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Descriptor - include initials, /org#/date

SECA Core Technology Program Solicitation
• Fuel Processing

− Contaminant Resistant Anodes and Reforming Catalysts for Intermediate
Temperature Solid Oxide Fuel Cell Systems

− High Temperature Sulfur Removal

• Manufacturing
− Low Cost Production of Precursor Materials

• Controls and Diagnostics
− Sensors
− Active Sealing Systems

• Power Electronics
−Interaction Between Fuel Cell, Power Conditioning Systems and Application

Loads
− DC-to-DC Converters for Solid-Oxide Fuel Cells

• Modeling & Simulation
− Fuel Cell Failure Analysis
− Manufacturing Models

• Materials
− Cathodes
− Interconnects
− Innovative Sealing Concepts



U.S. Department of Energy
Pacific Northwest National Laboratory

3

SECA Core Technology Program 
Activities at PNNL
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Core Technology - Areas of Emphasis

• SOFC component development
• Anode Supported Cell Fabrication & Performance Optimization

• Tape casting process
• Anode & cathode materials
• Interconnects
• Seals

• SOFC modeling
• Modeling of cells and stacks – transient and steady state
• System modeling
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Advantages of LSF Cathode
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High oxygen diffusion
coefficient (relative to LSM)
increases “effective” TPB at
the cathode / electrolyte
interface, thereby reducing the
cathode overpotential

Other advantages of LSF
as cathode material:

High oxygen surface exchange
coefficient; TEC is compatible
with other cell components;
high electronic conductivity
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Temperature Dependence of Anode-supported
Cell Performance
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Advanced Red/Ox Tolerant Anode
Doped SrTiO3 compositions show promise as red-ox  tolerant anode
materials
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“Advanced” compressive seal concept
In coupon testing, mica gaskets exhibited relatively high leak rates under
moderate compressive loads. In recent testing, advanced compressive seals
exhibited leak rates approximately  2 orders of magnitude lower relative to
simple mica gasket.  Test conditions:  800ºC in air
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Metallic Interconnect Development
3-step Screening & Testing Study to Evaluate Candidate Alloys
■ Goals:  Identify candidate alloys for SOFC interconnect; Develop

understanding of corrosion processes and mechanisms

■ Step 1 – completed – compiled metallurgical database; reduced
candidate list from ~300 to ~15 alloys

■ Step 2 – in progress – screening tests
• chemical – stability in fuel and oxidant environment, compatibility

and bonding strength with seal materials
• electrical – effects of environment on scale resistance
• mechanical – effects of environment on mechanical properties
• fabrication – formability and joinability testing



U.S. Department of Energy
Pacific Northwest National Laboratory

10

Overview of Modeling and Simulations
Flow Analysis

Thermal Analysis
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• Low cost tape casting process for anode & electrolyte fabrication
• Single step sintering process for anode-supported electrolyte co-

sintering
• Non-nickel base anode for oxygen tolerance
• Sr doped lanthanum ferrite cathode electrode for superior

performance
• Engineering performance models for cell & stack operations
• Data base compilation for candidate metallic current collector

Accomplishments:



U.S. Department of Energy
Pacific Northwest National Laboratory

12

SECA Worksho p (war ) / M arch 2 1, 20 02

• Three-dimensional, steady-state, with fluid dynamics, heat
transfer, species transport, chemical reaction, porous media flow

− Water-gas shift reaction

− Species diffusion in flow channels and porous media

• Electrochemical SOFC submodel

− H2 and CO Electrochemistry

• Electrical field submodel to calculate electrical potential field in all
conducting regions including electrodes, current collectors,
interconnects

− Ohmic heat generation

− Current Flow

• Parallel Code for PC cluster computing

• Model temperature output coupled to ANSYS FEA code for stress
analysis

NETL SOFC Model Capabilities
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Example: Simple Co-Flow Channel
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•• Extend to StacksExtend to Stacks
•• Internal ReformingInternal Reforming
•• Include Contact ResistanceInclude Contact Resistance

−− Current collector-electrode
−− Electrode-electrolyte
−− Current collector-interconnect

•• Complete Model ValidationComplete Model Validation
−− Data from open literatureData from open literature
−− Data from NETL testing facilitiesData from NETL testing facilities
−− Data from SECA partnersData from SECA partners

•• Working with SECA partners in Model Validation and ApplicationWorking with SECA partners in Model Validation and Application
−− DelphiDelphi
−− SiemensSiemens-Westinghouse-Westinghouse

Planned Capabilities and Validation



U.S. Department of Energy
Pacific Northwest National Laboratory

15

Solid Oxide Fuel Cell Materials Research
at Argonne National Laboratory
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Argonne Elec trochemical Technology Program

Drivers for the research
• A major approach to lowering fuel cell and balance-of-

plant costs is to reduce SOFC operating temperatures
to <800oC. At the lower temperatures, however,

– Conventional LSM cathode performance is inadequate
• Need to develop perovskite and other cathode materials with

high electrochemical activity, low resistivity at <800oC

– Sulfur-poisoning of Ni anode is exacerbated
• Need anode materials tolerant to 1-100 ppm or more of H2S

– Metallic interconnect (bipolar) plates become feasible
• Need new alloys or coatings as presently available metals

and alloys degrade rapidly in SOFC environments
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Argonne Elec trochemical Technology Program

Low-Temperature Cathode Materials

Single-phase cathode materials
• Accomplishments

– Identified Sr-doped lanthanum ferrates as the
most promising candidate cathode materials

– Verified stable performance to 500 h
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Argonne Elec trochemical Technology Program

Metallic Interconnect Materials

Approach
• Alloys similar to ferritic stainless steels

– reduce Cr, other elements that can degrade fuel cell
performance

– additives to improve properties and protective scale

• Materials of graded composition to impart optimum
chemical stability at each surface

• Novel processing technique can yield almost any
desired shape
– flat, corrugated, textured, functionally graded

– can incorporate flow fields, internal manifolds
Formed

Flow Field
in Dense
Material

Macroporous
Flow Field

Formed Flow
Field with
Porous
Layers
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Argonne Elec trochemical Technology Program

• 10-Layer specimen
Two surface layers:

Fe-Cr-La-Y-Sr alloy
Bulk: SS Type 434

• Points 1,2: ~1.5 - 2.0 wt% La

• Points 3,4: no measurable La

Metallic Interconnect Materials

Multi-layer plates are easily formed

• Compositionally graded specimens can be fabricated
• Samples show excellent bonding
• After 400 h at 800oC, there was no observed elemental

diffusion between layers

SEM Micrograph of compositionally-graded sample
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Argonne Elec trochemical Technology Program

Summary
Future directions

• Micro-engineer the cathode-electrolyte
interface to further improve cathode
performance

• Evaluate anode materials with 0-100 ppm
H2S in fuel gas

• Characterize oxide scale on metallic bipolar
plates for growth rates and electrical
conductivity

• Test developed materials in full cell and
short stack configurations
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Effect of Oxidant Composition on a High Performance,
Anode-Supported Cell
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O2-N2 Effective Diffusivity through Porous LSM and
Cathodic Concentration Polarization

Experimentally Measured
Effective Diffusivities

Calculated Cathodic
Concentration Polarization

Thickness = 50 µm
Porosity created by 
adding carbon, and
burning it off.  
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SOFC Cell Performance at Reduced TemperaturesSOFC Cell Performance at Reduced Temperatures

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

C ur r ent De ns it y, A/ cm 2

C
el

l V
ol

ta
ge

, V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ow

er
 D

en
si

ty
, W

/c
m

2

80 0C

75 0C

70 0C

65 0C

60 0C

Hydrogen fuel

Air oxidant

• High power densities (e.g., 0.9 W/cm² at 650°C) achieved at reduced
temperatures (<800°C) with anode-supported thin-electrolyte cells

• High power densities (e.g., 0.9 W/cm² at 650°C) achieved at reduced
temperatures (<800°C) with anode-supported thin-electrolyte cells
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• First pressurized SOFC with planar anode-supported thin-electrolyte cells• First pressurized SOFC with planar anode-supported thin-electrolyte cells

Pressurized Operation of Planar Pressurized Operation of Planar SOFCsSOFCs

Expe rimental Data Points and Mode l 
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YSZ film deposited from polymeric precursor
on sapphire substrate

A)  Annealed at 400°C for 4 hours

B)  Annealed at 1000°C for 4 hours
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P o r o u s  C e O 2

Y S Z

P o r o u s  C e O 2

Y S Z

P o r o u s  L S M

Cross section - 1

Cross section - 2
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LBNL Developed Colloidal Deposition Technique for SOFCsLBNL Developed Colloidal Deposition Technique for SOFCs

NiO/YSZ substrate
(pressed)

NiO/YSZ fired
at 950 oC

NiO/YSZ
substra te with

green YSZ film

NiO/YSZ-YSZ
bilayer fired at

1400 oC

•Geometry Independent
•Low Cost
•Scaleable

Dip-coat, aerosol spray, EPD...
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Development of Alloy Supported Thin-film SOFC
Structures to Reduce Stack Cost and Improve Reliability

Top view of a YSZ/Ni-
YSZ/FeCr alloy SOFC
bilayer (looking
through transparent
YSZ film).

Bottom view of a
YSZ/Ni-YSZ/FeCr
alloy SOFC
bilayer (at porous
FeCr electrode)
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Fuel Cell Program

Objectives and Tasks
Objectives:
� Develop technology leading to reforming of diesel fuel for APU applications.
� Understand parameters that affect fuel processor lifetime and durability.

� Examine fuel components, impurities and additives
� Quantify fuel effects on fuel processor performance
� Understand the parameters that affect fuel processor lifetime and durability

� Catalyst durability
� Carbon formation and catalyst durability

�Tasks:
� Carbon Formation Measurement of Diesel Fuel(s)

� Equilibrium and component modeling
� Experimental carbon formation measurement

� Fuel Mixing
�Vaporization / Fuel atomization
� Direct liquid injection

� ‘Waterless’ Partial Oxidation of Diesel Fuel
� Start-up
� SOFC anode recycle
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Fuel Cell Program

Partial Oxidation Stage Outlet Concentrations
(for similar oxygen conversion)

0

5

10

15

20

25

30

35

40

Iso-Octane Iso-Octane plus    
20 % Xylene

Dodecane

%
 O

ut
le

t 
C

o
n

ce
nt

ra
ti

on

H2+CO
Unconverted O2
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Longer residence times required for similar conversion (same Temperature / O/C)
residence time (iso-octane ~ 10 msec)
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Fuel Cell Program

Diesel POx/Reforming Light-off
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Fuel Cell Program

Fuel / Water co-vaporization Issues
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Fuel Cell Program

•  Catalytic oxidation / reforming
• Diesel Fuel Components (Dodecane)

• Long chained hydrocarbons require higher residence time for conversion
• aromatics slow and inhibit overall reaction rate

• Pre-combustion

• Diesel fuels much more likely for pre-combustion
• Kerosene has higher pre-combustion tendencies than de-odorized

kerosene

• Carbon Formation
•  Hysteresis observed after on-set of carbon formation
•  Greater carbon formation with aromatics

Technical Summary/Findings
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Fuel Cell Program

Technical Results:
Carbon formation measurements

Results
• Partial oxidation of

• odorless kerosene
• kerosene
• dodecane
• hexadecane

• Carbon formation
monitoring by laser optics
• Carbon formation shown
at low relative O/C ratios
and temperature with
kerosene (left)
• Demonstrated start-up
with no water – carbon
formation observed after ~
100 hrs of operation

Carbon formation monitoring with laser scattering
Odorless Kerosene; S/C = 1.0
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E/MM0680P GAR 3/00

• Challenge:  Limited sulfur tolerance in fuel cell  reformer & stack
• NETL Research: Selective Catalytic Oxidation of H  2S
• Benefit: Fuel cells using coal gas, nat. gas, transportation fuels

NETL Fuel Processing Team
Fuel Desulfurization - “SCOHS”

H2S + 1/2 (O2 + 3.76 N2) = 1/n Sn + H2O + 1.88 N2

Sulfur product
continuously
drips out.

NETL
SCOHS 
Catalyst 

1”
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E/MM0680P GAR 3/00

• Removal Efficiency:  SCOHS has part per trillion (ppt)
thermodynamic sulfur removal efficiencies.

• Water Sensitivity:  Unlike most metal oxide based systems,
SCOHS is relatively insensitive to water content, which can be
found in high concentrations in some reformate streams.
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Fuel Processor - “APU”
NETL Fuel Processing Team

E/MM0 680P GAR 3/00

NETL Fuel Processing Team
Fuel Processor - “APU”

1”

Desulfurizer
Temperature

150/400 C 800 C

Efficiency 52.82 55.09

Net Power Output 5 kW 5 kW

Mass Specific Fuel
Consumption

.75E-3
kgmol / kW hr

.722E-3
kgmol / kW hr

ATR Oxygen-to-Carbon Ratio - 0.25
ATR Steam-to-Carbon Ratio - 0.7
Fuel Cell / Reformer Temperature - 800 C

Fuel
Cell
Stack

Cathode

Anode

Combustor

AutoThermal
Reformer

        Desulfurizer
        Sorbent Bed

    Exhaust
        Condenser

Steam
  Generator

Air Preheater
Air Compressor

Fuel Pump

Water 
Pump

800 C SECA APU

800 °C 800 °C

800 °C

800 °C

800 °C

650 °C
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Descriptor - include initials, /org#/date

Additional SECA Core Program Participants

Don Adams

Descr ip tor -  include  initials, /o rg#/ date

Technology Management, Inc.
Benson Lee

Demonstrate the  operation of two SOFC modules as a s ingle unit.

Develop Screen Printing Manufacturing Technique

University of Florida
Eric Wachsman

Develop Bi-Layer Ceria, Bismuth Oxide electrolyte for 
low temperature operation.  Develop ionic conduction model.

Northwestern University/
Applied Thin Films
Scott Barnett

Develop segmented in series SOFC design.
Develop internally reforming anode as discussed in “Nature”

Georgia Institute of 
Technology/ Meilin Liu

Development of ultra-low (500  C) temperature  SOFC materials.
Development of in-situ FTIR emission spectroscopy for
evaluation of gas-solid interactions in fuel cells.

NexTech Materials, Ltd.
Bill Dawson

Development of cathode supported SOFC designs.
Development of manufacturing techniques for low temperature  
SOFC materials

Ceramatec
S. E langovan

Interconnects
Development of Low  Temperature material set.

Oak Ridge National Lab
Edgar Laura-Curzio
Don Adams

SOFC material property and reliability eva luations
Power Electronics evaluat ion.


