Surface-Altered Zeolites as Permeable Barriers for in Situ Treatment of Contaminated Groundwater

Robert S. Bowman (bowman@nmt.edu; 505-835-5992) Kevin G. Boggs (kboggs@nmt.edu; 505-835-5176) New Mexico Institute of Mining and Technology Department of Earth and Environmental Science 801 Leroy Place Socorro, NM 87801

> Zhaohui Li (<u>li@uwp.edu</u>; 262-595-2487) University of Wisconsin-Parkside Department of Geology 900 Wood Road, Box 2000 Kenosha, WI 53141

Abstract

The current research focuses on enhanced removal of chromate and perchloroethylene from contaminated water by a combination of a reduction material (represented by zero valent iron, ZVI) and a sorption material (represented by surfactant-modified zeolite, SMZ). Natural zeolite and ZVI were homogenized and pelletized to maintain favorable hydraulic properties while minimizing material segregation due to bulk density differences. The zeolite/ZVI pellets were modified with the cationic surfactant hexadecyltrimethylammonium bromide to increase contaminant sorption and, thus, the contaminant concentration on the solid surface. Results of chromate sorption/reduction indicate that the chromate sorption capacity of pelletized SMZ/ZVI is at least one order of magnitude higher than that of zeolite/ZVI pellets. Compared to SMZ pellets, the chromate removal capacity of SMZ/ZVI pellets in a 24-hour period is about 80% higher, due to the combined effects of sorption by SMZ and reduction by ZVI. The chromate and PCE degradation rates with and without surfactant modification were determined separately. The pseudo first-order reduction constant increased by a factor of three for PCE and by a factor of nine for chromate following surfactant modification. The enhanced contaminant reduction capacity of SMZ/ZVI pellets may lead to a decrease in the amount of material required to achieve a given level of contaminant removal.

We are currently investigating means to scale up production of SMZ/ZVI pellets from lab to pilot-test quantities. We will prepare a multi-ton batch of SMZ/ZVI pellets and install them in a 6-m long by 2-m wide by 2-m deep subsurface permeable barrier in a 10-m by 10-m by 3-m deep simulated aquifer. We will monitor the attenuation of a mixed chromate/PCE plume as it passes through the barrier under simulated groundwater flow conditions. We will compare the resultant contaminant attenuation to predictions based on laboratory characterization of the SMZ/ZVI pellets.

4.4

Surface-Altered Zeolites as Permeable Barriers for in Situ Treatment of Contaminated Groundwater

R. S. Bowman, K.G. Boggs, and Z. Li New Mexico Tech

Supported by Contract No. DE-AR21-95MC32108 National Energy Technology Laboratory

ermeable Barrier

Outline

PREVIOUS PROJECT PHASES

- Development of SMZ
- •Lab testing of SMZ
- •Pilot testing of SMZ
- **CURRENT PROJECT PHASE**
 - •Development of SMZ/ZVI pellets
 - •Lab testing of SMZ/ZVI pellets
 - •Project schedule

Zeolite Properties

eolite Deposit at St. Cloud Mine

Unaltered Tuff

Unconformity

HDTMA - A Cationic Surfactant

Hexadecyltrimethylammonium Bromide

Retardation Mechanisms

Zeolite Surface

Outline

PREVIOUS PROJECT PHASES

- Development of SMZ
- Lab testing of SMZ
- •Pilot testing of SMZ
- **CURRENT PROJECT PHASE**
 - •Development of SMZ/ZVI pellets
 - •Lab testing of SMZ/ZVI pellets
 - •Project schedule

Sorption of PCE by SMZ

Sorption of BTX on SMZ

K_{oc}/K_{ow} Relationship for Organics Sorbed on SMZ

Sorption of Oxyanions by SMZ

Pb²⁺ Sorption on Untreated Zeolite and SMZ

Outline

PREVIOUS PROJECT PHASES

- Development of SMZ
- •Lab testing of SMZ
- •Pilot testing of SMZ
- **CURRENT PROJECT PHASE**
 - Development of SMZ/ZVI pellets
 - •Lab testing of SMZ/ZVI pellets
 - •Project schedule

SMZ Preparation Facility

Economics of SMZ

Zeolite + Surfactant + Processing = Cost

•\$45 + \$300 + \$75 = \$420/ton

- = \$13/ft³
- = \$460/m³

ilot Scale Study Tank

ample Well Locations

r and PCE Distributions, Day 41

Cr Distribution after 41 days of injection (8/20/98)

2.0

3.0

4.0

Travel Distance (m)

5.0

6.0

7.0

8.0

Outline

PREVIOUS PROJECT PHASES

- Development of SMZ
- •Lab testing of SMZ
- •Pilot testing of SMZ
- **CURRENT PROJECT PHASE**
 - Development of SMZ/ZVI pellets
 - •Lab testing of SMZ/ZVI pellets
 - •Project schedule

Chlorinated HC Reduction

Chromate Reduction

Permeable Barriers Types

Outline

PREVIOUS PROJECT PHASES

- Development of SMZ
- •Lab testing of SMZ
- •Pilot testing of SMZ
- **CURRENT PROJECT PHASE**
 - •Development of SMZ/ZVI pellets
 - •Lab testing of SMZ/ZVI pellets
 - •Project schedule

Chromate Sorption/Reduction

Chromate Sorption/Reduction

Chromate Reduction Kinetics

PCE Reduction Kinetics

Outline

PREVIOUS PROJECT PHASES

- Development of SMZ
- •Lab testing of SMZ
- •Pilot testing of SMZ
- **CURRENT PROJECT PHASE**
 - Development of SMZ/ZVI pellets
 - •Lab testing of SMZ/ZVI pellets
 - •Project schedule

Schedule of Current Phase

TASK Optimize formulation Manufacture pellets Conduct pilot test Analyze results Topical Report COMPLETION DATE August 2000 December 2000 May 2001 June 2001 August 2001