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Objectives of CFD Component

Validate/assess CFD code and turbulence models.

Perform CFD simulations to study flow and heat transfer
in the combustor-to-stator-transition duct and first-stage
stator with and without film cooling.

Develop and optimize design concepts in collaboration
with university and industrial partners.



Computational Approach

Governing Equations

continuity
compressible Navier-Stokes
total energy

Algorithm

cell-center finite-volume
density-based

3"_order flux-difference
diagonalized ADI w/ multigrid
overlapped/patched grids

Turbulence Models

low Reynolds # k-w
low Reynolds # SST
expl. Algebraic Rey. stress

Code

modified CFL3D
(a research code from
NASA Langley)
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Problem Description

Two Locations for the Contouring
(upstream of airfoil only, upstream & through airfoil)

No-slip Wall !
\

35 deg.
No-slip Wall

|
\ i 4/5 deg.
\\ \, R o
~ |
\_ —l
Outflow
Boundary s2

Config. #1

l-——

Config. #2

1|

Coolant Flow / <\ W
|

Periodic Boundary _L-F:_

H

L5 .
o any

LE. — -
0.8H

i

Periodic Boundary

—»

x

]

w/ & w/o gap leakage

Config. #1

e

r
I
I
Inflow
Boulndary

—>IL3

i

Config. #2
No-slip Wall \\ |
i
N i 45 deg.
\ R =~

N =
ST e Y T
I Outflow
Y| Coolant Flow Boundary §2
A ———-
| X | No-—slip Wall l
>~ —— f
L5 ex | L4
Periodic Boundary W _’IJI"
~ T~
I
I
! LE. -
I
- B
Periodic Boundary _T
— e
z L6 j



Grid System
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Laterally-Averaged Effectiveness
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Conclusions

When the contouring is all upstream of the airfoil,
secondary flows on both the flat and the contoured
endwalls were similar in magnitude.

When the contouring starts upstream of the airfoil and
continues through it, secondary flows on the
contoured endwall are markedly weaker than those on
the flat endwall.

With less secondary flows on the contoured endwall,
film-cooling effectiveness improve considerably
there.
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Comparison of Velocities for different BFR’s, Discrete Hole Injection , at
x/C,, =0.90
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The following figures compare velocity contours at x/C,, = 0.9 for different BFR’s. It is seen that the
core flow has strong velocity gradients in all the cases. These are due to the gradients in the approach
flow velocity as it adjusts to enter the passage. The bleed flow does not have a strong influence on the
core flow. Observe the pockets of higher velocity above the cores of the jets with higher blowing ratios.
As the blowing ratio increases, bleed flow causes increased blockage and the core flow accelerates
around this blockage. Obmﬁé that due to passage flow velocity gradients, there is a span variation of
injection velocity. This can be significant to designers.



Comparison of Recovery Temperatures for different Streamwise Positions,
Discrete Hole Injection , BFR = 3.0 %
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The following figures compare 6 contours at different planes for the same BFR. Observe the rapid

decay of the 8 contours due to the strong mixing with discrete hole jets. By x/C,, = 0.25, adjacent jets
close to the suction side have not merged. However, towards the pressure side, adjacent jets have
merged. By x/C,, = 0.9 the jets have merged across the span and signs of coolant migration towards the
suction side are observed.



Comparison of Recovery Temperatures for Slot Injection with
Discrete Hole Injection

1 Recovery Temperatures,25% axial chord length, BFR = 3.0 %
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The two figure above show comparisons of 6 contours for slot and discrete hole injection. Observe the
lower levels of the 6 contours for the discrete hole injection case. This is because with the same blowing
ratio the discrete hole jets have a higher velocity than that of the slot-injected jets. Thus, mixing with
the main stream flow is higher with discrete hole injection. (Note that the color scheme for the two
figures do not match) :



Comparison of Recovery Temperatures for Different BFR’s, Discrete Hole
Injection , at x/C__ = 0.27
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The above figures compare 6 contours for different axial planes with different BFR’s. At BFR = 1.5%,
blowing is sufficiently low that coolant migrates to the suction surface. For the higher-BFR cases, no
migration of the coolant is observed. Note the significantly higher increase in the peak 6 value from
BFR = 1.5% to BRF=3.0%: The peak values near the suction surface do not rise significantly with

further increases in BFR.



CONTOUR
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Recovery Temperature Distributions for Full Slot Bleed Injection at
x/C,. =0.15,0.5,0.9, BFR =3.2%
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The figures show the streamwise
development of the recovery temperature
contours. Observe the decay of the 0
contours with streamwise position. Note
that there is nearly uniform bleed flow
coverage along the spanwise direction, with
adequate coverage on the suction and
pressure side endwall corners. Of the cases
studied, this blowing ratio was found to be
best in terms of adequate coverage near the
endwall corners. If the bleed flow ratio is
decreased, coolant tends to migrate to the
suction side. Higher bleed flow ratios on
the other hand promote coolant migration
on the pressure endwall corner.



