Utilization of Lightweight Materials Made from Coal Gasification Slags

Praxis Engineers, Inc. Milpitas, California 95035

Funding Sources: METC, EPRI, and ICCI

Project Objectives

- Develop and demonstrate the technology for producing slag-based lightweight aggregates (SLA)
- Produce 10 tons of SLA Products with different unit weights from two slags
- Collect operational and emissions data from pilot-scale operations
- Laboratory- and commercial-scale evaluation of SLA with conventional lightweight and ultra-lightweight aggregates (LWA and ULWA)

Project Objectives (contd)

Characterize SLA products for leachability and conduct applications testing

Evaluate recovered char for recycle to the gasifier, and for use as a fuel during slag expansion or in the boiler

Conduct preliminary economics of SLA production

Slag, LWA, ULWA, & SLA: Definitions

- Slag is a solid residue by-product of coal gasification combined-cycle process
- Gasification slag is vitrified ash containing some unconverted carbon
- ► Conventional LWA:
 - Produced by pyroprocessing clays and shales at 2 100"F
 - Unit weight is 50 lb/ft³
 - Used to make lightweight structural concrete, blocks, and roof tiles Market price is \$20-30/ton

Definitions (contd)

- ► Conventional ULWA:
 - Produced by pyroprocessing perlite ores at 2000°F
 - Unit weight is 4-12 lb/ft³
 - Used for horticultural and insulation applications
 - Market price is over \$200/ton
- ► Slag can be expanded under controlled conditions to produce lightweight materials, termed slag-based LWA or SLA:
 - Produced by pyroprocessing at 1600-1800"F
 - Unit weight is 12-50 lb/ft3
 - Blendable with existing raw materials
 - Can be substituted for all or part of the ingredients of some LWA and ULWA applications

MUFFLE BURN TESTS - EXTRUDED MIXTURES

BURN TESTS ALL THREE BLENDS

50/50 MIX-COMPLETE CUP BURN - 1900°F

6" Diameter Bench-Scale Fluid Bed Reactor

Specifications

Bed Height: 3 ft
Feed Height (Above Grid): 2 ft
Inside Diameter: 0.5 ft
Temperature: +1420°C
Fuel: Gas/Oil

Reactor Section Detail

Product Density vs. Fluid Bed Temperature

+10 mesh Slag I A

4 x 20 mesh 80/20 pellets

-8 mesh 50/50 pellets

4 x 20 mesh 50/50 pellets-w/ ph

4 x 20 mesh 50/50 pellets-no ph

4 x 20 mesh 50/50 TVA pellets

Hot Zone Temperature vs. Product Density Slag I Rotary Kiln Processing

Stack Gas Analysis from Rotary Kiln Testing 14 November 1995

SLA Products Made at Pilot Scale

Slag/Size/ Mix Type	Direct- Fired Kiln lb/ft ³	Fluidized Bed Expander lb/ft ³
Slag I: +1OM	28-67	24-73
Char injection		16-26
Slag I: 10x 50M	34-58	
Slag I: +50M	38	16-58
Extruded Slag I/Clay		
80/20	27-62	
50/50	21-42	
0/100	18-41	
Slag I/Clay Granules		
$80/20 \ 4 \times 20M$		30-60
$80/20 \ 4 \times 30M$		37-42
$50/50 \ 4 \times 20M$		31-65
50/50 -8M		43-66
Slag II: +10M	22-82	
Slag 11/Clay Granules	}	
50/50 4 x 20 M		33-63

Production Costs of SLA vs. LWA and ULWA (\$/Ton)

Cost Item	Shale/Clay LWA ⁽¹⁾	Perlite ULWA ⁽²⁾	SLA ⁽³⁾		
System	Rotary Kiln	Vert.Shaft Furnace	Rotary Kiln		
Fuel	011	Natl gas	Coal/char		
Mining/prep	6.00	40.00			
Transport	0.50	40.00			
Clay binder			1.45		
Labor	6.23	12.00	6.25		
Fuel	5.09	8.00	1.64		
Power	1.37	4.50	1.35		
M&S	1.85	3.00	1.48		
Other	1.11	2.00	1.10		
Overhead	2.24	10.00			
Depreciate	5.71	4.75	4.28		
Interest	excluded	excluded	6.85		
Total	30.10	124.25	24.40		
Estimated by(1	Estimated by(1) Fuller Co., (2) Silbrico, (3) Praxis/Fuller				

Conclusions: Slag Processing

- ➤ Slag I was expanded to unit weights of 30-50 lb/ft³ and Slag II to 20-50 lb/ft³ by means of temperature control. Attempts to lower these further resulted in fusion which is a function of slag chemistry.
- ➤ The entire 1/4" x 50M fraction can be processed in the kiln as a single feed.
- ➤ Minus 50M fines must be extruded prior to kiln processing. Extruded pellets using 20-50% expansive clay binder yielded product unit weights of 27-33 lb/ft³ at 1800 -1900°F.

Conclusions: Char Utilization

- Char can be recovered from slag easily and used as a fuel
- ► A char product containing 45-54% ash was upgraded successfully to 70!% carbon
- ➤ Char can be utilized as a substitute for 50% of the fuel in a rotary kiln and 80°/0 of the fuel in a fluidized bed system

Conclusions: SLA Economics

- ► Expansion temperature for slag is 300-400 "F lower than that typically required for expansible clays and shales and represents significant energy savings
- ► SLA production costs from a large (440 t/d) facility were estimated at \$24.40/ton using rotary kiln and \$21.87/ton using fluidized bed vs. \$30. 10/ton for conventional LWA plant
- ▶ Preliminary analyses also indicate that small SLA plants can be economically attractive if the avoided costs of slag disposal (\$10-\$20/ton) are factored in.

Planned Product Evaluation (Phase II)

Commercial-scale testing of SLA as a substitute for LWA and ULWA in the following applications:

- Structural concrete using 3/4" coarse and 3/8" LWA
- Lightweight blocks (2-3 blends)
- Insulating concrete (ASTM C 332 Group II concrete, 45-90 lb/ft³)
- Lightweight roof tile aggregate
- ► Loose fill insulation (ASTM C 549)
- Horticultural applications