4/6/01

B Information Assurance Research Group

Security-Enhanced Linux

Peter Loscocco
Information Assurance Research Group
National Security Agenc
loscocco@tycho.nsa.go

B Information Assurance Research Group

Outline

Importance of secure operating systems
Security-enhanced Linux
Related vork

Conclusions

4/6/01

B Information Assurance Research Group

Importance of Secure OS

Growing need for security

Flawed assumption of security

OS is correct hel to pravide security

Key feature: Mandatory Access Control (A

» Access to objects controlled by pgliadministrator
» Users/processes may not change accessypolic
 All accesses are mediated.tw the poliy

4/6/01

4/6/01

B Information Assurance Research Group

Mandatory Security: By Gains

Provides critical support for application security

» Protects aginst tampering with secured application
» Protects aginst bypass of secured application
» Enables assured pipelines

Provides strong separation of applications

» Permits safeecution of untrustarthy applications
* Limits scope of potential damage due to penetration of applications

* Functional uses: isolated testingyieonments or insulated
development emironments

Protects information from

* Legitimate users with limited authorization
» Authorized users unwittingly using malicious applications

4/6/01

Why not just DAC?

Decisionsareonly basedn useridentity andownership
Each user has complete discretiameronis objects
Only two major catgories of users: user and superuser

Many systemservicesandprivilegedprogramsmustrun
as superuser

No protection aginst malicious softare

4/6/01

B Information Assurance Research Group

Traditional approach to M@

Enforce system-wide security paglic

» Based on confidentiality or irgaty attributes of subjects and
objects

» Can support mandifferent catgories of users
« Can confine malicious code

Too limiting for general solution

 Tightly coupled to Multileel security polig
» Assumes hierarchical relationship in labeling
* Ignores least prilege and separation of duty

* No binding between security attnites of subjects and their
executables (limits protection fronxecuting malicious code)

e Requires trusted subjects

4/6/01

Main Design Goals

Secure architecture is dimg concern
Flexibility of policy and mechanism
Separation of polyfrom enforcement

4/6/01

B Information Assurance Research Group

Policy Flexibility

Capable of Supporting wideakiety of security policies

» Separation Policies

» Enforcing Leal restrictions on data

 Establishing well-defined user roles

 Restrictions to classified/compartmented data
« Containment Policies

 Restricting web serr access to authorized data

* Minimizing damage from viruses and other malicious code
* Integrity Policies

 Protecting applications from modification

* Preventing unauthorized modification of databases
* Invocation Policies

» Guaranteeing that data is processed as required

« Enforcing encryption policies

B Information Assurance Research Group

Type Enforcement

Access matrix defining permission between domains
and types

Advantages

» Separates enforcement from pwplic

* No assumptions in labels

« Supports manpolicies

* No need for trusted subjects

« Controls entry into domains via program types
» Controls &ecution of program types by domains
» Enables assured pipelines

Downside is compbaty of access matrix

4/6/01

4/6/01

The Flask Security Architecture

Cleanly separates pojidrom enforcement
Well-defined poliy interfaces

Support for polig changes

Allows users to)@ress policies naturally
Fine-grained controlsver kernel services
Caching to minimize performanceerhead

Transparent to applications and users

10

4/6/01

Encapsulation of Polic

Object Manager

Security Sergr

| Policy ==

> Policy

Enforcement™

| Object/SID|
. Mapping

| DeC|s.|ons|

' SID/Contet |
'~ Mapping |

11

Policy Decisions

Labeling Decisions: Obtaining a label for asngubject
or Object

AccessDecisionsDeterminingwhethera serviceon an
object should be granted to a subject

Polyinstantiation Decisions: Determining where to
redirect a process when accessing a polyinstantiated
object

4/6/01 12

B Information Assurance Research Group

Permissions and Object Classes

Permissiongaredefinedon objectsandgroupedogether
Into object classes

Examples

 process: xecute, fork, transition, sigchld, sigkill, sigstop, signal,
ptrace, getsched, setsched, getsession, getpgid, setpgid, getcap,
setcap, entrypoint

o file: poll, ioctl, read, write, create, getattetatty lock, relabelfrom,
relabelto, transition, append, access, unlink, link, renaxeeuee

o dir: file class perms + add_name, remmame, reparent, search,
mounton, mountassociate

* Security: compute vanotify _perm, transition_sid, member_sid,
sid_to_contrt, context_to_sid,load polig, get_sidsregister_ac,
change_sid

» Other classes include: satkfilesystem, fd, and capability

4/6/01 13

4/6/01

B Information Assurance Research Group

Security Serer Interbce
Object Labeling

* Request SID to label awebject
int security_transition_sid(

security_id t ssid, [* IN */
security_id t tsid, [* IN */
security_class t tclass, /*IN*/
security_id t *out_sid); /* OUT */

« Example of usage for nefile label in fs/namei.c:vfs_create
error = security transition_sid(current->sid,

dir->i_sid,
SECCLASS FILE,
&sid);

14

4/6/01

B Information Assurance Research Group

Security Sergr Interface (cont.)

Access Decisions

» Request Accessedtor for a gren object class/permissions
Int security_compute vé

security_id t ssid, [* IN */
security_id t tsid, [* IN */
security_class t tclass, /*IN*/
access_ector t requested/* IN */
access_ector t *allowed, /* OUT */
access_ector t *decided, /* OUT */
_u32 *segno); /* OUT*/
* Ignores accesseetors for auditing and requests of notifications of
completed operations

e returns O unless error

15

B Information Assurance Research Group

Security Sergr Interface (cont.)

Access ¥ctor Cache (¥C)

 Security_compute vé@) called indirectly through ¥AC
extern inline int &c_has_perm_ref audit(

security_id t ssid, [* IN */
security_id t tsid, [* IN */
security_class t tclass, /*IN*/
access_ector t requested/* IN */
avc_entry ref t *aeref, /*IN*/
avc_audit_data_t*auditdata)/* IN */
 aeref is attempt to point directly to cache erifrinvalid then
security _compute @) is called

* Returns 0, -EACES or an appropriate code if error occurs

File permissions check shortcuts

* inline int dentry_mac_permission(struct dentry *d, accemstov t &)

» Usage: err = dentry_mac_permission(nd->dentiyIR_SEARCH);
[* from fs/namei.c:path_alk)

4/6/01 16

B Information Assurance Research Group

Permission Checking Examples

unlink() from fs/namei.c: vfs_unlink()
error = dentry_mac_permission(dent®yLE__ UNLINK);
if (error)
return error;

» Additional directory-based checks in fs/namei.c:may_delete()
» search and remre_name permissions

Procesgo soclket checkfrom net/ipv4/af _inet:inet_bind()
lock_sock(sk);
ret = avc_has perm_ref(current->sid, sk->sid, sk->sclass,
SOCKET__ BIND, &sk->ecr);
release_sock(sk);
if (ret)
return ret;

4/6/01 17

4/6/01

B Information Assurance Research Group

Permission Checking Examples

open() from fs/namei.c: open_namei()
[* Checks for ®isting file */
if (flag & FMODE_READ) {
error = dentry_mac_permission(dentfyLE_ READ);
if (error)
goto «it;
}
if (flag & FMODE_WRITE) {
if (flag & O_APPEND) {
error = dentry_mac_permission(dentfyLE__ APPEND);
if (error)
goto «it;
} else {
error = dentry_mac_permission(dent®f)LE__ WRITE);
if (error)
goto «it;

18

4/6/01

B Information Assurance Research Group

Permission Checking Examples

exec\we() from fs/eec.c: prepare_binprm()
if ("bprm->sid) {
retval = security transition_sid(current->sid, inode->i_sid,
SECCLASS_ PRCESS, &bprm->sid);
if (retval) return retal; }
if (current->sid !'=bprm->sid && !'bprm->sh_bang) {
retval = AVC_HAS PERM_AJDIT(current->sid, bprm->sid,
PROCESS, TRANSITION, &ad);
if (retval) return retal;
retval = process_file_mac_permission(bprm->sid, bprm->file,
PROCESS ENTRPOINT);
if (retval) return retal; }
retval = process_file_mac_permission(bprm->sid, bprm->file,
PROCESS EXECUTE);
if (retval) return retal,

Also checks filexeecute, fd:inherit and process:ptrace
and wakes parent for process:sigchld

19

B Information Assurance Research Group

Example Security Seev

Implements combination of Identity-Based Access
Control, Role-Based Access Controypé
Enforcement, and optional Multitel Security

Labeling, access, and polyinstantiation decisions
defined through set of configuration files

Security objecties of @ample polig include:

» Protection of krnel intgrity and initialization
 Protection of system softawe and configuration irgety
» Protection of system administrator role and domain

» Confinement of damage caused Rpleitation of flavs by limiting
privileges

» Protection aginst prvileged processexecuting malicious code

4/6/01 20

B Information Assurance Research Group

Security Polig Example

Examplefrom TE policy to allow sysadmto runinsmod

allow sysadm_t insmodxec _t:file x_file_perms;

allow sysadm_t insmod_t:process transition;

allow insmod_t insmod »@c_t:process {entrypoinkecute};
allow insmod_t sysadm_t fd:inherit_fd_perms;

allow insmod_t self:capability sys _module;

allow insmod_t sysadm_t:process process sigchld;

4/6/01 21

B Information Assurance Research Group

Compatibility

SELinux controls transparent to applications and users

» Default behaior allows eisting interface to be unchanged
» Access dilures return normal error codes
» e.g. EACCES, EPERM, ECONNREFUSED, ECONNRESET
« few exceptions: e.g. read and write
» Extended API for securitywaare applications
» Specifying SIDs: e.g.xecwe, open, and soek
» Getting/setting security information
» Corversion between SIDs and Security Catge
» SS inter&ce for usespace object managers
» Use controlled by polic
» Enables refinement otknel poliy
» Application A/C library easily produced

4/6/01 22

B Information Assurance Research Group

Code Maintainability

Existing Functionality

» Well-contained checking
 Similar in compleity to existing DAC checks
 Collocated w/risting DAC checks where possible
* AVC managed automatically
» Security Sergr encapsulates security pglic
* Implemented polig may be changed w/ofetting rest of krnel
» Changes to inteate or gisting permisions &kct kernel
» Changes to SS or permission set céecakxisting policies
» Changes to internal intexdes can é&éct SS or NC

New Functionality requires:
 Definition of permissions for mefunctions that need control

» Updating distrilntion security policies for me permissions

Developmenimodeusefulfor testingkernelfunctionality
and writing policies

4/6/01 23

B Information Assurance Research Group

Performance dsting

Set up

 Benchmarks run on 333MHz Pentium Il w/128M RAM and 64M
swap

* Imbench net tests used 166MHz Pentium w/128M RAM and 64M
swap for serer programs

» Tests configurations
» Base - unmodified Linux 2.4.2
« SELinux - kample Security Seer w/poligy

No attempt vas made to optimize for performance
* Numbers should be treated as upper bounds

4/6/01 24

B Information Assurance Research Group

Performance dsting

Macrobenchmark results
e Compilation of 2.4.2 &rnel w/dehult options

Time Base Selinux | %

elapsed| 11:13.60 11:15.180
system 49.32 50.92| 3
user 600.86 601.03/0

4/6/01

4/6/01

B Information Assurance Research Group

Performance dsting (cont.)

Microbenchmarks
e UnixBench 4.1.0

Microbenchmark Base | SELinux| %

execl 403.8 383.3] 5.3
file copy -4K 50652.0 49759.0 1.8
file copy -1K 41406.0 39566.0 4.7
file copy -256 23586.0 21485.0 9.8
pipe 161955.9 139475.2 16.1
pipe switching 78555.8 66805.4 17.6
process creation| 2061.9 2022.7| 1.9
system call 162049.4 162033.4 0.0
shell scripts (8) 91.0 87.7 3.8

« file copy In KB/sec, rest in loops/sec (minute for shell scripts)

26

B Information Assurance Research Group

Performance dsting (cont.)

* Imbench 2

» simple file operations, process creation, and program
execution(microseconds)

Microbenchmark| Base | SELinux| %
null I/0 1.45 1.93| 33
stat 8.06 10.25| 27
open/close 11.0 14| 27
OK create 22 26| 18
OK delete 1.72 1.90 10
fork 499.0f 504.75 1
exec\e 2725.75 2816.5

sh 10K 11K | 10

4/6/01

B Information Assurance Research Group

Performance dsting (cont.)

* Imbench 2
e communication lateryc(microseconds)

Microbenchmark| Base | SELinux| %
pipe 12.5 14, 12
AF_UNIX 20.6 24.6/ 19
UDP 309.75 355.60 14.8
RPC/UDP 441.25 519.20 17.7
TCP 389.00 425.00 9.25
RPC/TCP 667.25 725.80 8.77
TCP connect 674.50 737.80 9.38

* no difference on bandwidth benchmarks

4/6/01

4/6/01

B Information Assurance Research Group

More on Performance

Security does not come for free!
Preliminary results w/o optimization not too bad

Areas for Impreement

» Optimization of AC and SS
» Analysis of A/C refs
 Fine-grained locks on\AC

29

B Information Assurance Research Group

Related Vark

Rule Set Based Access Control (FEB

» Generalized Frameork for Access Control for Linux
 Similarities

» Separates polcfrom enforcement

* Role Compatibility Modules close to SELinux TE module
* Distinctions

 RSBAC lacks controls for eacheknel subsystem

* RSBAC lacks support for dynamic pojichanges as G
doesnt address atomic polfacchanges

 RSBAC relies on krnel-specific data structures - No pglic
independent data types

* RSBAC decisions not cleanly decoupled froerrkel

 RSBAC has no decision caching mechanism

 RSBAC bases decisions on real uid and must control change
* RSBAC lacks support for usdevel object managers

* RSBAC usesew utilities/syscalldor policy configratherthan
human readable config files

4/6/01 30

B Information Assurance Research Group

Related Vark

Type Enforcement/Domain and type Enforcement

» Configurable Access Controlfaft and DTE for Linux
 Similarities
 Flask Architecture includes generalization of TE
 DTE and SELinux both use pajitanguage forxgressing polig
* Distinctions
» SELinux has greater encapsulation of labels andyplgc
« SELinux has more support for dynamic policies
» SELinux has finegrained controls andkplicit persistent labels
» SELinux can support both TE or DTE in Security erv

Trusted BSD

» Adding security features including MA
» SELinux more mature and morexilale
» TrustedBSD plans to migrate to morexitde approach

4/6/01 31

B Information Assurance Research Group

Related Vdrk

Linux Intrusion Detection System (LIDS)

» Provides set of additional security features for Linux

» Controls viev, preventing process from being killed, security
alerts, detecting port scans

« Administratve ACLs for files that ID subjects based on program

Medusa DS9

« Similar to SElinux at high el
» AC architecture that separates pplimm enforcement
 Very different in specifics

» User space authorization senbased on labeling with sets of
virtual spaces to define wieand accesses

» Support for syscall interception and forcinggeution of code
provided by serer

LOMAC

* Implements Lav Watermark model in a loadablerkel module
» Useful intgrity protection w/compatibility forxasting SW
» SELinux should be able to implement LOKZA

4/6/01 32

B Information Assurance Research Group

Key Distinctions of SELInux

Comprehense and flgible system with a well-defined
security architecturealidated by seeral prototypes

Provides

» Cleanseparatiomf policy andenforcemenivith well-definedpolicy
interfaces

* Poligy, policy language, and label format independence

» Support for polig changes

* Individual labels and controls foeknel objects and services
« Caching of access decisions fdii@éncy

* Fine-grained controlsver file systems, directories, files, open file
descriptions, soeks, messages, naiwk interfaces, and capability
use

» Transparengto security-unaare applications via dadilt behaior

Assurance wrk for Flask Architecture

4/6/01 33

Conclusion

Mandatory Access Control needed for meaningful
security

Flexibility and completeness is correcawto go
SELinux warrants a close look

Open Source community IS in a position toetakgood
security architecture, impve its implementation and
enable its wide distrilttion

Additional Features needed for security
 Trusted RAth and Protectedakh

4/6/01 34

