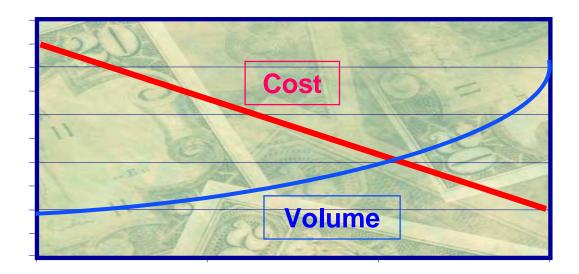
## The Solid State Energy Conversion Alliance



SECA Program Overview
Third Annual SECA Workshop

March 21-22, 2002 Washington, D.C.

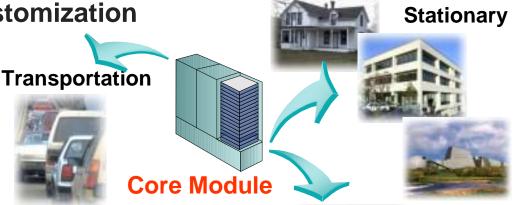

Joseph P, Strakey, Director Strategic Center for Natural Gas





## **SECA Program Strategy**

- Make the large public benefits of fuel cells widely available
- Start with the goal in mind (\$400/kW by 2010)
- High-volume / low cost manufacturing technology




Low Cost/High Volume \$400/kW/ > 50,000 units/yr



# **SECA Program Strategy**

- Multiple markets / mass customization
- Industry teams with different technical approaches and market applications



- Core Technology Program (CTP)
   to develop common supporting technology
- Maintain balance between Industry Teams and CTP
- Intermediate, quantifiable metrics to access progress
- Leverage funding by cost sharing and encouraging broad participation by other funding organizations

**Military** 

## **National Benefits**







#### Energy Security

- Reduced dependence on imported petroleum
- Multi-fuel capability
  - Currently available fuels
  - Coal-derived syngas
  - Hydrogen

#### Reduced CO<sub>2</sub> emissions

- Double the efficiency of producing power from fossil fuels compared to grid average
- Ideal for CHP applications







#### **National Benefits**



- Health benefits
  - Negligible emissions of sulfur, NOx and particulates
- Grid-independent capability
  - Environmentally friendly power source for use in rural and pristine areas of the nation.
- Provides power choices for homes and businesses





# **Annual U.S. Emissions Saved Using** APUs in Class 8 Trucks (vs. Idling) **SECA**





#### Diesel fuel saved:

419 million gal/yr

#### CO<sub>2</sub> reduced:

- 4.64 million tons/yr

#### **Assumes:**

- 2.1 million Class 8 trucks
- 311,000 have overnight routes (APU candidates)



Source: ANL study for DOE, March, 2001

# **Goals and Applications**







- \$800/kW
- Prototypes (Beta)
  - Long Haul Trucks
  - RV's
  - Military
  - Premium Power





- \$400/kW
- Commercial Products
  - Transportation APUs
  - Residential & Industrial CHP



#### 2015

- \$400/kW
- Hybrid Systems
  - -60-70% efficient
- Vision 21 Power Modules
  - -75% efficient



## **Technical Requirements**



Cost \$400 / kW

Power Rating Net 3-10 kW

Efficiency 30 - 50% [APU]

(AC or DC/LHV) 40 - 60% [Stationary]

Fuels Natural Gas

(Current infrastructure) Gasoline

Diesel

Design Lifetime 5,000 Hours [APU]

40,000 Hours [Stationary]

Maintenance Interval > 1,000 Hours



## **Program Structure**



Fuel Cell Core Technology







**Program Management** 



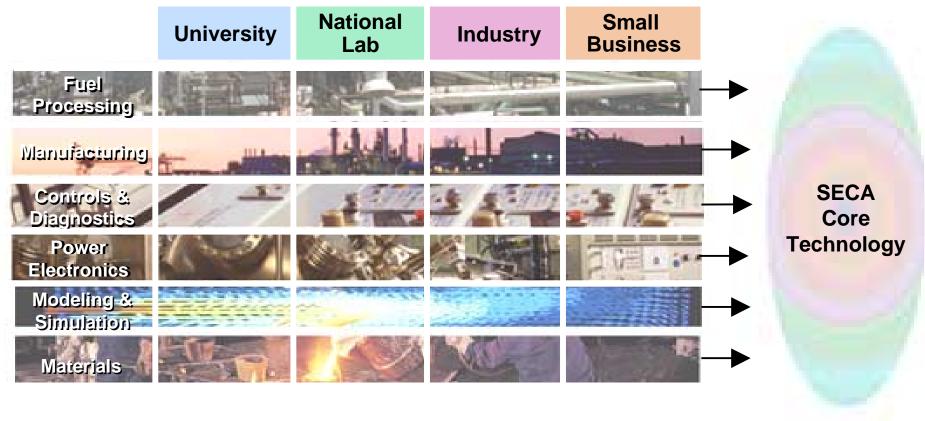
**Project Management** 

Needs

Research Topics



**Industry Integration Teams** 




**Core Technology Program** 



# Core Technology Program The Technology Base







## **Programmatic Accomplishments**



- Program jointly conceived/planned by NETL PNNL
- Two solicitations issued (Industry Teams, CTP)
- Four Industrial Teams selected -- substantially different approaches
- Program budget received strong support in DOE and Congress
- Core Technology Program initiated
  - Universities, National Labs, small & large businesses
  - Broad participation: 23 prime participants + additional subs
  - Over 70 proposals submitted to current CTP solicitation
- Exceptional Circumstance approved
- Extensive outreach effort -- brochures, Website, Annual SECA
   Conference, CTP Workshop, semi-annual CTP program reviews, etc.
- SECA Focused numerous domestic and international organizations
   on SECA concept and supporting technology

## **SECA Players/Efforts**

Universities, National Labs, Industry









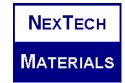






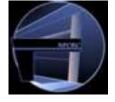
Pacific Northwest National Laboratory






















**Automotive Systems** 









## **Industrial Team Progress**



#### **GE - Honeywell**

- Demonstrated a unique unitized sealless radial design
- Single cell performance at 700° C is near goal

#### **Delphi / Battelle**

- Demonstrated automotive APU application
- Stack will use unique seals, anode, and cathode

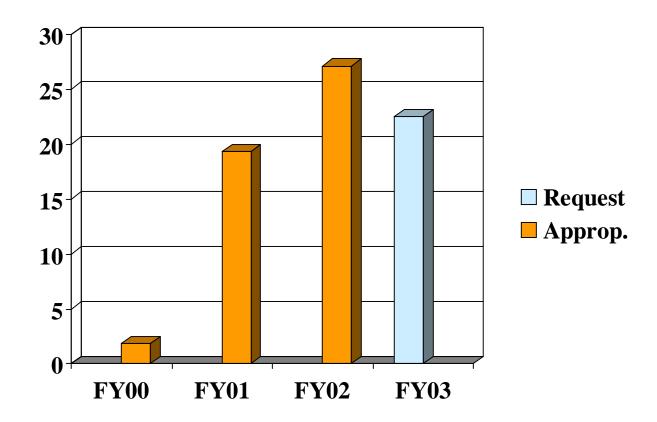
#### **Cummins / McDermott**

 Demonstrated a unique design and cost-effective multi-layer manufacturing using techniques developed in the semi-conductor industry

#### **Siemens-Westinghouse**

Redesigned successful tubular design to reduce stack cost




#### **SECA Timeline**

 1st Annual SECA Workshop June 2000 November 2000 **Industry Team Solicitation Issued**  SECA CTP Workshop February 2001 2<sup>nd</sup> Annual SECA Workshop **March 2001**  2001 Industry Teams Selected **May 2001**  CTP Review November 2001 CTP Solicitation Issued January 2002 3<sup>rd</sup> Annual SECA Workshop March 2002 Core Technology Program Review June 18-19, 2002 Industry Team Proposals Due January 3, 2003

## **SECA Budget**

(\$ - millions)







## **Future SECA Considerations**













# www.seca.doe.gov



