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Background

Application of stack modules to larger capacity
applications is key to SECA'’s strategy.

* Develop ~5 kW SOFC modules for mass-customization

« Small-capacity applications (1-5 stacks), including:
— Residential / light commercial DG
— Auxiliary power for vehicles
— Remote power

 Larger capacity applications:
— Large commercial / industrial DG (10-1000s stacks)

— Sub-station level DG and central generation (synergy with
Vision21 program)

* How to scale-up to hundreds of kW or MW?

SECA wanted to understand the issues involved in
scaling up to 100-kW to 1-MW systems.

]
A'thlr D Lrule JT/AP 3rd SECA workshop ADL presen tation.ppt



Study Objectives

Objective: to assess whether and how SECA stack
modules can be integrated into a 250 kWe plant.

* Develop thermodynamic design, system lay-out,
performance estimate, and cost estimates

« SOFC stack:
— Use 5 kW planar SOFC modules *
— Combine into super-modules
— Implications for electric interconnection of the units?
— Implications for manifolding?

 Balance of plant:
— Determine scale and integration
— Impact of scale-up on system performance and cost?

« Simple-cycle operation
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System Specifications

We developed a conceptual design for a 250-kW,

distributed generation system SOFC.

System Specifications

+ System output: 250-kW,
net @ 380V 3-phase
AC

# Electrical system
efficiency >50% (LHV)

+ Availability >99%

¢ TSurface< 45°C

+ High production volume
(10,000 units per year)

Stack

Balance of Plant

¢ 5 kW modules
+ Cell voltage 0.7 V

¢ Anode-supported
technology

¢ T, 650-800°C

¢ Power density 0.6
W/cm?

+ 85% fuel utilization
per pass in fuel cell

+ Water supplied
(no water
recovery)

¢ Steam reformer

+ Natural gas fuel,
(20" H,0O gauge)

Arthur D Little

JT/AP 3rd SECA workshop ADL presen tation.ppt




Approach

We used a multi-level modeling approach to develop
direct manufacturing cost estimates for the system.

Fuel Cell Performance & Cost Model
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Scope of Cost Analysis

To estimate installed cost, value-chain mark-up and
installation cost must be added.

Direct Manufacturing Cost

=

Factory Profit & Overhead
* Profits

® Sales costs
®* General overhead
®* R&D cost

30 - 50%

FC System Installed
actory Price System
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Costing Methodology

The cost model contains both purchased components
and manufactured components.

Purchased Components Manufactured Components

+ Air blowers + Fuel cell stack

+ Natural gas compressor + Fuel cell stack hardware
+ Water pump + Fuel cell packaging

+ Air and fuel filters + Recuperators

+ Control and solenoid valves + Zinc bed

+ Controllers for rotating equipment, | ¢ Steam reformer

processors and hardware

+ Piping, fittings & connectors
+ Thermocouples/sensors + Steel sheet
+ Wiring for sensors & valving + Metal foil
+ Insulation (high and low + Chemicals
temperature) + Nickel oxides
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Fuel Preparation & Reforming

Use of a SMR offers opportunities for tight thermal
integration.

Preheat & H, membrane

Natural Sulfur for sulfur Exhaust
Gas
Removal removal
Water
SMR

r Fuel Cell |

Air Air Preheat

-
Am‘lr D Lﬂe JT/AP 3rd SECA workshop ADL presentation.ppt



Plant Layout Rectangular Stacks Top View

We developed a conceptual system design, to assess
implications of manifolding and interconnection.

Hot Box Configuration with Rectangular Cross-Flow Cells: Top View
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Plant Layout Rectangular Stacks Side View

We limited integration to the reformer and air
preheaters, to maintain reasonable access.

250-kW System Configuration: Side Views
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Plant Layout Cylindrical Stacks Top View

With cylindrical stacks, a simpler manifolding

arrangement may be feasible...

Hot Box Configuration with Radial-Outflow Cells: Top View
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Plant Layout Cylindrical Stacks Side View

... and a more compact overall design.

Hot Box Configuration with Radial-Outflow Cells: Side View
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Thermodynamic Model Results

With careful thermal integration, a system efficiency
of 51% can be achieved in simple-cycle configuration.

Anode Fuel Utilization | 85%
Fuel Cell, Cell Voltage | 0.7V
Fuel Cell Efficiency | 47.1%
Cathode Inlet Air Temperature | 650°C
Cathode Excess Air (for Cooling) | 7.7 times
Blower Pressure | 1.17 bar
Exhaust temperature | 177 °C
Parasitic Loads | 19 kW
Required Fuel Cell gross power rating | 269 kW
Resultant Overall Efficiency | 51%
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Thermodynamic Model Results Energy Flows

Extensive energy recovery from hot exhaust gas is
critical to achieving high system efficiency.

Energy Flow in 250-kW SOFC system (all on LHV)

Fuel Gas & Feed Steam Stack Loss

Heat loss
(510 MJ/h) (40 MJ/h) (782 MJ/h)

Cathode air preheat
(2800 MJ/h)

Natural Gas _
(1790 MJ/h) Electric
Power
{250-kW,
900
MJ/h)

Parasitic Power
(69.1 MJ/h / 19.2-kW)
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Cost Estimate

The direct manufacturing cost of the 250 kW system

is estimated to be around $150,000.
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System cost per kW, $/kW
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@ Indirect, labor

B Power Electronics
O Piping System

B Control & Electrical
@ Startup Power

B Rotating equipment
B Recuperators

O Reformer

OO0 SOFC Insulation

O Balance of Stack
B FC stack

Installed cost ~ $1000 / kW, CoE 5 - 9 ¢/kWh.
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Conclusions (1)

Integration of SECA modules into cost-effective high-
performance larger-scale systems appears feasible.

* Integration of over fifty stacks appears feasible:
— Several manageable configurations identified
— Manifolding and interconnection losses acceptable
— Cost savings in balance of plant

« High-efficiency simple-cycle plant appears feasible, and
result in attractive cost

— Lower-efficiency, lower-cost systems may be more flexible in
operation and preferable in some situations

— Combined-cycle configurations may ultimately lead to even
higher efficiency

« Cost and performance would be attractive

— In the 250 kW system, benefits of economy of scale are largely
offset by lower production volumes compare to 5 kW systems
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Conclusions (2)

Further immprovements could be made, but additional
challenges must be overcome.

» Achieving projected cost and performance requires:
— Raising power density under realistic conditions
— Proving long life and high reliability (steady state and cycling)
— Subsystem and component design and development

— Achieving high manufacturing volumes (cost at intermediate
production volumes may be critical to ultimate success)

 Ultimately, further system improvements could be
made, mainly by improving stack performance:
— Lower temperature operation
— More internal reforming / direct oxidation
— Increased stack temperature gradient
— Larger stack tiles
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SOFC GROVE™ Initial Results Temperature in 6 x 6 cm? cell

Temperature {C)

Incranent 0: skap Tine =

crozsflow] 6. temp. avi
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SOFC GROVE™ Initial Results Current Density in 6 x 6 cm? cell

Current Density {Aflcm~2)

1 Incranent 0: skap Tine =
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