
 Systems and Network Analysis Center
 Information Assurance Directorate

 SNAC DoD,9800 Savage Rd Ft.Meade,MD 20755-6704 410-854-6632 DSN 244-6632 FAX: 410-854-6604 www.nsa.gov/snac

SNAC@radium.ncsc.mil

Minimize the Effectiveness of
SQL Injection Attacks

Any application that queries a database using user-supplied data is a
potential target for SQL injection attacks. DBAs may not be able to

stop all SQL injection attacks against their database servers; however, there are some things they
and application programmers can do to minimize the effectiveness of these attacks.

What can a Database Administrator (DBA) do?
• Follow security recommendations

provided in the various database server
security benchmarks. Download
benchmarks from www.nsa.gov/snac or
www.cisecurity.org

• Do not host the database and web server
on the same box.

• Block internet access to and from the
database using a firewall or non-routable
IP address. Once configured, packets
from the database server will not be able
to route to the Internet. A route will need
to be added to the web server so it will
be able to find the database server.

• Configure trusted IP access (e.g.,
IPSEC) to control which machines are
able to communicate with the database
server.

• Remove all sample scripts and
applications from the database server.

• Use a limited privilege OS account as
the database service account on the
server.

• Use a dedicated, low-privileged account
for each application’s database
connection account. Do not use sa, dba
or admin.

• Do not grant users or applications direct
access to database tables. Make use of
application roles that have limited access
to the database. If the application only
needs read access, limit database access
to read only.

• Create views and grant only required
access to these views to the application
roles. This will prevent the application
from having direct access to the
underlying tables in the database.

• Remove unused stored procedures from
production databases.

• Grant applications access to user-created
stored procedures only.

• Do not “grant” applications _ANY_
access to OS commands or system stored
procedures.

**For special security environments with highly sensitive data stored in databases, an available option is to place
the database server on a backnet, protecting it from access by outside networks. Do this by placing 2 NICs in your
web server and have one connected to the outside network and the other connected to a small internal network (such
as an administrative network) containing the database server. Prevent the web server from routing packets from the
outside network NIC to the backnet NIC and use non-routable addresses (such as 192.168.x.x) in the backnet.

*SQL Injection graphic by
Chris Mospaw, ©2005, used
with permission.

http://www.nsa.gov/snac
http://www.cisecurity.org/

 SNAC DoD,9800 Savage Rd Ft.Meade,MD 20755-6704 410-854-6632 DSN 244-6632 FAX: 410-854-6604 www.nsa.gov/snac

SNAC@radium.ncsc.mil

What can an Application Programmer do?
A well-respected source of information on web application security, to include SQL
injection issues, is the Open Web Application Security Project (OWASP). At a minimum,
implement the following OWASP recommendations:

• Create custom, general error messages
generated by the application. Attackers
can gain valuable information, such as
table and column names and data types
through default error messages generated
by the database during a SQL injection
attack.

• Validate user input prior to forwarding it
to the database. Only accept expected
user input and limit input length.
Note: Where possible, use white-list
style checking on all user input.
(Application Server Firewalls can be
used to check input and accept only
those that fit the pattern of acceptable
input for the server.)

• Use web application scanning tools to

discover code vulnerabilities during
development.

• Isolate the web application from the
SQL. Place all SQL required by the
application in stored procedures on the
database server.

• Use static queries. If dynamic queries
are required, use prepared statements.

• Have the application execute the stored
procedure using a safe interface, e.g.,
JDBC’s CallableStatement or ADO’s
Command Object.

The use of user-created stored procedures and prepared statements (or parameterized queries) makes it nearly
impossible for a user’s input to modify SQL statements because they are compiled prior to adding the input.
Note: Make sure the stored procedures are not themselves susceptible to SQL injection by having the application
sanitize all user input.

Detecting SQL Injection Vulnerabilities and Attacks
Detecting applications that are vulnerable to SQL injection is tough because these vulnerabilities
can exist in any of the application interfaces exposed to the user. Although not all SQL injection
attack techniques can be easily detected, there are a few things DBAs/developers can do:

¾ Read the web server logs. SQL injection attacks can sometimes be easily spotted in these
logs because of the larger than normal amount of entries written to the logs.

¾ Look for HTTP 404 and HTTP 500 error log entries, as well as other error log entries
generated by programs written to check user input.

¾ Use a web application scanning tool. These tools can be used to alert DBAs to places in
applications that are susceptible to SQL injection attacks.

¾ Detecting SQL injection vectors in applications prior to deployment is crucial. Information
on how to go about testing for SQL injection vulnerabilities can be found on the OWASP
website at http://www.owasp.org/index.php/Testing_for_SQL_Injection.

Several third-party options exist for protecting web applications and their backend databases. These include
Intrusion Prevention Systems, Web Application Firewalls, and Database Gateways. More information on these
protection options can be found through Internet research.

http://www.owasp.org/index.php/Testing_for_SQL_Injection

	Minimize the Effectiveness of SQL Injection Attacks
	What can a Database Administrator (DBA) do?
	What can an Application Programmer do?
	Detecting SQL Injection Vulnerabilities and Attacks

