
 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 1

Security-Enhanced Linux

Peter Loscocco

Information Assurance Research Group

National Security Agency

loscocco@tycho.nsa.gov

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 2

Outline
Importance of secure operating systems

Security-enhanced Linux

Related work

Conclusions

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 3

Importance of Secure OS
Growing need for security

Flawed assumption of security

OS is correct level to provide security

Key feature: Mandatory Access Control (MAC)
• Access to objects controlled by policy administrator

• Users/processes may not change access policy

• All accesses are mediated w.r.t. the policy

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 4

Mandatory Security: Key Gains
Provides critical support for application security

• Protects against tampering with secured application

• Protects against bypass of secured application

• Enables assured pipelines

Provides strong separation of applications
• Permits safe execution of untrustworthy applications

• Limits scope of potential damage due to penetration of applications

• Functional uses: isolated testing environments or insulated
development environments

Protects information from
• Legitimate users with limited authorization

• Authorized users unwittingly using malicious applications

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 5

Why not just DAC?
Decisionsareonly basedonuseridentityandownership

Each user has complete discretion over his objects

Only two major categories of users: user and superuser

Many systemservicesandprivilegedprogramsmustrun
as superuser

No protection against malicious software

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 6

Traditional approach to MAC
Enforce system-wide security policy

• Based on confidentiality or integrity attributes of subjects and
objects

• Can support many different categories of users

• Can confine malicious code

Too limiting for general solution
• Tightly coupled to Multilevel security policy

• Assumes hierarchical relationship in labeling

• Ignores least privilege and separation of duty

• No binding between security attributes of subjects and their
executables (limits protection from executing malicious code)

• Requires trusted subjects

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 7

Main Design Goals
Secure architecture is driving concern

Flexibility of policy and mechanism

Separation of policy from enforcement

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 8

Policy Flexibility
Capable of Supporting wide variety of security policies

• Separation Policies

• Enforcing Legal restrictions on data

• Establishing well-defined user roles

• Restrictions to classified/compartmented data

• Containment Policies

• Restricting web server access to authorized data

• Minimizing damage from viruses and other malicious code

• Integrity Policies

• Protecting applications from modification

• Preventing unauthorized modification of databases

• Invocation Policies

• Guaranteeing that data is processed as required

• Enforcing encryption policies

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 9

Type Enforcement
Access matrix defining permission between domains

and types

Advantages
• Separates enforcement from policy

• No assumptions in labels

• Supports many policies

• No need for trusted subjects

• Controls entry into domains via program types

• Controls execution of program types by domains

• Enables assured pipelines

Downside is complexity of access matrix

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 10

The Flask Security Architecture
Cleanly separates policy from enforcement

Well-defined policy interfaces

Support for policy changes

Allows users to express policies naturally

Fine-grained controls over kernel services

Caching to minimize performance overhead

Transparent to applications and users

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 11

Encapsulation of Policy

Object Manager

Policy
Enforcement

Security Server

Policy
Decisions

Object/SID
Mapping

SID/Context
Mapping

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 12

Policy Decisions
Labeling Decisions: Obtaining a label for a new subject

or Object

AccessDecisions:Determiningwhetheraserviceonan
object should be granted to a subject

Polyinstantiation Decisions: Determining where to
redirect a process when accessing a polyinstantiated
object

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 13

Permissions and Object Classes
Permissionsaredefinedonobjectsandgroupedtogether

into object classes

Examples
• process: execute, fork, transition, sigchld, sigkill, sigstop, signal,

ptrace, getsched, setsched, getsession, getpgid, setpgid, getcap,
setcap, entrypoint

• file: poll, ioctl, read, write, create, getattr, setattr, lock, relabelfrom,
relabelto, transition, append, access, unlink, link, rename, execute

• dir: file class perms + add_name, remove_name, reparent, search,
mounton, mountassociate

• security: compute_av, notify_perm, transition_sid, member_sid,
sid_to_context, context_to_sid,load_policy, get_sids,register_avc,
change_sid

• Other classes include: socket, filesystem, fd, and capability

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 14

Security Server Interface
Object Labeling

• Request SID to label a new object
int security_transition_sid(

security_id_t ssid, /* IN */
security_id_t tsid, /* IN */
security_class_t tclass, /* IN */
security_id_t *out_sid); /* OUT */

• Example of usage for new file label in fs/namei.c:vfs_create
error = security_transition_sid(current->sid,

dir->i_sid,
SECCLASS_FILE,
&sid);

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 15

Security Server Interface (cont.)
Access Decisions

• Request Access Vector for a given object class/permissions
int security_compute_av(

security_id_t ssid, /* IN */
security_id_t tsid, /* IN */
security_class_t tclass, /* IN */
access_vector_t requested,/* IN */
access_vector_t *allowed, /* OUT */
access_vector_t *decided, /* OUT */
__u32 *seqno); /* OUT*/

• Ignores access vectors for auditing and requests of notifications of
completed operations

• returns 0 unless error

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 16

Security Server Interface (cont.)
Access Vector Cache (AVC)

• security_compute_av() called indirectly through AVC
extern inline int avc_has_perm_ref_audit(

security_id_t ssid, /* IN */
security_id_t tsid, /* IN */
security_class_t tclass, /* IN */
access_vector_t requested,/* IN */
avc_entry_ref_t *aeref, /* IN */
avc_audit_data_t*auditdata);/* IN */

• aeref is attempt to point directly to cache entry. If invalid then
security_compute_av() is called

• Returns 0, -EACCES or an appropriate code if error occurs

File permissions check shortcuts
• inline int dentry_mac_permission(struct dentry *d, access_vector_t av)

• Usage: err = dentry_mac_permission(nd->dentry, DIR_SEARCH);
/* from fs/namei.c:path_walk)

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 17

Permission Checking Examples
unlink() from fs/namei.c: vfs_unlink()

error = dentry_mac_permission(dentry, FILE__UNLINK);
if (error)

return error;

• Additional directory-based checks in fs/namei.c:may_delete()

• search and remove_name permissions

Processto socketcheckfrom net/ipv4/af_inet:inet_bind()
lock_sock(sk);
ret = avc_has_perm_ref(current->sid, sk->sid, sk->sclass,

 SOCKET__BIND, &sk->avcr);
release_sock(sk);
if (ret)

return ret;

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 18

Permission Checking Examples
open() from fs/namei.c: open_namei()

 /* Checks for existing file */
if (flag & FMODE_READ) {

error = dentry_mac_permission(dentry, FILE__READ);
if (error)

goto exit;
}
if (flag & FMODE_WRITE) {

if (flag & O_APPEND) {
error = dentry_mac_permission(dentry, FILE__APPEND);
if (error)

goto exit;
} else {

error = dentry_mac_permission(dentry, FILE__WRITE);
if (error)

goto exit;
}

}

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 19

Permission Checking Examples
execve() from fs/exec.c: prepare_binprm()

if (!bprm->sid) {
retval = security_transition_sid(current->sid, inode->i_sid,

SECCLASS_PROCESS, &bprm->sid);
if (retval) return retval; }

if (current->sid !=bprm->sid && !bprm->sh_bang) {
retval = AVC_HAS_PERM_AUDIT(current->sid, bprm->sid,

PROCESS, TRANSITION, &ad);
if (retval) return retval;
retval = process_file_mac_permission(bprm->sid, bprm->file,

PROCESS_ENTRYPOINT);
if (retval) return retval; }

retval = process_file_mac_permission(bprm->sid, bprm->file,
PROCESS_EXECUTE);

if (retval) return retval;

Also checks file:execute, fd:inherit and process:ptrace
and wakes parent for process:sigchld

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 20

Example Security Server
Implements combination of Identity-Based Access

Control, Role-Based Access Control, Type
Enforcement, and optional Multilevel Security

Labeling, access, and polyinstantiation decisions
defined through set of configuration files

Security objectives of example policy include:
• Protection of kernel integrity and initialization

• Protection of system software and configuration integrity

• Protection of system administrator role and domain

• Confinement of damage caused by exploitation of flaws by limiting
privileges

• Protection against privileged processes executing malicious code

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 21

Security Policy Example
Examplefrom TE policy to allow sysadmto run insmod

allow sysadm_t insmod_exec_t:file x_file_perms;
allow sysadm_t insmod_t:process transition;
allow insmod_t insmod_exec_t:process {entrypoint execute};
allow insmod_t sysadm_t fd:inherit_fd_perms;
allow insmod_t self:capability sys_module;
allow insmod_t sysadm_t:process process sigchld;

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 22

Compatibility
SELinux controls transparent to applications and users

• Default behavior allows existing interface to be unchanged

• Access failures return normal error codes

• e.g. EACCES, EPERM, ECONNREFUSED, ECONNRESET

• few exceptions: e.g. read and write

• Extended API for security-aware applications

• Specifying SIDs: e.g. execve, open, and socket

• Getting/setting security information

• Conversion between SIDs and Security Contexts

• SS interface for user-space object managers

• Use controlled by policy

• Enables refinement of kernel policy

• Application AVC library easily produced

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 23

Code Maintainability
Existing Functionality

• Well-contained checking

• Similar in complexity to existing DAC checks

• Collocated w/existing DAC checks where possible

• AVC managed automatically

• Security Server encapsulates security policy

• Implemented policy may be changed w/o effecting rest of kernel

• Changes to interface or existing permisions affect kernel

• Changes to SS or permission set can affect existing policies

• Changes to internal interfaces can affect SS or AVC

New Functionality requires:
• Definition of permissions for new functions that need control

• Updating distribution security policies for new permissions

Developmentmodeusefulfor testingkernelfunctionality
and writing policies

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 24

Performance Testing
Set up

• Benchmarks run on 333MHz Pentium II w/128M RAM and 64M
swap

• lmbench net tests used 166MHz Pentium w/128M RAM and 64M
swap for server programs

• Tests configurations

• Base - unmodified Linux 2.4.2

• SELinux - example Security Server w/policy

No attempt was made to optimize for performance
• Numbers should be treated as upper bounds

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 25

Performance Testing
Macrobenchmark results

• Compilation of 2.4.2 kernel w/default options

Time Base Selinux %

elapsed 11:13.60 11:15.18 0

system 49.32 50.92 3

user 600.86 601.03 0

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 26

Performance Testing (cont.)
Microbenchmarks

• UnixBench 4.1.0

• file copy in KB/sec, rest in loops/sec (minute for shell scripts)

Microbenchmark Base SELinux %

execl 403.8 383.3 5.3

file copy -4K 50652.0 49759.0 1.8

file copy -1K 41406.0 39566.0 4.7

file copy -256 23586.0 21485.0 9.8

pipe 161955.9 139475.2 16.1

pipe switching 78555.8 66805.4 17.6

process creation 2061.9 2022.7 1.9

system call 162049.4 162033.4 0.0

shell scripts (8) 91.0 87.7 3.8

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 27

Performance Testing (cont.)
• lmbench 2

• simple file operations, process creation, and program
execution(microseconds)

Microbenchmark Base SELinux %

null I/O 1.45 1.93 33

stat 8.06 10.25 27

open/close 11.0 14 27

0K create 22 26 18

0K delete 1.72 1.90 10

fork 499.0 504.75 1

execve 2725.75 2816.5 3

sh 10K 11K 10

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 28

Performance Testing (cont.)
• lmbench 2

• communication latency (microseconds)

• no difference on bandwidth benchmarks

Microbenchmark Base SELinux %

pipe 12.5 14 12

AF_UNIX 20.6 24.6 19

UDP 309.75 355.60 14.8

RPC/UDP 441.25 519.20 17.7

TCP 389.00 425.00 9.25

RPC/TCP 667.25 725.80 8.77

TCP connect 674.50 737.80 9.38

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 29

More on Performance
Security does not come for free!

Preliminary results w/o optimization not too bad

Areas for Improvement
• Optimization of AVC and SS

• Analysis of AVC refs

• Fine-grained locks on AVC

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 30

Related Work
Rule Set Based Access Control (RSBAC)

• Generalized Framework for Access Control for Linux

• Similarities

• Separates policy from enforcement

• Role Compatibility Modules close to SELinux TE module

• Distinctions

• RSBAC lacks controls for each kernel subsystem

• RSBAC lacks support for dynamic policy changes as GFAC
doesn’t address atomic policy changes

• RSBAC relies on kernel-specific data structures - No policy-
independent data types

• RSBAC decisions not cleanly decoupled from kernel

• RSBAC has no decision caching mechanism

• RSBAC bases decisions on real uid and must control change

• RSBAC lacks support for user-level object managers

• RSBAC usesnew utilities/syscallsfor policy configratherthan
human readable config files

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 31

Related Work
Type Enforcement/Domain and type Enforcement

• Configurable Access Control Effort and DTE for Linux

• Similarities

• Flask Architecture includes generalization of TE

• DTE and SELinux both use policy language for expressing policy

• Distinctions

• SELinux has greater encapsulation of labels and policy logic

• SELinux has more support for dynamic policies

• SELinux has finer-grained controls and explicit persistent labels

• SELinux can support both TE or DTE in Security Server

Trusted BSD
• Adding security features including MAC

• SELinux more mature and more flexible

• TrustedBSD plans to migrate to more flexible approach

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 32

Related Work
Linux Intrusion Detection System (LIDS)

• Provides set of additional security features for Linux

• Controls view, preventing process from being killed, security
alerts, detecting port scans

• Administrative ACLs for files that ID subjects based on program

Medusa DS9
• Similar to SElinux at high level

• AC architecture that separates policy from enforcement

• Very different in specifics

• User space authorization server based on labeling with sets of
virtual spaces to define view and accesses

• Support for syscall interception and forcing execution of code
provided by server

LOMAC
• Implements Low Watermark model in a loadable kernel module

• Useful integrity protection w/compatibility for existing SW

• SELinux should be able to implement LOMAC

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 33

Key Distinctions of SELinux
Comprehensive and flexible system with a well-defined

security architecture validated by several prototypes

Provides
• Cleanseparationof policy andenforcementwith well-definedpolicy

interfaces

• Policy, policy language, and label format independence

• Support for policy changes

• Individual labels and controls for kernel objects and services

• Caching of access decisions for efficiency

• Fine-grained controls over file systems, directories, files, open file
descriptions, sockets, messages, network interfaces, and capability
use

• Transparency to security-unaware applications via default behavior

Assurance work for Flask Architecture

 I n f o r m a t i o n A s s u r a n c e R e s e a r c h G r o u p

4/6/01 34

Conclusion
Mandatory Access Control needed for meaningful

security

Flexibility and completeness is correct way to go

SELinux warrants a close look

Open Source community is in a position to take a good
security architecture, improve its implementation and
enable its wide distribution

Additional Features needed for security
• Trusted Path and Protected Path

