**Title:** Preparation of SCR catalytic filter supported on a

filter candle

**Authors:** J-H Choi, S-K Kim, S-J Ha, Y-O Park<sup>1</sup> Dept. of Chem. Eng., Gyeongsang National University,

Chinju 660-701, Korea.

E-mail: jhchoi@nongae.gsnu.ac.kr Telephone Number: +82-55-751-5387 Fax Number: +82-55-753-1806

<sup>1</sup>Energy & Envir. Research Dept., Korea Institute of

Energy Research, Taejon 305-343, Korea

**Submit by:** March 15, 2001 TO: **NETL Event Management** 

626 Cochrans Mill Road Mail Stop 922-174A

Pittsburgh, Pennsylvania 15236 E-Mail: Karen.lockhart@netl.doe.gov

## **Summary**

SCR catalysts have been widely developed in their forms and compositions. Among them, vanadium oxide/titanium oxide is proven catalyst and very popular owing to its high activity and the high poison resistance in sulfuric oxides and water. The advantage of the catalytic filter in the form of rigid filter elements like ceramic filter candle is to enable the construction of the lower pressure drop system as well as its dual function for control the particulate and nitrous oxides simultaneously. So it meets the energy saving and a compact system to treat the effluent gases. It is reported that the SCR performance of the catalytic filter was successfully demonstrated in the pilot plants in EERC at university of North Dakota and Ohio Edisons R.E. Burger plant. Catalysts of honeycomb or plate types have advantages in their compact and successfully commercialized for gasoline engines and incinerators. However, it needs the pre- cleaning system for particulate because its particle path is too narrow to be plugged in the stream of high concentration of particulate. Otherwise, the catalytic candles meet well for the streams of high concentration of particulate. However, the potential tasks for application this in the advanced system is to increase the catalytic activity by increasing the catalyst distribution. The aim of this study is to develop an effective catalytic filter by using a commercial filter candles that have been widely developed for high temperature application like the advanced coal gasification and combustion. In this case, catalysts of very small size are supported on the pore surface of micro meters of the filter candle without any significant increase of additional pressure drop. Most of the particles are removed on the membrane surface. So the catalysts supported on the pore of supporting layer of the filter candle are untouched by the particulate. In this study, we tried to improve the dispersion of TiO<sub>2</sub> particle in the pore of filter candle.

Catalytic filters were prepared by deposition of TiO<sub>2</sub> layer on the pore surface of a ceramic filter candle (PRD-66 from AlliedSignal) by using the methods of supporting the sol-gel solutions gel in order to support the V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> catalyst in the pore of the dust free region of the ceramic filter. Colloidal TiO<sub>2</sub> particles were prepared with a sol-gel method using Tetra isopropyl ortho-titanate (TIPOT). As the model test for the catalytic activity, reduction of the pure NO in the oxygen stream was investigated. And the effect of preparation methods of the catalytic filter was discussed.

The catalytic filter prepared by applying the centrifugal force during dipping in the sol-gel solution showed the most activity. The catalytic filter showed 95% conversion of 500ppm NO at the temperature range from 280 to 350°C and at the face velocity of 2cm/sec with ammonia slippage less than 10ppm, which shows a good feasibility for the commercial application of these catalytic filter.

Acknowledgements: The authors would like to thank the Research Institute of Industrial Technology Gyeongsang National University for its financial support.