
UNCLASSIFIED

UNCLASSIFIED

Report # C43-002R-2004

The Case for Using Layered
Defenses to Stop Worms

Network Architecture and Applications Division
of the

Systems and Network Attack Center (SNAC)

Information Assurance Directorate

National Security Agency
9800 Savage Rd. STE 6704
Ft. Meade, MD 20755-6704

malcodeteam@nsa.gov

June 18, 2004
Version 1.0

David J. Albanese
Michael J. Wiacek
Christopher M. Salter
Jeffrey A. Six

UNCLASSIFIED

1

UNCLASSIFIED

1 Motivation
Internet worms are perceived to be one of the primary threats to the nation’s information
technology infrastructure. They are a significant cause for concern from both financial and
network security perspectives. According to the Worm Information Center FAQ [1], the Sobig
and Blaster worms, which occurred at the same time, are estimated to have cost companies more
than two billion dollars.

For this paper, we studied current worm strategies and implementations and tried to determine
whether the trends point to a significant worsening of the problem in the near future. Are worm
technologies improving? Are worm attacks becoming more sophisticated? We were also
interested in defensive technologies that can be used to combat the worm problem. Where are
defensive technologies best applied? Should other technologies be developed to help defend
against the worm problem? Ultimately, we would like to know whether a sophisticated attack
can be prevented – could current defensive mechanisms be used to defend against future
sophisticated attacks?

2 Paper Organization
Answering our questions required an understanding of current worm technology and how it is
evolving. We choose to focus on the technology used by worms rather than the social
engineering methods used to deploy them, for which there is no technical solution.

In the Worm Technology section (sec. 4) of this paper, we devise a novel method for describing
Internet worms based on characteristics they exhibit, which we call life functions. By
decomposing these life functions, we derived the fundamental conditions needed for worm
success, which we call its attack attributes. In the Attack Attributes section (sec. 5), we
describe a system by which to classify worms.

The Defensive Mechanisms and Techniques section (sec. 6) surveys the existing technologies
that combat worms and other malicious code. The worm attack attributes are matched against
the defenses in the Attacks vs. Defenses section (sec. 7) in a defense matrix. From this matrix,
we draw conclusions about how best to detect and prevent worm attacks. We present a summary
of our results in the Findings section (sec. 3) below.

Finally, in the Applying Defensive Methodology section (sec. 8), we discuss how five
aggressive worms would have been easily defeated using the defense- in-depth strategy that we
advocate in this paper.

UNCLASSIFIED

2

UNCLASSIFIED

3 Findings

3.1 Defense-in-Depth
Many defensive technologies have been developed to combat the spread of Internet worms.
Unfortunately, there is no single technology that protects against all types of mobile malicious
code. Many enterprises rely on only a small set of protective technologies to protect their assets,
such as firewalls and virus scanners. Our research suggests that a layered defensive solution
would be more effective at preventing all known worm infection vectors and, potentially, many
unknown ones as well.

We reached this conclusion based on our study of a wide variety of Internet worms and defensive
mechanisms. As part of our research, we have produced a system for describing worms and
measuring whether defenses can stop them. We believe that this method captures the critical
characteristics that define current worms and the characteristics that will be displayed by worms
in the future. Our system demonstrates that no single defense works against all worms and that
multiple layered defenses provide robust protection.

Defense- in-depth security helps defend against not only worms but other network threats like
Trojan horses, malicious insiders, and hackers who have guessed passwords or entered systems
via flaws in network code. It bolsters security with solutions that are effective even without
forward knowledge of any attack. Such security solutions scale even to zero-day attacks, which
are attacks that make use of previously unknown vulnerabilities. Reactive defenses, like
signature-based virus scanners and automated patching systems are still necessary, but they are
ineffective against fast moving worms or zero-day attacks.

Worms have increasingly become “blended threats”[12]; they use many different methods to
attack systems. In effect, they are using an attack- in-depth strategy in order to carry out their
mission. Single-point solutions may be able to block a few of the attack vectors, but will not be
able to stop all of them.

3.2 What We Did
Our methodology involves studying some of the most prolific, damaging, and technically
sophisticated worms of the past few years. We develop a method of classifying worms based on
characteristics they exhibit, which we call life functions. From these characteristics, we generated
a large set of attack attributes, which represent classes of actions taken by worms to ensure
successful infection, survival, and propagation. The attack attributes are matched against
defensive technologies and presented in a defense matrix.

The matrix reveals that certain defensive mechanisms work best against particular worm life
functions. But to achieve the best and broadest coverage against the Internet worm threat only a
defense- in-depth approach will suffice. Specifically, traditional perimeter defenses, such as
firewalls, should be supplemented with host-based protection systems.

UNCLASSIFIED

3

UNCLASSIFIED

Our research distilled worm attacks into their basic building blocks. We reviewed over 30
worms and noted what conditions and actions they need to succeed. In all, we observed over 200
distinct conditions in our sample set of worms. We were able coalesce these conditions into 14
broad categories, which we call worm attack attributes. We believe that by blocking these
fourteen attack attributes we can control worms.

We show how well eleven common defenses combat the worm problem by aligning them against
the attack attributes in a defense matrix. The matrix, with attack attributes on one axis and
defenses on the other, shows whether a defense offers hope toward observing or defending that
attack point. A notation at an intersection implies that some protection is afforded against the
attribute.

UNCLASSIFIED

4

UNCLASSIFIED

The defense matrix appears in Table 1. A detailed version of the matrix and an in-depth
description of our annotation decisions are in the Attacks vs. Defenses section (sec. 7).

D

ef
en

se
s

Attack Attributes P
ac

ke
t F

ilt
er

in
g

F
W

St
at

ef
ul

 F
W

A
pp

lic
at

io
n

Pr
ox

y
F

W

ID
S

H
os

t F
W

V
M

C
on

fig
ur

at
io

n

A
V

 w
it

h
H

eu
ri

st
ic

s

H
IP

S

In
te

gr
ity

C

he
ck

St
ac

kg
ua

rd
in

g

Exploits vulnerable network
code (infection)

X X X X X X X

Tricks a user (infection) X X X

Exploits vulnerable
configuration (infection) X X X X X

Exploits previously installed
backdoor (infection)

X X X X X

Changes file system X X X

Changes system settings X X X

Modifies some process X X

Accesses the network X X X X X

Requires system privilege X X X

Performs anomalous queries X X

Invokes crucial APIs X X

Causes network flooding X X X X X

Slows local system X

Contains worm signatures X X X

Table 1 – Defense Matrix

UNCLASSIFIED

5

UNCLASSIFIED

The first four attack attributes in the defense matrix correspond to the first stage of the worm
lifecycle, which we call its infection life function. This is where the worm gains initial control of
the system and first executes its code. The remaining attributes can apply to any of the
subsequent life stages of worms, be it survival, propagation, or payload. The matrix indicates
that certain defenses are most effective at blocking infection while others are better against later
life stages.

Most defensive mechanisms used today focus on preventing the initial worm infection. A strong
firewall configuration or stackguarding are effective techniques in this regard. Unfortunately, as
we can see in the matrix, they are not sufficient. The majority of the worms in our sample set
infected machines as a result of a user directly executing the worm (i.e. by clicking on it).
Firewalls alone cannot address this infection mechanism since they cannot block all means by
which files enter systems. It is unrealistic to assume that users will become cautious about
running unknown files.

We must assume that worms will be able to bypass perimeter defenses and continue to get
control of systems, as they have for the last 15 years. For this reason, defenses must be geared to
block worms in their later life stages. During the survival, propagation, and payload stages,
worms generally need to perform actions directly on the infected host. Protections nestled close
to the host are better suited to defend against these worm actions. Only these defenses are
granular enough to understand the operating system resources being used by the worm.

The defense matrix shows that host-based intrusion prevention systems and strong configuration
can detect or combat twelve of our fourteen attack attributes. Host-based intrusion prevention
systems offer the most protection against a worm’s later life stages. They enforce behavioral
policy on a per application basis. This policy enforcement is a critical component of our defense
strategy because nearly all worms exhibit anomalous behavior when compared to a baseline of
normal system operation. For example, they access resources that should only be touched during
program installation or access resources associated with network communication in anomalous
ways. Tools that provide protection against the later life stages coupled with tools that prevent
initial infection leave no attack attribute that cannot be defended against.

3.3 The State of Worms
This project provided us with insight into the state of worm technology. During this study, we
decomposed a wide sample of worms and studied their behaviors. From this, we hoped to be
able to assess their sophistication and project the future in worm technology. From the rate at
which worms appear across the globe and from the press coverage given them, one would be led
to believe that the worm problem is out of control and we are defenseless against it. While there
are many worms that have had widespread success, we concluded that they do not exhibit any
behaviors that are not addressed by commonly available defenses. Unfortunately, administrators
often only deploy defenses that tend to be reactive and do not adequately address all aspects of
the problem.

UNCLASSIFIED

6

UNCLASSIFIED

We have observed some advances in the state of worm technologies. We have seen fast
spreading worms, highly destructive worms, specially targeted worms, remotely controlled
worms, and heavily armored worms (that are hard to analyze). On the surface, these aspects
seem very advanced, but upon deeper review, their degree of sophistication has not made huge
leaps; it is merely tracking the technology that is available. Once new technology, such as peer-
to-peer networks becomes available, worm writers make use of it for spreading and controlling
worms.

If sophisticated adversaries were writing worms, then we would expect to see more worms that
exploit flaws not known to the public. The small number of such worms suggests that worm
writers merely make use of vulnerabilities posted to the Internet to drive infection. Our findings
confirm this. The worms that are universally considered to be the most sophisticated are not
those that have exhibited the most advanced individual techniques, such as being remotely
controlled; they are the ones that have most effectively incorporated all of the various aspects of
worms (remotely controlled, fast spreading, specially targeted, and so on). The Leave worm, for
instance, used multiple infection vectors, was difficult to analyze, used advanced command and
control channels that tunneled through firewalls, and enabled a remotely controllable agent on
each target. Our case studies show that the various life stages of Leave and other worms can be
prevented by layered defenses.

UNCLASSIFIED

7

UNCLASSIFIED

4 Worm Technology
Many different worms have appeared on the Internet in the past few years. It is infeasible to
study all of them, so we selected a subset of worms that we hope covers the entire domain of
mobile malicious code. Using this subset, we developed a method to describe comprehensively
these common characteristics, which we call their life functions. This method is useful for not
only describing current worms, but future worms as well.

We describe the types of data we collected to perform this study in the Worm Analysis section
below. The sample worms we chose are listed in the Selected Worms section and our
mechanism for describing worms is explained in the Classifying Worms and Life Functions
sections.

4.1 Worm Analysis
Our analysis only considers worms as described by Nazario, et al. [28], rather than other types of
viral code. The distinction between worms and viruses is rapidly becoming more blurred, but we
still believe that a software component that has the capability to infect other systems in an
automated fashion is best described as a worm. We acknowledge that worms may also be
activated by non-automated means. In either case, the defensive measures we propose defend
against worms and viruses, as well as other types of malicious code.

We collected information on thirty different worms seen on the Internet over the past couple of
years. Most of the data came from anti-virus vendor write-ups that are posted on their websites
[2-9]. The remainder of the data was obtained from other researchers’ work on individual worms
[13-22] and from our own independent research.

We focused on collecting information that would answer the following questions:

• What types of vulnerabilities does the worm exploit?
• How fast does the worm spread?
• How does the worm avoid detection?
• Does the worm have a remote command and control capability?
• What requirements or conditions are needed for the worm’s success?
• How difficult was the worm to analyze?
• How complicated was the code?
• What residue is left behind when the worm infects a system?
• Does the worm cause any noticeable side effects?

4.2 Selected Worms
For our subset of worms, we chose examples that would be representative of the mobile
malicious code space. We selected worms that were the most successful in propagation,
technically novel or sophisticated, or most damaging to network infrastructure. By choosing this

UNCLASSIFIED

8

UNCLASSIFIED

set of current worms, we expect to be able to predict the advances future worms may make.
Below is the list of worms we selected with a brief description of why they were chosen:

BADTRANS – Win32 worm that spreads using Message Application Program Interface (MAPI)
commands. It sends out user information, passwords, and log of keystrokes.

BLASTER/LOVSAN/MSBLAST [16]- Win32 worm that exploits the MS RPC DCOM Buffer Overflow.
It attempted a distributed denial of service attack (DDOS) against the Microsoft site that distributes
software fixes to vulnerabilities (windowsupdate.com).

BUGBEAR/TANATOS [17] – Similar to BADTRANS, but has some additional capabilities. It disables
anti-virus software and spreads through network shares and sends traffic to network printers. It also has
protection mechanisms such as UPX compression and a polymorphic file infector.

CODERED [13,15] – Win32 worm that attacks the Microsoft Windows WWW server IIS (Internet
Infomation Services). It was one of the first worms to receive attention outside of the network security
community because of its speed and effectivness in spreading.

DUMARU – Win32 worm that infects all .EXE files in the root drives of the infected system using
alternate data streams to store the virus. It contains its own SMTP engine, and appears to the user as a
Microsoft patch.

ETAP/SIMILE [18] – Cross-platform worm that infects both Windows Portable Executable (PE) and
Linux Executable and Linkable Format (ELF) executables. Uses an entry-point obscuring technique and a
sophisticated polymorphic file infector to avoid detection by anti-virus programs.

FRETHEM – Win32 worm that downloads commands from a website to modify its behavior. It uses its
own SMTP engine and social engineering techniques to capture users names and passwords.

GIBE/SWEN [19] – Win32 worm that via an email that appears to the user as a Microsoft security patch.

HLLW.CAKE – Win32 worm that spreads through multiple peer-to-peer networks, including KaZaA,
Grokster, and iMesh. It is protected by tElock anti-tamper compression.

JONBARR/PEPEX – Mass-mailing worm that uses its own SMTP engine to send email that pretends to
be a Microsoft patch. It also spreads through various peer-to-peer networks, including KaZaA,
eDonkey2000, Morpheus, and mIRC.

KLEZ [20]– A widespread Win32 worm that spoofs real email addresses, disables anti-virus software, and
infects compressed files. It pretends to be an anti-virus patch against itself.

LION [21] – Linux worm that speads by using a known flaw in BIND.

LEAVE – Win32 worm that uses a previously existing backdoor to infect systems. It uses multiple,
encrypted Command and Control channels.

LOVELETTER/ILOVEYOU – Visual Basic email worm that uses very effective social engineering.

MAGISTR – Win32 worm with a malicious payload that erases an infected system’s BIOS and hard drive
sectors. It uses sophisticated protection and anti-debugging mechanisms and disables the Zone Alarm
personal firewall.

MIMAIL – Very effective Win32 mass-mailing worm that scans user files for potential targets and uses a
number of different exploits as its payload.

UNCLASSIFIED

9

UNCLASSIFIED

MEXER.D – Win32 worm that spreads through multiple peer-to-peer networks, including KaZaA and
iMesh. It also attempts to download its payload from a hard-coded website.

MYPARTY – Win32 mass-mailing worm that drops a trojan backdoor onto an infected system.

NIMDA – Sophisticated, fast-spreading Win32 worm that uses both client and server infection vectors.

NACHI – Win32 worm that uses the same exploit as the Blaster worm to remove Blaster infections and
patch vulnerable systems.

NEROMA – Visual Basic worm that uses Outlook to send a 9/11-related message (it used that date in its
infected message header).

RECORY- Win32 worm that installs itself into local filesystem and propagates by pretending to be an
anti-virus tool.

RAMEN [22] - Linux worm that bundles together a number of known explots against Linux services,
including: Wuftp. LPRng, and rpc.statd.

REPAD – Win32 worm that spread through KaZaA network.

SOBIG.F – Win32 worm that harvests email addresses from infected machines and is believed to use
spamming techniques to spread using its own SMTP engine. It attempts to download code from a set of
machines at a predetermined time.

SLAMMER [31] – Win32 worm that exploits a flaw in Microsoft’s SQL Server and spread. It spread very
quickly, infecting 90% of vulnerable machines within 10 minutes.

SPIDA – A JavaScript worm that uses weak default usernames and passwords to compromise sytems
running Microsoft SQL server.

STRANO – Malicious code that spreads by IRC channels and infecting Word documents.

VOTE.K – Destructive mass-mailing worm written in Visual Basic. Uses the Outlook Express
addressbook and KaZaA to spread.

YAHA – A prolific mass-mailing Win32 worm that disables anti-virus programs and personal firewalls.

4.3 Classifying Worms
We wanted a simple way to describe worms according to their common characteristics. The
characteristics we were most interested in are those that would allow a defensive mechanism to
detect and/or prevent the worm. To our knowledge, worm behavior had not been previously
described with a focus on the defensible conditions exhibited.

Nazario, et al. [28], decompose worm functions using six general characteristics. We believe that
worms possess another capability important for defense which they do not discuss. This is the
ability of a worm to survive on a system and remain undetected. It is important for a defensive
mechanism to be able to determine if worm code has a foothold on a system and prevent it from
doing any harm.

UNCLASSIFIED

10

UNCLASSIFIED

Singh [29] also decomposes worm behavior into six categories, which he calls “organs” to
coincide with his biological analogy. His approach uses Visual Basic examples to describe both
virus and worm behaviors. While his categorization is comprehensive, it is too complex for our
purposes.

Our method of describing Internet worms uses only the most basic characteristics that worms
exhibit. We note the requirements necessary for the worms to gain control of a host, maintain
that control, propagate to other hosts, and execute a payload. All worms fulfill the first three
requirements, and most fulfill the last. We describe in detail examples of each of these
requirements in the Life Functions section below.

4.4 Life Functions
In this section we decompose worms into the basic life functions they perform. For each
function, we cover the currently used techniques, highlighting any advances. This should lend
perspective to the state of worms and how to ultimately defend against them. We believe that we
can classify any worm according to the following functions:

• Infection
• Survival
• Propagation
• Payload

4.4.1 Infection
Infection refers to how a worm gains initial control of a system.

4.4.1.1 Types of Infection Vectors
Worms rely on two general methods to infect a host. Either they exploit a flaw in software
running on a system, or they are the result of some action taken by a user. After studying details
from our set of worms, we have been able to identify four distinct categories of infection vectors.
They are:

• An exploitable portion of network aware code
• A vulnerable configuration of a network aware component
• A user's action
• An existing system backdoor

4.4.1.1.1 An Exploitable Portion of Network Aware Code
Buffer overflows are the most commonly found vulnerability in network aware code. They exist
when a program accepts more input data than it is prepared to store. In such a case, the input
overflows other parts of memory, overwriting other essential program data. If the overwritten
data controls program flow, such as return addresses or function pointers, an attacker may be
able to specially format his input in order to remotely execute instructions on the system by

UNCLASSIFIED

11

UNCLASSIFIED

altering this control information. It is important to keep in mind that in order to exploit such an
overflow condition, an attacker must be able to control input to the vulnerable program. After
gaining control in this manner, the exploiting code runs with the same privileges as the exploited
code. Thus the most valuable buffer overflow to an attacker is one found in a program that
accepts input from the network and runs in a privileged context such as Administrator,
SYSTEM, or root. Unfortunately, many of the network services on modern operating systems
run at high privilege levels.

In addition to buffer overflows, there are a number of other programming flaws that could
potentially lead to exploitable vulnerabilities. These include logic errors in file directory
traversal functions, uninitialized variables, errors in ASCII to Unicode (and Unicode to ASCII)
conversion routines, race conditions, signed/unsigned comparison errors, and off-by-one errors.
But because they are more difficult to find, analyze, and exploit, these other vulnerabilities have
not been exploited by worm writers to nearly the extent that buffer overflows have been. If
buffer overflows were made more difficult to exploit, using countermeasures such as
stackguarding, it is likely worm authors would need to begin exploiting other, more challenging
vulnerabilities. A potential result of this evolution is that we would see fewer worms, but at the
same time, they would be much more sophisticated and possibly dangerous.

4.4.1.1.2 A Vulnerable Configuration of a Network Aware Component
Even if a network service is carefully programmed, it can still be exploitable if it is not set up
properly. The Spida worm took advantage of a weak default configuration of the SQL Server
database application. The default configuration contained a privileged account that had no
password. Spida connected to machines that were running SQL Server and attempted to login
using this account. Unless an administrator had specifically disabled this account, the worm
could gain control of that system at a high privilege level.

4.4.1.1.3 A User's Action
A large number of the worms studied by the team did not propagate through vulnerabilities;
rather they relied on a distinct user action for initial infection. In this case, the user usually
receives a program via email and is tricked into believing it is something else, such as a game, a
screensaver, or digital photographs from a party. Since this infection technique relies on actions
outside of the attacker's control, it is less reliable and such a worm propagates more slowly than
purely automated approaches that require no user action.

4.4.1.1.4 An Existing Backdoor
Some worms exploit "backdoors" left by previous security breaches. A backdoor is a
mechanism that is created by a computer program that allows anyone with knowledge of its
existence to gain some control over the system. The Leave worm infected systems that already
had a SubSeven backdoor installed. Properly updated anti-virus tools should have been capable
of detecting SubSeven and removing it, thereby closing the backdoor. This would have made
people immune to a network-based Leave infection.

UNCLASSIFIED

12

UNCLASSIFIED

4.4.1.2 Attributes Associated with Infection
Table 2, below, outlines the vulnerabilities that selected worms depend on for successful
infection. Many worms exploit known vulnerabilities while others require user action in order to
get control of the system.

Vulnerability or Action Required Worms
MS00-052 – Registry-Invoked Programs Use Standard Search Path CODERED

MS00-078 – Patch for ‘Web Server Folder Traversal’ Vulnerability NIMDA

MS01-020 – Incorrect MIME Header Can Cause IE to execute Email
Attachment

BADTRANS, FRETHEM, YAHA,
NIMDA, BUGBEAR

MS01-033 – Unchecked Buffer in Index Server ISAPI Extension Could
Enable Web Server Compromise

CODERED

MS01-044 – 15 August 2001 Cumulative Patch for IIS NIMDA

MS03-014 – April 2003 Cumulative Patch for Outlook Express MIMAIL

MS02-015 – 28 March Cumulative Patch for Internet Explorer MIMAIL

MS02-039 – Buffer Overruns in SQL Server 2000 Resolution Service
Might Enable Code Execution

SLAMMER

MS03-007 – Unchecked Buffer in Windows Component May Cause
Web Server Compromise

NACHI

MS03-026 – Buffer Overrun in RPC May Allow Code Execution BLASTER, NACHI

Microsoft advisory Q313418 – Unsecured SQL Server password SPIDA

Preexisting SubSeven infection LEAVE

VU-196945 – ISC Bind 8 Buffer Overflow in Transaction Signature
(TSIG) Handling Code

LION

VU # 29823, VU # 34043, VU # 382365: Multiple Format String Errors RAMEN

VU # 102795 - Buffer Overflows in OpenSSL Servers SLAPPER

User Runs Infected File

DUMARU, ETAP, FRETHEM,
GIBE, HLLW.CAKE, JONBARR,
KLEZ, LEAVE, LOVELETTER,

MAGISTR, MEXER, MYPARTY,
NEROMA, REPAD, SOBIG,

STRANO, VOTE.K

Table 2 – Vulnerability Based Infection Vectors

4.4.1.3 State of Infection Vectors
One of the few worms to use a zero-day exploit was the classic Morris worm of 1988 (the first
known worm). Almost all worms in the past fifteen years have exploited publicly known
vulnerabilities or tricked the user into executing them. This study did not uncover any evidence
of a change or impending change in the sophistication of infection vectors. While some
vulnerabilities clearly require more skill than others to exploit (a mass mailing worm is much
easier to develop than one that exploits a buffer overflow), the types of infection vectors appear
to be fairly stable. Some advanced worms use combinations of these standard vectors to increase

UNCLASSIFIED

13

UNCLASSIFIED

their effectiveness. We believe that we will see more of these worms, such as Nimda, that are
capable of infecting hosts in a number of ways.

In general, system administrators cannot be relied upon to install patches and users cannot be
counted on to refrain from running programs that they receive via email. The lack of evolution
with regard to infection vectors can be attributed to one overarching cause, the sheer
effectiveness that worm authors have (and continue to have) in exploiting publicly known
vulnerabilities and in tricking users into executing their code.

4.4.2 Survival
The survival life function describes how a worm maintains control over a host once it has
penetrated the host’s defenses. This category includes the following behaviors:

• Resuming execution at a later time
• Evading detection
• Disabling detection software
• Preventing decompilation or reverse-engineering

4.4.2.1 Resuming Execution at a Later Time
One of the first actions taken by most worms is to install some mechanism to ensure that it will
execute again at a later time. This mechanism is primarily used to ensure worm survivability
between reboots, but it has other uses as well – it can be used to execute some of the worm code
in response to an action that has occurred on the infected system. For example, some worms
might launch their payload code at a specified time or might propagate when a user sends an
email message.

There are a number of different strategies used by worms to ensure that they can regain control at
a later time. Many worms will use a combination of these techniques to ensure the greatest
chance of survival:

• Modify startup files
• Use a job scheduling utility
• File infection or replacement
• Registry changes (on Microsoft Windows systems)
• Changing file-type handler

4.4.2.1.1 Modify Startup Files
These files control the startup of the operating system (or some component of it). Worms may
insert instructions into these files to launch themselves on subsequent reboots. Files often
targeted by worms include:

• system.ini, win.ini, etc. for Windows
• /etc/rc.d/rc.sysinit, etc. for Linux

UNCLASSIFIED

14

UNCLASSIFIED

4.4.2.1.2 Job Scheduling Utility
Some worms schedule themselves to run on a timed basis, typically known as "cron" job.
Typical facilities that can be targeted include:

• AT utility in Windows
• anacron in Linux

4.4.2.1.3 File Infection or Replacement
Some worms inject themselves into binary files or shell scripts, or entirely replace the file with
worm code. Any time the altered program is run, the worm gains control of the system.

4.4.2.1.4 Registry Changes
Perhaps the most common way of ensuring that a worm gets to run on a Windows machine is to
change one of the "Run" Registry keys. These keys contain lists of programs that the operating
system automatically starts. In addition to Run keys, there are many other registry entries that
control the launching of programs or services.

4.4.2.1.5 Changing File Type Handler
In Windows (and many windowing systems for Unix/Linux systems), an application can be
associated with a file type, determined by its extension (in Windows). A worm could replace the
handler for a specific extension (or file type for operating systems that do not determine file type
based on extension), so that a double-click or other “open” action on the file causes the worm
code to execute.

4.4.2.2 Evading Detection
Evading detection by anti-virus and other defense software is vital to a worm's survivability.
Some techniques employed by worms to avoid detection are:

• Employing obfuscation or encryption to avoid being flagged by signature-based scanners.
• Using polymorphic and metamorphic techniques to change themselves in order to avoid

defense systems that rely on signature detection.
• Masking outbound traffic so that it looks like normal network traffic in order to avoid

detection systems that analyze network traffic.

4.4.2.3 Disabling Detection Software
It is common for malicious code to disable anti-virus software, personal firewalls, or intrusion
detection systems. Worms may disable the detection mechanism or modify it so that it does not
work properly.

4.4.2.4 Preventing Reverse Engineering
The true purpose and capabilities of new worms cannot be fully understood until they are reverse
engineered. Malicious code authors are taking measures to ensure that this cannot be done
quickly. This also prevents the quick computation of a signature that can be used by anti-virus

UNCLASSIFIED

15

UNCLASSIFIED

software. Reverse engineering prevention measures can be applied to the worm itself or to its
payload. Some of the anti-reverse engineering techniques we have seen include:

• Demand-based deobfuscation, where the worm only decrypts portions of code as needed,
and re-encrypts these portions when they are no longer needed.

• Anti-debugging techniques employed to detect and foil debuggers.
• Strong encryption where the encryption key is not determinable by examining a copy of

the worm.

4.4.3 Attributes Associated with Survival
In table 3 below, we show some of the significant survival attributes. We consider an attribute to
be any residue left by worms, any side effect caused them, or any prerequisite for their success.

Survival Attribute Worms
File System Related

Creates or modifies files in system directory

BADTRANS, BLASTER,
BUGBEAR, FRETHEM, GIBE,

HLLW.CAKE, JONBARR,
LOVELETTER, MAGISTR, MEXER,

MIMAIL, NACHI, NIMDA,
RECORY, REPAD, SLAMMER,

SPIDA, STRANO, VOKE.K, YAHA

\Documents and Settings\%infected user name%\Start
Menu\Programs \Startup BUGBEAR, GIBE, MYPARTY

system.ini DUMARU, NEROMA, VOTE.K

win.ini DUMARU, VOTE.K

Windows Registry Related

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

BLASTER, DUMARU, GIBE,
HLLW.CAKE, JONBARR, KLEZ,

LEAVE, LOVELETTER, MAGISTR,
MEXER, MIMAIL, RECORY,

REPAD, SOBIG, STRANO, VOTE.K

HKLM\SOFTWARE\Microsoft \Windows\CurrentVersion\Run Once BADTRANS, BUGBEAR

Process Related

Launches processes to aid in propagation RAMEN, LION

Terminates anti-virus software or host-based firewall
YAHA, BUGBEAR, JONBARR,

KLEZ

Table 3 - Significant Survival Attributes

4.4.3.1 Current State of Survival Attribute
An increasing number of worms is now targeting security tools in order to disable them. We
have also seen advances in preventing reverse engineering and in avoiding detection.
Fortunately, not many worms have been armored with these sophisticated protections. More

UNCLASSIFIED

16

UNCLASSIFIED

than half of our sample worms simply placed files in a system directory. Nearly as many
modified the Windows Registry's Run keys to make sure they get launched in the future.

4.4.4 Propagation
Propagation vectors come into play when a worm has already established control over a host.
They deal with what a worm must do in order to spread itself to other hosts.

4.4.4.1 Types of Propagation
We have identified four primary methods of worm propagation.

• Sending infected email
• Inserting copies onto peer-to-peer (P2P) networks
• Placing copies on file shares
• Scanning for and exploiting remotely vulnerable hosts

4.4.4.1.1 Sending Infected Email
Many worms send themselves as attachments to email messages. Prior to sending such
messages, the worms typically gather target addresses from a user's inbox, the local file system,
and Registry keys. Such worms may use the infected machine's email program or utilize their
own SMTP engine to send email to potential victims. The use of an independent SMTP engine
allows worms to propagate independent of the host's email engine. The Frethem, Dumaru, and
Yaha worms all contained their own SMTP engines.

4.4.4.1.2 Inserting Copies on Peer-to-Peer (P2P) Networks
A more recent technique for worm propagation is the utilization of peer-to-peer (P2P) networks.
P2P software, which enables files to be shared and downloaded from computers directly or
indirectly connected to each other, has seen a dramatic increase in popularity. Worms, such as
HLLW.Cake and Repad, take advantage of these programs in order to infect other hosts. These
worms typically make themselves available on P2P networks under filenames that most users
would find enticing. They may disguise themselves as digitally encoded songs, applications, or
any other file type that the P2P network allows.

4.4.4.1.3 Placing Copies on File Shares
Worms may also propagate via file shares. A worm places a copy of itself in a directory that is
shared with other computers. The worm relies on users on other machines seeing the file and
copying it to their local computers, mistaking it for a legitimate file. This method is not very
successful for spreading between networks, but can work well when combined with other
propagation methods. For example, once a worm has infected a network machine through a
mechanism unrelated to file shares, it can utilize file shares as a propagation vector to spread to
other machines with the local LAN. Since firewalls typically restrict file sharing at points
between the local LAN and the Internet, very seldom do firewalls block LAN based file sharing.
Bugbear, Nimda, and Gibe used this method to augment their propagation.

UNCLASSIFIED

17

UNCLASSIFIED

4.4.4.1.4 Scanning for and Exploiting Remote Vulnerabilities
This method of propagation involves exploiting a programming or configuration error in
software running on a remote system. The worm scans for vulnerable machines and attempts to
send them malicious or malformed data in an effort to exploit them. Some worms do not scan
for vulnerable machines, they simply assume every host on the Internet is vulnerable and attempt
to exploit random IP addresses. Either way, this propagation technique involves a worm using
one host that has been compromised to search for and exploit other hosts.

Scanning methods employed by worms can vary. Many worms use random scanning, simply
generating an address at random and attempting to infect that host. Some worms have employed
a variation of random scanning, favoring addresses that are closer to the host machine, such as
those on same subnet. A worm can simply carry around a list of potential targets that is supplied
by the worm author or developed through scans of remote systems. Future scanning innovations
may also involve coordination between copies of worms, ensuring that machines are only
scanned once. An in-depth discussion of various worm scanning methods is covered by
Staniford, et al. in [24].

In order to propagate via remote vulnerabilities, worms must copy themselves from the
compromised host and onto the network. A common scenario for a worm is to piggyback on an
existing service. If a worm uses a network port that is already opened, it has the advantage of
being more difficult to filter. For example, worms that use TCP port 80 for communications
cannot be blocked at the firewall, as web traffic would also be blocked. Worms such as Slammer
that use a port normally utilized by a specific local service can be easily detected and defeated by
firewalls and networks that are properly designed and configured.

UNCLASSIFIED

18

UNCLASSIFIED

4.4.4.2 Attributes Associated with Propagation
There are many attributes associated with worm propagation, such as the use of Registry keys
and files accessed for target reconnaissance. Other attributes include the modification of
processes or the use of ports to facilitate propagation. Some of the significant or more frequently
recorded attributes are noted in table 4 below.

Propagation Attribute Worms
Reconnaissance – Registry Related

Active Internet Settings Key GIBE, MAGISTR

\HKCU\Software\Microsoft\Internet Acct
Manager\Accounts \00000001\SMTP Server FRETHEM, MYPARTY

Reconnaissance – File System
.dbx (Outlook Express email folder) DUMARU, FRETHEM, MAGISTR, MYPARTY, SOBIG

.wab files (Outlook Address Book)
DUMARU, FRETHEM, KLEZ, MAGISTR, MYPARTY,

SOBIG, YAHA

.mbx (Outlook email folder) FRETHEM, MAGISTR

.eml (Outlook email message) FRETHEM, SOBIG

.txt (ASCII text file) KLEZ, SOBIG

.htm/.html (HTML file) JONBARR, KLEZ, SOBIG

ICQ list KLEZ, YAHA

Network Ports Used

Port 25/TCP
BADTRANS, DUMARU, FRETHEM, GIBE, JONBARR, KLEZ,

MAGISTR, RECORY, YAHA,

Port 27374/TCP LEAVE, LION

Port 80/tcp LEAVE, SLAPPER

IRC Ports LEAVE, LOVELETTER, STRANO

Windows File Shares BUGBEAR, ETAP

UNCLASSIFIED

19

UNCLASSIFIED

Spreading – Mass Mail Engine
Uses Outlook RECORY, LOVELETTER, NEROMA, VOTE.K

Uses its own SMTP engine BUGBEAR, DUMARU, FRETHEM, JONBARR, KLEZ, YAHA

Spreading
Tries to infect all files on drives C-Z DUMARU, KLEZ, NIMDA

HKCU\Software\Kazaa\LocalContent MEXER, RECORY, VOTE.K

\Documents and Settings\%infected user name%\Start
Menu\Programs\Startup GIBE, MYPARTY

Uses network shares BUGBEAR, KLEZ

Infects Microsoft Word documents with macro virus STRANO

Spreading – Peer-to-Peer Networks
Peer-to-Peer Music Networks GIBE, HLLW.CAKE, JONBARR, RECORY, REPAD

KaZaA HLLW.CAKE, JONBARR, MEXER, REPAD, VOTE.K

iMesh HLLW.CAKE, MEXER

\mIRC folder - script.ini GIBE, VOTE.K, STRANO, JONBARR

Spreading – Server Modifications
Modifies web content files to infect visiting clients/hosts NIMDA

Creates IIS Virtual Directories for C & D drives (wide open) CODERED

Table 4 - Significant Propagation Attributes

4.4.4.3 State of Propagation
A well-designed worm can spread with incredible speed. The Slammer worm is an excellent
example of a worm that exploited a vulnerability that specifically lent itself to a fast rate of
propagation. Since it, required only a single UDP packet to be sent to a target, Slammer could
continuously scan and infect machines without having to wait for a response. Within ten minutes
it had infected 90 percent of the vulnerable hosts (at least 75,000) on the Internet [31].
If the available patch for the vulnerability that Slammer exploited had been applied, the number
of infected hosts could have been dramatically decreased. Due to the speed of infection, network
administrators were unable to respond to the worm in time to stop it.

Typically, a worm's propagation success is based on the quantity of machines infected and how
quickly they are infected. In the future, there may be other ways to view success in propagation.
A worm may seek to propagate without detection. For example, Badtrans used a 30-second
timer for programmed mailings in order to prevent network flooding that would alert
administrators. Worms like Badtrans may lead to a new class of propagation techniques that try
to fly "under the radar" of network administrators by moving "low and slow.”

Targeted propagation, where a worm tries to infect specific machines, is an emerging technique.
While none of the observed worms only used targeted propagation, some worms have shown the
beginnings of targeted attacks. Spida excluded specific IP addresses from its potential targets.
Bugbear featured some early forms of targeted propagation. Bugbear captured network

UNCLASSIFIED

20

UNCLASSIFIED

passwords and user's keystrokes and then emailed them to its author if the domain of the system's
default email address appeared to be a financial institution. Targeted propagation is likely to
develop further as time progresses.

4.4.5 Payload
The payload of a worm is the code or package it carries to perform a task beyond its standard life
cycle functions. Not all worms have a payload.

4.4.5.1 Types of Payloads
We have seen four major categories of payloads:

• Establishing backdoor control
• Establishing a distributed denial-of-service agent
• Harvesting information
• Causing destruction

4.4.5.1.1 Establish Backdoor Control
Backdoors are pieces of code that enable remote control of compromised systems. There are a
number of different ways used to communicate with these backdoors. Some worms use sharing
technologies that are adapted to provide a command and control mechanism such as: file shares
(Bugbear and Nimda), P2P networks (Slapper), and IRC (Dumaru). One of the most
sophisticated worms to date, Leave, retrieved its encrypted commands from lists downloaded
from websites and from private IRC channels.

4.4.5.1.2 Establish a Denial-of-Service Agent
Several worms were designed to create a network of distributed denial-of-service (DDoS) agents.
We have seen two types of DDoS payloads. Some with hard coded targets (e.g. Blaster targeted
windowsupdate.com), and some that were adaptable (e.g. Leave, which accepted targeting
information remotely).

4.4.5.1.3 Harvesting Information
Some worm payloads are designed to harvest information from infected machines.
The Lion and Ramen worms copied and exfiltrated password files. Badtrans and Bugbear
installed keystroke loggers in order to collect user passwords from electronic commerce and
other applications.

4.4.5.1.4 Causing Destruction
The Magistr worm is a good example of a worm with a destructive payload. This worm
attempted to overwrite local hard drives and destroy a host's BIOS, rendering the system
inoperable and only salvageable by a skilled technician. The Spida worm simply aimed to
destroy certain files. This type of payload, where the goal is to destroy compromised systems,
appears to be rare and has not been seen very often in the group of worms that we have studied.

UNCLASSIFIED

21

UNCLASSIFIED

4.4.5.2 Attributes Associated with Payloads
We noted various attributes associated with worm payloads. The most significant actions
performed or ports used are outlined in table 5 below.

Payload Attribute Worms
Network Ports Used

Port 80/TCP (to download backdoor) FRETHEM, LION

Port 80/TCP (to download commands) LEAVE

IRC ports LEAVE, LOVELETTER

Port 27374/TCP/SubSeven (distribution) LEAVE

Port 1434/UDP (distribution) SLAMMER

Port 1433/UDP (distribution) SPIDA

Port 1080/TCP (distribution and backdoor) BUGBEAR

Port 36794/TCP (finds firewall, etc. And stops) BUGBEAR

Port 443/TCP (to upload exploit/payload) SLAPPER

Port 2002/UDP (establish p2p network) SLAPPER

Port 1978/UDP (establish p2p network) SLAPPER

Port 4156/UDP (establish p2p network) SLAPPER

Port 1052/UDP (establish p2p network) SLAPPER

Collection
Installs keystroke logger BADTRANS, BUGBEAR, LOVELETTER

IRC LEAVE

Emails files to addresses in China LION, RAMEN

Emails files containing IP address SPIDA

Emails random files from computer with
extensions: .mp8,.txt,.htm, .html, .wab, .asp, .doc,
.rtf, .xls, .jpg, .cpp, .pas, .mpg, .mpeg, .bak, .mp3,

.pdf

KLEZ

Reconnaissance
Checks title of currently opened window BADTRANS

Scans for potential victims using FTP RAMEN

Destructive
Overwrites CMOS MAGISTR

Flashes BIOS MAGISTR

Destroys Blaster Worm NACHI

DDoS Payload BLASTER

Installs rootkit (t0rn) LION

Trojan system binaries LION

Provides attacker ability to execute arbitrary
commands

LEAVE

UNCLASSIFIED

22

UNCLASSIFIED

At predetemined time, connects to hardcoded IPs
(20 of them) and downloads and runs a file

SOBIG

Deletes or overwrites files LOVELETTER, NEROMA, SPIDA, VOTE.K

Shuts down computer REPAD

Joins P2P potential DDoS network SLAPPER

Security
Terminates AV or Firewall BUGBEAR, JONBARR, KLEZ, YAHA

Removes or modfies TCP wrappers LION

Kills syslogd LION

Encrypts files, commands, and/or registry keys LEAVE

Disables FTP and/or rpc.statd to prevent
reinfection

RAMEN

Changes passwords SPIDA

Table 5 - Payload Attributes

4.4.5.3 State of Worm Payloads
While many worms do not have discernible payloads, those that do can prove effective in
significantly disrupting the Internet. We have not seen many destructive payloads, but the ones
that we have seen, such as Magistr, are dangerous enough to render compromised hosts
inoperable. Equally troubling are those that install backdoors or DDoS agents on systems to
pave the way for future coordinated attacks. There does not seem to be a prevailing payload type
favored by worm authors. This can be attributed to a wide range of goals that authors have for
their worms. Some authors simply want to create worms that spread quickly, some want to
capture passwords and other data that they can they utilize, and others want to cause destruction
on the hosts that they infect. For as many different motivations a worm author may have, we
will likely continue to see as many different payload types.

UNCLASSIFIED

23

UNCLASSIFIED

5 Attack Attributes
Our sample set of worms exhibits common characteristics when carrying out their life functions,
as described in the Worm Technology section. These characteristics represent specific
observable actions taken by worms to ensure their successful infection, survival, and
propagation.

We call these characteristics the attack attributes of the worm, and we break them down into
three basic categories: The first is any condition that exists to allow a successful worm attack,
such as a vulnerable network service or an incorrectly configured system. The second category is
any observable residue left behind when a worm infects a system, such as a file alteration,
changes made to the Windows Registry, or a modified process that is left by the worm. The final
category of attack attributes is any behavior caused as a side effect of the worm infection, such as
an observable increase in network traffic when the worm attempts to find new targets.

We have identified nearly two hundred detailed attack attributes. We then distilled these
attributes into fourteen general attack attributes. We believe that these fourteen categories cover
the range of attributes displayed by worms in the past and are very likely to see in worms of the
future. Below, we introduce each of the attributes.

5.1 Exploits Vulnerable Network Code
A vulnerability in network-aware code is sometimes a prerequisite for worm infection. The
fastest spreading worms have generally exploited network-aware services in an automated
fashion. In the set of worms we studied, the most common vulnerability in this class is a buffer
overflow condition.

5.2 Tricks the User
Another common infection mechanism is to trick a user into executing the worm itself. The bulk
of mass-mailing worms rely on users unwittingly running an infected program by making it
appear to be a benign attachment.

5.3 Exploits Vulnerable Configuration
Vulnerable configurations cover a variety of problems beyond flawed code, such as weak
password settings, wide-open permissions, and poorly configured trust relationships.

5.4 Exploits Previously Installed Backdoors
A worm uses an existing backdoor on the system to install itself.

5.5 Changes File System
Nearly all worms leave some evidence in the file system. They generally copy themselves to key
points in the file system and change configuration files to ensure that they are invoked at a later
point in time.

UNCLASSIFIED

24

UNCLASSIFIED

5.6 Changes System Settings
Of the thirty worms studied, seventeen made changes to the Windows Registry. Often this
attribute is associated with worm survival, as these modifications are typically made to cause the
worm to run automatically.

5.7 Modifies a Process
Some of the more sophisticated worms inject themselves into already running processes. Along
with the action of modifying a running process, this attribute includes starting or stopping other
processes.

5.8 Accesses the Network
This attribute is evident in worms that propagate over a network or receive commands via a
network.

5.9 Requires Advanced Privilege
Worms that need access to restricted resources are only successful if they run with enough
privilege to access those resources. Worms that gain initial control by exploiting system services
already have such privilege, as do worms that exploit applications that run under a high privilege
level. Other worms attempt to verify their current privilege level or seek to increase it.

5.10 Performs Anomalous Queries
Some worms make use of information from the system they have infected. For example, mass-
mailers make use of the local system to ga ther email addresses. This information is often found
by searching registry keys and files that are likely to contain such data.

5.11 Invokes Crucial APIs
Worms generally need to perform some crucial action. Mass-mailing worms are likely to invoke
the operating system's SMTP APIs in order to propagate further.

5.12 Causes Network Flooding
Aggressively propagating worms may impact available network bandwidth. Administrators
noticing a drain on available network bandwidth have used network sniffers to discover a new
attack was underway.

5.13 Slows Local System
Worms may impact system response times or cause a large amount of logging activity. This is
generally either intentional or as a result of a poorly written worm.

5.14 Contains Worm Signatures
There are a limited number of ways to code worm functionality. Therefore, programs can be
examined for coding patterns indicative of older worms in order to notice a new one. Today,

UNCLASSIFIED

25

UNCLASSIFIED

most anti-virus software is capable of performing heuristic scanning on files that may indicate
the existence of malicious code.

UNCLASSIFIED

26

UNCLASSIFIED

6 Defensive Mechanisms and Techniques
The most common methods used to defend against worms today are reactive, e.g. virus scanning,
or software patching. These mechanisms have no hope of preventing fast spreading worms, or
worms that use zero-day exploits to carry out their attacks. This is not to say that these
technologies are not useful. In fact, they are an essential part of a defense- in-depth strategy.

 In this section we identify proactive defensive technologies and mechanisms that can be used to
prevent Internet worms today. For this study, we have chosen to only include current technology
and do not consider emerging technology, such as techniques aimed at throttling the spread of
worms. We also do not consider pure layer 2 and layer 3 (in the OSI model) defense
mechanisms, such as Private Virtual Local Area Networks (PVLANs). While both classes of
technology clearly have promise as defenses against worms, our analysis concentrates on current,
well known, and common techniques and how effective we can be against worms using such
technologies.

6.1 Firewalls – Packet Filtering
Packet filters operate on the network and transport layers of the TCP/IP network model. They
allow any field in the network or transport headers of a packet to be matched against a set of
rules. For example, packets containing specific IP addresses and ports may be blocked. There is
no content checking or protocol validation at this level. Packet Filtering is usually implemented
with a dedicated firewall or a filtering router.

6.2 Firewalls - Stateful
Stateful firewalls keep track of network connections and monitor their state. Such a firewall
identifies requests that were sent from inside the protected network and allow responses to those
requests into the network if appropriate. They can filter based on the addresses and ports used by
the local or remote host. If a packet is part of an existing connection, it may be allowed, while a
similar packet appearing outside of an existing connection would be dropped.

6.3 Firewalls - Application Proxy
The clients and servers never communicate directly when using application proxy firewalls.
Firewalls included in this category operate at the application layer of the TCP/IP network model.
They enable content checking and validation of the application protocol.

6.4 Intrusion Detection Systems (IDS)
Intrusion Detection Systems (IDS) can best be thought of as a combination virus scanner and
network sniffer. Such a system is configured with a database of signatures for known malicious
code and suspicious behavior. An IDS monitors all traffic on the network segment to which it is
connected and each packet is scanned against the signature database. If a match is found, an
administrator can be alerted to the presence of suspicious activity on the network. Some IDSs
are sophisticated enough to filter the suspicious traffic or divert it to an isolated location where it
can do no harm.

UNCLASSIFIED

27

UNCLASSIFIED

6.5 Host Firewalls
Host firewalls sit on a host between applications on the host and the network. They enforce rules
that define the manner in which specific applications may use the network. Such a tool is
interested in connections at the network, transport, and application layers of the TCP/IP model
and is helpful in thwarting worms that make unusual connections. It is important to keep in mind
that a host-based firewall cannot detect malicious activity that appears consistent with a user's
normal behavior since these firewalls develop their rule sets by monitoring a user's normal
network pattern.

6.6 Virtual Machines
Virtual machines can be used to prevent potentially malicious software from using the operating
system for illicit actions. They typically lie between the operating system and the physical
hardware. This mediation layer between the software and hardware is a powerful feature that
prevents potentially malicious software from interfacing directly with real hardware.

6.7 Configuration
In this context, configuration refers to any application or operating system setting that can be
adjusted to make the environment more resistant to attack. We restrict the scope of configuration
settings to those that are easily changed through tools, wizards, and menus. We do not include
advanced configuration typically performed by an experienced technician using undocumented
features or making extensive code changes. Typical aspects of a strong configuration include
tightening application settings, limiting the use of network ports, running only required services,
and setting the most restrictive and granular permissions on the file system and the registry.

6.8 Anti-virus Heuristics
Traditional anti-virus products work on a "known bad" signature-based approach. They contain
signatures, which are used to identify malicious code. Anti-virus vendors update these
signatures on a regular basis, typically every week or as necessary. Many anti-virus products
also employ heuristics in the searching for malicious code. The anti-virus product can identify
new malicious code that functions in a manner similar to known worms and viruses. Heuristics
allow detection of viruses and worms that may have never been studied by anti-virus researchers.

6.9 Host-based Intrusion Prevention Systems
Host-based intrusion prevention systems (HIPS) typically characterize applications by the
resources they require during normal operation. Such systems usually operate from predefined
rules describing what constitutes legal behavior for particular applications. These systems
typically bolt policy enforcement onto the front end of crucial operating system interfaces. For
instance, a HIPS might mediate Registry key creation so that worms tampering with run keys
might be stopped. Such systems react to dangerous operating system requests by logging them,
denying them outright, or querying the user for approval to continue the action. One possible
action a HIPS can take is to terminate the offending program. This action would outright kill a
worm attempting to use unauthorized system resources.

UNCLASSIFIED

28

UNCLASSIFIED

6.10 Integrity Checking
Integrity checkers make use of a trusted baseline of files on the system. They generally keep
cryptographic hashes of known good instances of files so that integrity comparisons can be made
at any time. Some have the ability to restore files that may have been modified by a worm.

6.11 Stackguarding
Stackguarding [25] technologies aim to make programs resistant to buffer overflow attacks.

By including special libraries or by using special compilers, the programmer produces software
that cannot be remotely exploited. Stackguarding does not remove buffer overflow coding errors
but prevents them from being exploited.

UNCLASSIFIED

29

UNCLASSIFIED

7 Attacks vs. Defenses
Our scheme of attack attributes provides a framework within which to match worms to defensive
technologies. The attack attributes classify how worms operate, and they suggest the defenses
that will be most effective. For example, many worms change Run keys within the registry
(attack attribute: modifying system settings). This attribute can be defended by locking down the
vulnerable registry keys (defensive technology: configuration). By matching attributes to
defensive technologies for all worms that we studied, we were able to develop a fairly
comprehensive defense matrix (see table 6).

The rows of the defense matrix represent the fourteen attack attributes and the columns represent
defenses. The first four attributes pertain only to infection, while the remaining ten can apply to
any worm life function. The intersection of an attribute and a defense represents the class of
protection that that defense provides to address that attack attribute. These classes are:

• D – Detect. The defense can detect the attack but can do nothing to stop it. For example,
file integrity checkers can detect that a file has been modified but cannot prevent the
modification.

• P – Provides Partial Protection. Some defenses are good at preventing certain attacks,

but can be subverted depending on the precise details of the attack’s implementation. For
example, mail servers can be configured to filter out attachments that contain executable
files. This provides only partial protection against worms that trick the user because the
files can reach the user through other channels besides email.

• R – Reactive Protection. The defense can detect and defeat the attack, but only after the

attack is known. Reactive defenses are generally signature-based, such as intrusion
detection systems.

• B – Blocks Attack. The defense effectively blocks the attack.

A blank entry indicates that the defense provides no effective protection against the attack
attribute.

UNCLASSIFIED

30

UNCLASSIFIED

7.1 The Defense Matrix

Key: B=Blocks; R=Reactively Blocks; P=Protects partially; D=Detects

D

ef
en

se
 A

tt
ri

bu
te

Attack Attribute P
ac

ke
t F

ilt
er

in
g

F
W

St
at

ef
ul

 F
W

A
pp

lic
at

io
n

Pr
ox

y
F

W

ID
S

H
os

t F
W

V
M

C
on

fig
ur

at
io

n

A
V

 w
it

h
H

eu
ri

st
ic

s

H
IP

S

In
te

gr
ity

 C
he

ck

St
ac

kg
ua

rd
in

g

Exploits vulnerable network
code (infection) R R B R R B B

Tricks a user (infection) B B P

Exploits vulnerable
configuration (infection) B B B B B

Exploits previously installed
backdoor (infection) B B B B B

Changes file system B B D

Changes system settings B B D

Modifies some process B B

Accesses the network P P P B B

Requires system privilege B B B

Performs anomalous queries B B

Invokes crucial APIs B B

Causes network flooding B B B B B

Slows local system P

Contains worm signatures P P B

Table 6 - Detailed Defense Matrix

UNCLASSIFIED

31

UNCLASSIFIED

7.2 Observations About the Defense Matrix
Ideally, worms should be prevented from infecting a system. The defense matrix suggests that
employing stackguarding technology is a logical first step. This would take care of many of the
vulnerabilities exploited by worms. The matrix also indicates that firewalls provide the most
comprehensive protection against the four infection-related attributes. Firewalls, however,
provide very limited protection against the files that enter the system “legally” and then trick the
user into infecting himself. They also cannot protect against unknown logic flaws in exposed
network interfaces. Thus perimeter defenses alone are insufficient to provide full protection from
worm-based attacks.

The remaining ten attack attributes seem to be best defended by host-based intrusion prevention
systems and proper system configuration. These two defenses block or defend against nine of the
ten non-infection attributes, and also cover 12 of the complete list of 14. HIPS and configuration
work at the host application and operating system level, where worms’ later life stages are
carried out.

Selecting from the defenses in the matrix, it is possible to devise a multi- layered protection
scheme that can counter every type of attack attribute. If the selected defensive strategy uses
defenses that completely block attributes, it may be possible to block even zero-day worms.

In the sections below, we explain each column of the defense matrix and describe how each
defense deals with each attack attribute.

7.2.1 Packet Filtering Firewalls
Proper firewall configuration is critical for providing effective protection. The guiding principal
of firewall configuration is to block all incoming traffic except for that which is essential to the
functioning of the network. Limiting the exposure of the network’s interior reduces the chance
that a vulnerability or backdoor on an internal machine can be remotely exploited.

Because packet- filtering firewalls make decisions based on IP addresses and port numbers, they
cannot protect ports that must be left open. If an open port is used by a network service that is
found to be vulnerable, it can be closed by an administrator as an interim solution at the expense
of legitimate traffic.

Packet filtering firewalls can also protect poorly configured host systems. For example, a host
with an uneccessary network service enabled can be protected by filtering at the firewall.
Realistically, some services cannot be blocked because they are necessary. This technology can
not mitigate all aspects of a poor configuration, such as running required services with higher
privilege than required.

Through their logging capabilities, packet- filtering firewalls can also help to identify network
flooding indicative of worm propagation. Once such an attack is identified, the firewall is
capable of stopping it. This also impacts legitimate traffic attempting to pass through the
firewall.

UNCLASSIFIED

32

UNCLASSIFIED

Additionally, a packet filtering firewall can block access to the external network. This offers no
protection within the network protected by the firewall. Filtering outgoing traffic disrupts the
normal model of network operations and is not a reasonable solution.

7.2.2 Stateful Firewalls
A stateful firewall provides the base protection of a packet filtering firewall plus it ensures that
only packets associated with an internally initiated connection are allowed. This is an improved
solution because it allows for filtering based on conditions rather than merely blocking or
allowing certain types of traffic.

7.2.3 Application Proxy Firewalls
Application proxy firewalls are similar to the previous two technologies in that they can filter
traffic based on ports and IP addresses. They also have the ability to filter traffic based on its
content, which provides additional protection against worms. They can ve rify that all fields have
valid lengths and permissible content because they understand the higher layer protocol
definitions. Field length filtering can prevent overflows that exploit those fields. Content
filtering can ensure that the fields have legitimate data. Using these techniques, proxy firewalls
can drop packets that contain exploits or shell code.

Proxy-based solutions can be used to filter all executable attachments. This protection has its
limits because renaming the attachment or encrypting the email can circumvent it.
Unfortunately, strict proactive filtering limits users’ ability to share legitimate non-malicious
files. Application proxies offer an additional benefit when used reactively. They are able to filter
emails that match known bad values; thus protecting systems from worms that gain control by
tricking a user.

7.2.4 Intrusion Detection Systems
An Intrusion Detection System (IDS) can best be thought of as a combination virus scanner and
network sniffer. With a few exceptions, IDS systems function in a reactive manner; only taking
action after the damage has been done. This makes them good devices for alerting administrators
about the presence of known malicious code or suspicious behavior that seeks to exploit
vulnerable network code. They are fairly useless in detecting unknown exploits, unknown
worms, and/or polymorphic worms and viruses that are capable of self-encrypting themselves to
avoid signature-based detection methods.

7.2.5 Host Firewalls
Host firewalls enforce a policy defining which processes can access the network. Because of this
they can block worm-spawned programs that attempt to send out packets. They can also block
rogue programs that flood the network. This assumes that the process invoked by the worm is not
disguised as one that can legitimately use the network.

UNCLASSIFIED

33

UNCLASSIFIED

In addition to screening outgoing connections, host firewalls can also filter incoming traffic
based on protocols, IP addresses, and ports. This includes requests to backdoor ports and
services that should not be exposed.

Advanced host firewalls can reactively scan for malicious signatures, usually in cooperation with
anti-virus technology. While scanning incoming email, high-risk attachments can also be
dropped. This protection has the same limitation as an Application Proxy Firewall - renaming
the attachment or encrypting the email can circumvent it.

7.2.6 Virtual Machines
Virtual machines normally provide virtual resources to the operating system. Worms that attempt
to run in such an environment can only damage the virtual resources and not the true operating
system or hardware. For example, the Magistr worm would have been unable to overwrite the
actual system BIOS if it was executed in a virtual machine. In this way, virtual machines protect
against worms that invoke crucial APIs, although only those that attempt to touch the hardware.
Virtual machines can also help a user recover their system, once an attack has been detected.
They often have the ability to restore the system to a previous, uninfected state.

7.2.7 Configuration
A hardened configuration protects against vulnerabilities by locking down services and disabling
those that are not essential.

With secure configuration, privileged accounts are only used when they are required to complete
the task or run the service. If the exploited service does not require system privileges and the
“principle of least privilege” has been enforced, the worm will be unable to use such advanced
privileges. Setting restrictive permissions can also prevent a worm from modifying another
running process or performing anomalous queries.

Hardening email applications, by specifically preventing the automatic execution of attachments,
helps prevent worms that propagate through email.

Enforcing strong permissions on the file system as well as the Registry can limit the number of
changes that a worm will be able to make to a system configuration. This also restricts the
amount of information that worms can obtain from such a system.

Some security settings may be difficult to implement effectively because all users have a
legitimate need to access certain files. Setting restrictive permissions can render them
inaccessible to all users. In these circumstances, a careful balance must be made in order to give
users access to exactly what they require and nothing more.

7.2.8 Anti-virus with Heuristics
Properly updated anti-virus tools can identify, quarantine, and even clean up known worms.
They are also capable of performing the same types of actions against Trojan backdoor programs
and other such malicious code. The downside to this approach is that anti-virus researchers must

UNCLASSIFIED

34

UNCLASSIFIED

study each worm and publish signatures that can identify it. It is then upon end users to update
their signature files to ensure their signature databases are up-to-date. Of course, this type of
anti-virus program only protects against known threats and is unable to detect worms for which
anti-virus vendors have not yet developed signatures. To help against this type of threat, most
modern anti-virus products also look for heuristics. This is a set of worm or virus like code
segments (code patterns that appear to be common to malicious code). While this is a good
technology to have in place, worm authors who are aware of its existence and the types of
patterns it is looking for can easily defeat it.

It is worth pointing out that anti-virus products typically work at the file system level, meaning
that they monitor and scan files as a process accesses them. Some worms, such as CodeRed,
exist only in memory and never write themselves to the file system. In essence, they do not try
to maintain the control they have seized. While this behavior makes this type of worm easier to
clean up, it also prevents most anti-virus products from detecting them.

7.2.9 Host-based Intrusion Prevention Systems
HIPS can mediate file system, network, registry, process, and privilege escalation requests. They
can identify idiosyncrasies, such as anomalous queries or network flooding, and deny them.
HIPS can also detect spikes in local system activity by watching for excessive file system
activity, memory usage, or network socket allocations. Once detected, they can stop the
offending processes. This is the only technology that has some ability to prevent a worm from
degrading system performance.

These systems can also block access to system resources not protected by strong configuration,
stop backdoors from running, and prevent malicious worm actions even if a user has been tricked
into launching the worm. All this is possible because they validate specific actions. They also
protect against vulnerable network code, as such programs will be restricted to performing only
their expected functions.

7.2.10 Integrity Checkers
An integrity checker could detect any changes made to the file system by a worm. Changes that
could reveal a worm’s presence would be caught by these systems include the introduction of
executable files, such as Trojan backdoors, and the modification of configuration files. These
files are typically modified in order to allow a worm to survive through reboots. The downside
of this technology is that integrity checkers are usually only run infrequently. Registry integrity
checkers also exist.

7.2.11 Stackguarding
Stackguarding technology makes it extremely difficult for attackers to exploit buffer overflows,
the most common type of vulnerability discovered in network code. Of the thirteen
vulnerability-based infiltration vectors seen in our corpus of worms, six were buffer overflows.

UNCLASSIFIED

35

UNCLASSIFIED

Stackguarding can also prevent worms from gaining increased privileges on that system. Worms
that gain control of a low-privilege account may attempt to elevate their privilege.
Stackguarding can defend against this type of attack as well.

UNCLASSIFIED

36

UNCLASSIFIED

8 Case Studies: Applying Defensive Methodology
In this section, we apply our methodology of layered defense to five aggressive historical worms
and demonstrate how they could have been defeated. We summarize our findings in figure 8-1
and describe each case in the following sections.

D

ef
en

se

Worm Pa
ck

et
 F

ilt
er

in
g

F
W

St
at

ef
ul

 F
W

A
pp

lic
at

io
n

P
ro

xy
 F

W

ID
S

H
os

t F
W

V
M

C
on

fig
ur

at
io

n

A
V

 H
eu

ri
st

ic
s

H
IP

S

In
te

gr
ity

C

he
ck

er

St
ac

kg
ua

rd
in

g

YAHA X X X X X

SLAMMER X X X X X X X X

BUGBEAR X X X X X

LEAVE X X X X X X

NIMDA X X X X X X X

Table 7 - Summary of Case Study Results

8.1 YAHA.G

8.1.1 Infection

8.1.1.1 Description
Yaha uses two infection vectors to gain initial control of target systems. First, it tries to take
advantage of an error in the way that MIME headers are processed within Internet Explorer
(Microsoft email clients use Internet Explorer to process HTML mail messages). This
vulnerability allows an attacker who has manipulated certain MIME headers to automatically run
an attached binary file. As an alternate infection vector, Yaha can gain control of a system by
tricking a user into clicking on an executable attachment.

8.1.1.2 Defenses
The MIME flaw exploited by Yaha could be mitigated by disabling file downloads within the
Security Zones feature of Internet Explorer. There is no universal defense for the infection
vector of the user clicking on an attachment. Some firewalls and mail servers are able to filter
email and remove executable code and scripts. This makes the sharing of executable files via
email more difficult, but would prevent this type of infection vector.

UNCLASSIFIED

37

UNCLASSIFIED

8.1.2 Survival

8.1.2.1 Description
After gaining control of a host, Yaha alters the Registry and system directory to ensure that it is
run regularly. Specifically, it modifies the "HKLM\exefile\shell\open\command\default"
Registry key and copies itself into the system directory. The worm may attempt to kill any host-
based technologies before beginning its propagation.

8.1.2.2 Defenses
The file changes that Yaha makes to the system directory are detectable by both HIPS and
integrity checkers. A HIPS could prevent the file write from succeeding, while an integrity
checker, once it is run, could detect the changes. Secure configuration, through restrictive file
permissions, would also stop Yaha from making file changes.

Yaha’s registry changes could be prevented by either proper configuration or HIPS. The
system’s configuration could be changed to restrict access to certain registry keys, thus blocking
the worm’s attempt to access the “exefile” key. HIPS, likewise, can counter Registry
modifications with a policy to prevent access to certain keys or hives.

Yaha also attempts to kill any anti-virus or host firewall program that it can find, provided that it
is a version Yaha knows how to kill (as different variants of this worm attempt to disable
different defense programs). Some host firewalls warn the user when they are being shut down
and allow them to abort such an action; this is a good feature that could mitigate the risk of a
malicious program shutting down a host-based firewall. A HIPS might also be effective in this
case, as such systems are capable of detecting and preventing one process’ attempts to modify or
control another.

8.1.3 Propagation

8.1.3.1 Description
Yaha creates a list of target email addresses by searching through the Windows Address Book,
MSN Messenger Data, ICQ data files, and other email resources. Once it has a collection of
target addresses, Yaha tries to find the default SMTP server by looking in the
“HKCU\Software\Microsoft\Internet Account Manager\Accounts” registry key. If no default
SMTP server is found, Yaha uses a predefined external server and connects to it using the
standard SMTP port (TCP port 25).

8.1.3.2 Defenses
Yaha’s reconnaissance for email addresses could be prevented by a HIPS configured to spot
accesses to files or registry keys containing email addresses. Likewise, tight access controls on
the registry could prevent such reconnaissance. The worm’s access to SMTP servers is
preventable with host-based firewalls and application proxy firewalls which block unauthorized
connections. A HIPS could also be set up to prevent rogue programs from issuing commands to
connect to an SMTP server.

UNCLASSIFIED

38

UNCLASSIFIED

8.1.4 Payload

8.1.4.1 Description
Periodically, Yaha tries to connect to the target system www.pak.gov.pk.

8.1.4.2 Defenses
If multiple copies of Yaha run on the same network segment, a noticeable amount of network
traffic is generated. This can be detected with IDSs and firewalls. If the administrator notices a
URL being attacked, he could configure firewalls or a HIPS to block requests to that destination.

8.2 SLAMMER

8.2.1 Infection

8.2.1.1 Description
Slammer gains control of a system using a buffer overflow in the SQL Server Resolution Service
of Microsoft’s SQL Server and MSDE 2000 (a desktop data engine component that shares code
within SQL Server).

8.2.1.2 Defenses
The vulnerablity exploited by Slammer was well known and a patch was available in January
2003 when the worm was released. The massive impact and rapid spread of the worm is a good
indication of how few system administrators had applied the patches.

The impact of Slammer could have been greatly reduced if more systems had been properly
configured. It is generally not necessary that the SQL Server Resolution Service be visible to the
Internet, nor does it have to run with system privileges. If this service is not visible from the
outside, Slammer cannot get in. If the service runs as a normal user, its damage is limited by
operating system permissions.

A properly configured packet filtering firewall could have also stopped Slammer infection by
blocking inbound packets aimed at the SQL Server Resolution Service. There is seldom a
legitimate reason for the service to be accessible over the Internet.

Exploitation of the buffer overflow vulnerability in this service could have been prevented using
stackguarding. Alternatively, a proxy firewall could perform a validity check on the field being
overflowed by Slammer.

8.2.2 Survival

8.2.2.1 Description
Slammer resides in memory and makes no permanent changes to the Windows Registry or to
system files to ensure its survival on the target machine.

UNCLASSIFIED

39

UNCLASSIFIED

8.2.2.2 Defenses
Slammer did not try to corrupt the target system. It was not defensible by host-oriented
protections that look for resources being corrupted.

8.2.3 Propagation

8.2.3.1 Description
The worm propagates by generating small-sized packets that exploit the SQL Resolution Service
vulnerability and sending them out indescriminately to IP address on the Internet. Slammer’s
aggressive propagation generated massive amounts of traffic that quickly flooded networks all
over the world.

8.2.3.2 Defenses
Propagation can be stopped at network gateways with properly configured packet filtering
firewalls. If the firewalls are eluded, an IDS may be able to detect packet flooding. There is little
that can be done at an infected host other than disconnecting from the network, rebooting, and
installing the patches.

8.2.4 Payload

8.2.4.1 Description
Slammer has no payload. The propagation of the worm itself does all the damage.

8.2.4.2 Payload
Slammer has no payload, so there is nothing to defend against.

8.3 BUGBEAR

8.3.1 Infection

8.3.1.1 Description
The Bugbear worm spreads primarily by execution of an email attachment that contains the
worm. The execution may be initiated by an unsuspecting user or triggered through a
vulnerability in MIME header processing code in Internet Explorer (the same flaw exploited by
Yaha).

8.3.1.2 Defenses
Filtering email to remove executable attachments and disabling file downloads in the Internet
Explorer Security Zone are effective countermeasures to Bugbear’s infection vectors.

UNCLASSIFIED

40

UNCLASSIFIED

8.3.2 Survival

8.3.2.1 Description
Bugbear copies itself to the system directory and places itself in the startup folder so that it will
be executed each time the system reboots. The RunOnce key in the Registry is set to point to
Bugbear as a backup measure to ensure it is executed at system startup.

Like Yaha, Bugbear attempts to disable security software on the host computer. It also disables
autodialing at various points so the user is not alerted by dialing at unusual times.

8.3.2.2 Defenses
The survival steps taken by Bugbear could be mediated via tight permissions on the Registry and
filesystem. The Registry could be configured to restrict access on keys that contain email
addresses. Restrictive permissions only help if the account Bugbear runs under does not normally
require access.

HIPSs offer media tion that can stop Bugbear’s survival functions which consist of modifications
to the Registry and file system. They could also counter attempts to shutdown anti-virus and
host-based firewall programs since they can screen the process-related APIs.

8.3.3 Propagation

8.3.3.1 Description
Bugbear propagates by mailing infected files as email attachments. The worm uses varying
subject lines, attachment names, and destination email addresses. This makes it difficult to filter
with content-checking firewalls.

In addition to using email as a propagation method, Bugbear attempts to propagate through open
file shares.

8.3.3.2 Defenses
Outgoing email could be filtered by a mail server or advanced application proxy firewall that
drops executable attachments.

HIPS guard against Bugbear’s alternate propagation mechanism, ensuring that only legitimate
processes are accessing file shares.

8.3.4 Payload

8.3.4.1 Description
Bugbear installs a backdoor that optionally listens on TCP ports 36794 and 1080. The backdoor
listens for commands issued by its author. A keystroke logger is also installed on compromised
machines. The keystroke logger creates files in the system directory.

UNCLASSIFIED

41

UNCLASSIFIED

8.3.4.2 Defenses
The best way to combat Bugbear’s payloads is to prevent them from being installed and run.
Proper configuration could lock down the directories the worm uses to install the backdoor and
keylogger. HIPS could watch for system changes that initiate these payloads.

Assuming the payload components do run, packet filtering (done by any of the various types of
firewalls) could prevent commands from reaching the backdoor. Unfortunately, shutting down
one of the ports, 1080, disables a legitimate service and may impact the functioning of the
system. If all else fails and the backdoor can be instructed from the outside, the commands the
backdoor executes will likely be out-of-character and thereby be defendable by a HIPS. The
keystroke logger, likewise, will perform actions that are detectable at the host.

8.4 LEAVE

8.4.1 Infection

8.4.1.1 Description
The Leave worm uses two main techniques to infect a host. Its primary method of infection is to
take advantage of the SubSeven Trojan. This method of infection requires the victim to have
been previously compromised by a version of SubSeven that has the backdoor component active.

Leave’s secondary infection mechanism involves binding itself to an executable file. When an
infected program is executed, usually by tricking a user, Leave extracts itself and infects the
system.

8.4.1.2 Defenses
The primary infection vector utilizes the SubSeven Trojan. SubSeven was detectable by anti-
virus software long before the appearance of the Leave worm. Had users been running up-to-
date anti-virus software, they would have been free of the SubSeven Trojan and would have been
immune to infection from Leave via this method. Additionally, firewalls could have been
configured to block the port used by the SubSeven backdoor.

8.4.2 Survival

8.4.2.1 Description
Once Leave has penetrated a system it immediately takes steps to prevent its detection and
removal. It selects common Windows applications such as Notepad and Internet Explorer and
attaches itself to their executable files. Each time one of these modified programs is executed,
Leave is able to reinfect the system.

Additionally, Leave modifies various Registry keys to ensure that Windows executes it on
system startup. Should these Registry keys be removed, the execution of an infected application
restores them.

UNCLASSIFIED

42

UNCLASSIFIED

8.4.2.2 Defenses
The survival mechanisms of the Leave worm can be mitigated through HIPSs and file system
integrity checkers.

HIPSs can be used to detect and prevent Leave’s attempts to modify system Registry keys. As
Leave relies on Registry keys to have the operating system execute it, it will not run at startup if
these keys are not present.

Leave also relies on binding itself with various commonly used programs. File system integrity
checkers can immediately alert the user when a program attempts to modify other executables.

8.4.3 Propagation

8.4.3.1 Description
The original Leave worm has both an active and a passive propagation vector.

The active method of propagation involves scanning the Internet for computers infected with the
SubSeven Trojan. When an infected machine is found, Leave uses the SubSeven backdoor to
copy itself to the remote machine.

The applications that Leave infects when it infiltrates a system can also be used as propagation
vectors. If they are executed on another computer, they infect the new system.

Later variants of the Leave worm were packaged as email attachments masquerading as patches
sent by Microsoft.

8.4.3.2 Defenses
The Leave worm is extremely network aware. It scans for potential victims on the Internet. It
uses the IRC, HTTP, and NTP protocols in its normal operation. It relies on the network in
almost every facet of its lifecycle. A host firewall would deny it these capabilities. Should the
Leave worm attempt to access any part of the network, the host-based firewall could
immediately intercept this action and alert the user. Its network capabilities would be completely
compromised.

8.4.4 Payload

8.4.4.1 Description
The Leave worm offers its author the ability to have near complete control of an infected
machine.

After Leave ensures its survival, it synchronizes the system clock with various publicly
accessible NTP (Network Time Protocol) servers. It connects to various websites and downloads
a list of commands the worm author may have posted. It also connects to a private IRC channel
and awaits commands sent directly from the worm creator. The commands Leave supports
include the ability to modify the local file system, copy files, upload/download files, modify

UNCLASSIFIED

43

UNCLASSIFIED

files, bind to alternate executables, attack new hosts, and many more. The Leave worm can
function as a malicious remote-administration tool with few limitations.

8.4.4.2 Defenses
The Leave worm has no intention of destroying data on the host. In fact, it removes the
SubSeven backdoor to prevent reinfection or infection by another worm. Since all command and
control is accomplished via the network, a host-based firewall would sever Leave’s tie to the
outside world. A HIPS would be able to mediate the system changes if the backdoor commands
were remotely invoked.

8.5 NIMDA

8.5.1 Infection

8.5.1.1 Description
Nimda has four infection vectors. Its primary infection technique is to exploit the same MIME
header parsing vulnerability in Internet Explorer that was used in Yaha and Bugbear. In other
scenarios it may try to trick a user into manually executing an attachment or into downloading a
file off of the web. The fourth infection vector is the remote exploitation of a buffer overflow in
the Microsoft WWW server IIS (Internet Information Services).

8.5.1.2 Defenses
The MIME header parsing vulnerability results in attachments being executed without user
action. This vulnerability can be eliminated with proper patching policies. Attachment filtering,
done at the mail server or firewall, could also remove any such attachments before they reach the
client.

Disabling file downloads in Internet Explorer Security Zones could prevent clients from
accidentally downloading any content from an infected IIS server.

If IIS was compiled with stackguarding, the buffer overflow within IIS would have been
unexploitable, and this infection vector would have been rendered ineffective.

8.5.2 Survival

8.5.2.1 Description
Upon infection Nimda takes numerous steps to ensure that it cannot be removed. To help hide
its presence, Nimda overwrites system applications such as mmc.exe (the Microsoft
Management Console) in the Windows directory. It then will scan for Microsoft Word
documents and create malicious DLL files (containing a copy of the worm) in the directories the
documents are found. It will change a user’s preferences to not show known file extensions or
hidden files so that the malicious DLLs will not be displayed.

UNCLASSIFIED

44

UNCLASSIFIED

To make sure that the worm is executed on startup, Nimda will modify Registry settings. It will
also modify configuration files such as system.ini. It will also register itself as a system service
so that it will be able to run even when no user is logged in.

Nimda will create open network shares for all drives on the infected computer. Finally, Nimda
will also create users that have enhanced privileges on the infected machine. It will give the
guest account Administrator privileges.

8.5.2.2 Defenses
The survival mechanisms of the Nimda worm can be mitigated through HIPSs and file system
integrity checkers.

HIPSs can deny Nimda’s attempts to modify, create, and/or delete system files and registry
settings. They can also prevent a worm from creating unsafe user accounts with unnecessary
privileges, causing gaps in the security posture. Finally, a HIPS can detect Nimda’s attempts to
access parts of the registry and file systems and deny such accesses.

File system integrity checkers can alert users to the corruption of core system programs and
configuration files modified by Nimda.

8.5.3 Propagation

8.5.3.1 Description
When Nimda attempts to propagate to other machines, it has a variety of methods at its disposal.
The most basic propagation technique is that Nimda will send a copy of itself to a harvested
email address hoping the remote user will be vulnerable to its MIME header parsing exploit or be
tricked into executing the attachment.

Nimda also has the ability to search network shares for Microsoft Word documents and create
malicious DLL files that will be loaded by Microsoft Word when the documents are opened. If
the user opening the document is on a remote machine, they have now infected their computer as
well. Nimda also copies itself to network shares in the hope that remote users will execute them.

Since Nimda probes for vulnerable IIS servers, it may use the buffer overflow exploit to
propagate to such a server. The remote server would then be infected as well. IIS servers
infected with Nimda will attempt to send clients copies of the Nimda worm when they request
content.

8.5.3.2 Defenses
Most of Nimda’s propagation techniques involve requests for network access. Whether these
requests are to send infectious emails or scan for vulnerable IIS servers, a host-based firewall
could prevent these actions.

As for the modification of files on network shares, a HIPS could detect this suspicious behavior
as well as prevent network share scanning and modification of system files.

UNCLASSIFIED

45

UNCLASSIFIED

8.5.4 Payload

8.5.4.1 Description
After Nimda has infected a machine, it begins executing its payload. Every ten days, Nimda will
harvest email addresses from the local machine and begin mass mailing those addresses. These
emails have an attachment that contains the worm as well as the MIME header parsing
vulnerability exploit. Nimda will utilize it’s own SMTP engine to send mail directly to a mail
server, bypassing the need for an email client. Nimda will issue DNS MX requests to identify
mail servers.

When Nimda copies itself to remote IIS servers, it will start a TFTP (Trivial File Transfer
Protocol) server to assist in its propagation function.

8.5.4.2 Defenses
Nimda will run its own SMTP engine, perform DNS lookups, and start a TFTP (Trivial File
Transfer Protocol) server. Since each of these services requires network access, a host firewall
could deny their network access requests.

UNCLASSIFIED

46

UNCLASSIFIED

References
[1] The Worm Information Center, http://www.networm.org/faq
[2] CERT Coordination Center, http://www.cert.org
[3] F-Secure Virus Info Center, http://www.f-secure.com/virus- info
[4] Kaspersky Labs Virus Encylopedia, http://www.viruslist.com
[5] Network Associates AVERT Virus Information Library, http://vil.nai.com
[6] Sophos Virus Information, http://www.sophos.com/virusinfo
[7] Symantec Security Response, http://securityresponse.symantec.com/avcenter
[8] Trend Micro Virus Encylopedia, http://www.trendmicro.com/vinfo
[9] Virus Bulletin, http://www.virusbtn.com/resources/viruses/index.xml
[10] MITRE Common Vulnearbilities cve.mitre.org
[11] Microsoft Security Bulletins, http://www.microsoft.com/technet/security
[12] Symantec Security Response Glossary,
http://securityrespone.symantec.com/avcenter/refa.html
[13] CAIDA analysis of Code Red, http://www.caida.org/analysis/security/code-red
 [14] Eeye Blaster Analysis, http://www.eeye.com/Research/Advisories/AL20030811.html
[15] D. Moore, C. Shannon, k claffy, “Code Red: a case study on the spread and victims of an
Internet worm”
[16] J. Van Hoogstraten, “Blasting Windows: An Analysis of the W32/Blaster Worm”,
http://www.giac.org/practical/GCIH/John_VanHoogstraten_GCIH.pdf
[17] E. Manrique, “An Analysis of W32.Bugbear and the Technical and Procedural Controls
Needed for Protection”, http://www.giac.org/practical/GCIH/Edmundo_Manrique_GCIH.pdf
[18] A. Marinescu, “An Analysis of Simile”, http://www.securityfocus.com/infocus/1671
[19] P. Ferrie, “WHO? WHAT? WHERE? SWEN?”, http://pferrie.tripod.com/swen.pdf
[20] P. Ferrie, “Klez”, http://toronto.virusbtn.com/magazine/archives/200207/klez.xml
[21] Max Vision, “Lion Internet Worm Analysis”, http://www.whitehats.com/library/worms/lion
[22] Max Vision, “Ramen Internet Worm Analysis”,
http://www.whitehats.com/library/worms/ramen
[23] D. Moore, C. Shannon, G.M. Voelker, S. Savage, “Internet Quarantine: Requirements for
Containing Self-Propagating Code”, Infocom 2003
[24] S. Staniford, V. Paxson, N. Weaver, “How to 0wn the Internet in Your Spare Time” in
Proceedings of he 11 USENIX Security Symposium, San Francisco, CA, Aug. 2002
[25] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q, Zhang, “StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks”
[26] E. Spafford, “Computer Viruses as Artificial Life”
[27] D. Chess, S. White, “An Undetectable Computer Virus”
[28] J. Nazario, J. Anderson, R. Wash, C. Connelly, “The Future of Internet Worms”, Crimelabs
Research, http://www.crimelabs.net
[29] P. K. Singh, “A Physiological Decomposition of Virus and Worm Programs”
[30] Tripwire Integrity Assurance Company, http://www.tripwire.com
[31] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, V. Weaver, “The Spread of the
Sapphire/Slammer Worm”, http://www.silicondefense.com/research/slammer

