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Research Objectives
• Provide vane heat transfer and detailed flow

and thermal field data to benchmark
computational flow codes for various levels of
difficulty

• Provide a better understanding of turbine vane
boundary layers through detailed
measurements

• Provide a better understanding of freestream
turbulence and length scale effects on vane
heat transfer
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Experimental approach provides
increasing levels of difficulty

Task Description Organization

1 & 2 Two-dimensional dry airfoil   UW-Madison
with and without high turbulence Va Tech

3 & 4 Two-dimensional film-cooled airfoil UT-Austin
with and without high turbulence

5 & 6 Three-dimensional dry airfoil  UW-Madison
with and without high turbulence Va Tech

7 & 8 Three-dimensional film-cooled airfoil   UT-Austin
with and without high turbulence
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Stator Vane Test Section Geometry

Splitter plate

Trip wire

Active turbulence
generator grid
b=1.27 cm Window

Boundary layer
bleed

17.8b

88b
1.9C

16b
0.33C

193b
4.1C

Flow removal to
downstream of test
section

Shaded area shows
the layout of the
heater

Plexiglass
wallInlet

measurement
location

Main flow

Splitter plate

Trip wire

Active turbulence
generator grid
b=1.27 cm Window

Boundary layer
bleed

17.8b

88b
1.9C

16b
0.33C

193b
4.1C

Flow removal to
downstream of test
section

Shaded area shows
the layout of the
heater

Plexiglass
wallInlet

measurement
location

Main flow

Wind Tunnel
Corner Section

University of Wisconsin / Virginia Tech



Experimental Setup and Instrumentation

• Pressure Taps
• Thermocouples
• 2-D fiber-optic

LDV system
• Hot-wire

anemometer
• Infrared camera

University of Wisconsin / Virginia Tech



The mean velocities at X/C = -0.33 are
unaffected by the high turbulence level
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Turbulent quantities at X/C=-0.33 are uniform
across the test section
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The leading edge horseshoe vortex moves
downstream at elevated turbulence
conditions
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High levels of turbulent kinetic energy are
observed at the center of the vortex
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The horseshoe vortex is unsteady at
elevated turbulence levels
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Conclusions from VT work
• High turbulence levels occur at the center of
the leading edge and passage vortices

• Leading edge horseshoe vortex is highly
unsteady for both low and high freestream
turbulence levels

• High freestream turbulence increases
endwall heat transfer with only small
augmentations in regions where secondary
flows are strong
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Turbine Vane Facility
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Surface Temperature Image
 using Infrared Camera

• Thermal imaging
– IR camera measures thermal field

in FOV

– NIH Image captures thermal
image in FOV

• Calibration precision
errors
– Standard error of fit

–  1K (T > 270 K) -  2.5 K (T<
235K)

• Camera spatial resolution
– 2.8 mm x 2.8 mm

with Low Turbulence and Blowing Ratio of 0.5
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Three Component LDV Layout
Argon Ion Laser, All Beams Collected by Side Scatter
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Velocity Field @ Low and High Tu
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Figure 7.13 UV Velocity Vectors at Low Turbulence with Jets
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  M = 2.0
DR = 1.0

Indicates increased lateral spreading in stagnation region with high turbulence.
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Comparison of Suction Side Film
Cooling with Previous Studies
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Suction Side Film Cooling
Adiabatic Effectiveness Contours
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Indicates the increased rate of decay for the adiabatic
effectiveness at low density ratios with matched blowing
ratio or matched momentum flux
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Suction Side Film Cooling
Density Ratio Effects @ Low Turbulence
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Suction Side Film Cooling
Turbulence Effects @ DR = 1.1
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Indicate that for low momentum flux ratios, the turbulence has little effect on 
film cooling and for high momentum flux ratios, the turbulence has a negative
effect on film cooling.  These trends are opposite those for a flat plate.
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Summary of UT work

• Three component velocity field measurements were completed
within the hole pattern of the showerhead showing details of
the interaction of jets with the mainstream.

• Studies of the suction side cooling were completed with a focus
on the first row holes where there is very strong curvature that
significantly increases adiabatic effectiveness.

• Studies using large and small coolant density ratios showed
scaling of performance with the momentum flux ratio of the jets.

• Very high mainstream turbulence caused little degradation in
performance at low blowing ratio, but a decrease at higher
blowing ratios.
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Collaboration with Industry
• Flowfield measurements presented to Pratt &

Whitney in November, 1998
• Research meeting at Pratt & Whitney in

September, 1999

• Roger Radomsky from the University of
Wisconsin interned at Pratt & Whitney during
the fall semester 1998

• Marcus McWaters from the University of
Texas interned at Pratt & Whitney during the
summer semester 1999
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