Gas Turbine Technology Direction at NASA- GRC

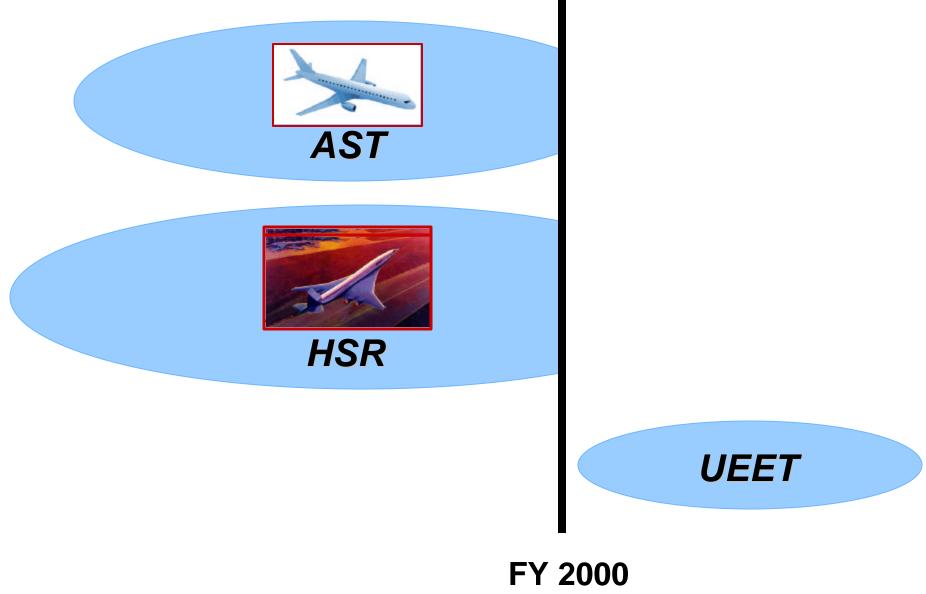
ATS Conference

Pittsburgh, PA

November 9, 1999

Arun K. Sehra

Deputy Director of Aeronautics


NASA Glenn Research Center

Gas Turbine Technology Direction at NASA- GRC

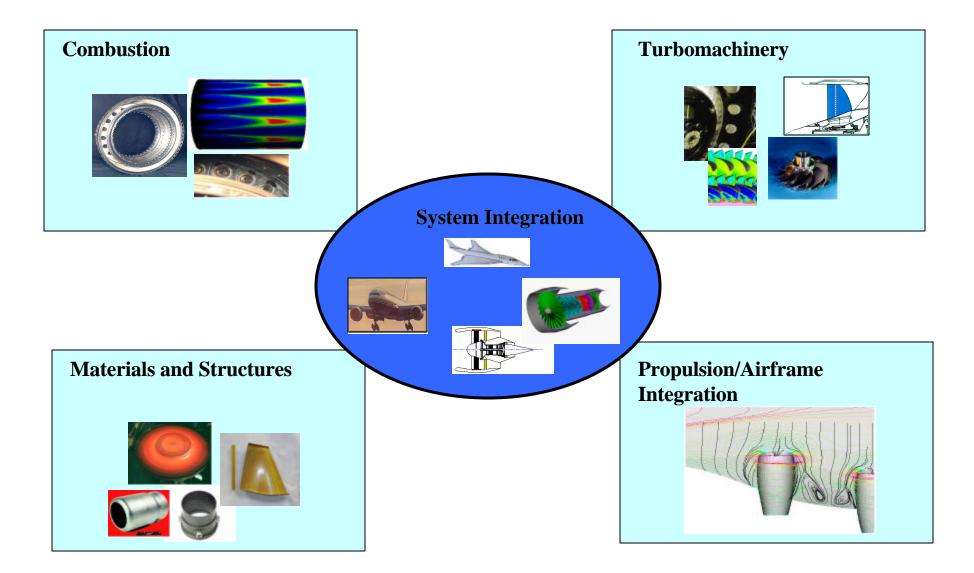
• Overview of NASA-GRC Aeronautics Programs

Inter-agency Technology Alliance

AST and HSR Programs Cancelled in 1999

Program Funding & Goals

Base Program funding:


• Funding \$50 M/ year, Timeframe FY 00-- FY 04

Program Goals:

Develop and transfer revolutionary propulsion technologies that will enable future generation vehicles over a wide range of flight speeds.

- Dramatic increases in efficiency to enable reductions in CO₂ based on an overall fuel savings goal of up to 15%.
- 70% NOx emissions reduction at take-off and landing conditions
- Technology Readiness to the <u>Component Level</u> (TRL 4-5).

Investment Areas for Baseline Program

Objective Combustion Emissions Reduction

Work with U.S. industry to provide technology readiness to reduce combustion emissions of future aircraft:

- Demonstrate landing/takeoff NOx emission reductions in full annular low emission combustors (TRL 5) of at least 70% of the 1996 ICAO limits for future large and regional subsonic engine (55:1 & 30:1 Pr) combustors
- Demonstrate in large scale sector ultra low cruise NOx £4 EI to minimize atmospheric impact of future supersonic aircraft.
- Improve and validate the combustor design codes to reduce the design and development cycle time for low emission combustors.

Advanced Full Annular Combustor Test

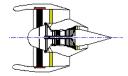
UEET

Objective Highly-Loaded Turbomachinery

Develop and demonstrate through component tests and analyses the turbomachinery technologies required for light-weight Fans, high pressure (HP), and low pressure (LP) spools for highperformance, high-efficiency and environmentally compatible propulsion systems.

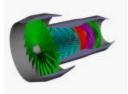
Objectives Materials & Structures for High Performance

- Develop high temperature disk and airfoil materials for highperformance, high-efficiency propulsion system
- Develop ceramic matrix composite (CMC) material system and process for low NO_x combustor liner and turbine vane
- Expand the use of polymer matrix composites (PMC's) in engine structures
- Decrease weight of supersonic exhaust nozzle through innovative lightweight material, structural, and aerodynamic concepts


9

Objective Propulsion Airframe Integration

Goal: Reduce aircraft CO_2 emissions by developing advanced technologies to yield lower drag propulsion system integration for a wide range of vehicle classes.



Objective Systems Integration & Assessment

UEET

- Provide guidance to the development of UEET technologies through system trade studies.
- Perform high fidelity system simulations to reduce development time.
- Assess the effects of engine exhaust products on the atmosphere and humans.

INTER-AGENCY TECHNOLOGY ALLIANCE

PROPULSION AND POWER GENERATION PROGRAMS

Workshop on Inter-Agency Programmatic Alliances GOTCHA FEST--Aug. 31, Sep. 1 and 2, 1999

(Goals, Objectives, Technical Challenges, and Approach)

WORKSHOP OBJECTIVE:

A NASA GRC/DOD/ DOE/ Industry workshop at GRC to identify potential areas of collaborations among current and planned aeropropulsion and power generation programs at NASA, DOD, and DOE

Workshop Participants:

Over 100 participants from GRC, Air Force, Navy, Army, DOE, and 11 aerospace companies

Programs Reviewed:

Ultra Efficient Engine Technology (UEET- NASA) Propulsion Systems Base (NASA) Integrated High Performance Turbine Engine Technology (IHPTET -DOD) Versatile Affordable Turbo-Engine (VATE-DOD) Advanced Turbine System (ATS) and Beyond

(Next Generation Gas Turbine, microturbine--DOE)

Workshop on Inter-Agency Programmatic Alliances GOTCHA FEST

(Goals, Objectives, Technical Challenges, and Approach)

Technology Areas Reviewed in Breakout Sessions:

Combustors	Compressors	Turbines	Materials & Structures
Design Tools & Engine Simulation		Core and Engine Testing	Instrumentation & Controls

Workshop Outcome:

-Identified technology requirements for each program

- -Identified technologies that are common to more than one program
- -Prioritized areas of technology collaboration among various programs

Next Step:

Develop detailed Technology Alliance Plans by March 00

Potential Areas of NASA-DOD-DOE Programmatic Collaboration (NASA (UEET, PS Base), DOD (IHPTET, VATE), DOE (ATS, NGGT, MT))

Areas of Collaboration

- Development of high temperature (up to 2700 deg F) materials (CMCs) with Thermal Barrier and Environmental Barrier Coatings
- Testing of advanced concept UEET components in IHPTET Engine Demonstrator
- Advanced instrumentation and controls for intelligent engine (Engine Health Monitoring and Active Control)
- Development of high fidelity, probabilistic design/life prediction/ simulation methods

Payoff

- Reduced fuel consumption (15%)
- Increased engine thrust/ Wt (15%)
- Reduced CO2/ NOx emissions
- System level validation of advanced concepts (TRL6)
- Improved reliability and safety
- Reduced fuel consumption (10%)
- Increased engine life
- Reduced program/ maintenance cost
- Reduced design/ development cycle time
- Reduced risk

Ceramic Matrix Composite (CMC) Combustor Liner Testing at Solar Turbine

- CMC combustor liners being field tested in Centaur engine at Bakersfield
- Outer liner fabricated using commercially available CMC tested about 5000 hr
- Inner CMC liner fabricated using NASA-EPM developed manufacturing process has been tested for more than 3000 hr
- Both liners tested for more than 4000 hr with Environmental Barrier Coating (EBC) developed in NASA's HSR-EPM program

NASA-EPM Process

Tested for more than 5000 hr

> Commercial Process

With EBC, tested for more than 4000 hr

Some Potential Areas for Future NASA/DOE Collaborative Activities

Materials

- CMC system with 2700°F Environmental Barrier Coating for combustor liner and turbine vane applications
- Advanced Thermal Barrier Coatings
- Advanced turbine airfoil alloys

Combustion

- Low NO_X combustion technology
- Active combustion control
- Validation of combustion codes

Advanced Analytical Tools

- Numerical Propulsion System Simulation
- Probabilistic Methods