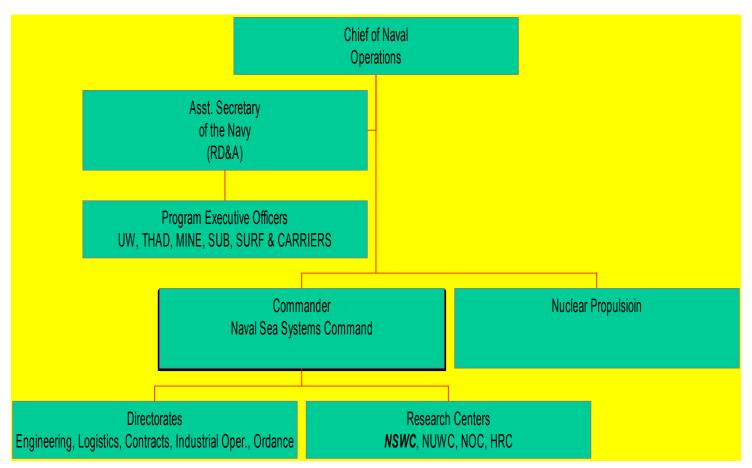


# Gas Turbine Engine R&D for Shipboard Applications

Presented By: Joseph Lawton, NSWCCD 824




- NSWCCD Organization
- Navy Current Fleet Gas Turbine Engines
- NSWCCD Philadelphia Engine Test Facilities
- Gas Turbine R&D Programs
- Future Fleet Direction
- Gas Turbine R&D Objectives & Goals
- Navy Gas Turbine R&D Strategy Teaming
- Potential Gas Turbine R&D Programs





## **NAVSEA Organization**







### **NSWCCD** Organization

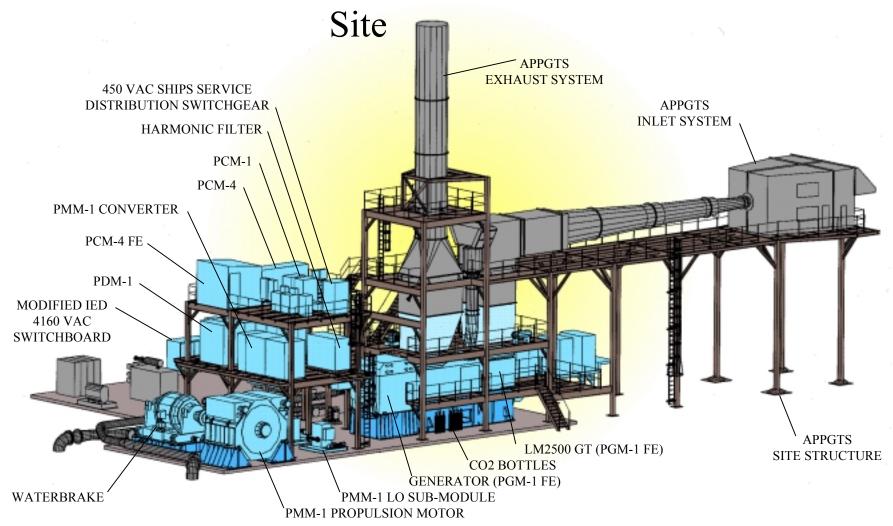
- NSWCCD is Power Systems Lead for Surface Ships
- Gas Turbine R&D group from Annapolis transitioned to NSWCCD Philadelphia 10/99
- Life Cycle Management (LCM) of Power Systems transitioned to NSWCCD Philadelphia 10/99
- In Service Engineering Agents (ISEA) remain in Philadelphia
- NSWC Philadelphia: ~ 2000 employees





### Navy Current Fleet Gas Turbine Engines

- GE LM 2500: 29,400 Bhp (~22MW)
  - Cruisers (CG 47 Class) 4 propulsion engines
  - Destroyers (DD 963, DDG 51 Classes) 4 propulsion engines
  - Frigates (FFG 7 Class) 2 propulsion engines
- Allison 501-K17 or K34 (~3MW)
  - Cruisers (CG 47 Class) 3 gas turbine generators
  - Destroyers (DD 963, DDG 51 Classes) 3 gas turbine generators
- Allied Signal TF40B: 3955 Bhp (~2.9MW)
  - LCAC 4 propulsion engines
- Sundstrand Titan T62T-40-7: 50 Bhp
  - LCAC gas turbine generator




### NSWCCD Philadelphia Engine Test Facilities

- Land Based Evaluation Site (LBES):
  - DDG 51 Power Plant & Controls (LM 2500)
  - DDG 51 & CG47 Ship Service Gas Generator (501K)
- Inter-Cooled Recuperative (ICR) Engine Test Facility
- Integrated Power System (IPS) Test Site
- Large Diesel Engine Test Cells (2) (up to 4000 HP)
- Small Diesel Engine Test Cell (up to 750 HP)



#### Integrated Power System Land Based Engineering







### **INTEGRATED POWER SYSTEM**



**PROPULSION GENERATOR** 

- 21 MW 26.25 MVA
- 4160 V 3 Phase
- 60 HZ .8 Pwr Fctr
- 2 Pole 3600 RPM
- 97 % Efficiency
- 50,050 KG & 3.4m(H) - 4.7m(L) - 4m(W)
- Brush Electric Company (UK)





### INTEGRATED POWER SYSTEM

#### **PROPULSION MOTOR**

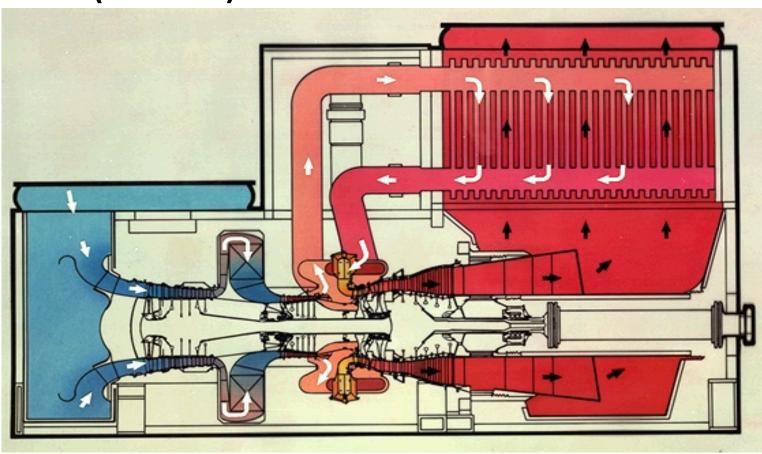


- 19 MW 25,500 SHP
- 0-3700 V 0-15 HZ
- 12 Pole 150 RPM
- 15 Phase
- 96 % Efficiency
- 117,400 KG & 4m(H) 4.35m(L) 4.5m(W)
- Alstom Electrical Machines (UK) / ex-GEC





### NSWCCD Philadelphia Engine Test Facilities Cont'd


- Large Engine Test Site (Proposed Milcon 2003):
  - Will provide capability to test larger engines anticipated for electric drive ships
  - 1 cell capable of generating up to 100MW
    - Plan to send power to the grid
  - 1 cell with a 75,000 HP waterbrake
  - Plan to promote facility as a National Gas Turbine R&D Center (asset for electric utility & other customers)



PHILA., PA



#### NAVSEA Gas Turbine R&D Program: ICR (WR-21)

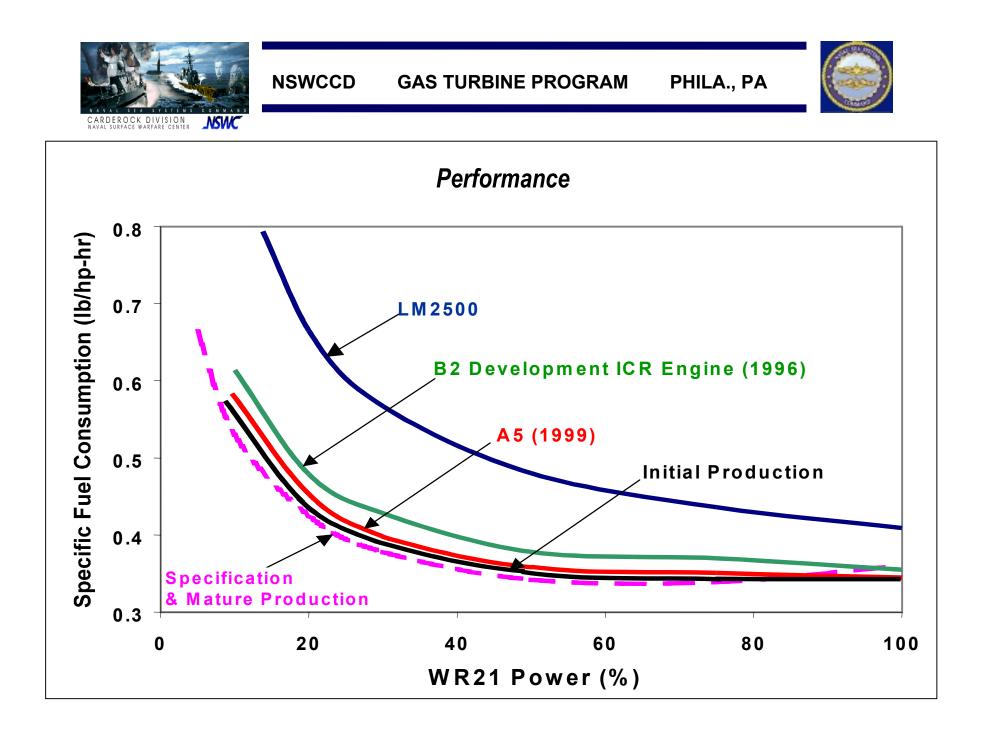






### Gas Turbine R&D Programs

- ICR Engine Technical Challenges:
- Recuperator
  - Thermal Cycling & Compact Design
- Combustor
  - High Comb. Inlet Temperature & Large Range of Air Fuel Ratios
  - Combustor Manifold
  - High Temperatures & Gradients
- ICR Engine Progress To Date:
- 1,674 Hrs of System Testing
- Demo 25% Fuel Savings & 29,000 HP on 100°F day
- Demo of All Maneuvers
- Recuperator Design Model Validated






#### Gas Turbine R&D Programs

#### **ICR Engine** Remaining Development:

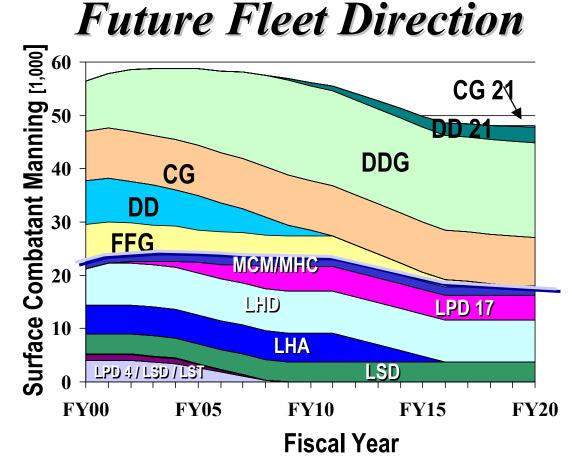
- US Navy Contract
  - 500 Hr Endurance Test at NSWC Phila
  - Smoke & Emissions/C & V
- Royal Navy Gas Turbine Alternator Program
  - Strain Gage HPC Casing Treatment
  - Controls Optimization
- Qualification Testing:
  - Performed by Royal Navy
    - Shock Test
  - Performed by French Navy
    - 3,150 Hr Endurance Test
    - Noise Tests (Airborne & Structureborne)







#### Gas Turbine R&D Programs


#### Shipboard Generator Set Study

- Two contracts awarded:
  - Rolls Royce Allison
  - Solar Turbines
- Concept Feasibility Applications Considered:
  - Ship Service Gen Set on a Ship configured with Mech Drive Propulsion supplying Underway, At-Anchor & Emergency Power: 2.5MW w/bleed (3MW w/o bleed), 450 VAC, 3 phase, 60 Hz
  - Power Generation Module on a Ship configured with Electric Drive Propulsion supplying At-Anchor, Emergency (&perhaps Propulsion) Power: 3-10 MW, 4160 VAC, 3 phase, 60 Hz

#### • Concept Feasibility Studies Completed in 1Q FY00

Navy to review study results





#### New ships and legacy fleet must be totally

→ Interoperable

•

- → Compatible
- → Supportable

- Legacy Fleet
  - → Is sizable
  - $\rightarrow$  Will be with us for some time
  - → Must be supported



## Navy Gas Turbine R&D Objectives

Investigate, develop, and demonstrate integrated concepts and technologies for existing and future Navy gas turbine power plants to reduce *total ownership costs*, increase *combat effectiveness* and *reduce vulnerability* through:

- Improved fuel efficiency
- Increased reliability
- Reduced maintenance
- Reduced environmental impacts
- Reduced infrared, radar, and noise signatures





### Fleet Gas Turbine Operational Goals

| Goals                                  | Reduced<br>Workload       | Improved<br>Reliability<br>(MTBF hrs) | Reduced<br>Fuel<br>Consumption<br>Ib/HP-hr | Specific<br>Power          | IR<br>Signature | Reduced<br>Environmental<br>Impacts         |
|----------------------------------------|---------------------------|---------------------------------------|--------------------------------------------|----------------------------|-----------------|---------------------------------------------|
| Current<br><u>Baseline</u> :<br>LM2500 | 0% personnel<br>0 days    | LM2500:<br>1000 hrs                   | 0.52                                       | 0.55 HP/Lb,<br>180 HP-s/lb | 1000°F          | No <sub>x</sub> 0%,<br>CO <sub>2</sub> 0%   |
| Near Term:<br>(2005)                   | 50% personnel<br>90 days  | 2200 hrs                              | 0.44                                       | 10%                        | < 1000°F        | No <sub>x</sub> 15%,<br>CO <sub>2</sub> 15% |
| Mid Term:<br>(2006 - 2020)             | 75% personnel<br>180 days | 4400 hrs                              | 0.39                                       | 50%                        | < 1000°F        | No <sub>x</sub> 50%,<br>CO <sub>2</sub> 25% |
| Far Term:<br>(2020 - out)              | 98% personnel<br>365 days | 5000+ hrs                             | 0.34                                       | 100%                       | < 1000°F        | No <sub>x</sub> 75%,<br>CO <sub>2</sub> 50% |





#### **New Ship Acquisition Strategy**

- Acquisition reform is demanding off-the-shelf commercial products
- New ships & power systems will be designed by contractor teams:
  - DD21 Blue Team> BIW & Lockheed Martin
  - DD21 Gold Team> Ingals & Raytheon
- Navy will select best ship based on cost/performance
- Industry decides how best to meet objectives
- Gas Turbine R&D programs necessary to ensure commercial OTS engines meet Navy requirements





# **R&D** Program Strategy

- Provide **technology** for insertion into new & existing fleet turbines
- Focus on Navy unique requirements
- Leverage opportunities to achieve common goals (IHPTET):
  - Advanced Turbine Systems/Vision 21 (DOE)
  - OEM's
  - IHPTET & Beyond (DOD)
  - SBIR's
  - Universities
- Prioritize efforts IAW:
  - Critical fleet requirements
  - New ship deployment schedules
  - Available funding



#### **Potential Gas Turbine R&D Programs**

- Develop Conditioned Based Maintenance (CBM) tools to reduce maintenance requirements
- Develop engine enhancements to increase engine efficiency at part and full load via:
  - Trapped Vortex Combustors to allow gas turbine reheat and increased specific power
  - GE LM 2500 using WFI/VATNs
  - Rolls Royce Allison 501-K using WFI
  - WR-21 ICR GT engine with WFI/SPRINT
  - Investigation of Variable Stator Blades (VSB) to increase part-load performance
  - Investigation of gas turbine / fuel cell hybrid system



### Summary

- Navy Machinery R&D, LCM, & ISEA now co-located at NSWCCD Philadelphia
- NSWCCD Philadelphia has Gas Turbine, IPS, & Diesel Test facilities available
- Future ships engines will be COTS variants selected by shipbuilder
- Future Navy sponsored Gas Turbine R&D programs will be collaborative with other agencies to achieve common goals at reduced cost
  - Gas Turbine component development will most likely be favored
  - CBM tools will be developed to drive down maintenance costs