PRIMARY ZONE EQUIVALENCE RATIO SENSORS

JONG GUEN LEE RAMARAO BANDARU SEAN MILLER

DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING THE PENNSYLVANIA STATE UNIVERSITY

Research sponsored by the U.S. Department of Energy, under contract 96-01-SR050

Objectives

- □ To develop gas turbine primary-zone equivalence ratio sensors with the characteristics
 - : Measurement accuracy of ± 0.01
 - : Fast response time
 - Potential for use in active combustion instability control
 - : Ease of implementation on various nozzle configurations
 - : Potential for use in actual gas turbine combustors
- ☐ Implement, test, and evaluate the sensor techniques in prototype lean premixed combustors made available by the industrial members of the AGTSR Program and FETC

Motivation

- In multi-nozzle gas turbine combustors, nozzle-to-nozzle differences in the equivalence ratio can result in excessive NOx and CO emissions and/or premature onset of unstable combustion
 - : Fuel flow rate to each nozzle needs to be controlled to achieve uniform equivalence ratio distribution

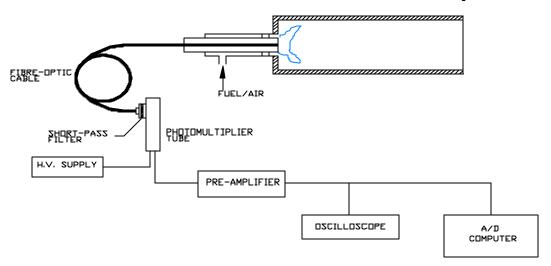
Project Status

Two sensor techniques are under development:

Sensor 1: Flame chemiluminescence sensor

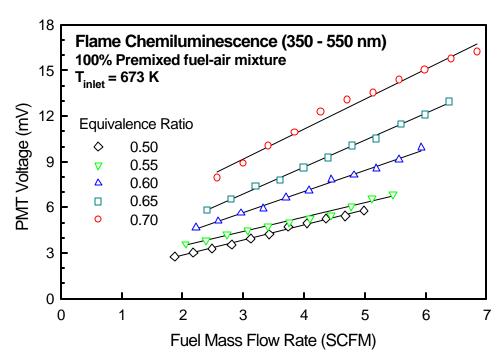
- Based on variation of flame chemiluminescence intensity with equivalence ratio
- First stage tests on a single nozzle, optically- accessible combustor at Penn State have been completed
- Tests on a multi-nozzle combustor in progress
 - » Developing strategies for real-time equivalence ratio control in multiple nozzle configuration

Sensor 2: Infrared absorption sensor


- Based on the absorption of infrared light (3.39 mm) by methane
- Tested on a Pratt &Whitney TE nozzle and Solar Turbine's Centaur 50 nozzle

Sensor 1: Flame Chemiluminescence Sensor

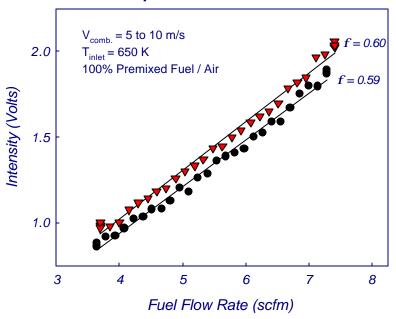
- Measures flame chemiluminescence intensity in the 350-550 nm wavelength range (CH* and CO₂*)
- Optical-fiber-based design for easy implementation on various nozzle configurations
- ☐ Can be used to determine nozzle-to-nozzle equivalence ratio variation

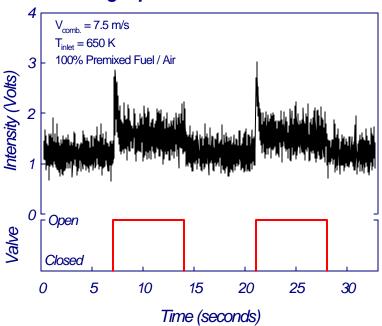


Schematic of experimental setup at Penn State

Sensor 1: Flame Chemiluminescence Sensor (contd.)

- ☐ Application of the sensor in a single nozzle, optically- accessible combustor at Penn State
 - : Iso-equivalence ratio variation of flame emission intensity with fuel flowrate has to be determined
 - : Measurement of fuel flowrate, and chemiluminescence intensity would determine the equivalence ratio





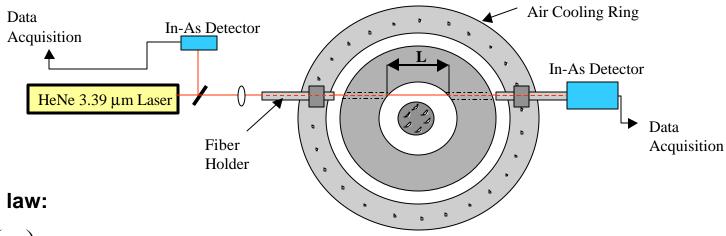
Sensor 1: Flame Chemiluminescence Sensor (contd.)

Fluctuating Equivalence Ratio: $\mathbf{f} = 0.59 \Leftrightarrow 0.60$

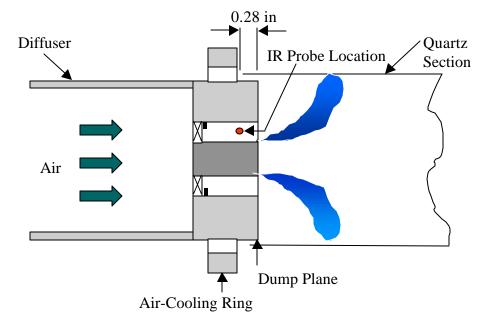
- ☐ Equivalence ratio resolution of 0.01 is achieved
- □ Sensor has fast response time

Sensor 2: Infrared Absorption Sensor

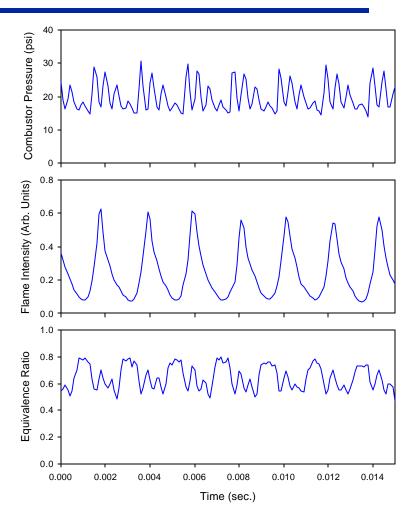
variation measurement


Designed to measure fuel-air equivalence ratio inside a gas turbine combustor's nozzle
 Line-of-sight based measurement gives average fuel concentration along the infrared beam path
 Fast response time
 Optical-fiber-based design allows easy installation in nozzles

Multi-nozzle installation allows for nozzle-to-nozzle equivalence ratio

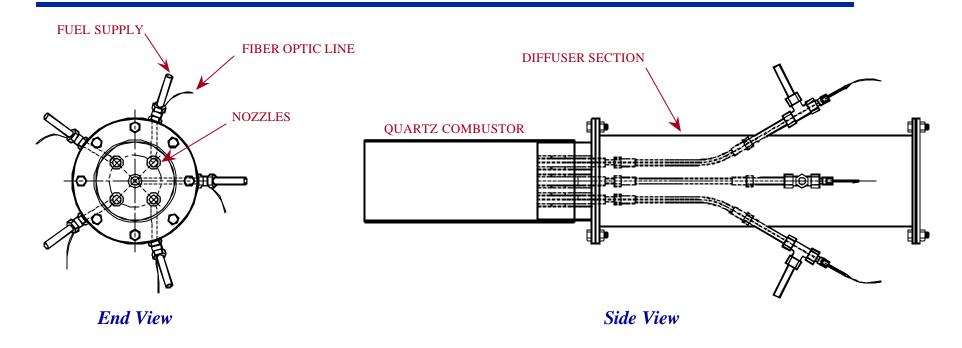

Sensor 2: Infrared Absorption Sensor (contd.)

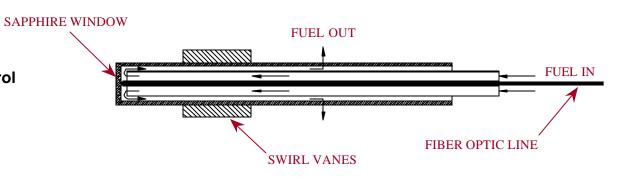
☐ Beer-Lambert law:


$$\varepsilon = -\frac{1}{cl} \log_{10} \left(\frac{I}{I_0} \right)$$

- 'e': molar absorption coefficient which is determined experimentally in a test cell
 - » Correlations with pressure and temperature are determined
- 'l': path length
- 'c': molar concentration

Sensor 2: Infrared Absorption Sensor (contd.)


- □ Application of sensor in a industrial fuel nozzle during unstable combustion
 - : Quantitative equivalence ratio measurement
 - : Can be used in combustion instability studies



Multi-Nozzle Combustor

- □ Individual nozzle fuel supply control
- Chemiluminescence probes mounted in each nozzle are monitored independently
- ☐ Fiber optic line is cooled by fuel

Nozzle Center Body

Future Work Plan

- ☐ Test flame chemiluminescence sensor in a 5-nozzle test combustor at Penn State
 - Develop and validate control strategies for use in multi-nozzle combustors
- ☐ Implement, test, and evaluate the probes in a full-scale, combustor test rig made available by the industrial members of the AGTSR Program and FETC

