organizational security policy.

When version 1.1 of the .NET Framework is installed, migpol.exe will be executed silently
as part of this installation process to migrate from version 1.0.3705, if possible. Results will
be as described above – if custom policy extensions are found, migration will not be possible.

mscorcfg.msc – .NET Framework Configuration Tool

mscorcfg.msc is a Microsoft Management Console snap-in. A wide variety of
administrative tasks may be performed using this tool. This is the primary means of
administrating the .NET Framework. Each version of the .NET Framework comes with a
version of mscorcfg.msc built to administer that version of the .NET Framework. When
using this tool to perform security-related tasks, changes will only be made to a single
version of the .NET Framework.

See Appendix B for a detailed discussion of the tasks available using mscorcfg.msc.

PermCalc.exe - Minimum Grant Set Determination Tool

PermCalc.exe calculates the least permission set an assembly must be granted to execute
properly. The PermCalc.exe tool in .NET 2.0 replaces the permview.exe tool that is
distributed with .NET version 1.1 and 1.0. The permview.exe tool is used to view the
minimal, optional and refused permission set whereas the PermCalc.exe tool computes the

UNCLASSIFIED

179
UNCLASSIFIED

minimum permission set required. The PermCalc.exe tool analyzes all the code paths in
all related application assemblies, including all dependency assemblies. To determine the
minimum permission set the tool creates a simulated call stack of the application starting
from the entry point to all code paths through all application assemblies. In addition the
shared and system libraries related to the assembly are also analyzed. PermCalc.exe also
verifies the existence of link demands, declarative demands, and declarative stack walk
modifiers.

PermCalc.exe is distributed with the .NET Framework SDK. This Minimum Grant Set
Determination tool analyzes assemblies to estimate the permissions callers should be granted
to access the public entry points.

Syntax
PermCalc [options] assemblyName [assemblyDependencyName]

A full list of supported options can be displayed using:

PermCalc -?

Tasks

The following tasks can be performed using permcalc.exe:

Report the minimum permission sandbox

Include the call stack in the output

Use the Internet zone permissions as an estimate

Underestimate the permission set

PermCalc.exe can also be executed from Visual Studio 2005 by viewing the project
settings.

Report the minimum permission sandbox

The command

PermCalc –Sandbox assemblyName

will return the minimum permission sandbox that and assembly can run in. The default
option of the PermCalc.exe tool is to report the permissions required by entry point callers.

Include the call stack in the output

The command

UNCLASSIFIED

180
UNCLASSIFIED

PermCalc –Stacks assemblyName

outputs the simulated call stack of the assembly to show the source of permission demands in
an XML document. The results include all methods that are called in the assembly from the
entry point forward.

Use the Internet zone permission as an estimate

The command

PermCalc –Internet assemblyName

will use the Internet zone permission where an exact permission set can not be determined.
The default Internet zone permission set provides the following permissions:

File Dialog
Isolate Storage File
Security
User Interface
Printing

Underestimate the permission set

The command

PermCalc –Under assemblyName

will try to underestimate an assembly’s permission set where an exact permission set can not
be determined. The default behavior of the PermCalc.exe tool is to overestimate when the
exact permissions can not be determined.

permview.exe – .NET Framework Permission Request
Viewer

permview.exe is distributed with the .NET Framework SDK. It is a console application
that displays the permission requests made by an assembly, as well as the declarative
permission constraints that ensure a specific security environment at various points in the
code’s execution.

Syntax
permview [/output {output file}] [/decl] {assembly file name}

A full list of supported options can be displayed using:

permview

UNCLASSIFIED

181
UNCLASSIFIED

For multi-file assemblies, the file name given must be the name of the file containing the
assembly manifest. The /decl argument will also include the declarative permission
constraints embedded in the code.

Tasks

The following tasks can be performed using permview.exe:

View an assembly’s permission requests and declarative permission constraints

View an assembly’s permission requests and declarative permission constraints

permview myapp.exe

permview /decl myapp.exe

The first example shown above displays the minimal, optional, and refused permission
requests contained in the metadata for the assembly myapp.exe. The second example
displays the permission request sets and also the declarative permission constraints at various
points in the program. Each permission constraint is identified by the code component that
declares the constraint, the permission involved, and what type of security environment is
being checked or imposed. Some constraints (Assert, Demand, LinkDemand, and
InheritanceDemand) seek to guarantee access to a resource. Of these, Assert is the only one
that can actually modify the security environment. The others simply check for the existence
of a prior constraint. Other constraints (Deny and PermitOnly) seek to guarantee that a
resource cannot be accessed and can modify the security environment. See the .NET
Framework SDK for details on these declarative security constraints.

peverify.exe – .NET Framework PE Verifier

peverify.exe is distributed with the .NET Framework SDK. It is a console application
that determines whether an assembly is safe to run, that is, whether it can be effectively
managed by the CLR or not. The CLR will refuse to execute code that fails the verification
process, unless it has been given the Skip Verification permission. This tool can be used to
determine whether an assembly’s safety can be verified. An assembly may in fact be safe,
even though the CLR (or peverify.exe) cannot verify that this is true.

Recommendation: Although an assembly may be safe even though it fails
peverify.exe, do not allow unverifiable code to execute in an operational
environment by granting the Skip Verification permission unless the code is from a
highly trusted source.

Syntax
peverify {assembly file} [{option1}] [{option2}] ...

UNCLASSIFIED

182
UNCLASSIFIED

A full list of supported options can be displayed using:

peverify

The /quiet option will suppress all output except a one-line pass/fail message.

Tasks

The following tasks can be performed using peverify.exe:

Validate and verify an assembly

Validate and verify an assembly

peverify lib.dll /md

peverify lib.dll /il

The first command shown above validates the file and metadata structures of the assembly
lib.dll. The second command validates the file structure and verifies the code in
lib.dll for safety.

peverify lib.dll

peverify lib.dll /md /il

The first command shown above validates the file and metadata structures of the assembly
(as with the /md option) and, if no errors are found, verifies the code (as with the /il
option). To force both checks to be done, use the second command shown above.

regedit.exe – Registry Editor

regedit.exe is useful as a console application to modify .NET Framework registry
settings.

Syntax
regedit /s {registry file}

Tasks

The following tasks can be performed with regedit.exe:

Change a registry setting from the console

UNCLASSIFIED

183
UNCLASSIFIED

Enable or disable the Assembly Cache Viewer

Change a registry setting from the console

The command

regedit /s settings.reg

will merge the registry settings in settings.reg with the Windows registry. The specified
file must be a registry script such as those created using the Registry | Export Registry
File… pull-down menu option in the graphical interface to regedit.exe.

Enable or disable the Assembly Cache Viewer

To disable the Assembly Cache Viewer, and display the Windows folder tree when viewing
the GAC, merge the following registry script using regedit.exe:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\Software\Microsoft\Fusion]

"DisableCacheViewer"=dword:00000001

To enable the Assembly Cache View, replace the script value with 00000000 and merge the
script.

secutil.exe – Microsoft .NET Framework Security Utility

secutil.exe is distributed with the .NET Framework SDK. It is a console application that
displays properties of the strong name or Authenticode digital signature of an assembly.

Syntax
secutil [{–c | –v | -hex}] {-s | -x} {assembly file}

The above syntax description is the effective result of the full syntax specification. Some
alternative parameter names exist. The list of valid parameters can be displayed on the
command line using:

secutil

The optional output formats are designed to facilitate cutting and pasting the output into
program source code. Available formats are C/C++/C# array initialization syntax (-c),
Visual Basic array initialization syntax (-v), and hexadecimal (-hex). Hexadecimal format
is the most compact and readable for administrative purposes. The default format is
C/C++/C# array initialization syntax.

UNCLASSIFIED

184
UNCLASSIFIED

Tasks

The following tasks can be performed using secutil.exe:

View an assembly’s strong name

View an assembly’s publisher certificate

View an assembly’s strong name

The command

secutil –hex -s assembly.dll

displays the strong name information for assembly.dll, or an error message if the specified
assembly is not strong-named or its strong name cannot be verified. Since the -hex format
is specified, the public key token will be displayed as a hexadecimal string.

secutil.exe will display the strong name information for a delay-signed assembly only if
the assembly has been registered for strong name simulation. For more information, see the
Register an assembly for strong name simulation task under sn.exe below.

View an assembly’s publisher certificate

The command

secutil –hex -x assembly.dll

displays the X.509 software publisher’s certificate for assembly.dll, or an error message if the
specified assembly is not Authenticode signed. The certificate will be displayed as a
hexadecimal string.

setreg.exe – Software Publishing State Tool

setreg.exe is distributed with the .NET Framework SDK. It is also available in most
server versions of the Windows operating system. It is a console application that modifies
registry settings (Software Publishing State keys) that govern how Authenticode digital
signatures are verified. These settings affect how Publisher Membership Conditions are
evaluated, which can affect CAS policy application.

Syntax
setreg [-q] [{<setting number> {true | false}] ...}]

A full list of supported setting numbers can be displayed using the command

UNCLASSIFIED

185
UNCLASSIFIED

setreg -?

Every time setreg.exe is executed, it will display the Software Publishing State settings
that are current after it has made any specified modifications, unless the -q option is used.
An individual setting may be modified by specifying a setting number followed by the
argument true or false (case-insensitive). Multiple settings may be changed with a single
command by including more than one set of these values. For example, the command

setreg 9 true 10 false

will set setting 9 (Check the revocation list on time stamp signer) to true and setting 10
(Only trust items found in the Personal Trust Database) to false.

Tasks

The following tasks can be performed using setreg.exe:

View publisher certificate verification settings

Adjust publisher certificate verification settings

View publisher certificate verification settings

The command

setreg

will display the current Software Publishing State settings and take no other action.

Adjust publisher certificate verification settings

Table 25 illustrates the use of setreg.exe to modify Software Publishing State settings:

Task Command
Disable trust for the Test Root setreg 1 false

Enable certificate expiration checking setreg 2 true

Enable certificate revocation checking setreg 3 true

Disable revocation server fallback for individual and
commercial publisher’s certificates

setreg 4 false 5 false

Disable Java revocation server fallback for individual and
commercial publisher’s certificates

setreg 6 false 7 false

Disable trust for “Version 1 Signed Objects” setreg 8 true

Enable time stamp signature revocation checking setreg 9 true

Enable trust only for software publishers in the Personal
Trust Database

setreg 10 true

Table 25. setreg.exe Command Examples.

UNCLASSIFIED

186
UNCLASSIFIED

SignTool.exe – Microsoft .Net Framework Sign Tool

Signtool.exe is distributed with the .NET 2.0 Framework SDK. It is a command-line tool
that gives users and administrators the ability to digitally sign files, verify signatures in files
and time stamp files. The signing tool requires a publisher to prove its identity to a third-
party authority and obtain a certificate. This certificate is then embedded in your file and can
be used by an administrator to decide whether to trust the code's authenticity.
SignTool.exe replaces the chktrust.exe tool distributed in .NET 1.0 and 1.1.

Syntax
signtool [command] [options] [file_name | …]

Tasks

The following tasks can be performed using SignTool.exe:

Add or remove a catalog file to or from a catalog database

Digitally sign files

Launch the signing wizard

Time stamp files

Verify the digital signature of files

Add or remove a catalog file to or from a catalog database

The commands

Signtool catdb /d

 Signtool catdb /g GUID

 Signtool catdb /r

 Signtool catdb /u

The catdb command allows a user to add or remove catalog files to or from a catalog
database. Catalog databases are used for automatic lookup of catalog files, and are identified
by globally unique identifier (GUID). Catalog files specify that a given set of files belongs
to the same logical group of files. Catalog files are used to avoid multiple trust dialog boxes
when users download software components from the Internet. Trust dialog boxes are modal
security warnings that prompt users before software is installed on their computers.

UNCLASSIFIED

187
UNCLASSIFIED

The first command specifies that the default catalog database is updated. The second
command specifies that the catalog database identified by the GUID is updated. The sign tool
will update the system component and driver database if the /d or /g option is not specified.
The third command removes the specified catalog from the catalog database. The last
command specifies that a unique name is automatically generated for the added catalog files.

Digitally sign files

The commands

Signtool sign /a

 Signtool sign /c CertTemplateName

 Signtool sign /csp CSPName

 Signtool sign /d Desc

 Signtool sign /du URL

 Signtool sign /f SignCertFile

 Signtool sign /i IssuerName

 Signtool sign /k PrivKeyContainerName

 Signtool sign /p Password

 Signtool sign /s StoreName

 Signtool sign /sha1 Hash

The sign option of the SignTool.exe digitally signs files with an existing certificate. The
makecert.exe tool can be used to make certificates for test purposes. All of the above
commands specify different options to sign files. The sign option allows the user many
options to identify the certificate in which to sign a file with. Some of the options include
identifying a file, hash, or the store name to locate the certificate. For example, the command
SignTool.exe sign /a assemblyName.dll will automatically select the best signing
certificate.

Launch the signing wizard

The commands

Signtool signwizard

The signwizard command will launch the GUI signing wizard.

Time stamp files

UNCLASSIFIED

188
UNCLASSIFIED

The commands

Signtool timestamp /t URL

The above command specifies the URL of the time stamp server. In addition, the file that is
being time stamped must be signed before running the time stamp command.

Verify the digital signature of files

The commands

Signtool verify /a

 Signtool verify /c mycat.myCatFile.ini

The SignTool.exe verifies that a certificate used to sign a file was derived from a trusted
certificate authority. The first command specifies that all methods of finding the digital
signature will be searched. First, the catalog databases are searched. If the file is not signed
in a catalog, then SignTool.exe attempts to verify the embedded signature to verify the
file. The second command verifies a system file that is signed in a user specified catalog.

sn.exe – .NET Framework Strong Name Utility

sn.exe is distributed with the .NET Framework SDK. It is a console application that is
used to strong name an assembly, enroll a delay-signed assembly to simulate a full strong
name in the context of a development environment, or perform other strong-name related
tasks.

Syntax
sn [-q] {option} [{option parameters}]

The list of valid parameters can be displayed on the command line using:

sn

The –q option turns off all output except error messages.

Tasks

The following tasks can be performed using sn.exe:

Enroll an assembly for strong name simulation

Withdraw an assembly from strong name simulation

List assemblies enrolled for strong name simulation

UNCLASSIFIED

189
UNCLASSIFIED

Verify an assembly’s strong name

View the public key token corresponding to the public key in an assembly’s manifest

Strong name an assembly

Set the CSP used by the CLR when strong-naming assemblies

Enroll an assembly for strong name simulation

sn –Vr {{assembly filename} or * or *,{public key token}}

[{user1,user2,...}]

This command adds an entry to the list of assemblies enrolled for strong name simulation.
The list is maintained as a set of registry keys under
HKLM\Software\Microsoft\StrongName\Verification. The assembly filename
must be the name of a file that contains an assembly manifest, typically, the assembly file
itself. The assembly name that is enrolled is the name of the assembly as contained in the
manifest, which is not necessarily the name of the file. The named file must be able to be
opened by sn.exe, as it reads the assembly name from the manifest. Multiple entries may
be created for the same assembly name as long as the public key tokens are different.

Unless a list of users is specified, an entry will be applied to all logged on users. Once an
entry is added for an assembly, additional users cannot be incrementally added. Each time an
entry is created for an assembly and public key token pair, it overwrites any previously
enrolled entry with the same parameters, including the list of targeted users.

sn -Vr lib.dll alice,bob

The example shown above will create an entry that corresponds to the assembly name and
the public key token contained in the assembly’s manifest. Strong name verification will be
simulated only when alice or bob is logged on.

sn -Vr *,1a2b3c4d5e6f7890 alice,bob

sn -Vr *

The first example shown above will create an entry that applies to any assembly delay signed
with the given public key (as before, only when alice or bob is logged on). The second
example applies to all assemblies for all users. All delay signed assemblies will be
considered fully strong named for the purposes of CAS policy.

Withdraw an assembly from strong name simulation

sn –Vu {{assembly filename} or * or *,{public key token}}

UNCLASSIFIED

190
UNCLASSIFIED

This command removes an entry from the list of assemblies enrolled for strong name
simulation. If more than one entry exists for an assembly filename (with different public key
tokens), the entry that corresponds to the public key token contained in the manifest in the
given file will be removed.

Withdrawal cannot be applied to individual users. To withdraw an assembly for a specific
subset of the users listed in an entry, use the Enroll an assembly for strong name simulation
task (-Vr) to overwrite the entry with one that omits the desired set of users.

List assemblies enrolled for strong name simulation

sn -Vl

This command lists the assemblies and/or keys enrolled for strong name simulation, and the
user accounts in which the list entries will be applied.

Verify an assembly’s strong name

sn -v lib.dll

sn -vf lib.dll

The first command shown above verifies the strong name of the assembly whose manifest is
contained in the file lib.dll. If the assembly has been delay signed, this will only succeed if
the assembly has been registered for strong name verification skipping for the currently
logged-on user. If the assembly has been strong named and the contents of the assembly
have been corrupted or modified, this will not succeed.

The second command shown above will verify the strong name of the assembly even if it has
been registered for strong name verification skipping for the logged-on user. In this case, a
delay signed assembly will fail the verification check.

Note that in quiet mode (-q), there is no output on success.

View the public key token corresponding to the public key in an assembly’s manifest

sn -T lib.dll

The public key token is the last 8 bytes in reverse order of the SHA-1 hash of the public key
data.

Strong name an assembly

sn -R control.dll KeyPair_WebControls.snk

sn -Rc spreadsheet.exe StrongNameKeys_OfficeAutomationApps

UNCLASSIFIED

191
UNCLASSIFIED

The first command shown above strong names the assembly contained in the file
control.dll using the public/private key pair contained in the file
KeyPair_WebControls.snk. If the assembly has already been strong-named, or has been
delay signed, the strong name is replaced by one using the specified keys.

The second command shown above strong names the assembly contained in the file
spreadsheet.exe using the public/private key pair contained in the key container named
“StrongNameKeys_OfficeAutomationApps.”

Set the CSP used by the CLR when strong-naming assemblies

sn –c “Microsoft Enhanced Cryptographic Provider v1.0”

This command sets the CSP used to strong name assemblies to the Enhanced Provider. The
text argument is a cryptographic service provider friendly name stored in the registry under
HKLM\Software\Microsoft\StrongName\CSP. Possible values for this registry key are the
friendly names associated with each installed cryptographic service provider, for example,
“Microsoft Base Cryptographic Provider v1.0,” “Microsoft Enhanced Cryptographic
Provider v1.0,” or “Microsoft Strong Cryptographic Provider.” If the registry key does not
exist, the default CSP is used. This default can vary from system to system. If no CSP name
is specified, the registry key is deleted, and subsequent attempts to strong name assemblies
will use the default CSP.

storeadm.exe – .NET Framework Isolated Storage Tool

storeadm.exe is a console application distributed with the .NET Framework SDK that can
be used to display or remove the Isolated Storage data stores that have been created by
managed code running in the current user’s process.

Syntax
storeadm [/quiet] [/roaming] [/list] [/remove]

The list of valid parameters can be displayed on the command line using:

storeadm

The /quiet parameter turns off all output except error messages.

Tasks

The following tasks can be performed using storeadm.exe:

List all local or roaming data stores associated with the current user

Remove all local or roaming data stores associated with the current user

UNCLASSIFIED

192
UNCLASSIFIED

List all local or roaming data stores associated with the current user

The commands

storeadm /list

storeadm /roaming /list

list all local and roaming data stores for the current user, respectively.

Remove all local or roaming data stores associated with the current user

The commands

storeadm /remove

storeadm /roaming /remove

removes all local and roaming data stores for the current user, respectively. storeadm.exe
cannot be used to selectively remove individual data stores. Note that if /list and
/remove are both used in the same command, the tasks will be performed in the order in
which the parameters appear.

Summary

This presentation of guidelines for the performance of common security-related tasks using
specific tools is intented to serve as a brief summary in one location of the administrative use
of the diverse set of .NET Framework tools. In addition, some additional administrative
guidance was included where relevant.

Recommendations in This Section

Recommendation: Make Code Group names unique across the entire Code Group
tree for any given CAS policy level.

Recommendation: Back up both the source and the target CAS policies at the
Enterprise and Machine levels before running migpol.exe.

Recommendation: Review any policy migrated using migpol.exe to ensure that it
conforms to organizational security policy.

UNCLASSIFIED

193
UNCLASSIFIED

Recommendation: Although an assembly may be safe even though it fails
peverify.exe, do not allow unverifiable code to execute in an operational
environment by granting the Skip Verification permission unless the code is from a
highly trusted source.

UNCLASSIFIED

194
UNCLASSIFIED

Appendix

B
mscorcfg.msc – The .NET Framework
Configuration Tool
The .NET Framework Configuration Tool (mscorcfg.msc) is a Microsoft Management
Console snap-in that allows an administrator to perform common tasks associated with
configuring and managing .NET applications and their components. mscorcfg.msc
automates the modification of select portions of various XML files, helping to maintain the
internal consistency of the XML data. When making configuration changes through this
tool, it is not necessary to explicitly save changes; modifications are written immediately to
the XML files with no rollback or undo function available.

Recommendation: Create frequent backups of configuration files administered
using mscorcfg.msc. This can be done by making a copy of the CONFIG folder
for each installed version of the .NET Framework. For hosts with specialized
policy-driven configurations, copies of these files should be stored away from the
host to facilitate recovery and restoration of host operation.

mscorcfg.msc only assists with a select subset of the configuration data. The tasks
available through the tool are organized under five console tree nodes, as shown in Figure 46:

Figure 46. The .NET Framework Configuration Console (mscorcfg.msc).

UNCLASSIFIED

195
UNCLASSIFIED

The following list summarizes the content of the five console tree nodes. Each node is
described more fully later.

 Assembly Cache – The assembly cache is a virtual folder that contains assemblies shared
by multiple .NET applications. Unlike the System32 folder for DLLs in Microsoft
Windows, this virtual folder allows the presentation of different versions of the same
assembly. In order to provide assurance of the integrity of shared assemblies as well as
to uniquely identify assemblies that have the same library name, only strong-named
assemblies may be installed in the cache. This console tree node contains tasks to view
and modify the contents of the cache. The assembly cache is also known as the Global
Assembly Cache (GAC).

 Configured Assemblies – Configured assemblies are assemblies within the GAC that
have an associated Binding Policy and CodeBase. A Binding Policy redirects requests
for one version of an assembly to a different version. The CodeBase determines where
each specified version of an assembly is to be obtained. This console tree node contains
tasks related to viewing and modifying the Binding Policy and CodeBase properties of
assemblies.

 Remoting Services – The .NET Framework isolates applications in application domains,
analogous to the process isolation enforced by the Windows operating system. Each
operating system process that is providing an execution environment for managed code
may contain multiple application domains. Remoting Services provides support for
authorized communications between .NET Framework applications running in different
application domains, whether those application domains are hosted by the same operating
system process, by different processes, or even on different computers in the local
network or Internet. This console tree node contains tasks relating to configuring
channels for inter-application domain communication. Some additional Remoting
Services tasks are available through the Applications node described below.

 Runtime Security Policy – Code running in the .NET Framework execution environment
is subject to a fine grained security policy that controls access to protected resources.
The policy defines an access control matrix of code subjects administratively defined by
evidence and resource objects and associated permissions defined by the extensible .NET
Framework policy infrastructure. This console tree node contains tasks related to policy
creation and deployment, and extension of the policy infrastructure through the
specification of custom policy enforcement components. Runtime Security Policy is
more commonly known as Code Access Security (CAS) policy.

 Applications – .NET Framework applications are built from one or more assemblies.
Most applications depend on several of the Common Language Runtime library
assemblies provided with the .NET Framework. The component and dependent
assemblies of an application can be viewed through this console tree node. The tasks
described in the Configured Assemblies console tree node above can be performed on
each component assembly, including shared assemblies. In addition, application-specific
Remoting Services tasks can be performed to specify the application components that
will handle communications across application domain boundaries.

UNCLASSIFIED

196
UNCLASSIFIED

In addition to the above tasks, the root console tree node “My Computer” contains the .NET
Framework version’s Garbage Collection Mode property. This specifies a default mode for
applications that do not specify their own preference in an application configuration file. See
the .NET Framework SDK for information about this performance-related setting.

Each version of the .NET Framework comes with a version of mscorcfg.msc hard-coded to
configure that version. In order to prevent inadvertent misconfiguration when multiple
versions of the .NET Framework are installed, it is recommended that any shortcuts to
mscorcfg.msc be renamed to indicate which .NET Framework version they are used to
administer.

Recommendation: Rename any shortcut to mscorcfg.msc to reflect the version of
the .NET Framework it is designed to configure. Example: “mscorcfg
v1.1.4322”

 Assembly Cache

The Assembly Cache node manages all assemblies located in the GAC. The administrator
can add or remove assemblies from the GAC, or view a list of all assemblies in the GAC.

Assembly Cache Tasks

The following tasks can be performed under the Assembly Cache node:

View cache contents

Add an assembly to the GAC

Delete an assembly from the GAC

View properties of an assembly installed in the GAC

View cache contents

To view the contents of the GAC:

Select the Assembly Cache node in the console tree pane and click on View List
of Assemblies in the Assembly Cache in the details pane on the right

or

Right-click on the Assembly Cache node and select View, Assemblies from the
context menu

or

UNCLASSIFIED

197
UNCLASSIFIED

Select View, Assemblies from the menu bar.

The details pane on the right will display the assemblies in the GAC. The columns displayed
may be modified by selecting View, Choose Columns… from the menu bar. Figure 47
shows the list of assemblies in the GAC as displayed in mscorcfg.msc. The four
displayable columns are the components of a strong name. Each assembly in the GAC is
uniquely identified by the combination of all four values:

Assembly Name. Each assembly is represented by an icon indicating whether the
assembly is processor-independent CIL (Common Intermediate Language, a.k.a.,
MSIL/Microsoft Intermediate Language) or has been pre-compiled into native
executable code. Managed code is typically in CIL which is compiled into native
executable code only as needed by the CLR’s Just-In-Time (JIT) compiler. Native
code assemblies are in a special cache called the Zap cache, which is displayed with
the GAC.

 Assembly contains CIL code.

 Assembly is pre-compiled into native executable code.

Version. The four components of an assembly’s version are the major version, minor
version, build number, and revision number.

Locale. This is also known as the assembly’s culture. This refers to language,
date/time formatting, and other aspects of the user interface that are not content-
related. A neutral culture will use the default culture information for the local .NET
Framework installation.

Public Key Token. This is a 64-bit (8-byte) hash of the public key, generated to save
space. The actual public key may be much larger – a 1,024-bit/128-byte RSA key is
not uncommon.

UNCLASSIFIED

198
UNCLASSIFIED

Figure 47. GAC Display in mscorcfg.msc.

Add an assembly to the GAC

Administrators (either local, domain, or enterprise) may add strong-named assemblies to the
GAC. Since the GAC is intended to hold multiple versions of the same assembly as well as
shared assemblies from a variety of sources, the strong name requirement ensures that
different versions of the same assembly and assemblies with the same name (e.g.,
“helper.dll” or “util.dll”) from different sources will be distinguished. To add an assembly to
the GAC:

Select the Assembly Cache node in the console tree pane and click on Add an
Assembly to the Assembly Cache in the details pane on the right

or

Right-click the Assembly Cache node and select Add…

or

Select Action, Add… from the menu bar.

Browse in the Open File dialog box to the assembly to add to the GAC and click
Open. An error will be produced if the selected file is not a strong-named assembly
or the logged on user does not have administrative privileges.

Delete an assembly from the GAC

Although the details pane for the Assembly Cache node does not display the option to
remove an assembly from the GAC, this task may be performed when the list of assemblies
in the GAC is being displayed. Administrative privilege (either local, domain, or enterprise)
is needed to remove an assembly from the GAC. To remove an assembly from the GAC:

UNCLASSIFIED

199
UNCLASSIFIED

View the list of assemblies in the GAC.

Right-click the assembly to be removed and select Delete from the context menu

or

Highlight the assembly to be removed and select Action, Delete from the menu bar.

Assemblies, such as the CLR libraries, installed in the GAC when the .NET Framework was
installed cannot be removed. Only assemblies installed by the administrator can be removed.
Assemblies removed from the GAC’s virtual directory have not been deleted from the file
system. They reside in their original installation directory. To completely remove the
assembly from the host computer, simply delete the assembly’s files from its installation
directory.

View properties of an assembly installed in the GAC

View the list of assemblies in the GAC.

Right-click on the assembly and select Properties.

The Properties dialog box will display the following details about an assembly:

Assembly’s strong name components: Name, Version, Culture, and Public key token.

Date the assembly was last modified. Some assemblies do not display this data.

Codebase: This is the assembly’s installation directory. This path can be used to
completely remove an assembly from the local machine. Removing an assembly
from the GAC will not delete it from this directory. Some of the CLR libraries do not
display Codebase data.

Cache type: “Gac” or “Zap”. The GAC is the virtual repository for managed code.
The Zap Cache is the virtual repository for assemblies pre-compiled into native
executables.

 Configured Assemblies

Configured assemblies are assembly version families that have an associated Binding Policy
and CodeBase. A Binding Policy allows the administrator to redirect references to one
version of an assembly to a different version of the same assembly. The CodeBase is a list of
assembly locations that allows the administrator to specify the URLs from which particular
redirected versions of an assembly are to be obtained. These locations could be local or
remote, including the Internet.

UNCLASSIFIED

200
UNCLASSIFIED

The Binding Policies and CodeBases for assembly families are stored in the .NET
Framework configuration file machine.config. Each version of the .NET Framework has
its own configuration file and must be configured separately. The default installation of the
.NET Framework does not include any assembly configurations.

In order to identify versioning families of assemblies, the assemblies should be strong-
named. Binding Policy and CodeBase settings will apply to all versions of an assembly
having the same assembly name and public key.

Configured Assemblies Tasks

The following tasks can be performed under the Configured Assemblies node:

View the list of configured assemblies

Configure an assembly

Delete the configuration information for an assembly

View the list of configured assemblies

To view the list of configured assemblies:

Select the Configured Assemblies node in the console tree and click on View
List of Configured Assemblies in the details pane on the right

or

Right-click on the Configured Assemblies node and select View, Assemblies
from the context menu

or

Select the Configured Assemblies node in the console tree and select View,
Assemblies from the menu bar.

The details pane on the right will display the configured assemblies. The columns displayed
may be modified by selecting View, Choose Columns… from the menu bar.

Configure an assembly

Before an assembly can be configured, it must be added to the list of configured assemblies.
This will create an entry in the .NET Framework version’s machine.config file. Once
this is done, the Binding Policy and CodeBase settings may be configured through the
Properties dialog box.

To add an assembly to the list of configured assemblies:

UNCLASSIFIED

201
UNCLASSIFIED

Select the Configured Assemblies node in the console tree and click on
Configure an Assembly in the details pane on the right.

or

Right-click on the Configured Assemblies node and select Add… from the
context menu.

or

Select the Configured Assemblies node and select Action, Add… from the
menu bar.

Select the assembly to configure using the Configure an Assembly dialog box (Figure
48) and click Finish. The assembly may be selected from the GAC (by clicking
Choose Assembly…) or the information can be entered manually.

Once the assembly has been identified, the Properties dialog box is displayed, and the
assembly may be immediately configured. See Using the Properties dialog box
below for details.

Figure 48. Adding a Configured Assembly.

To invoke the Properties dialog box for an assembly that is already on the list of configured
assemblies:

Display the list of configured assemblies. See the View the list of configured
assemblies task above for more details.

Right-click on the desired assembly and select Properties from the context menu

or

UNCLASSIFIED

202
UNCLASSIFIED

Select the desired assembly and select Action, Properties from the menu bar.

Using the Properties Dialog Box

The Binding Policy and CodeBase settings can be configured through the Properties dialog
box. The General tab (Figure 49) simply shows the assembly name and public key token,
and does not contain configurable information:

Figure 49. Assembly Properties Dialog Box – General Tab.

The Binding Policy tab (Figure 50) allows the configuration of a set of version redirection
entries. A request for a version specified in the Requested Version column will be
redirected to the version specified in the New Version column:

Figure 50. Assembly Properties Dialog Box – Binding Policy Tab.

UNCLASSIFIED

203
UNCLASSIFIED

For example, if version 1.2.0.0 of the assembly is compatible with any application that used
version 1.1.0.0, and the use of version 1.1.0.0 has been disallowed by policy, then a Binding
Policy could be configured to redirect all references to version 1.1.0.0 of the assembly to
version 1.2.0.0.

Binding Redirection is not chained. If one entry redirects version 1.0.0.0 to version 2.0.0.0,
and another entry redirects version 2.0.0.0 to version 3.0.0.0, then the entries will not be
chained to redirect version 1.0.0.0 to version 3.0.0.0.

The CodeBases tab (Figure 51) allows the specification of a preferred location from which
to obtain specified versions of the assembly. The location of a strong-named assembly can
be anywhere on the local machine, the local intranet, or the Internet:

Figure 51. Assembly Properties Dialog Box – Codebases Tab.

The CodeBase settings for a version of an assembly will not be applied unless the version has
been the target of a prior version redirection (and this cannot be an “identity” redirection
from version X to version X).

Delete the configuration information for an assembly

To remove an assembly’s configuration data from machine.config, perform the following
steps:

View the list of configured assemblies.

Right-click the configured assembly, select Delete from the context menu, and click
Yes in the confirmation dialog box.

Deleting the configuration information for an assembly will remove it from the list of
configured assemblies and remove the configuration information pertaining to the assembly

UNCLASSIFIED

204
UNCLASSIFIED

from the machine.config file corresponding to the .NET Framework version administered
by the current instance of mscorcfg.msc. It will not delete the assembly or remove it from
the GAC.

 Remoting Services

Remoting Services is a feature of the .NET Framework that supports communication
between managed applications, where an application is defined as all the .NET Framework
code components that reside within the same Application Domain. Since the Application
Domain is the basic unit of execution isolation for the .NET Framework, code running in one
Application Domain cannot directly communicate with code running in another Application
Domain, even when the two Application Domains reside within the same Windows operating
system process. Through the Remoting Services facility, the CLR performs the vast majority
of the work required to set up inter-Domain communication, allowing managed code
components in different Application Domains to communicate with minimal effort whether
the Application Domains reside in the same process, or across the Internet. Since the
Application Domain defines the basic boundary at which Remoting Services becomes
necessary, it is appropriate to talk about applications communicating via Remoting Services
rather than assemblies, and the Remoting Services configuration reflects this approach.
Administratively configuring communication between applications is essentially the same
whether the applications are both local or are on different host computers across the Internet.

Prior to version 2.0 of the .NET Framework, Remoting Services did not provide any built-in
authentication or encryption. Without any customization, the built-in HTTP and TCP
channels will transmit data unencrypted and unauthenticated. The use of cryptography to
enable secure communications must be implemented using one of the following:

The use of custom software that extends the Remoting infrastructure

The security features of ASP.NET when hosting service applications in Microsoft IIS
(Internet Information Services)

Security features employed at the IP or lower protocol layers

The configuration of such security implementations is not covered in this document.

Version 2.0 of .NET supports authentication and encryption using the Security Support
Provider Interface (SSPI) for classes in the System.Runtime.Remoting.Channels.Tcp
namespace. In version 2.0 a new channel type, System.Runtime.Remoting.Channels.Ipc, has
been introduced that uses the interprocess communication (IPC) system for communication
between application domains on the same physical computer.

Terminology

In the discussion that follows, the term “object” will refer to managed software contained in
an assembly that can execute a set of specific named functions. The “type” of an object

UNCLASSIFIED

205
UNCLASSIFIED

defines the set of functions it is designed to perform. Any managed application consists of
multiple interacting objects. Using Remoting Services, an application (the client) can request
the execution of a function by an object of a particular type that is part of another application
(the service). The CLR managing the execution of the client application uses that
application’s Remoting Services configuration to determine how to pass request messages to
the service application. The CLR managing the execution of the service application uses the
service application’s Remoting Services configuration to determine how to listen for and
respond to messages from client applications. Communication can only take place if the
configurations are compatible, and the service application is actively listening for messages
from the client.

We will refer to an object as having been “remoted” by its containing service application
when it is configured to respond to function requests from client applications. Note that
remoted objects are only “remote” from the point of view of the Application Domain – the
client and service application may both reside in the same Windows process. In fact, an
application could talk to itself using Remoting Services.

Remoting Services Tasks

The following discussion of the Remoting Services configuration elements serves as a guide
to the use of those settings, but does not include specific procedures for individual tasks.

Remoting Services Configuration Files

Configuring Remoting Services for an application consists primarily of identifying a remoted
object and setting some parameters for how communication with that object will take place.
For a client application, the parameters tell the CLR how the client intends to communicate
with the remoted object. An application may be a client to a wide variety of remoted objects
located on the local host, the local Intranet, or the Internet. Note that the Remoting Services
configuration does not specify which assemblies or code components of an application will
actually perform the communication – the unit of configuration is the application and
identifying a remoted object allows any assembly loaded in the application’s Application
Domain to communicate with the object, subject to authorization via CAS policy, of course.
For a service application that is hosting a remoted object, the parameters tell the CLR how
the object must be communicated with. The same assembly may function as both a service
and a client.

The system-wide configuration file for each .NET Framework version, machine.config,
can contain a default Remoting Services application configuration. This default
configuration will apply to all applications that are not granted the Security permission
Enable Remoting Configuration, which allows an assembly to configure the use of Remoting
Services in its Application Domain. Applications may have their own Remoting Services
configuration in an XML file (typically named {application file name}.config).
Application-specific settings take precedence over the default settings in machine.config.

Only the machine configuration is automatically loaded and applied by the CLR. Note that
mscorcfg.msc can only be used to configure settings in an application configuration file

UNCLASSIFIED

206
UNCLASSIFIED

whose file name has the format {application file name}.config. An arbitrary file
name cannot be specified. No matter which configuration file is used, the XML structure
will be the same. Application settings will be stored under the <application> element in
the <system.runtime.remoting> section. The XML structure of the Remoting
Services configuration is illustrated in Figure 52:

<configuration>

 <configSections>

 <section name="system.runtime.remoting"

type="System.Configuration.IgnoreSectionHandler, System,

Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

allowLocation="false"/>

 </configSections>

 ...

 <system.runtime.remoting>

 <application>...</application>

 <channels>

 <channel>...</channel>

 ...

 <channel>...</channel>

 </channels>

 <channelSinkProviders>

 <clientProviders>

 <provider .../>

 ...

 <provider .../>

 <formatter .../>

 ...

 <formatter .../>

 </clientProviders>

 <serverProviders>

 <provider .../>

 ...

 <provider .../>

 <formatter .../>

 ...

 <formatter .../>

 </serverProviders>

 </channelSinkProviders>

 </system.runtime.remoting>

</configuration>

UNCLASSIFIED

207
UNCLASSIFIED

Figure 52. XML Structure of the Remoting Services Configuration.

The <application> element will be discussed at length below. The <channel>,
<provider>, and <formatter> elements are the other basic building blocks of the
Remoting Services configuration. When specified outside of an <application> element,
these elements constitute stock definitions that can be referenced multiple times inside of the
<application> element. Their use and format will be discussed where they occur within
the <application> element.

The<application> element

An application’s Remoting Services settings consist of five components:

Identification of remoted objects in other applications that this application wants to
talk to. When talking with these objects the application will be in the role of client.

Identification of remoted objects that are part of this application that other
applications can talk to. When other applications talk with these objects, this
application will be in the role of service.

Identification of the ways that this application intends to communicate. When a client
application wants to talk to a remoted object in a service application, both
applications must be configured in compatible ways or communication cannot take
place.

How long a service application should keep a remoted object around to allow a client
application to talk to it repeatedly.

A dictionary of XML elements and types used in SOAP messages and corresponding
software components that will process those elements.

These settings correspond to five XML elements under the <application> element:

<application name=“...”>

 <client>...</client>

 <client>...</client>

 <service>...</service>

 ...

 <service>...</service>

 <channels>

 <channel>...</channel>

 ...

 <channel>...</channel>

 </channels>

 <lifetime/>

UNCLASSIFIED

208
UNCLASSIFIED

 <soapInterop>...</soapInterop>

</application>

Figure 53. XML Structure of the <application> Element.

The <channel> elements may appear within the <application> element and/or as a peer
element. Both forms are discussed under the <channel> element below.

The behavior of a remoted object is determined by its configuration as either a well-known or
client-activated object. This configuration is the prerogative of the service application – a
client application that wishes to communicate with a remoted object must be configured the
same way as the service.

Well-known (Service-activated) objects

Well-known objects are managed by their service application in two ways. Either there is
one object that all client applications talk to (Singleton mode), or a new object is created each
time any function is requested (SingleCall mode). In either case, well-known objects don’t
store separate information for each client. Either data is stored in common, or it isn’t stored
at all. In Singleton mode, data stored by the remote object could potentially be shared by
other clients. In SingleCall mode, no data is stored – each time the object is accessed, it
begins in its initial state and is deleted after it has performed its function.

Well-known objects are also known as server-activated objects, because their creation and
lifetime is determined solely by the service configuration.

Client-activated objects

A client-activated object is created when a client application asks the service to create it.
Client applications can talk repeatedly to the same object, and it can store data specific to that
conversation. Moreover, a client application can create and talk to multiple instances of the
same type of object at the same time.

The lifetime of a client-activated object is based on a lease concept. A client-activated object
is leased by the client application when it is created. This initial lease specifies a lifetime for
the object. When the lease expires, the object is terminated, and subsequent communication
attempts by the client application will fail. Each time a client application communicates with
the object, its lease may be extended. The leasing settings can be administratively configured
for the service application using the <lifetime> element. Client applications cannot
control the leasing settings.

The<client> element

The <client> elements identify remoted objects that an application can talk to as a client.
It has the following XML structure (Figure 54).

UNCLASSIFIED

209
UNCLASSIFIED

<client url=“...” displayName=“...”>

 <activated type=“...”/>

 ...

 <activated type=“...”/>

 <wellknown type=“...” url=“...” displayName=“...”/>

 ...

 <wellknown type=“...” url=“...” displayName=“...”/>

</client>

Figure 54. XML Structure of the <client> Element.

From the client perspective, a remoted object is identified by an object type and a URL. An
object’s type is given by the identification of an assembly and one of the object types defined
in that assembly. The URL identifies the location of a service application that will host
objects of this type. Each <wellknown> child element defines its own type and URL pair.
The url attribute of the <client> element provides the URL for all of the <activated>
child elements. Because of this scheme, the <wellknown> elements may appear as child
elements of any <client> element, but the <activated> elements must be grouped by
URL under corresponding <client> elements.

The displayName attribute of the <client> element is used only by mscorcfg.msc to
display a descriptive name of the remote service application whose objects are described by
the child elements. These names are shown in the Select the remote application to
configure drop-down box in the Remote Applications tab of the Remoting Services
Properties dialog box (Figure 55). Once the name of the service application has been
selected, the information for the corresponding <client> element will be displayed. The
url attribute will be displayed in the The selected remote application is located at
the following URL text box. This property is editable through the dialog box. Each
server-activated object (corresponding to the <wellknown> elements) will be shown in the
table, with the type and url attributes shown in the Object Name and URL columns,
respectively. The URLs may be edited through the dialog box. Client-activated objects
(corresponding to the <activated> elements) are not shown.

UNCLASSIFIED

210
UNCLASSIFIED

Figure 55. Remoting Services Properties Dialog Box – Remote Applications Tab.

The displayName attributes of the <wellknown> elements are not displayed; in fact, these
attributes will be discarded by mscorcfg.msc if any changes are made to the <client>
element through the Remote Applications tab of the Remoting Services Properties dialog
box.

The<service> element

The <service> elements identify remoted objects that the application will host as a service
for others to talk to. It has the following XML structure (Figure 56):

<service>

 <activated type=“...”/>

 ...

 <activated type=“...”/>

 <wellknown type=“...” objectUri=“...” mode=“...” displayName=“...”/>

 ...

 <wellknown type=“...” objectUri=“...” mode=“...” displayName=“...”/>

</service>

Figure 56. XML Structure of the <service> Element.

From the service perspective, a remoted object is simply identified by an object type. In
addition, some hosted objects may be given a “well-known” nickname using the objectUri
attribute. This nickname (also called the object’s “endpoint”) is used as the last component
of the URL of the remoted object. The complete URL for objects hosted by the service
application will include:

The protocol and port as determined by the channel configured for this application

UNCLASSIFIED

211
UNCLASSIFIED

The network domain name of the server host machine

The name of the service application, from the name attribute of the <application>
element. Services hosted by IIS do not use this attribute.

The objectUri attribute

The URL will have the form:

{protocol}://{domain name}:{port}/{service application name}/{objectUri}

The mode attribute of a well-known type specifies how the object’s creation will be handled
by the server. The object creation behavior can be either “Singleton” (all clients talk to the
same object) or “SingleCall” (every message from every client is handled by a new object of
the specified type).

The displayName attribute of a <wellknown> element is used only by mscorcfg.msc to
further describe the remoted object for ease of configuration. This text will appear in the
Object Name column of the Exposed Types tab of the Remoting Services properties
dialog box (Figure 57). The URI column will show the corresponding objectUri attribute
value.

Figure 57. Remoting Services Properties Dialog Box – Exposed Types Tab.

The <activated> elements are not shown, nor are the mode or type attributes of the
<wellknown> elements.

Remoting Services Configuration Example 1

An object hosted through IIS on the website remoting.example.com is available through
the URL http://remoting.example.com/{objectUri}. The assembly that contains

UNCLASSIFIED

212
UNCLASSIFIED

the remoted object must be located in the bin subdirectory of the virtual root directory
associated with remoting.example.com. The client application’s Remoting Services
configuration should contain a <client> element with a <wellknown> child element
containing the attributes url=“http://remoting.example.com/{objectUri}” and
type=“{object name, assembly name}”.

Remoting Services Configuration Example 2

An object called examples.remobjects.objectx defined in the assembly
myobjects.dll is hosted by a service application called objserver.exe, which resides
on the network host remoting.example.com. If the object is to be registered as a well-
known object, the service and client Remoting Services configurations may look like the
following (Figure 58):

Service

<application name=“objserver”>

 <service>

 <wellknown type=“example.remobjects.objectx, myobjects”

objectUri=“abc” mode=“SingleCall” displayName=“Object X”/>

 </service>

 <channels>

 <channel ref=“http server” port=“12345”/>

 </channels>

</application>

Client

<application name=“clientapp”>

 <client displayName=“Object Server”>

 <wellknown type=“example.remobjects.objectx, myobjects”

url=“http://remoting.example.com:12345/objserver/abc”/>

 </client>

 <channels>

 <channel ref=“http client”/>

 </channels>

</application>

Figure 58. Remoting Services Configuration Example 2.

Both the client and the service configurations agree on the protocol, the port, the remote
service application name, and the object “endpoint” used by the service, in this case, the
value “abc.”

UNCLASSIFIED

213
UNCLASSIFIED

Remoting Services Configuration Example 3

If the same object as in example 2 above is to be client-activated, the service and client
Remoting Services configurations would look like the following (Figure 59):

Service

<application name=“objserver”>

 <service>

 <activated type=“example.remobjects.objectx, myobjects”/>

 </service>

 <channels>

 <channel ref=“http server” port=“12345”/>

 </channels>

</application>

Client

<application name=“clientapp”>

 <client url=“http://remoting.example.com:12345/objserver”

displayName=“Object Server”>

 <activated type=“example.remobjects.objectx, myobjects”/>

 </client>

 <channels>

 <channel ref=“http client”/>

 </channels>

</application>

Figure 59. Remoting Services Configuration Example 3.

The client application may attempt to use an object of type
examples.remobjects.objectx and the CLR will handle the communication behind the
scenes. To the client application, it will look like the software is local, except that it may
silently disappear if the lease expires.

The<channel> element

The <channel> element identifies the networking resources that will be used to send and
receive messages. This includes the communication protocols and port numbers, the basic
encoding type that the message will use, as well as any special message processing that is
desired before and after transmission. In version 2.0, the <channel> element also identifies
the types of authentication and encryption used for TCP channels. The new IPC channel does
not support encryption but does support some types of authentication.

UNCLASSIFIED

214
UNCLASSIFIED

The basic type of message that .NET Remoting is designed to handle is to invoke a program
function in a remote software object, passing parameters to that function and getting a return
value that is the output of the function. It is not necessary to configure a server channel to
receive the response to such a message. The message to invoke the remote function and the
response message containing the output of the function will both be handled by the client
channel. Server channels are used for objects that expose their own functions for use by
remote clients.

Since multiple applications may use very similar <channel> configurations, common
<channel> elements (“templates”) may be defined to save configuration time, promote
consistent usage, or maintain conformance to a policy. Templates are <channel> elements
that are not child elements of any <application> element, but appear grouped in a
<channels> element directly under the <system.runtime.remoting> element in a
configuration file. In the machine configuration file, several different application
configurations may refer to the same <channel> template element. Application
configuration files may refer to <channel> template elements defined in the same file or
any <channel> template defined in the machine.config file of the .NET Framework
version that the application will use.

<channel> elements have two basic forms. The shorter form contains a reference to an
existing <channel> template element. The full form is used to define <channel>
templates or to configure a channel for an application without a reference to a predefined
template. The short form has the following XML structure:

<channel ref=“...” port=“...” displayName=“...” {name}=“{value}”/>

The value of the ref attribute must match the value of the id attribute of some channel
template.

The port attribute for a client application is used only to receive response messages from a
service application. The destination port for messages to service applications will be
determined by the service object’s URL, not by this attribute. A client application may set
the port attribute to 0 to indicate that the Remoting Services system should select any
appropriate port number. Service applications must specify a port or use a channel that
defines a default port.

The software that handles the channel will be fully identified in the referenced <channel>
template element. This software may support additional custom parameters, which may be
specified with zero or more attributes defining custom (name, value) pairs.

The displayName attribute is used by mscorcfg.msc in the Select the channel to
configure drop-down box in the Channels tab of the Remoting Services Properties dialog
box (see Figure 60). The port and any custom attributes will be shown in the parameters
list in the same tab.

UNCLASSIFIED

215
UNCLASSIFIED

Figure 60. Remoting Services Properties Dialog Box – Channels Tab.

The full form of a <channel> element has the following XML structure (Figure 61):

<channel id=“...” type=“...” displayName=“...”

delayLoadAsClientChannel=“{true | false}” {name}=“{value}”>

 <clientProviders>

 <provider/>

 ...

 <provider/>

 <formatter/>

 ...

 <formatter/>

 </clientProviders>

 <serverProviders>

 <provider/>

 ...

 <provider/>

 <formatter/>

 ...

 <formatter/>

 </serverProviders>

</channel>

Figure 61. XML Structure of the <channel> Element.

UNCLASSIFIED

216
UNCLASSIFIED

The id attribute is only used for a template element. Its sole purpose is to provide an
identifier that can be used in ref attributes of other <channel> elements.

The type attribute specifies the managed object that handles the channel communication, as
well as the assembly that contains the object definition. The object type that is identified by
the type attribute may support additional channel parameters. These may be specified by the
custom property attributes. When the same custom property is specified in a template and in
a <channel> element that references the template, the property value in the referencing
(application-specific) <channel> element will replace the template value.

The delayLoadAsClientChannel attribute can be used for client applications that may
use different networking protocols in different situations. By setting this attribute to true, a
channel is identified as a delay load channel. This means that the channel will not be set up
for communications until actually needed and actually supports the URL of the object to
which the application wants to connect. For example, a (custom) FTP channel, a TCP
channel and an HTTP channel are included in a client application’s configuration file as
<channel> elements, with the TCP and HTTP channels marked as
delayLoadAsClientChannel. When the application is configured for Remoting, only the
FTP channel will be set up for communications right away. If the client application wants to
connect to a URL using the HTTP protocol, the Remoting Services facility will check each
loaded channel to see if it supports communication to the indicated URL. In this case, the
FTP channel is the only registered channel, and it does not accept the URL beginning with
the “http://”. Since no supporting channel was found, the delay load channels will be
considered in turn until one is found that supports communication with the desired URL. In
this case, the TCP channel is checked but not loaded since it does not support the desired
protocol. The HTTP channel is then checked. Since it supports the desired communications,
the networking infrastructure underlying the HTTP channel is now set up and initialized.
The delay load option allows multiple channels to be specified as usable by a client
application, but only the channels actually needed will be loaded. This attribute is not used
for service applications.

As with the short form, any number of additional custom properties used by the channel
object may be specified as attributes.

The displayName attribute of a <channel> template is used by mscorcfg.msc to
display the channel templates defined in machine.config. This attribute plays no role in
the Remoting Services functioning.

The new security attributes for authentication and encryption of a <channel> in the .NET
Framework version 2.0 can be seen in Figure 62.

UNCLASSIFIED

217
UNCLASSIFIED

<channel id=“...” type=“...” displayName=“...”

 delayLoadAsClientChannel=“{true | false}” {name}=“{value}”

 secure=”true“

 username=”...” password=”...” domain=”...”

 impersonationLevel=”{None | Identification | Impersonation |

Delegation}”

 protectionLevel=”{None | Sign | EncryptAndSign}”

 certificateFile=”...” servicePrincipleName=”...” >

Figure 62. XML Structure of the <channel> Element with Security Attributes (v2.0)

The secure attribute of a <channel> element protects the data transferred between clients
and servers from eavesdroppers. When set to “true” on the associated client and server
channels, the secure attribute encrypts all channel communication. Using the secure
attribute on the server side requires that the certificateFile property specify the path to
a valid X.509 certificate for the server process. The client side of the channel has additional
settings for secure remoting. The attributes username, password, and domain are used to
specify a set of credentials different from the current context. Another attribute,
servicePrincipleName, allows the client to specify the server’s SPN for Kerberos. The
impersonationLevel attribute has the settings “None”, “Identification”, “Impersonation”,
and “Delegation”. Identification allows the server to query the client’s token for identity
information. Impersonation allows the server to impersonate the client for access to server-
local resources. Delegation allows the server to permit other objects to use the client’s
credentials. The protectionLevel attribute allows for message integrity and
confidentiality and has the settings “None”, “Sign”, and “EncryptAndSign”. Sign provides
just message integrity, while EncryptAndSign, the recommended setting, provides both
integrity and confidentiality. The configuration of the server side of the remoting channel
has the attribute, impersonate, which when enabled allows the server to auto-impersonate
the client.

Recommendation: When using .NET Remoting in version 2.0 of the Framework
always use authentication and encryption when possible. Minimum recommended
settings include: secure=”true”, and protectionLevel=”EncryptAndSign”.

The <clientProviders> and <serverProviders> elements

Special pre- and post-transmission processing can be included by registering client and server
side sinks. A sink is a software component that transforms a message before it is sent out
(client sink) or after it has been received (server sink). An example might be a channel in
which messages to be sent are first encrypted using a client sink and messages that are
received must be decrypted using a server sink. Sinks can be chained together to make up a
sequence of processing steps.

The client sinks used locally to prepare a message for transmission must be compatible with
the server sinks used remotely to receive the message. Any transformation performed on the

UNCLASSIFIED

218
UNCLASSIFIED

message before it is sent out must be handled by the server sinks. Likewise, any
transformation that the server sinks performs on the response message before it is sent back
to the client must be “undone” by the client sinks.

Processing of messages before transmission is performed by client sinks registered in the
<clientProviders> element. Processing of messages received is performed by server
sinks registered in the <serverProviders> element.

Sink chains are defined by sequences of <provider> and <formatter> child elements
within the <clientProviders> and <serverProviders> elements. The order of
processing will be the order in which the child elements appear. If no sinks are defined for a
channel, default sinks will be used. Default sinks cannot be selectively overridden. If sinks
are provided for a channel by specifying <provider> and/or <formatter> elements, none
of the default sinks will be used – they will be replaced by the specified sinks.

The <provider> and <formatter> elements

Sinks are actually defined by identifying a sink provider, an object that creates sinks. Each
type of sink provider will create a sink of a particular type. For example, the
SdlChannelSinkProvider object creates server sinks of type SdlChannelSink. There may be
any number of sinks defined for a communications channel.

A formatter is a special kind of sink provider that determines the encapsulating format for the
message data. For example, the SoapClientFormatterSinkProvider object creates sinks for
client channels that encapsulate a function call in a SOAP message. There can be at most
one formatter defined for each channel, although custom sinks may be defined both before
and after the formatter sink in a sink chain.

Any <provider> or <formatter> element appearing in a <channel> template may be
given an id attribute, and be referenced by a <provider> or <formatter> element,
respectively, in an application-specific configuration using the ref attribute. The XML
structures of <provider> and <formatter> elements are shown in Figure 63. The
optional id or ref attributes are not shown. If a ref attribute is used, the type attribute
should not be used.

<provider type=“...” {name}=“{value}”/>

<formatter type=“...” includeVersions=“{true | false}”

strictBinding=“{true | false}” typeFilterLevel=“{Low | Full}”

{name}=“{value}”/>

Figure 63. XML Structure of the <provider> and <formatter> Elements.

Both <provider> and <formatter> elements may have any number of custom properties
specified as attributes. The <formatter> elements have some additional options:

UNCLASSIFIED

219
UNCLASSIFIED

includeVersions

This attribute is for client formatter sinks only. When the includeVersions attribute is
“true”, a precise identification of the type of remote object is sent with the message. This
allows the client application to specify a preferred version of the remote object. The
information sent includes that type name, assembly name, and assembly version, and, if
strong named, also the assembly culture and public key token. The formatter sink on the
server channel can use this information to determine which type and version of object will
handle the message. If this attribute is “false”, only the type name and the assembly name
will be sent.

strictBinding

This attribute is for server formatter sinks only, and is complementary to the
includeVersions attribute for client channels. When the strictBinding attribute is
“true”, the server formatter sink will attempt to use the most precise type and version of
object specified. If the full version information has been transmitted (say, if the
includeVersions attribute was “true” on the client channel), then the specific version
of the object must be available or the message will not be handled. If this attribute is
“false”, then full version information will be used if possible, otherwise, any available
version will be used. If only the type name and assembly name were transmitted (say, if the
includeVersions attribute was “false”), then the first available version of the object
type will be used. These relationships are shows in Table 26:

includeVersions
(client formatter)

strictBinding
(server formatter)

Object type used

true True Use an object of the exact specification
(type name, assembly name, assembly
version, and possible assembly culture
and public key token), or fail.

true False Use an object of the exact specification
if available. If not available, use any
object of the indicated type name and
assembly name, or fail.

false Any Only the type name and assembly name
are sent. Use any object of the
specified type and assembly, or fail.

Table 26. Formatter Sink Attributes.

typeFilterLevel

The value of the typeFilterLevel attribute will allow or disallow passing some
references to custom object types as parameters to remote function calls. Passing references
to custom object types may pose a security risk to service applications. When the Remoting
infrastructure includes a reference to a client object in a message, it is really passing
information to the service application that tells it how to create a proxy object that can

UNCLASSIFIED

220
UNCLASSIFIED

communicate with the client and represent the client object as if it were in the service
application’s own Application Domain. The integrity of this information, which includes the
location of the client object on the network, is critical to the correct behavior of the service
application.

This attribute can be set to “Low” or “Full”. A low filter level is used to indicate a higher
degree of filtering and a lower filter acceptance level. A full filter level indicates that no
filtering should be performed, and consequently a high filter acceptance level.

If the typeFilterLevel attribute is set to “Full”, all references to custom client objects
can be passed as parameters. If the typeFilterLevel attribute is set to “Low”, most
references to custom object types cannot be sent as parameters to service applications. This
attribute is only available in the .NET Framework version 1.1. Version 1.0 of the .NET
Framework does not do any filtering.

Recommendation: Use authentication and encryption for all remoting channels
when typeFilterLevel attribute of the channel’s formatter sink is set to
“full”. Use authentication and encryption for all remoting channels in version
1.0 of the .NET Framework.

Default channels in the Remoting Services configuration

Since the default Remoting Services configuration does not specify any actual remote
objects, applications cannot communicate using Remoting Services unless they are granted
the Security permission Enable Remoting Configuration. Those applications that are
permitted to use Remoting Services can use the channels defined in the default Remoting
Services configuration (Figure 64). These are not channel templates – they are actually
available for use by applications that may use Remoting Services.

<application>

 <channels>

 <channel ref=“http client”

 displayName=“http client (delay loaded)”

 delayLoadAsClientChannel=“true”/>

 <channel ref=“tcp client”

 displayName=“tcp client (delay loaded)”

 delayLoadAsClientChannel=“true”/>

 </channels>

</application>

Figure 64. Default Remoting Services Channels.

The ref attribute of each <channel> element refers to a channel template defined
elsewhere in machine.config. Properties for default channels can be changed using the
Remoting Services Properties dialog box (Figure 65):

UNCLASSIFIED

221
UNCLASSIFIED

Figure 65. Remoting Services Properties Dialog Box – Channels Tab.

Additional channels must first be added to the XML file machine.config before they can
be configured through mscorcfg.msc.

The<lifetime> element

The lifetime of a remoted object is controlled by its lease settings and the settings for the
lease manager component of a service. The <lifetime> element has the following XML
structure (Figure 66):

<lifetime leasetime=“...” sponsorshipTimeout=“...” renewOnCallTime=“...”

leaseManagerPollTime= “...”/>

Figure 66. XML Structure of the <lifetime> Element.

The use of each of the four attributes is described below. The value for each attribute is in
the form “{n}{units}”, e.g., “4M” or “25H”, where {units} denotes the units of time and
must be one of “D”, “H”, “M”, “S”, or “MS”, for days, hours, minutes, seconds, and
milliseconds, respectively. If no unit of time is specified, seconds are assumed as a default.

leaseTime
This is the initial duration of the lease for all objects hosted by this service application. The
default value is 5 minutes.

leaseManagerPollTime
The lease manager is the software that checks for expired leases. The
leaseManagerPollTime attribute is the time interval between checks. The default value
is 10 seconds.

UNCLASSIFIED

222
UNCLASSIFIED

renewOnCallTime
This is the length of time a lease is extended each time the object is used. A lease will not
expire for at least this amount of time after an object is used. The default value is 2 minutes.

sponsorshipTimeout
When a client application may wait a long time between messages sent to the same object,
but doesn’t want the object’s lease to expire, the client can specify sponsor software that the
service lease manager will query when it is checking for expired leases. Sponsors are not
administratively configurable – the client application must name its own sponsor, if any. The
service’s lease manager will check the sponsor when a lease has expired to see if the lifetime
of the object should be extended even though the client application hasn’t communicated
with the object for a while. The sponsor can decide to keep the object alive by extending the
lease, but if it does not respond within the amount of time given by the
sponsorshipTimeout attribute, the object is terminated. The default time is 2 minutes.

The<soapInterop> element

When a message is passed between a client and a service, it may consist in part of objects
whose complex data structures must be written out as a stream of bytes for transmission. If
SOAP (or any similar XML-based format) is used as the message format, the data structures
of the object will be represented by XML elements. Both the sender and the receiver need to
understand the correspondence between the XML elements of the message and the types of
object that the XML elements represent. The <soapInterop> elements are a means for an
application to register these mappings.

The mappings can also be registered by the application in software, but this requires the
Security permission Extend Infrastructure. When <soapInterop> elements are used to
register mappings by means of the configuration file, only the Security permission Enable
Remoting Configuration is needed. Thus, the SOAP XML-element-to-object-type mappings
may be configured with either the Enable Remoting Configuration or the Extend
Infrastructure permission.

The <soapInterop> element has the following XML structure (Figure 67):

<soapInterop>

 <interopXmlElement xml=“...” clr=“...”/>

 ...

 <interopXmlElement xml=“...” clr=“...”/>

 <interopXmlType xml=“...” clr=“...”/>

 ...

 <interopXmlType xml=“...” clr=“...”/>

 <preLoad type=“...” assembly=“...”/>

 ...

UNCLASSIFIED

223
UNCLASSIFIED

 <preLoad assembly=“...”/>

</soapInterop>

Figure 67. XML Structure of the <soapInterop> Element.

interopXmlElement

Each interopXmlElement element defines one mapping between an XML element and a
managed object type. The xml attribute must be in the form “{element name},
{namespace}”, and the clr attribute must identity an object type using the form
“{object type}, {assembly name}” where the named assembly contains the
definition of the specified type.

interopXmlType

Each interopXmlType element defines one mapping between an XML Schema type and a
type of managed object. This type of mapping is needed when a “derived” XML Schema
type is being transmitted under the name of its base type, perhaps to ensure validation against
a schema that only knows about the base type. In such a case, the base type is used as the
element name, while the actual content of the element corresponds to a type identified with
the xsi:type attribute:

<{base type} xsi:type=“{derived type}”>...</{base type}>

For information on derived types see the XML Schema documentation [W3C, 2001].

preLoad
Software developers can embed pre-defined XML mappings with the object type definition
in an assembly. This allows the CLR to simply read the object type definition from its
containing assembly, and register the recorded mappings. This can be done either in
software (requiring the Extend Infrastructure permission), or by the preLoad element of the
Remoting Services configuration (requiring the Enable Remoting Configuration permission).
The preLoad element specifies the object type by giving the type name using the type
attribute and the assembly in which it is defined using the assembly attribute:

<preLoad type=“My.Types.Structure” assembly=“MyTypes, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=ba342a3fdd33d701”/>

When an assembly contains a number of object type definitions that have pre-defined XML-
element-to-object-type mappings, they can all be registered at once by the CLR using the
preLoad element without specifying each individual type.

<preLoad assembly=“MyTypes, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=ba342a3fdd33d701”/>

UNCLASSIFIED

224
UNCLASSIFIED

This is equivalent to having a set of preLoad elements for each specific object type defined
in the given assembly.

 Runtime Security Policy

The Common Language Runtime depends on the Code Access Security (CAS) policy
mechanism to determine an assembly’s permission grant. The CLR ships with a default CAS
policy that can be modified by the administrator. There are three configurable policy levels:
Enterprise, Machine, and User. The administrator may modify each policy level’s Code
Groups, Named Permission Sets, and Policy Assemblies. There is an additional CAS policy
level associated with the Application Domain in which the assembly is loaded. The
Application Domain level policy is not configurable by the administrator.

The CAS policy configuration for each level is stored in an XML file. mscorcfg.msc
assists the administrator in modifying these XML files. Table 27 lists the location of each
configuration file.

Policy Level Configuration File Location
Enterprise enterprisesec.config %FrameworkDirectory%\<version>\

CONFIG
Machine security.config %FrameworkDirectory%\<version>\

CONFIG
User security.config %SystemDrive%\Documents And

Settings\<username>\Application
Data\Microsoft\CLR Security
Config\<version>

Table 27. CAS Policy File Locations.

Figure 68 shows the Runtime Security Policy node expanded. Under each policy level, the
administrator can configure Code Groups, Named Permission Set, and Policy Assemblies.

UNCLASSIFIED

225
UNCLASSIFIED

Figure 68. Runtime Security Policy Node.

Code Groups – displays the Code Group tree for the corresponding policy level.
Different icons identify different types of Code Groups:

The purple diamond represents a Union Code Group. Only Union Code Groups
can be created using mscorcfg.msc. All other Code Group types must be created
either programmatically or by manually editing the appropriate configuration file.

The white diamond icon represents any Code Group other than a Union Code
Group. The default CAS policy includes some Code Groups that are not Union Code
Groups.

Permission Sets – lists all Named Permission Sets defined for a particular policy
level. Named Permission Sets offer an easy way to assign permissions as a group.

Policy Assemblies – lists all assemblies used for evaluating policy for the selected
Policy Level. This list may contain custom software libraries that define new types of
Code Groups, Membership Conditions, or resource permissions.

Runtime Security Policy tasks

The following tasks can be performed under the Runtime Security Policy node:

Create a CAS policy deployment package

Reset all CAS policy levels to default settings

View Code Groups

UNCLASSIFIED

226
UNCLASSIFIED

Add or remove a Code Group

Rename a Code Group

Set or clear the Exclusive or Level Final attribute of a Code Group

Change a Code Group’s Membership Condition

Change a Code Group’s associated Named Permission Set

Adjust Zone Security

View Named Permission Sets

Add or remove a Named Permission Set

Modify a Named Permission Set

View Policy Assemblies

Enroll or withdraw a Policy Assembly

List Code Groups to which an assembly belongs

View an assembly’s Allowed Permission Set

Create a tailored Code Group

Use the Trust an Assembly Wizard

Create a CAS policy deployment package

CAS policy deployment via Group Policy is discussed in more detail in chapter 3. To create
a Windows Installer package for a specified CAS policy level of the current version of the
.NET Framework, perform the following steps. These summarize the more detailed
discussion in chapter 3.

Select the Runtime Security Policy node in the console tree.

Select Create Deployment Package in the tasks pane on the right to open the
Deployment Package Wizard.

Select a policy level to deploy by selecting one of the radio buttons: Enterprise,
Machine, or User.

Enter a folder and file name (or browse to a location) for the new Windows Installer
package.

UNCLASSIFIED

227
UNCLASSIFIED

Select Next and then Finish and the Wizard will create the package in the specified
location.

Reset all CAS policy levels to default settings

Resetting all policy levels will return CAS policy to its default configuration. All
administratively-defined Code Groups and Named Permission Sets will be lost.

Select the Runtime Security Policy node.

Right-click and select Reset All… from the context menu or click Reset All
Policy Levels in the Help Topic pane on the right.

Select Yes.

View Code Groups

To view the Code Group tree for a policy level, simply expand the Code Groups node under
the Runtime Security Policy node in the console tree.

Add or remove a Code Group

To add a Code Group, perform the following steps:

In the left hand pane, expand the Code Groups node under the policy level in
which the new Code Group will be created.

Expand nodes in the Code Group tree as needed to select the parent Code Group for
the new Code Group. The All_Code Code Group is the root of the Code Group tree.

Click Add a Child Code Group in the task pane on the right

or

Right-click the parent Code Group and select New… from the context menu

or

Select Action, New… from the menu bar.

At this point, the task can be performed interactively through the Create Code Group dialog
box (see Figure 69), or by importing a Code Group definition from an XML file. These two
methods are described separately below.

UNCLASSIFIED

228
UNCLASSIFIED

Figure 69. Create Code Group Dialog Box.

Interactively defining a new Code Group

Select the Create a new code group radio button. This is the default selection.

Enter a name and description for the new Code Group and click Next.

Choose the Membership Condition for the custom Code Group and click Next. The
administrator may choose among the default Membership Conditions shipped with
the .NET Framework or import a custom Membership Condition defined in an XML
file. The XML file should contain only an <IMembershipCondition> element, as in
Figure 70 below:

<ImembershipCondition

 class="AllMembershipCondition, mscorlib, Version=1.0.5000.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089"

 version="1"/>

Figure 70. Example of a Membership Condition To Be Imported.

In the .NET Framework CAS policy files, the class attribute of an
<IMembershipCondition> element may refer to a short name defined earlier in a
<SecurityClass> element, but in the imported XML, the full class name must be used.

Assign a Permission Set to the Code Group. The administrator has two options:

Use existing permission set – select a Named Permission Set that has already
been defined. This includes Named Permission Sets previously created by the

UNCLASSIFIED

229
UNCLASSIFIED

administrator. See the Add or remove a Named Permission Set task for details about
creating new Named Permission Sets.

Create a new permission set – use the Create New Permission Set dialog box to
interactively select permissions to include in a new Named Permission Set or import a
Named Permission Set definition from an XML file. The use of this dialog box is
discussed below in the Add or remove a Named Permission Set task.

Select Next and then Finish.

Importing a Code Group definition from an XML file

Select the Import a code group from a XML file radio button.

Enter the complete path to the XML file in the text box, or click Browse and select
the file through the Import XML file dialog box.

Click Finish. A message box will pop up if there are any problems importing the
XML. The following XML shows a valid Code Group definition (Figure 71):

<CodeGroup

 class="System.Security.Policy.UnionCodeGroup, mscorlib,

Version=1.0.5000.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

 version="1"

 Name="testxml"

 Description="testxmldescription">

 <IMembershipCondition

 class="System.Security.Policy.AllMembershipCondition,

mscorlib, Version=1.0.5000.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

 version="1"/>

 <PermissionSet

 class="NamedPermissionSet"

 version="1"

 Name="Execution1"

 Description="Permits execution"/>

</CodeGroup>

Figure 71. Example of a Code Group To Be Imported.

In the .NET Framework CAS policy files, the class attribute of a <CodeGroup> or
<IMembershipCondition> element may refer to a short name defined earlier in a
<SecurityClass> element, but in the imported XML, the full class name must be used.

UNCLASSIFIED

230
UNCLASSIFIED

The PermissionSetName attribute of a <CodeGroup> element should not be used.
Instead, include a <PermissionSet> child element with the desired Name attribute. The
name used may refer to a pre-defined Named Permission Set, or it could be a new set. A new
set must be created as a separate task – the import process for a Code Group will not create it
if it does not exist. In any case, any permissions included as child <IPermission>
elements of the <PermissionSet> element will be ignored.

To remove a Code Group:

In the left hand pane, expand the Code Groups node under the policy level in
which the Code Group will be removed.

Expand nodes in the Code Group tree as needed to select the targeted Code Group.

Right-click the targeted Code Group and select Delete from the context menu

or

Select the targeted Code Group and select Action, Delete from the menu bar.

Rename a Code Group

To rename a Code Group, perform the following steps:

In the left hand pane, expand the Code Groups node under the policy level that
contains the targeted Code Group.

Expand nodes in the Code Group tree as needed to select the targeted Code Group.

Click Edit Code Group Properties in the task pane on the right to display the
Properties dialog box. The name and description of the Code Group can be changed
through the first panel of this dialog box. Click Apply to save the changes.

or

Right-click the Code Group and select Rename from the context menu. This allows
editing of the Code Group name in the Code Group tree.

or

Select the targeted Code Group and select Action, Rename from the menu bar.
This allows editing of the Code Group name in the Code Group tree.

Set or clear the Exclusive or Level Final attribute of a Code Group

If an assembly will satisfy the Membership Conditions of two or more Code Groups marked
Exclusive, the CLR will report an error, as it cannot unambiguously determine which
permissions to grant. mscorcfg.msc will also report an error if the administrator attempts

UNCLASSIFIED

231
UNCLASSIFIED

to set the Exclusive attribute through mscorcfg.msc on two or more Code Groups to which
an assembly may belong. This determination is not perfect – mscorcfg.msc may allow
multiple Exclusive Code Groups whose Membership Conditions are later satisfied by the
right combination of evidence. Thus, the Exclusive attribute should be set on Code Groups
with narrowly tailored Membership Conditions.

To set Code Group attributes:

In the left hand pane, expand the Code Groups node under the policy level that
contains the targeted Code Group.

Expand nodes in the Code Group tree as needed to select the targeted Code Group.

Click Edit Code Group Properties in the task pane on the right.

or

Right-click the Code Group and select Properties from the context menu.

or

Select the targeted Code Group and select Action, Properties from the menu bar.

All three of the methods in the previous step will display the Properties dialog box
(see Figure 72).

Figure 72. Code Group Properties Dialog Box: General Tab.

To set or clear the Exclusive attribute, check or uncheck the first check box: This
policy level will only have the permissions from the permission set
associated with this code group.

UNCLASSIFIED

232
UNCLASSIFIED

To set or clear the Level Final attribute, check or uncheck the second check box:
Policy levels below this level will not be evaluated.

Click OK to apply the changes.

Change a Code Group’s Membership Condition

To change a Code Group’s Membership Condition, perform the following steps:

In the left hand pane, expand the Code Groups node under the policy level that
contains the targeted Code Group.

Expand nodes in the Code Group tree as needed to select the targeted Code Group.

Click Edit Code Group Properties in the task pane on the right.

or

Right-click the Code Group and select Properties from the context menu.

or

Select the targeted Code Group and select Action, Properties from the menu bar.

All three of the methods in the previous step will display the Properties dialog box.
Select the Membership Condition tab (see Figure 73).

Figure 73. Code Group Properties Dialog Box: Membership Condition Tab.

Select the Membership Condition for the Code Group from the pull-down menu. If
additional parameters are necessary to define the Membership Condition, additional
instructions will appear below the pull-down menu.

UNCLASSIFIED

233
UNCLASSIFIED

Click OK to apply the change.

Change a Code Group’s associated Named Permission Set

To change a Code Group’s associated Named Permission Set, perform the following steps:

In the left hand pane, expand the Code Groups node under the policy level that
contains the targeted Code Group.

Expand nodes in the Code Group tree as needed to select the targeted Code Group.

Click Edit Code Group Properties in the task pane on the right.

or

Right-click the Code Group and select Properties from the context menu.

or

Select the targeted Code Group and select Action, Properties from the menu bar.

All three of the methods in the previous step will display the Properties dialog box.
Select the Permission Set tab (see Figure 74).

Figure 74. Code Group Properties Dialog Box: Permission Set Tab.

Select the Named Permission Set to be associated with this Code Group from the
pull-down menu. Only previously defined Named Permission Sets can be selected.
To create a new Named Permission Set, see the Add or remove a Named Permission
Set task below.

Click OK to apply the change.

UNCLASSIFIED

234
UNCLASSIFIED

Adjust Zone Security

To modify the Named Permission Set associated with any of the built-in Zone-based Code
Groups, perform the following steps:

Select the Runtime Security Policy node in the console tree and click the Adjust
Zone Security task in the detail pane on the right.

or

Right-click the Runtime Security Policy node in the console tree and select
Adjust Security… from the context menu

or

Select the Runtime Security Policy node in the console tree and select Action,
Adjust Security… from the pull-down menu.

In the Security Adjustment Wizard (Figure 75), select the CAS policy level to modify
and click Next. Selecting Make changes to this computer will modify the
Machine level policy. Selecting Make changes for the current user only will
modify the User level policy.

Figure 75. Security Adjustment Wizard.

The Security Adjustment Wizard will display all the URL Security Zones with a slide
control to set the “level of trust” associated with each zone (see Figure 76).

UNCLASSIFIED

235
UNCLASSIFIED

Figure 76. Adjusting the Security Level for Each Zone.

Each level of trust is mapped a built-in Named Permission Set, as shown in Table 28:

“Level of Trust” Named Permission Set
Full Trust FullTrust
Medium Trust LocalIntranet
Low Trust Internet
No Trust Nothing

Table 28. Named Permission Sets Associated with “Levels of Trust”.

When configuring Machine level policy, the Security Adjustment Wizard will allow
any “level of trust” to be associated with each zone. When configuring User level
policy, the Wizard will restrict the maximum “level of trust” that can be associated
with some zones.

Make the desired modification and click Next to view a summary of the new settings.

Click Finish to apply the changes.

View Named Permission Sets

To view the Named Permission Sets defined for a policy level, simply expand the Permission
Sets node under the Runtime Security Policy node in the console tree.

Add or remove a Named Permission Set

To add a new Named Permission Set, perform the following steps:

Select the Permission Sets node within a Policy Level.

Right-click and select New… from the context menu.

UNCLASSIFIED

236
UNCLASSIFIED

or

Select Action, New… from the menu bar.

At this point, the task can be performed interactively through the Create Permission Set
dialog box (see Figure 77), or by importing a Named Permission Set definition from an XML
file. These two methods are described separately below.

Figure 77. Create Permission Set Dialog Box.

Interactively defining a new Named Permission Set

Select the Create a new permission set radio button. This is the default
selection.

Enter a name and description for the new Named Permission Set and click Next.

Select the individual permissions to include in the new Named Permission Set (see
Figure 78). Use the Add >> button to move permissions from the Available
Permissions list to the Assigned Permissions list. This will add permissions to
the Named Permission Set. Use the << Remove button to remove permissions from
the Assigned Permissions list.

UNCLASSIFIED

237
UNCLASSIFIED

Figure 78. Assign Permissions to a Named Permission Set.

Individual permissions will have configurable settings that identify specific resources
or access types. As each permission is assigned using the Add >> button, a
Permission Settings dialog box will be displayed that allows some permission settings
to be configured. These settings can also be changed later by selecting a permission
in the Assigned Permissions list and clicking Properties. Each Permission
Settings dialog box contains a pair of radio buttons:

Grant assemblies unrestricted access to <resource> – Selecting this radio
button will allow full access to all instances of the protected resource. This level of
access should be granted only where necessary in keeping with the principle of least
privilege.

Grant assemblies access to <resource> – Access to resources is generally
configured by identifying a specific resource of the type protected with the
permission, and a type of access. If no resources are specified, no access will be
permitted. That is, including a permission in a Named Permission Set without
specifying any access will be the same as not including it – no access will be granted.
The default setting when adding a new Named Permission Set is to restrict all access.

The DNS permission has no configurable access settings: access is either unrestricted
or prohibited. In this case the radio button is labeled Grant assemblies no
access to DNS.

To import the definition of a permission, click the Import… button and select an
XML file in the Import a Permission dialog box. Figure 79 shows the contents of an
XML file containing a permission:

UNCLASSIFIED

238
UNCLASSIFIED

<IPermission

 class="System.Security.Permissions.FileDialogPermission, mscorlib,

Version=1.0.5000.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

 version="1"

 Access="Open"/>

Figure 79. Example of a Permission To Be Imported.

In the .NET Framework CAS policy files, the class attribute of an
<IPermission> element may refer to a short name defined earlier in a
<SecurityClass> element, but in the imported XML, the full class name must be
used.

Select Finish once all desired permissions have been assigned to the new Named
Permission Set and their access settings have been configured.

Importing a Named Permission Set definition from an XML file

Select the Import a permission set from an XML file radio button.

Enter the complete path to the XML file in the text box, or click Browse and select
the file through the Import XML file dialog box.

Click Finish. A message box will pop up if there are any problems importing the
XML. The following XML shows a valid Named Permission Set definition (Figure
80):

<PermissionSet

 class="System.Security.NamedPermissionSet"

 version="1"

 Name="Internety"

 Description="Default rights given to internet applications">

 <IPermission

 class="System.Security.Permissions.FileDialogPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

 version="1"

 Access="Open"/>

 <IPermission

 class="System.Security.Permissions.SecurityPermission,

mscorlib, Version=1.0.5000.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"

UNCLASSIFIED

239
UNCLASSIFIED

 version="1"

 Flags="Execution"/>

</PermissionSet>

Figure 80. Example of a Named Permission Set To Be Imported.

In the .NET Framework CAS policy files, the class attribute of a <PermissionSet> or
<IPermission> element may refer to a short name defined earlier in a <SecurityClass>
element, but in the imported XML, the full class name must be used. If the name of the new
Named Permission Set conflicts with an existing name, the name of the new Named
Permission Set will be prefixed with “new ”, “new (2) ”, new (3) ”, etc.

To remove a Named Permission Set:

In the left hand pane, expand the Permission Sets node under the policy level in
which the Named Permission Set will be removed.

Right-click the targeted Named Permission Set and select Delete from the context
menu

or

Select the targeted Named Permission Set and select Action, Delete from the menu
bar.

Modify a Named Permission Set

Except for the Everything Named Permission Set, the built-in Named Permission Sets cannot
be changed. To modify a Named Permission Set, perform the following steps:

Expand the Permission Sets node within a Policy Level and select the targeted
Named Permission Set.

If the Help Topic is displayed in the tasks pane on the right, click Change
Permissions.

or

Right-click and select Change Permissions… from the context menu.

or

Select Action, Change Permissions… from the menu bar.

The Create Permission Set dialog box will be displayed. The permissions currently
included in this Named Permission Set will be listed in the Assigned Permissions
list on the right.

UNCLASSIFIED

240
UNCLASSIFIED

Use the Add >> and << Remove buttons to change the permissions included in the
Named Permission Set as desired.

Use the Properties button to change access settings for individual permissions in the
Assigned Permissions list.

Select Finish to apply the changes.

View Policy Assemblies

To view the Policy Assemblies currently configured for a policy level, perform the following
steps:

Select the Policy Assemblies node within a policy level. If the Policy Assemblies
view is currently set as the default, the list of Policy Assemblies will be displayed in
the right hand tasks pane. Otherwise the Help Topic will be displayed and the
following step should be performed:

Select View Policy Assemblies.

or

Right-click the Policy Assemblies node and select View | Assemblies from the
context menu.

or

Select View, Assemblies from the menu bar.

Enroll or withdraw a Policy Assembly

To enroll a Policy Assembly, perform the following steps:

Select the Policy Assemblies node within a policy level.

Right-click and select Add… from the context menu.

or

Select Action, Add… from the menu bar.

In the Choose Assembly from Assembly Cache dialog box, select an assembly
installed in the GAC, and click Select.

To withdraw a Policy Assembly, perform the following steps:

View the Policy Assemblies configured for the desired policy level. See the View
Policy Assemblies task for more details.

UNCLASSIFIED

241
UNCLASSIFIED

Select the targeted assembly from the list of Policy Assemblies.

Right-click the targeted assembly and select Delete from the context menu.

or

Select Action, Delete from the menu bar.

List Code Groups to which an assembly belongs

To list the Code Groups for which an assembly satisfies the corresponding Membership
Condition, perform the following steps:

Right-click the Runtime Security Policy node in the console tree and select
Evaluate Assembly… from the context menu.

or

Select the Runtime Security Policy node and select Action, Evaluate
Assembly… from the menu bar.

In the Evaluate an Assembly dialog box (Figure 81), enter the URL of the assembly
to be evaluated or click Browse to navigate the file system to select the file.

Figure 81. Evaluate an Assembly Dialog Box.

Select the View code groups that grant permissions to the assembly radio
button.

Select the desired policy level, and click Next.

The Code Groups to which the selected assembly belongs will be displayed in the dialog box.
If the specified assembly satisfies the Membership Condition of more than one Code Group
marked Exclusive at any policy level, the task will fail. On the other hand, if the specified

UNCLASSIFIED

242
UNCLASSIFIED

assembly belongs to an Exclusive Code Group as well as other Code Groups, those other
Code Groups are listed along with the Exclusive Code Group, even though they would not
contribute permissions to the assembly’s Allowed Permission Set (although they could still
affect access if they were marked with the Level Final attribute). If the specified assembly
satisfies the Membership Condition of a Code Group marked Level Final, then lower policy
levels will not be evaluated.

View an assembly’s Allowed Permission Set

An assembly’s Allowed Permission Set may be different from the set of permissions actually
granted to the assembly when it is executing (its Granted Permission Set). The Allowed
Permission Set will take into account Exclusive or Level Final Code Groups, but will not
include any Application Domain Policy, as this policy is determined at runtime. The
Allowed Permission Set also does not include permission requests (Minimum, Optional, or
Refused permissions) made by the assembly itself. Furthermore, the Allowed Permission Set
is based on the evidence presented by the specified assembly, and the actual evidence
presented by the assembly at runtime may be different if the assembly is obtained from a
different source. To view an assembly’s Allowed Permission Set, perform the following
steps:

Right-click the Runtime Security Policy node in the console tree and select
Evaluate Assembly… from the context menu.

or

Select the Runtime Security Policy node and select Action, Evaluate
Assembly… from the menu bar.

In the Evaluate an Assembly dialog box (Figure 81), enter the URL of the assembly
to be evaluated or click Browse to navigate the file system to select the file.

Select the View permissions granted to the assembly radio button.

Select the desired policy level, and click Next.

The assembly’s Allowed Permission Set will be displayed in the dialog box, unless there
were errors finding or evaluating the assembly. If the specified assembly satisfies the
Membership Condition of more than one Code Group marked Exclusive at any policy level,
the task will fail.

Create a tailored Code Group

To create a Code Group that will associate a particular set of permissions to a particular
assembly, perform the following steps:

Create a Named Permission Set that contains the desired permissions. See the Add or
remove a Named Permission Set task above for details.

UNCLASSIFIED

243
UNCLASSIFIED

Make a Code Group whose Membership Condition will discriminate between the
targeted assembly and other assemblies. Set the Membership Condition to
discriminate as little as possible commensurate with operational requirements and
organizational policy. At the same time, insist on cryptography-based identities
unless prohibited by policy constraints. Associate the new Named Permission Set
with this Code Group. See the Add or remove a Code Group task above for details.

Use the Trust an Assembly Wizard

The Trust an Assembly Wizard can be used to modify the permissions associated with an
assembly. This Wizard will create a Code Group with a Membership Condition tailored to
some specific evidence associated with the assembly. New Code Groups created through the
Trust an Assembly Wizard at the Machine level will have the Level Final attribute set. This
will prevent User level policy settings from decreasing the permissions allowed by the
Enterprise and Machine level policies.

The administrator can then select one of the built-in Named Permission Sets to associate with
the Code Group. As in the Adjust Zone Security task above, the Named Permission Sets
correspond to “levels of trust” (see Table 28. Named Permission Sets Associated with
“Levels of Trust”).

Because the Allowed Permission Set is created by combining all the permissions for all Code
Groups to which an assembly belongs, the Wizard will potentially add permissions to the
Allowed Permission Set of the targeted assembly. To selectively restrict the permissions that
would be granted to the assembly to the specified Named Permission Set, the Code Group
created with the Wizard should be marked Exclusive. See the Set or clear the Exclusive or
Level Final attribute of a Code Group task above for details.

Select the Runtime Security Policy node in the console tree and click the
Increase Assembly Trust task in the detail pane on the right.

or

Right-click the Runtime Security Policy node in the console tree and select Trust
Assembly… from the context menu

or

Select the Runtime Security Policy node in the console tree and select Action,
Trust Assembly… from the pull-down menu.

In the Trust an Assembly Wizard (Figure 82), select the CAS policy level to modify
and click Next. Selecting Make changes to this computer will modify the
Machine level policy. Selecting Make changes for the current user only will
modify the User level policy.

UNCLASSIFIED

244
UNCLASSIFIED

Figure 82. Trust an Assembly Wizard.

Enter the path or URL of the targeted assembly, or click Browse to navigate to it.
Select Next to continue.

The Code Group created with this Wizard will use one of the cryptography-based
identities associated with the assembly (see Figure 83). If the assembly is digitally
signed with a software publisher’s certificate, the Publisher Membership Condition
will be available (select All assemblies from the same publisher). If the
assembly is strong-named, the Strong Name Membership Condition will be available,
with or without the version number (select All assemblies with the same
assembly public key and check or clear the Include version number
checkbox). In all cases, the SHA-1 hash of the assembly may be used as a Hash
Membership Condition (select This one assembly). Select one radio button and
click Next to set the Named Permission Set that will be associated with the new Code
Group.

Figure 83. Membership Condition Selection in the Trust an Assembly Wizard.

UNCLASSIFIED

245
UNCLASSIFIED

Set the Named Permission Set associated with the new Code Group by using the slide
control to pick a “level of trust” (Figure 84):

Figure 84. Named Permission Set Selection in the Trust an Assembly Wizard.

Click Next to view a summary of the selected settings. Click Finish to apply the
settings.

 Applications

Several aspects of administering managed applications can be handled through the
Applications node. These include settings that affect the way the application runs in
conjunction with libraries that it needs to use or other applications with which it must
communicate.

Applications Tasks

The following tasks can be performed under the Applications node:

Add an application to be configured

Configure application properties

View assembly dependencies for an application

View list of assemblies configured for an application

Configure an assembly for an application

Fix an application (roll back application Binding Policy)

Configure Remoting Services for an application

UNCLASSIFIED

246
UNCLASSIFIED

Add an application to be configured

This task simply adds a specific managed application (identified by file location) as an entry
under the Applications node. The configuration settings for an application are stored in an
XML file in the same directory as the application executable file. Adding the application to
the list of configurable applications will not create this XML file if it does not already exist.
The configuration file will be created by mscorcfg.msc once a setting is changed. To add
an application to the Applications node:

Select the Applications node and click Add an Application to Configure in the
details pane on the right.

or

Right-click the Applications node and select Add… from the context menu.

or

Select the Applications node and select Action, Add… from the menu bar.

Select the application to configure from a list of managed applications that have been
executed on the local computer, or select Other… to browse to the location of the
executable to configure. Click OK to add the selected application as a child node
under the Applications node.

Configure application properties

Garbage collection concurrency, application-wide publisher policy safe mode, and the
application’s probing path can be configured with this task. To configure these properties:

Expand the Applications node and select the child node that represents the targeted
application.

Click View the Application’s Properties in the details pane on the right.

or

Right-click on the application and select Properties from the context menu.

or

Select the application and select Action, Properties from the menu bar.

Change the application properties using the Application Properties Dialog Box
(Figure 85). The three properties configurable through this dialog box are discussed
below. Click OK to apply the changes.

UNCLASSIFIED

247
UNCLASSIFIED

Figure 85. Application Properties Dialog Box.

Garbage Collection Concurrency

The CLR will periodically recover unused memory for reuse by the application. For
applications whose user experience would be impaired by noticeable pauses to perform
garbage collection, this process should be set to concurrent (“background”) mode. For
processes that have limited user interfaces, are already written to do many things at the same
time, or are often waiting for messages from other processes, garbage collection should be
non-concurrent (“foreground”).

Publisher Policy Safe Mode

Publisher policies are supplied by software developers to deprecate old versions of libraries
in favor of new versions that are claimed to be backward-compatible (see the discussion of
Binding Policy in chapter 6 under Assembly Tasks). Since some applications depend on a
specific version of a library and the claims of publishers may not be completely accurate, it
may be necessary to ignore the version redirection rules supplied in the publisher policy.
When publisher policy is disabled for all assemblies used by this application (“safe mode”),
only the Binding Policy settings in the application and machine configuration files will be
applied.

Probing Path

The probing path is a search path relative to the location (folder or URL) of this application
that specifies the set of folders or resource paths that may contain private assemblies (i.e., not
installed in the GAC) used by this application. When the CLR attempts to load an assembly
referenced by this application it will check the folder or URL where the application is
located, and then begin looking through the subfolders and resource subpaths specified by the
probing path. The CLR will not search outside the folder or URL where the application is
located.

UNCLASSIFIED

248
UNCLASSIFIED

View assembly dependencies for an application

To list the assemblies the application was explicitly developed to use:

Expand the Applications node and select the child node that represents the targeted
application.

Click View the Assembly Dependencies in the details pane on the right.

or

Expand the node for the targeted application and select the Assembly
Dependencies node. If the list of dependent assemblies is not already shown in the
details pane on the right, select the View Assembly Dependencies task.

View list of assemblies configured for an application

When an application references one of its dependent assemblies, the CLR will attempt to find
the correct version and location for the referenced assembly. The application’s manifest
contains the version of the assembly that it was developed to use, so this will be used by the
CLR in the absence of any policy settings to the contrary. The CLR will also look for the
assembly file using a set of rules that determine the default places to check.

When an alternate version (Binding Policy) or a specific location (CodeBase) is specified to
constrain or redirect the CLR’s search for the right assembly, the assembly is said to have
been “configured” for this application. Technically, it is the application that has been
configured, not the assembly. The policy settings will apply to the assembly only when it is
invoked by the targeted application. In some cases an application will need to use an
assembly that was not specified as a dependency when it was being developed, perhaps
because the assembly is determined by user input or the output of another assembly. These
assemblies may still be configured in anticipation of their future use by the application.

Configuring an assembly for an application is similar to configuring the assembly itself using
the Configured Assemblies node of the console tree. See the Configure an assembly task
above for more details. To view the list of assemblies that have been configured for an
application,

Expand the Applications node and select the child node that represents the targeted
application.

Select the Managed Configured Assemblies task in the details pane on the right
and, if necessary, select View List of Configured Assemblies.

or

Expand the node for the targeted application, and select the Configured
Assemblies node. If the list of assemblies configured for this application is not

UNCLASSIFIED

249
UNCLASSIFIED

already shown in the details pane on the right, select the View List of Configured
Assemblies task.

Configure an assembly for an application

This task is used to set rules for an assembly that will apply when it is used by the selected
application. The rules determine which version of an assembly will be used (Binding Policy)
and the location from which the CLR will obtain a redirected assembly (CodeBase).

Before an assembly can be configured for an application, it must be added to the list of
assemblies “configured” for the application. Once this is done, the Binding Policy and
CodeBase settings may be configured through the Properties dialog box.

To add an assembly to the list of assemblies configured for a targeted application:

Expand the Applications node and select the child node that represents the targeted
application.

Expand the node for the targeted application, right-click the Configured
Assemblies node, and select Add… from the context menu.

or

Expand the node for the targeted application, select the Configured Assemblies
node, and select Action, Add… from the menu bar.

Select the assembly to configure using the Configure an Assembly dialog box (Figure
86) and click Finish. The assembly may be selected from a list of dependent
assemblies for this application or from the GAC (by clicking Choose
Assembly…), or the information can be entered manually.

Figure 86. Configure an Assembly for an Application Dialog Box.

UNCLASSIFIED

250
UNCLASSIFIED

Once the assembly has been identified, the Properties dialog box is displayed, and the
assembly may be immediately configured. See Using the Properties dialog box
below for details.

To invoke the Properties dialog box for an assembly that is already on the list of assemblies
configured for the targeted application:

Display the list of assemblies configured for the targeted application. See the View
list of assemblies configured for an application task for more details.

Right-click on the desired assembly and select Properties from the context menu

or

Select the desired assembly and select Action, Properties from the menu bar.

Using the Properties Dialog Box

The Properties dialog box is used to set Binding Policy and CodeBases for the assembly
when it is used by the targeted application. Configuring these properties is similar to
configuring an assembly using the Configured Assemblies node above. See the Configure an
assembly task above for details.

The configuration of an assembly for an application will be overridden by the machine
assembly configuration for the given .NET Framework version of the CLR that the
application uses. In addition, a publisher-supplied Binding Policy may also override these
settings. For more information about the relationship between the application settings, the
publisher-supplied Binding Policy, and the machine settings, see the discussion of Binding
Policy in chapter 6 under Assembly Tasks.

To prevent a publisher-supplied Binding Policy from overriding the configuration of an
assembly for an application, uncheck the Enable publisher policy check box (see Figure
87). The machine settings (see the Configure an Assembly task under the Configured
Assemblies node above) will always override the application-specific configuration.

UNCLASSIFIED

251
UNCLASSIFIED

Figure 87. Enable Publisher Policy Check Box.

Fix an application (roll back application Binding Policy)

In version 2.0 of the .NET Framework the following tool has been removed. However, the
link is still present in mscorcfg.msc, but clicking on the link will have no effect.

Supported in versions prior to 2.0, this task invokes the .NET Application Restore tool,
which might not be available through mscorcfg.msc if the default installation was used. If
unavailable through mscorcfg.msc (the links to Fix an Application don’t work), run
configwizards.exe in the same .NET Framework version directory as mscorcfg.msc
and select Fix an Application from the ConfigWizards dialog box, as shown in Figure 88:

Figure 88. ConfigWizards Dialog Box.

An application must be executed at least once before it can be repaired. Applications may
stop working properly if changes in binding policy cause it to use different libraries that
don’t provide the same functionality that the application is expecting. The restore tool will
attempt to rollback binding policy changes to a restore point in an attempt to fix the problem.
If the problem still persists, it may be because a new publisher policy is affecting the versions
of dependent assemblies used. In this case, a safe mode restore point may be used to bypass
publisher policy. To invoke the .NET Application Restore tool through mscorcfg.msc,
perform the following steps:

UNCLASSIFIED

252
UNCLASSIFIED

Expand the Applications node and select the child node that represents the targeted
application.

Click Fix an Application in the details pane on the right and select a managed
application from the .NET Application Restore dialog box (Figure 89).

or

Select the targeted application and click Fix this Application in the details pane on
the right.

or

Right-click the targeted application node and select Fix Application… from the
context menu.

or

Select the targeted application node and select Action, Fix Application… from the
menu bar.

Figure 89. .NET Application Restore Dialog Box – Managed Applications.

The .NET Application Restore tool will present a list of binding policy restore points, plus a
safe mode configuration that will simply disable any publisher policy for the current binding
settings (Figure 90):

UNCLASSIFIED

253
UNCLASSIFIED

Figure 90. .NET Application Restore Dialog Box – Restore Points.

To attempt to fix the targeted application, choose a Binding Policy restore point for this
application, identified by the date the previous Binding Policy was in effect, or choose
Application SafeMode to disable any publisher-supplied policy. Click Apply, and test
the changes.

If none of the restore points work, the problem may be with a machine Binding Policy for
one of the dependent assemblies that is overriding the application and publisher policies. In
this case, the application may have to be disabled until it is reengineered to function with
different versions of the libraries. Machine policies based on identified security or stability
flaws in libraries should not be discarded simply because applications require the flawed
libraries to function.

Configure Remoting Services for an application

The .NET Framework Remoting system provides a means for applications to exchange data
with and request services from other applications either on the same host or on a different
host. To configure Remoting Services for an application,

Add the application to the list of configured applications (see Configure an Assembly
above).

Select the application under the Applications node and click Adjust Remoting
Services in the details pane on the right, or select the Remoting Services node
under the application node and either click on View Remoting Services
Properties in the details pane on the right or right-click the Remoting Services
node and select Properties.

Configuring Remoting Services consists of

Determining the type and properties of the communication channels that will be used.
Channel settings may be configured on the Channels tab.

UNCLASSIFIED

254
UNCLASSIFIED

Specifying the URLs of “known objects” (published names of software components)
belonging to other applications with which the selected application will communicate.
These URLs may be configured on the Remote Applications tab.

Publishing internal software components as “known objects” that can be used by
other applications. These components may be identified on the Exposed Types
tab.

Some of these items can be configured through the Remoting Services Properties dialog box.
All items can be configured by adding or modifying elements in an application’s
configuration file or in the system-wide configuration file for each .NET Framework version,
machine.config. For information on the XML structure of the Remoting Services
configuration settings, see the discussion under the Remoting Services node above.

Summary

The .NET Framework Configuration Tool (mscorcfg.msc) is the central administrative
tool for the .NET Framework. This tool automates the modification of some of the XML
configuration files. Each version of the .NET Framework has its own version of
mscorcfg.msc that is designed to configure that version only.

Recommendations in This Section

Recommendation: Create frequent backups of configuration files administered
using mscorcfg.msc. This can be done by making a copy of the CONFIG folder
for each installed version of the .NET Framework. For hosts with specialized
policy-driven configurations, copies of these files should be stored away from the
host to facilitate recovery and restoration of host operation.

Recommendation: Rename any shortcut to mscorcfg.msc to reflect the version of
the .NET Framework it is designed to configure. Example: “mscorcfg
v1.1.4322”

Recommendation: When using .NET Remoting in version 2.0 of the Framework
always use authentication and encryption when possible. Minimum recommended
settings include: secure=”true”, and protectionLevel=”EncryptAndSign”.

Recommendation: Use authentication and encryption for all remoting channels
when typeFilterLevel attribute of the channel’s formatter sink is set to
“full”. Use authentication and encryption for all remoting channels in version
1.0 of the .NET Framework.

UNCLASSIFIED

255
UNCLASSIFIED

Appendix

C
Summary of Recommendations and Checklist

Summary of Recommendations

Table 29. Summary of Recommendations. lists all the recommendations made in this
document in document order. The subject of the recommendation is in bold face.

Recommendation Page

Chapter 1: .NET Framework Overview
Multiple Versions: Limit the number of installed versions of the .NET
Framework to versions that are actually needed to run applications.

9

Chapter 2: Features of the .NET Framework Security Model
File IO Permission: Only grant the File IO access permissions Read, Write, or
Append to code that is trusted not to allow unauthorized access to file system
resources. Grant File IO access to the most restrictive set of files and folders
possible. Do not grant File IO access to file system roots or other broadly
specified resources simply because they contain a few scattered files of interest.
In many cases, the File Dialog or Isolated Storage File permissions are viable
alternatives.

17

File Dialog Permission: Grant the File Dialog permission to code that needs
user-discretionary access to files and folders. Use the File Dialog permission to
allow the user rather than partially trusted code to browse the file system to the
desired items. Where Append access is necessary or direct file system access
cannot be allowed, the Isolated Storage File permission may be a viable
alternative.

17

Isolated Storage Permission: Grant Administer Isolated Storage by User access
only to highly trusted administrative tools. Grant Assembly Isolation by
User/Roaming User access only to assemblies that need to use user-specific data
applicable to many applications, and do not use application-specific data. Grant
Domain Isolation by User/Roaming User access to all other assemblies. Note
that this recommendation entails a separation of duties among assemblies: those
that process data of common relevance to multiple applications should not also
process application-specific data and vice versa.

19

UNCLASSIFIED

256
UNCLASSIFIED

Recommendation Page
User Interface Permission (Windowing): Code with limited trust should be
granted at most Safe subwindows permission. Highly trusted code that accepts
user authentication information or allows the user to authorize program actions
through a graphical interface should be granted at most Safe top-level windows
permission.

23

User Interface Permission (Clipboard): The clipboard is a convenience for
users who wish to change the presentation context of data or reuse data without
retyping it into another application. It is a “broadcast” channel in that most
software can programmatically read the contents of the clipboard and write data
to it whether initiated by user input or not. Nevertheless, software should use
other means to communicate and reserve the clipboard for discretionary use by
the user. Read access (i.e., through the All Clipboard permission) should be
reserved for highly trusted code.

23

Reflection Permission: Grant the Type Information permission only to highly
trusted code that requires access to implementation details—typically this is
restricted to software engineering tools or software interoperability services.
Grant the Member Access permission only to highly trusted code.

24

X509 Store Permission: Grant the Allow opening of a store permission only to
assemblies that need access to X509 Certificates. Grant the Allow adding of a
certificate to a store permission to assemblies that are trusted to add only
legitimate certificates to a Windows certificate store. All other permissions in
this set should not be granted unless an assembly is completely trusted to add,
modify, and delete sensitive authentication certificates.

25

Key Container Permission: In following with least privilege, grant the Key
Container permission to the most restrictive set of permissions possible. Only
grant Create, Delete, Import, Export, Sign, Decrypt, and AllFlags to highly
trusted code.

26

Data Protection Permission: In following with least privilege, grant the Data
Protection permission to the most restrictive set of permissions possible.

26

Printing Permission: Grant All Printing permission only to highly trusted code. 27
DNS Permission: The DNS permission should typically be granted only to code
that originates from within the local network (evidenced by a strong name with a
public key associated with a local entity) or from a highly trusted external entity.

28

Socket Access Permission: The Socket Access permission should only be
granted to highly trusted code or code that originates from the local network
(evidenced by a strong name with a public key associated with a local entity) and
provides networking services.

28

Web Access Permission: Grant the Web Access Connect permission for a
specified URL only to code that is denied access to information or resources that
should not be shared with the remote site, or is trusted to protect resources that it
can access. Grant the Web Access Accept permission for a specified URL only
to code that requires incoming web connections and is trusted to accept the
connections. Unrestricted Web Access should only be granted to highly trusted
code that performs networking services.

29

UNCLASSIFIED

257
UNCLASSIFIED

Recommendation Page
SMTP Permission: Code granted the SMTP permission will be able to compose
and send emails. Thus, only code that needs to send emails should be granted the
SMTP permission.

29

Network Information Permission: The Read access type should typically be
granted only to code that originates from within the local network or from a
highly trusted external entity. Grant the Ping and Unrestricted access types only
to highly trusted code.

30

Message Queue Permission: The Message Queue permission should only be
granted to code that originates from within the local network (evidenced by a
strong name with a public key associated with a local entity) or from a highly
trusted external entity. Administer access to any single queue and Browse
access to all queues should only be granted to highly trusted administrative tools.

31

Distributed Transaction Permission: The Distributed Transaction permission
should only be granted to code that originates from within the local network
(evidenced by a strong name with a public key associated with a local entity) or
from a highly trusted external entity.

31

Service Controller Permission: Grant the Service Controller permission for a
Windows service only to assemblies whose trust is as high as the service itself
and commensurate with the value of the availability of the service.

32

Database Permission: Grant any of the database permissions only to assemblies
that are highly trusted.

42

Security Permission (Extend Infrastructure): Grant the Extend Infrastructure
permission only to code that is trusted to have complete control over message
processing

43

Security Permission (Enable Remoting Configuration): The Enable Remoting
Configuration permission should be granted only to software from a highly
trusted source with a narrowly defined membership condition. The same
considerations apply that would govern the granting of Unrestricted Web access
or Unrestricted network socket access. If this is not feasible, then Enable
Remoting Configuration should not be granted based on a broadly defined
Membership Condition, such as Zone or Site.

44

Security Permission (Enable Serialization Formatter): Grant Enable
Serialization Formatter permission only to highly trusted code that will be
considered an extension to the CLR’s trusted library base.

45

Security Permission (Enable Thread Control): Grant Enable Thread Control
permission only to Fully Trusted code.

45

Security Permission (Allow Principal Control): Grant the Allow Principal
Control permission only to code that is trusted at least as much as the most
trusted user account on the system

45

UNCLASSIFIED

258
UNCLASSIFIED

Recommendation Page
Security Permission (Enable Assembly Execution): The Enable Assembly
Execution permission should be granted based on the level of trust associated
with the assembly’s origin, as established by evidence stronger than URL
Security Zone. If possible, separate the Enable Assembly Execution permission
from resource access permissions, so that the former is tied to origin and
embodies a trust relationship, while the latter are tied to functional requirements
of code and embody the principle of least privilege. This recommendation is
violated by the default CAS policy.

47

Security Permission (Skip Verification): Skip Verification should be granted
only to highly trusted code based on a hash identity or strong name evidence that
includes the assembly’s name, version, and public key associated to a trusted
party. If possible, separate the Skip Verification permission from resource
access permissions, so that the former is tied to a specific assembly from a
trusted point of origin and embodies a trust relationship, while the latter are tied
to functional requirements of code and embody the principle of least privilege.
This recommendation is violated by the default CAS policy.

48

Security Permission (Allow Calls to Unmanaged Assemblies): The Allow
Calls to Unmanaged Assemblies permission should be granted only to code that
is trusted to execute with the same privileges as the user’s account under which
the code is running.

48

Security Permission (Allow Policy Control): The Allow Policy Control
permission should be granted only to highly trusted .NET Framework
administrative tools.

49

Security Permission (Allow Domain Policy Control): If custom Runtime Host
applications are in use that implement organizational policy using the
AppDomain CAS policy level, then the Allow Domain Policy Control
permission should be granted only to code that is highly trusted. In other cases
(including the typical default installation), this permission should be granted
only to code that is designed to dynamically launch other applications that may
be less trusted than itself.

49

Security Permission (Allow Evidence Control): The Allow Evidence Control
permission should be granted only to code developed by trusted parties with
demonstrated secure coding practices. Code granted this permission effectively
becomes an extension of the CLR’s access control system. Assemblies that
implement custom permissions are an example of the type of code that may need
to be granted this permission.

50

Security Permission (Assert any Permission that Has Been Granted): The
Assert any Permission that Has Been Granted permission should be granted only
to software that is from a trusted developer with demonstrated secure coding
practices. Typically, this permission is granted to highly trusted extensions to
the CLR base libraries, such as a shared component that is intended to be
available to all managed code.

51

UNCLASSIFIED

259
UNCLASSIFIED

Recommendation Page
Performance Counter Permission: Grant Performance Counter access to the
most restrictive set of performance counter categories possible. Grant
Instrument, Write or Administer access only to trusted code that provides or
administers a monitoring service.

53

Environment Permission: The Environment permission with Unrestricted
access should be granted only to highly trusted code.

57

Event Log Permission: The Event Log permission with Audit, Administer or
Unrestricted access should be granted only to administrative tools from trusted
developers that monitor system and application events.

58

Registry Permission: Grant the Registry permission with the most restrictive
access type and to the most restrictive set of registry keys possible.

59

Directory Services Permission: Grant the Directory Services permission with
the most restrictive access type and to the most restrictive set of directory node
paths possible. Grant Browse access to the Windows system directory services
(Active Directory/Global Catalog, IIS Metabase) only to code of local origin
(evidenced by a strong name with a public key associated with a local entity).
Only highly trusted administrative tools should be granted Write access to the
Windows system directory services.

60

Strong Name Membership Condition: Strong name verification should never
be simulated in an operational environment.

67

First Match Code Groups: Editing CAS policy files to use First Match Code
Groups may create invalid or corrupt XML, as these files are also modified by
automated tools and parsed by the CLR. Thus, it is recommended that CAS
policy be configured using Union Code Groups configured through
mscorcfg.msc.

70

File Code Groups, Net Code Groups: Editing CAS policy files to create File
Code Groups or Net Code Groups may create invalid or corrupt XML, as these
files are also modified by automated tools and parsed by the CLR. Thus, it is
recommended that these groups be avoided or the XML of the default groups be
copied and imported using mscorcfg.msc.

72

Assembly Permission Requests: Although software developers may and should
support an organizational security policy through assembly permission requests,
security policy should not rely on these requests, but should be implemented
with CAS policy settings.

80

Level Final Code Group Attribute: Code Groups with the Level Final attribute
should have Membership Conditions that are as narrowly defined as possible.

81

Chapter 3, Deploying .NET Framework CAS Policy Using Group
Policy
Administrating Deployment: Back up any custom host CAS policy using a
Windows Installer package before configuring different policies for deployment.

85

Administrating Deployment: Configure policy for deployment on a protected
host.

85

UNCLASSIFIED

260
UNCLASSIFIED

Recommendation Page
Software Distribution Point: When using a shared network folder as a software
distribution point for CAS policy, set the folder permissions to restrict access to
administrators or others authorized to maintain .NET Framework CAS policy
deployment files.

87

Group Policy Deployment: When CAS policy is deployed via Group Policy
software installation, disable Fast Logon Optimization.

93

Administrating Deployment: Archive Windows Installer packages for all CAS
policy deployments, including the default CAS policy, for use as restoration
points when rollback to a prior policy state is desired.

99

Chapter 4, URL Security Zones and the .NET Framework Zone
Membership Condition
Zone Membership Condition: Do not grant or restrict access to resources based
on a Zone Membership Condition in support of an organizational policy unless
user mappings are disabled.

107

Zone Membership Condition: Only use Zone Membership Conditions as part
of a multi-factor code authorization check that relies on at least one additional
type of evidence before granting access to resources.

107

Chapter 5, Cryptographic Localization in the .NET Framework
Cryptographic Configuration (Short Class Names): Use short class names as
abbreviated forms of the algorithm classes. Do not use short class names to
express policy-driven roles such as algorithm defaults or use conditions.

120

Cryptographic Configuration (Friendly Names): Use friendly names to
express the policy-driven roles played by particular algorithm classes (identified
by their short class names) in the local execution environment. These roles can
be defaults (i.e., “DefaultHashAlgorithm”) or use conditions (i.e.,
“FinancialDataEncryption”).

121

Chapter 6, Administrative Task and Tools
Administering CAS Policy: Never disable CAS policy on a computer
connected to an untrusted network such as the Internet.

133

Administering the Windows Environment: Disable trust of Test Root
certificates in an operational environment.

139

Administering the Windows Environment: Enable checking for expired
certificates.

139

Publisher Membership Condition: Only use the Publisher Membership
Condition for software publishers with whom your organization has a well-
established history of trust. Access to resources may be granted to code that
presents expired certificates, so the use of the Publisher Membership Condition
assumes that the publisher was trustworthy in the past as well as the present.

140

Administering the Windows Environment: Enable checking for revoked
certificates.

140

UNCLASSIFIED

261
UNCLASSIFIED

Recommendation Page
Administering the Windows Environment: Disable automatic trust for
certificates whose revocation status cannot be determined.

142

Administering the Windows Environment: Enable checking for revoked time
stamp provider’s certificate.

142

Strong Name Membership Condition: Base trust on a strong name only where
the public key is verifiably associated with a trustworthy party, and the public
key owner can be trusted to limit access to the corresponding private key.

144

Administering CAS Policy: Strong name verification should never be simulated
in an operational environment.

146

Appendix A, Administrative Tools Reference
Administering CAS Policy: Make Code Group names unique across the entire
Code Group tree for any given CAS policy level.

158

Administering CAS Policy: Back up both the source and the target CAS
policies at the Enterprise and Machine levels before running migpol.exe.

177

Administering CAS Policy: Review any policy migrated using migpol.exe to
ensure that it conforms to organizational security policy.

178

Administering CAS Policy: Although an assembly may be safe even though it
fails peverify.exe, do not allow unverifiable code to execute in an
operational environment by granting the Skip Verification permission unless the
code is from a highly trusted source.

181

Appendix B, mscorcfg.msc – The .NET Framework
Configuration Tool
Administering CAS Policy: Create frequent backups of configuration files
administered using mscorcfg.msc. This can be done by making a copy of the
CONFIG folder for each installed version of the .NET Framework. For hosts
with specialized policy-driven configurations, copies of these files should be
stored away from the host to facilitate recovery and restoration of host operation.

194

Administering CAS Policy: Rename any shortcut to mscorcfg.msc to reflect
the version of the .NET Framework it is designed to configure. Example:
“mscorcfg v1.1.4322”.

196

Remoting Services: When using .NET Remoting in version 2.0 of the
Framework always use authentication and encryption when possible. Minimum
recommended settings include: secure=”true”, and
protectionLevel=”EncryptAndSign”.

217

Remoting Services: Use authentication and encryption for all remoting channels
when typeFilterLevel attribute of the channel’s formatter sink is set to
“full”. Use authentication and encryption for all remoting channels in version
1.0 of the .NET Framework.

220

Table 29. Summary of Recommendations.

UNCLASSIFIED

262
UNCLASSIFIED

CAS Policy Checklist

The following checklist is an aid to a system administrator or an organization in applying the
recommendations in this document to an operational host or network. The configuration of
the .NET Framework begins well before the administrator begins to specify access control
settings in CAS policy for each host. In order to apply this checklist properly, the role of the
.NET Framework in the overall system and network security architecture should be
understood – is the .NET Framework merely a optional add-on to an existing comprehensive
security plan, is it a critical control, or is it something in between? The design phase of an
information system is the appropriate time to determine the role of the .NET Framework in
the system security architecture and to document that role in the organization’s security plan.
This will direct the application of the guide’s recommendations toward meeting the specific
goals of the organization for the .NET Framework as a security control.

An important consideration to keep in mind when including the .NET Framework in a
security plan is that the CAS policy should be used to protect rather than to restrict the user.
CAS policy protects the user from code by preventing code from performing unauthorized
functions. Other controls should be employed to protect the system from the user by
preventing the user from taking unauthorized actions.

First Steps to Configuring CAS Policy

Know how you will support the policy

Change is inevitable; changes in systems and operating environments will necessitate updates
to the CAS policy. Plan for change from the beginning.

The personnel responsible for approving, creating, reviewing, deploying, and
maintaining the .NET Framework policies are identified and their roles delegated.

A schedule for periodic review of CAS policy is established and documented.

This review will consider new software sources, reevaluate the levels of trust
associated with software sources, and reevaluate the privilege associated with
each protected resource.

Policy must be reviewed whenever the system or its operating environment
changes. Policy should also be reviewed at periodic intervals whether there
are known system changes or not.

A process is in place for the security administrator responsible for reviewing and
updating CAS policy to be made aware of changes to the operating environment of a
host.

A deployment method for CAS policy is established.

UNCLASSIFIED

263
UNCLASSIFIED

A system for CAS policy archival is established to enable security incident review,
operations recovery, and rollback of policy to prior states.

An organization can better take advantage of the granularity of CAS policy by adopting a
software development methodology that creates modular applications. The following
practices support a granular access control policy:

Each assembly performs only related functions. Small, functionally focused
assemblies lend themselves to more tailored access control decisions.

All assemblies are strong named and access to the private keys is protected.

Different strong names or publisher certificates are used to discriminate between
groups of assemblies that are likely to be associated with different trust levels. For
example, office automation applications should use a different strong name than code
that provides networking or other infrastructure services.

Know what the policy needs to do for you

The value of using the .NET Framework CAS policy on a host cannot be estimated unless the
risks that the policy is supposed to mitigate are known. Knowing the risk involves knowing
the types of managed code that could run on the host, knowing the operating environment of
the host, and knowing the resources that the policy will be designed to protect.

Know the code

The .NET Framework protects the user from threats posed by managed code of diverse
characteristics and origin. Knowing the code involves identifying the range of code that
could potentially execute on a host, and knowing the level of risk or, conversely, the level of
assurance associated with various types of managed code.

The strong names and publisher certificates authorized for use in access control
decisions are known and documented, with documented trust assessments.

Trust assessments appropriately reflect knowledge of the documented private
key management practices of internal and external entities, as available.

Trust assessments for strong names appropriately reflect the integrity of the
channel used to obtain the strong name credentials.

Standards for demonstrating secure coding practice are identified and documented.
Software from developers that meet these standards may be granted more trust.

The level of trust associated with managed code is identified and documented. The
trust determination should:

include all managed code reachable from the host

UNCLASSIFIED

264
UNCLASSIFIED

incorporate the trust levels associated with the originator of the code, using
the trust assessments associated with strong names, publisher certificates, and
secure coding practices identified above

incorporate the trust levels associated with the sources from which code could
be obtained and the security of the possible channels that could be used to
transfer the code.

assume that software will not limit its own access to resources (code should be
assumed to be resource-greedy and unstable at best, and malicious at worst)

Know the environment

The .NET Framework is not a stand-alone security solution. It is layered on the operating
system security and other features of the host and network. Knowing the base security
environment is a necessary prelude to effectively integrating CAS policy into a layered
security system.

The operating environment of each host is known, including operating system
security settings, network connectivity, and the secure and non-secure channels
available.

The operating system has been hardened appropriate to the operational use of each
host, including the following items:

The .NET Framework folders are protected by NTFS file permissions to allow
write access only to administrators.

All strong name simulation (“skip verification”) entries have been removed
from the registry.

Certificate verification has been configured to check for expired and revoked
certificates. The test root certificate authority is not trusted.

Know the resources

Sound access control decisions for managed code are based on the functions that are allowed
or denied and the system assets that are protected by each .NET Framework permission.
Knowing the protected resource includes knowing the privilege level of those functions and
the value of those system assets.

If access to a .NET Framework-protected resource by code should only be granted in
the context of an additional security setting provided by the operating system (for
example, a file permission), another part of the system (for example, a
communications channel encryptor), or the resource itself (for example, a database
application with integrated access control), then the required security context for the
use of that resource is documented.

UNCLASSIFIED

265
UNCLASSIFIED

The privilege associated with access to each resource on a host is identified and
documented. Access privilege is a way of expressing the value of a system resource.
To access a resource, code must have a level of trust commensurate with the privilege
associated with that resource. The privilege determination should:

include all .NET Framework-protected resources

be based on the range of functions that can be performed using that resource
in the context of the most privileged user account, and the effects of those
functions on other parts of the system

reflect resource scarcity – access to a resource with a limited bandwidth may
require higher privilege if contention for that resource would result in an
unacceptable degradation of a system resource or capability

be appropriate to the type of host on which the resource is located.

CAS Policy Creation

General Guidelines

CAS policies for different .NET Framework versions exist side-by-side and are administered
separately. Policy must be configured, reviewed, maintained, and deployed separately for
each version of the .NET Framework. Security configuration for the .NET Framework is not
complete until every installed version of the .NET Framework has been appropriately
configured.

CAS policy can easily become overly complex. The need to appropriately restrict code from
a wide variety of sources is at odds with the need for a simple, modular design that facilitates
regular review and update. CAS policy creation is an iterative process that should include
frequent checks for possibilities to simplify. Over time, incremental updates caused by
changes in the operating environment can result in an unwieldy and difficult-to-understand
policy. A discipline of keeping simplicity and maintainability in mind enables the
administration of the .NET Framework as a security control over the lifecycle of a host.

One aspect of CAS policy simplicity is the minimization of custom policy software
components such as custom Code Group, Membership Condition, or Permission types. In
general, system and network security architecture should rely on open standards as much as
possible. Similarly, a CAS policy should be constructed from standard policy elements as
much as possible, to make review and analysis of that policy easier.

Custom Code Groups, Membership Conditions, and Permissions are evaluated,
approved, and documented across the organization. The use of unapproved custom
CAS policy elements has been prohibited by organizational security policy.

UNCLASSIFIED

266
UNCLASSIFIED

Policy Refinement Process

The following steps should be repeated until the access control policy is appropriately set for
all code accessible from the host. Since code that is not granted permission to use resources
is implicitly denied access to those resources, all CAS policies, including the default policy,
will embody access control decisions for all code. CAS policy creation is therefore a process
of successive refinement of the existing policy to more appropriately reflect the access
control needs of a particular operational environment.

1. Identify a category of software (“code group”) accessible from this host that can be
defined by an available Membership Condition. Identify and document the trust
associated with this software. This should correspond to the least trusted software
that belongs to the identified category. For a discussion of the scope of each
Membership Condition, see Table 19. Discriminating Power of Membership
Conditions. Since categories may be nested, this process should begin with broadly
defined Membership Conditions and progressively identify more specific groups of
code.

Since access control in the .NET Framework is performed per assembly, CAS policy
can be as granular as the modularity of an application – different parts of an
application can be granted different access to resources. In particular, shared code
components can be granted the least access they need to function in their limited
roles. Conversely, large assemblies that access a broad set of resources should be
associated with a higher level of trust.

2. Identify and document the authorized functions for the current category of software,
if any.

3. Identify and document the .NET Framework-protected resources that need to be
granted to perform the authorized functions, and the minimum type of access to those
resources.

4. Identify the functions that the software could actually perform given access to the
resources identified in the previous step. The set of resources needed for software to
perform its authorized functions may allow it to perform unauthorized functions as
well, as the following example illustrates.

Functions
A B C

1
2
3
4 R

es
ou

rc
es

5

Figure 91. Example Relationship Between Functions and Resources.

UNCLASSIFIED

267
UNCLASSIFIED

Example (see Figure 91): Code authorized to perform functions A and C needs access
to resources 1, 2, 3, and 5 to perform both functions. However, this combination of
resource access also allows it to perform the unauthorized action B. The trust level of
this code should be commensurate with both the privilege associated with resources
1, 2, 3, and 5, and the set of functions {A, B, C} that it can actually perform with
these resources.

5. Create a Named Permission Set that contains only the access to resources appropriate
for the current software category. The appropriate set of access permissions is
determined by comparing the trust level of the software with the aggregate privilege
level of the set of resources needed to perform its authorized functions. This
aggregate privilege is based on the functions identified in the previous step and may
be greater than the privilege of each individual resource. The trust level of the
software should be commensurate with the functions it can actually perform, not just
with the functions it is authorized to perform.

If an access to a resource is too highly privileged or allows the performance of an
unauthorized function that is too highly privileged in comparison to the software’s
level of trust, it should not be included in the Named Permission Set. Thus, the
Named Permission Set may allow the software to perform only a subset of its
authorized functions.

6. Create a Code Group that has the specified Membership Condition and Named
Permission Set. If the current software category is a subset of a previously defined
category, the Code Group may be created as a child code group.

7. Review the resulting CAS policy for opportunities to simplify. It may be possible to
combine similar Named Permission Sets without violating the principle of least
privilege. It may be possible to remove permissions from a child Code Group that
have already been granted through a parent Code Group.

CAS Policy Review

Once the CAS policy has been created, it should be reviewed using the following steps.

Host Policy Review

The same principles discussed above with respect to CAS policy creation should be
considered as part of the policy review. The review process should evaluate how well the
policy embodies those principles. A policy review is not complete until the CAS policy of
every installed version of the .NET Framework has been examined.

The recommendations in this configuration guide have been followed. To aid policy
review, exceptions appropriate to the operating environment should have a
documented justification.

The policy is not unnecessarily complex.

UNCLASSIFIED

268
UNCLASSIFIED

The use of custom Code Groups, Membership Conditions, and Permissions has been
minimized.

The policy adequately protects the most privileged user account under which it will
be applied.

The policy appropriately restricts all code reachable from the host.

The policy implements the principle of least privilege by not granting access by code
to any resource that is not required for that code to perform its authorized functions.

The policy does not grant code access to any resource that would permit it to perform
an unauthorized function it is not trusted to perform.

The policy accurately applies the documented trust levels associated with code and
privileges associated with system resources. Unlike policy creation, which focuses
on a single Membership Condition, the policy review also focuses on the union of
multiple Membership Conditions: given a resource, the trust level associated with the
set of all code that is granted access to that resource must be commensurate with its
associated privilege.

Security Architecture Review

The composite security policy provided by the .NET Framework and the operating
system is appropriate for the operating environment of each host.

The deployment of different CAS policies to different hosts in a network is
coordinated and consistent with the operating environment of different network
segments. Perimeter hosts should have very restrictive CAS policies. The security of
a network is the security of its weakest link. A well thought-out deployment of CAS
policy avoids weak links. Hosts with poor or overly permissive CAS policies create
avenues of attack.

The overall deployment of the .NET Framework is as simple as possible. The
number of host-specific CAS policies is minimized.

The CAS policy is in conformance with any organizational security policy regarding
the configuration, distribution, or execution of software, including executable content
(code bundled with data that executes as a side effect of accessing or viewing the
data) and other forms of mobile code (all code obtained from remote systems and
executed locally as needed).

Summary

Because the security configuration of the .NET Framework depends on the interplay between
the operating system security settings, the operating environment of the host, and the nature
of the software that is required or available for execution on the host, it does not lend itself

UNCLASSIFIED

269
UNCLASSIFIED

naturally to a step-by-step procedure. Configuration is a cycle of successive refinement,
beginning with a default policy. The outcome should be tailored policies for each host, and
also a set of new base policies that can make configuration of additional hosts or networks
faster and more consistent with the overall security architecture.

UNCLASSIFIED

270
UNCLASSIFIED

This page has been intentionally left blank.

UNCLASSIFIED

271
UNCLASSIFIED

Appendix

D
Works Cited
[ECMA-335, 2002] ECMA International. Common Language Infrastructure (CLI), Standard

ECMA-335, Second Edition. ECMA International, 2002.
http://www.ecma-international.org/publications/files/ecma-st/
ecma-335.pdf

[Barker (NIST SP 800-59), 2003] Barker, William C., Guideline for Identifying an
Information System as a National Security System, NIST Special Publication 800-59,
Gaithersburg, MD: National Institute of Standards and Technology, 2003.
http://csrc.nist.gov/publications/nistpubs/800-59/sp800-59.pdf

[BS/ISO/IEC 17799, 2000] British Standards Institution, Information Technology – Code of
Practice for Information Security Management, BS ISO/IEC 17799:2000.
http://www.bspl.com/iso17799software

[FISMA, 2002] Federal Information Security Management Act of 2002 (Title III of the E-
Government Act of 2002, H.R. 2458), Public Law 107-347, Title III, 2002.
http://www.cio.gov/documents/e_gov_act_2002.pdf

[Fraser (RFC 2196), 1997] Fraser, Barbara Y., Ed., Site Security Handbook, RFC 2196,
Software Engineering Institute, Carnegie Mellon University, September, 1997.
http://www.ietf.org/rfc/rfc2196.txt

[GAO/AIMD-12.19.6, 1999] Government Accounting Office, Federal Information System
Controls Audit Manual, GAO/AIMD-12.19.6, 1999.
http://www.gao.gov/policy/12_19_6.pdf

[GASSP, 1999] The International Information Security Foundation (I2SF)-Sponsored
Committee to Develop and Promulgate Generally Accepted System Security
Principles (GASSPC), Generally Accepted System Security Principles, Version 2.0,
International Information Security Foundation, 1999.
http://web.mit.edu/security/www/gassp1.html

[Haney, 2001] Haney, Julie M., Guide to Securing Microsoft Windows 2000 Group Policy,
National Security Agency, 2001.
http://www.nsa.gov

[LaMacchia, et al., 2002] LaMacchia, Brian A., Sebastian Lange, Matthew Lyons, Rudi
Martin, and Kevin T. Price, .NET Framework Security, Boston: Addison-Wesley,
2002.

UNCLASSIFIED

272
UNCLASSIFIED

[Meier, et al., 2003] Meier, J. D., Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray
Escamilla, and Anandha Murukan, Checklist: Security Review for Managed Code.
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnnetsec/html/CL_SecRevi.asp

[Microsoft, MSDN] The Microsoft Developer Network.
http://msdn.microsoft.com

[Microsoft, .NET Framework] Microsoft .NET Framework Developer Center.
http://msdn.microsoft.com/netframework

[Microsoft, 2002] Microsoft Corporation, Secure Coding Guidelines for the .NET
Framework.
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnnetset/html/seccodeguide.asp

[Sanderson and Rice, 2000] Sanderson, Mark J. and David C. Rice, Guide to Securing
Microsoft Windows 2000 Active Directory, National Security Agency, 2000.
http://www.nsa.gov

[Swanson and Guttman (NIST SP 800-14), 1996] Swanson, Marianne and Barbara Guttman,
Generally Accepted Principles and Practices for Securing Information Technology
Systems, NIST Special Publication 800-14, Gaithersburg, MD: National Institute of
Standards and Technology, 1996.
http://csrc.nist.gov/publications/nistpubs/800-14/800-14.pdf

[Swanson (NIST SP 800-18), 1998] Swanson, Marianne, Guide for Developing Security
Plans for Information Technology Systems, NIST Special Publication 800-18,
Gaithersburg, MD: National Institutes of Standards and Technology, 1998.
http://csrc.nist.gov/publications/nistpubs/800-18/planguide.pdf

[Weise and Martin, 2001] Weise, Joel and Charles R. Martin, Developing a Security Policy,
Sun BluePrints OnLine, Santa Clara, Calif.: Sun Microsystems, December, 2001.
http://www.sun.com/solutions/blueprints/1201/secpolicy.pdf

[Watkins and Lange, 2002] Watkins, Demien and Sebastian Lange, An Overview of Security
in the .NET Framework.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnnetsec/html/netframesecover.asp

[W3C, 2001] David C. Fallside, Ed., XML Schema Part 0: Primer: W3C Recommendation, 2
May 2001.
http://www.w3.org/TR/xmlschema-0/

