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Simplified HAT Schematic

Output = 329 MW
Efficiency = 61% (LHV)
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Program Objectives

• Identify the effect of moisture content in the air
stream on emissions, stability limits, operational
trades and ignition

• Evaluate the importance of nozzle and liner
design parameters at HAT operating conditions

• Evaluate the effect of nozzle scale on
performance: 1-4 in2 Effective Flow Area (ACd)



Program Approach

• Perform bench scale tests and modeling at UTRC
– Determine stability limits and emissions at high

temperature / pressure, with / without moisture

– Use the test results and existing models to guide the
design of larger scale combustors

• Perform three phases of tests at FETC on
different combustors with and without moisture
– Use the results to test the model



Schematic of High Pressure, High
Temperature Combustion Facility
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Premixer Data Acquisition

• Data acquired at 10, 20, 30 and 40 atm with inlet
temperature of 700K (800F) with different ratios of air
in central premixing tube to secondary air swirling
around tube

• This configuration allows parametric study of the
effects of premixing on flame stability and emissions



NOX Predictions in PSR and Data
vs. Flame Temperature
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Chemical Kinetic Code Development
Progress to Date

• NOX emissions as a function of flame temperature
predicted using modified CHEMKIN II codes and
GRIMECH2.11 for a perfectly premixed flame

• Equilibrium flame temperature predicted for various
flame equivalence ratios at each pressure level and
equivalence ratio tested



Approach for Phase I Tests at FETC

• Fuel Nozzle Screening
– Conduct tests at FETC facility by adding steam to dry air to

simulate HAT conditions

– Vary fuel nozzle scale to operate at a range of pressure
conditions (up to 400 psi)

– Examine different nozzle designs leading to the selection of
a preferred design

– Map stability margins, NOx, CO, efficiency and combustor
pressure dynamics



Approach for Phase II

Convectively Cooled
Liner Concept

• Liner Screening
– Examine different liner concepts from ceramic adiabatic

walls to convectively cooled designs (more realistic engine
geometry and acoustic boundary conditions)

– Utilize two fuel nozzle concepts

– Characterize stability boundaries, emissions and pressure
dynamics at simulated part power operating conditions



Approach for Phase III

• Conduct tests at FETC facility at simulated HAT
conditions to Investigate:

– Two Stage Fuel Injector

– Catalytic Pilot Design

– Liquid Fuel Design



Hardware used at DOE-FETC facility in
Morgantown for collecting the data

Test parameters:
•  Side-wall pilot levels (0, 1 or 5%), 
•  Center-body pilot (0, 1, 3, or 5%), 
•  Moisture (0, 5, 10, 15, or 20 %) in the
    air flow 
•   Air/moisture mixture temperature 
    (935 to 725°F)
•   Pressure (100-400 psi)
•   Scale-ups (quarter, half, and full scale)

Experiments
performed at
Morgantown (Kent
Casleton and Dan
Maloney, DOE)

•  Experiment with moisture content
    to test viability of moist flames
•  Test Performance of model



A PSR Network design was implemented to
best describe the experimental rig

Premixed
fuel-air

Central 
Pilot 21 9 143 1576 8

4

5

Products

Side 
pilot

Experiments performed in DOE-FETC facility in Morgantown. Need to develop
a reactor network to model the effect of different parameters on NOx and CO emissions.

• Reactor volume &  residence time defined by
   hardware and experimental conditions
•Tflame is kept constant



PSR codes

• Code for PSR developed at Sandia National Labs, as part of the
CHEMKIN Codes

• PSR Network codes developed at UTRC: Allows design of PSR
reactors in a network to better represent local conditions

• Extensive chemical kinetics and corresponding thermochemistry is
used to model the chemical reactions taking place during combustion

– Typical reaction sets include hundreds of reactions and more than
50 species

– GriMech2.1 has been used to model the chemistry

• User specified parameters are  reactor volume (residence time), inlet
temperature, reactant composition, operating pressure, and energy
losses (adiabatic or isothermal operation)

• Computation time dependent on the configuration complexities,
number of reactors in the network and on the reaction set



Modeling effects of moisture on CO &NOx emissions

• Chemistry is modeled using GRI Mech. 2.11 (49 species and
277 reactions)

• Single PSR and PSR Network models used to simulate the
combustion process

• PSR Network designed to simulate mixing and flow
characteristics

• Effect of moisture on the different NOx formation channels was
also studied

• Effect of moisture on unmixedness was also investigated



Conclusions from experiments and modeling

• Experiments show that moisture in the feed stream reduces NOx

emissions but does not have a significant effect on CO

• Experiments indicate the effect of pilot levels, pressure, equivalence
ratio, and scale-up on emissions

• PSR Network model is a very versatile tool and the network can be
designed in order to simulate the flow and mixing characteristics seen
in the process.

• The Network is able to predict NOx emissions for the combustor at the
different conditions

• Moisture content mitigates the effect of unmixedness on NOx

emissions



Combustor and Nozzle Setup Used in FETC Testing
(Phase I)
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Summary:  100 psia, Full Scale Nozzle
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NOx Production Is Sensitive to Amount of
Diffusion Piloting

Summary:  100 psia, Full Scale Nozzle
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Summary:  100 psia, Full Scale Nozzle
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Measured CO at 200 psia and High Water
Loadings Does Not Follow the 100 psia Data

Trend Relative to Equilibrium CO

Summary:  200 psia, CO - Equilibrium
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NOx Emissions for Both Axial (below) and
Tangential Entry Nozzles Reveal Pressure

Dependence
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Modified Network Accurately Predicts NOx Pressure
Trends & Magnitudes for Both Nozzle Configurations
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Modified Network Predicts CO Trends but not
Magnitudes:

Errors in Mixture Temperature (very sensitive in predicting equilibrium CO)?
 CO Oxidation in Emissions Sample Probe?
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Summary of Results

• Low Levels of NOx and CO Observed

• Adding Moisture Lowers NOx and Raises CO

• Diffusion Piloting Strongly Affects NOx

• CO Levels Close to Equilibrium Values

• NOx Sensitive to Pressure: Increases with Pressure

• CO Sensitive to Pressure: Decreases with Pressure

• GRI Mech 2.11/Kinetic Model Agreed With NOx Data
but discrepancies exist with CO data

• NOx trends linked to unmixedness level variations


