

ATS-85: Advanced Manufacturing Technology for Single Crystal IGT Components

Allen R. Price

Mei Ling Henne, Max Yang

Howmet Research Corporation Whitehall, MI 49461

Turbine Airfoil Manufacturing Technology

Annual Review November 10, 1999

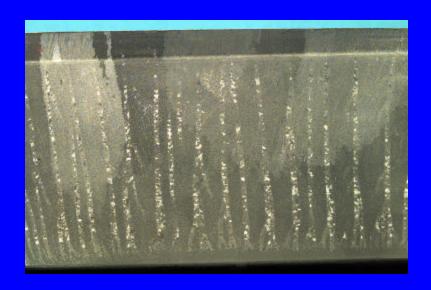
ATS Phase III Program Introduction

State of the Art

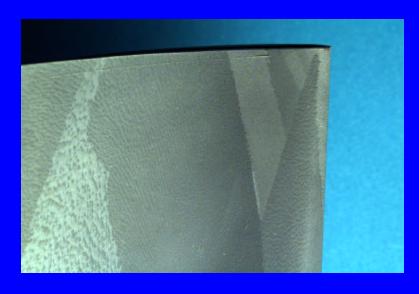
- Directional solidification of components is generated by withdrawing the mold at a controlled rate from a heated susceptor into a cooling cavity
- Heated susceptor and cooling cavity develops a high thermal gradient during withdrawal
- Casting yields on fully developed aircraft gas turbine single crystal casting process exceed 95 percent
- Significantly increased size of IGT components compared to aero-sized components

Introduction

Aero-engine/Land Based Turbine Comparison


<u>Comparison</u>	<u>Aero</u>	<u>Land Based</u>
Size differential	1X	2 to 3X
 Weight differential 	1X	5 to 10X
 Surface area differential 	1X	20 to 100X

Howmet Research Corporation



Introduction

Casting Defects in IGT Components

Freckle plumes in root

Multiple grain defects in airfoil

Howmet Castings From Cordant Technologies

Introduction

IGT Casting Difficulties

- Density differences between the interdendritic liquid and the liquid ahead of the interface drive thermosolutal convection and when severe, develops solute plumes
- Freckle defects and macrosegregation then result from the severe solute plumes
- Large cross sections, low thermal gradients, and later generation alloys enhance the tendency to form freckles and segregation
- Increased casting size increase the propensity to form additional grain defects such as high angle boundaries and spurious grains

Howmet Castings From Condant Technologies

Introduction

IGT Casting Difficulties (continued)

- Increased casting size also puts additional requirements on the ceramic mold
 - Shell creep due to longer time at temperature
 - Thicker shells reduce thermal gradients
 - Significantly larger and heavier molds lead to structural and handling problems
 - Mold cracking and metal run-outs

Program Objectives

Three Technology Thrust Areas

VIM Furnace Enhancements

 Define furnace enhancements which will improve control of mold temperature and thermal gradient on IGT components

High Conductivity Shell System

- Determine what factors limit shell thermal conductance
- Develop shell to meet needs of high gradient DS/SC casting process

Novel Cooling Development

• Establish & quantify the magnitude of the principle heat transfer modes in an IGT DS/SC casting

Program Approach

Phase II: Feasibility Development

• Evaluate feasibility of improving casting quality in all three technology thrust areas

Phase III: Manufacturing Process Development

- Begin transition of promising, cost effective approaches from Phase II efforts
 - Advanced VIM Furnace Enhancements
 - High Conductivity Shell Systems
 - Novel Cooling System Development

Objectives

- Determine furnace enhancements that provide precise control of mold temperatures
- Define process input factors and employ process modeling to evaluate effects
- Validate predictions with experiment

Major Efforts

- Benchmark current GEPS 9H 1st Blade
- Susceptor & Baffle material evaluation
- Furnace Control & Configuration Evaluation
- Novel mold designs
- Furnace enhancement modeling
- Production integration efforts
- OEM characterization

Status of Efforts

- Benchmark GEPS 9H Blade
 - Comparison of blades cast in production and previous ATS program (PDAS, SDAS, & Freckles)
 - Furnace surveys using GEPS 9H empty mold (Furnace control, susceptor & baffle configuration
 - Solidification model updated to include new control factors and model solved with both empty & filled mold
 - Highly instrumented mold cast to verify model predictions

Howmet Research Corporation

Status of Efforts - continued

- Susceptor & Baffle material evaluation
 - Computer models developed to analyze potential and current susceptor and baffle materials
 - Models solved using
 - Current baffle thermal conductivity and varying thickness
 - Current baffle thickness and varying thermal conductivity
 - Modified baffle designs
 - Thermocouple data compared to predicted profiles & second modeling iteration underway

Objectives

- Develop shell system with higher heat conduction during metal solidification
 - Improve heat extraction from solidifying metal and increase the gradient at the solidification front
- Develop a shell system that has equivalent or improved creep resistance at casting temperature
- Develop a shell that resists defect formation during production and pattern removal

Major Efforts

- Thin shell evaluation
- Shell conductivity enhancement
- Shell system integration

Howmet Research Corporation

Status of Efforts

- Thin shell evaluations
 - Investigating material additives to strengthen shell and then compare to current shell system and silica shell system
 - Some conditions have shown a 25 to 90% reduction in creep deflection compared to current shell system
 - Some also have non-uniform shrink & expansion which would lead to dimensional variation
 - Continue to evaluate strengthening mechanisms

Status of Efforts - continued

- Shell conductivity enhancements
 - Investigating material additives to enhance shell thermal conductivity and then compare to current shell system and silica shell system
 - Some conditions have shown up to a 5X improvement in thermal conductivity compared to current shell system
 - But also have limited pot life due to material braekdown
 - Continue to evaluate shell additives for enhances thermal conductivity

Howmet Research Corporation

Objectives

- Establish and quantify magnitude of three principle heat transfer factors
 - Heat transfer between casting and mold
 - Thermal conduction through mold shell
 - Heat removal from mold external surface

Major Efforts

- Sensitivity Evaluation of Novel Cooling Techniques
- Novel Cooling Experimental Evaluations
- Novel Cooling Method Feasibility

Status of Efforts

- Sensitivity Evaluation
 - Thermal model developed to characterize several different input factors
 - Taguchi L16 model experiment defined
 - Models analyzed using
 - Fraction of solids plot
 - Thermal gradients (G)
 - Solidification Rate (R)
 - Casting mapping factor at center & edge of casting

Status of Efforts - continued First Taguchi L16 Factors

	<u>Factor</u>	Level 1
--	---------------	---------

Standard

Standard

1X

A: Metal/Mold Interface Standard B: Shell Emissivity Standard C: Shell Conductivity Standard D: Shell Thickness Standard

E: Susceptor Temperature

F: Baffle Temperature

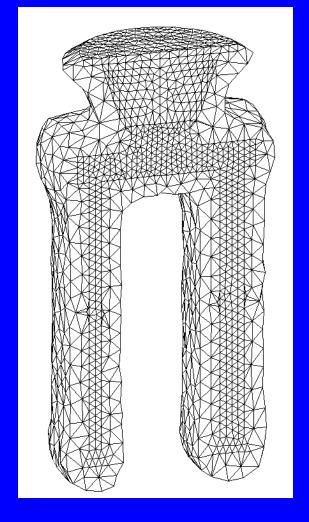
G: Withdrawal Rate

Level 2

Experimental

Experimental

5X


Thin

Low

Experimental

5X

Model has 1" and 1/2" thick slabs x 12" tall

Taguchi Experiment Observations

- Withdrawal rate is a consistently significant factor
- The impact of other factors vary with measured response

Second L16 Taguchi Experiment Begun

Program Summary

- > Address freckle defect formation
- ➤ Define & evaluate key thermal factors
- > Improve current production process & equipment
- > Production ready process at end of program

Howmet Research Corporation

22