Pradeep Saxena, Electric Power Research Institute

"Real & Simulated Particle Concentrations: Problems & Prospects for Public-Private Sector Collaboration 1998-2002"

Real & Simulated Particle Concentrations

Problems & Prospects for Public-Private Sector Collaboration1998-2002

A Briefing to the U.S. Department of Energy Federal Energy Technology Center

by Pradeep Saxena

Electric Power Research Institute Palo Alto, California

> 30 September 1997 Pittsburgh, PA

Application & Relevant End Points

Application	End Point
Human health (O ₃ , FPM)	Human airway or point of inhalation or residential indoor or urban outdoor (~ lower 10m of the atmosphere)
Visibility & global radiation balance (FPM)	Cities & National Parks (boundary layer); continental & marine "background" (entire troposphere)
Plant Health (O ₃)	Agricultural & forested areas (~ lower 10m of the atmosphere)

Dallas 1994-1995 Winter Haze Days Fine PM Average Composition

What are Fine Particles $(PM_{2.5})$?

Average Fine Particle (PM_{2.5}) Composition Summer 1987, Riverside, CA

(from Meng et al., 1995)

What are Fine Particles (PM2.5)?

Average Fine Particle Composition 1987-1988, Denver, CO

(from Watson, et al., 1988)

Meadview, AZ (near Grand Canyon) Average Fine Particle Composition Summer 1992 (June - Aug.)

(from Turpin, et al., 1997)

Average Fine Particle (PM_{2.5}) Composition Summer 1995, Look Rock, TN (SEAVS)

COMPOSITION OF AIRBORNE ORGANIC PM*

Approx. 10% C_2 - C_6 dicarboxylic acids C_{23} - C_{34} alkanes C_9 - C_{30} monoacids & esters aromatic polycarboxylic acids

*Los Angeles (1982) (Rogge et al., 1993)

Nitrogen Balance for Central Los Angeles 6-10 AM on September 9, 1993

Carbon Balance for Central Los Angeles 6-10 AM on September 9, 1993

Fraser, et al., 1996

Message: Measure Total Aerosol

Fine PM Ions: Closure of Components Summer 1995, Look Rock, TN (SEAVS)

Organic Carbon: Signal vs. Noise Summer 1995, Look Rock, TN (SEAVS)

Summer 1995, Look Rock, TN (SEAVS)

Particle Volume Distribution on High PM Day

Ozone & FPM

Compounds Relevant to Characterization, Simulation, Source Attribution, Epidemiology, or Optics

	Short-term (< 3-hr) Measurements feasible?	Ozone	FPM	
			Health	Visibility
CO	Yes	X	X	X
VOC comp.	Depends	X	X	X
NO, NO ₂ , PAN	Yes	X	X	
\mathbf{O}_3	Yes	X	X	X
H_2O_2	Yes		X	X
SO_2	Yes	X	X	X
HNO ₃ & nitrate	Maybe	X	X	X
FPM mass	Maybe		X	X
Sulfate	Yes		X	X
NH ₃ & Ammonium	Maybe		X	X
Particle carbon	Maybe		X	X

Ozone & FPM

Compounds Relevant to Characterization, Simulation, Source Attribution, Epidemiology, or Optics

	Short-term (< 3-hr) Measurements feasible?	Ozone	FPM	
			Health	Visibility
Organic FPM Composition	No		X	X
Particle acidity	Maybe		X	X
H ₂ O-soluble Transition metals	Maybe		X	
Particle H ₂ O	Maybe		X	X
Trace elements	Maybe		X	X
HCl and chloride	?		X	X

Global Radiation Balance Studies (ACE, TARFOX, INDOEX)

Experiment Design

- Total aerosol composition & physical properties (gases, particles, clouds, radiation)
- Lagrangian process studies (constant density balloons tracked by aircraft)
- Air column experiments
- Intensive 3-D, short-term experiments 🙂
- - Aerosol & dust transported in distinct layers over the Atlantic up to 300km
 - Cumulus clouds scrub "old" particles and inject "new" particles into the boundary layer
 - Contribution of carbon to FPM higher aloft than near the surface

EPRI Short-Term Ongoing PM Experiments (late 1996-early 1997)

Objective

 Quantify the amount and composition of flabile FPM lost from single filter-based methods for a broad range of locations and seasons

Approach

- Birmingham, Riverside, Boston, Chicago, Dallas, Phoenix
- ~ 40 days/observatory
- Suite of measurements include undenuded single-filter fine mass, ammonium and nitrate; in situ fine mass; denuded inorganic composition (NH₃, HNO₃, SO₂, NH₄⁺, NO₃⁻, H⁺, SO₄²⁻; elemental composition, denuded and undenuded EC and OC; babs, bscat; continuous nitrate; other
- Parallel laboratory experiments with specific compounds

EPRI Long-Term Planned PM Experiments (late 1997-2000+)

- Starting with 7 sites in the Southeast
 (3 urban + 3 rural + 1 coastal)
- Continuous (5-60 minute): O_3 , NO, NO₂, NO_y, HNO₃ and nitrate, CO, SO2, Mass, OC and EC, NH₄⁺, SO₄²⁻, meteorology, bscat, babs
- <u>Integrated (24-Hr, daily or 1/3 days):</u> single-filter mass, elemental composition, SO_4^{2-} , NO_3^- , NH_4^+ , denuded EC and OC, PM10 mass
- <u>Integrated (24-Hr, every 6 to 12 days, monthly aggregates)</u>: PM10 elemental composition; PM10 NO₃-, SO₄²⁻, NH₄+, watersouble metals; VOC and FPM organic speciation
- Gradually phase-out integrated measurements; add other observables e.g. FPM H₂O)
- Pararell method development & comparison

Proposed Agenda for Collaborative Research

- Engineer & deploy "non-Ph.D." in situ particle sampling methods
- Measure and simulate organic FPM mass <u>and</u> composition
- Deal with the issue of data comparability up front (shootouts; benchmarking new methods against reference aerosol; laboratory certification)
- Create recommendations for a "standard suite of measurements for ozone and PM studies"
- Create a cookbook for data quality assessment & data interpretation

Agenda for Collaborative Research (concluded)

- Synchronize prospective O₃ and FPM experiments towards concurrent multi-station, multi year, 3-D measurements of "total aerosol," meteorology and radiation over the continent (EPA, DOE, NSF, NOAA, NASA, EPRI, CRC, private sector).
- Coordinate model development and testing efforts towards the production of a community tropospheric model, which is accessible to all, testable by all, and which benefits from the resources of the entire investigating and funding communities.

Motivation For Collaboration

• Problem:

- There is always enough time to do it wrong several times but never enough to do it right once.

• Solution:

- Start with ideas, not resource constraints.
- Pool resources through collaboration.