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Abstract 

This report summarizes work performed by Argonne National Laboratory on fatigue and 
environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002.  
Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon 
and low–alloy steels and austenitic stainless steels (SSs), (b) irradiation–assisted stress corrosion cracking 
(IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted 
cracking of austenitic SS in PWRs, and (d) cracking in Ni–alloys and welds.   

A critical review of the ASME Code fatigue design margins and an assessment of the conservatism 
in the current choice of design margins are presented.  The existing fatigue ε–N data have been evaluated 
to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon 
and low–alloy steels and austenitic SSs.  Experimental data are presented on the effects of surface 
roughness on fatigue crack initiation in these materials in air and LWR environments. 

Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 
2.0 x 1021 n⋅cm–2.  The crack growth rates (CGRs) of the irradiated steels are a factor of ≈5 higher than 
the disposition curve proposed in NUREG–0313 for thermally sensitized materials.  The CGRs decreased 
by an order of magnitude in low–dissolved oxygen (DO) environments.   

Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289°C water on steels irradiated 
to ≈3 dpa.  The bulk S content correlated well with the susceptibility to intergranular SCC in 289°C 
water.  The IASCC susceptibility of SSs that contain >0.003 wt.% S increased drastically.  Bend tests in 
inert environments at 23°C were conducted on broken pieces of SSRT specimens and on unirradiated 
specimens of the same materials after hydrogen charging. The results of the tests and a review of other 
data in the literature indicate that IASCC in 289°C water is dominated by a crack-tip grain-boundary 
process that involves S.  An initial IASCC model has been proposed. 

A crack growth test was completed on mill annealed Alloy 600 in high–purity water at 289°C and 
320°C under various environmental and loading conditions.  The results from this test are compared with 
data obtained earlier on several other heats of Alloy 600.   
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Foreword

For over 34 years Argonne National Laboratory has been a prime contractor to the Office of Nuclear
Regulatory Research (RES) for studies of the environmental degradation of structural materials in light
water reactor environments.  This document is the 2002 annual report of the program studies.  The
program has evolved to keep pace with the most critical of the contemporary issues facing the industry
and the NRC.  Task 1 focused on the environmental degradation of fatigue life of pressure boundary
materials.  Task 2 addresses irradiation-assisted stress corrosion cracking (IASCC) of stainless steels in
BWR environments, and a parallel program (Task 3) is addressing IASCC of stainless steels in
pressurized water reactor (PWR) environments.  Task 4, the study of crack growth rates in nickel-base
alloys typically used in vessel penetrations, is currently focused on testing alloy 600 and its associated
weld metal, alloys 182 and 82.  Task 4 will test alloy 690 and its associated weld metal, alloys 152 and
52, which are the materials of choice for most replacement vessel head penetrations.

In earlier years, ANL research produced the finding that the fatigue life of stainless steels is degraded to a
greater degree in de-oxygenated, PWR-like environments than it is in boiling water reactor (BWR)
environments.  Research completed in 2002 provided added confirmation of that result,  further
characterized the microstructural aspects of fatigue crack initiation, and evaluated the effects of surface
roughness on fatigue life degradation of low-carbon steels, low-alloy steels, and stainless steels.  The
database for the environmental degradation of fatigue lives in stainless steels buttresses the NRC position
vis a vis the ASME code - that the underlying computational logic and application of the design curves
for the fatigue life of pressure boundary and internal components fabricated from stainless steel is non-
conservative, and needs revision.

Cracking of nickel-base alloys commonly used in vessel penetrations was initially manifested in
pressurizer nozzles and heater sleeves, which normally operate in a temperature range somewhat higher
than other reactor components .  When cracking was observed in vessel head penetrations, RES
incorporated crack growth rate studies in the ANL test program.  Although most plant observations of
cracking have occurred in PWRs, the ANL test program is testing these materials under both BWR and
PWR conditions.   These results will be used to support flaw evaluations and the associated requests for
continued operations that are proposed to the NRC.

In the future, the IASCC work will test materials that have received higher radiation doses, and will
involve more microstructural characterization of such materials.  Studies of void swelling and stress
corrosion cracking studies of cast or welded stainless steels will also enter the test program.   The SCC
studies of nickel-base alloys will begin to refocus on alloys 690 and its associated weld metal, alloy 152,
including cold-worked and heat-affected zone forms of the wrought material.  

___________________________________
Carl J. Paperiello, Director

Office of Nuclear Regulatory Research
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Executive Summary 

The existing fatigue ε–N data for carbon and low–alloy steels and wrought and cast austenitic SSs 
have been evaluated to define the effects of key material, loading, and environmental parameters on the 
fatigue lives of these steels.  The fatigue lives of carbon and low–alloy steels and austenitic SSs are 
decreased in LWR environments.  The magnitude of the reduction depends on temperature, strain rate, 
DO level in water, and, for carbon and low–alloy steels, S content in steel.  The threshold values of the 
critical parameters and the effects of other parameters (such as water conductivity, water flow rate, and 
material heat treatment) on the fatigue life of the steels are summarized.   

Experimental data are presented on the effects of surface roughness on the fatigue life of carbon 
and low–alloy steels and austenitic stainless steels in air and LWR environments.  For austenitic SSs, the 
fatigue life of roughened specimens is a factor of ≈3 lower than that of the smooth specimens in both air 
and low–DO water.  For carbon and low–alloy steels, the fatigue life of roughened specimens is lower 
than that of smooth specimens in air but is the same in high–DO water.   

Statistical models are presented for estimating the fatigue life of carbon and low–alloy steels and 
wrought and cast austenitic SSs as a function of material, loading, and environmental parameters.  Two 
approaches are presented for incorporating the effects of LWR environments into ASME Section III 
fatigue evaluations.   

Because of material variability, data scatter, and component size and surface, the fatigue life of 
actual components is different from that of laboratory test specimens under a similar loading history, the 
mean ε–N curves for laboratory test specimens are adjusted by factors of 2 on stress and 20 on cycles to 
obtain design curves for components.  These factors should not be considered safety margins, but they 
were intended to cover the effects of variables that can influence fatigue life but were not investigated in 
the tests that provided the data for the curves.  Data available in the literature have been reviewed to 
evaluate the margins on cycles and stress.  The results indicate that the current ASME Code requirements 
of a factor of 2 on stress and 20 on cycle are reasonable, and do not contain excess conservatism that can 
be assumed to account for the effects of LWR environments.   

Crack growth tests have been performed in simulated BWR environments at ≈289°C on Type 304 
SS (Heat C3) irradiated to 0.9 and 2.0 x 1021 n⋅cm–2 and Type 316 SS (Heat C16) irradiated to 
2.0 x 1021 n⋅cm–2 at ≈288°C in a helium environment.  The results indicate significant enhancement of 
CGRs of irradiated steel in the normal water chemistry BWR environment.  The CGRs of irradiated steels 
are a factor of ≈5 higher than the disposition curve proposed in NUREG–0313 for sensitized austenitic 
SSs in water with 8 ppm DO.  Actual enhancement in the same purity water is greater than 5.  The CGRs 
of Type 304 SS irradiated to 0.9 and 2.0 x 1021 n⋅cm–2 and of Types 304 and 316 SS irradiated to 
2.0 x 1021 n⋅cm–2, are comparable.  

In low–DO environment with low electrochemical potentials (ECPs), the CGRs of the irradiated 
steels decreased by an order of magnitude in tests in which the K validity criterion was satisfied, e.g., 
Heat C3 of Type 304 SS irradiated to 0.9 x 1021 n⋅cm–2 and Heat C16 of Type 316 SS irradiated to 
2 x 1021 n⋅cm–2.  No beneficial effect of decreased DO was observed for Heat C3 of Type 304 SS 
irradiated to 2 x 1021 n⋅cm–2, but in this case the applied K values during the low ECP portion of the test 
exceeded those required to meet the K validity criterion.  

Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289°C water on steels irradiated 
to ≈3 dpa in helium in the Halden Reactor.  At ≈3 dpa, the bulk S content provided the best and the only 
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good correlation with the susceptibility to intergranular (IG) SCC in 289°C water.  Good resistance to 
IASCC was observed in Type 304 and 316 stainless steels that contain very low concentrations of S of 
≈0.002 wt.% or less.  The IASCC susceptibility of Type 304, 304L, 316, and 316L steels that contain 
>0.003 wt.% S increased drastically.  Steels containing ≥0.008 wt.% were very susceptible at high 
fluence.  These observations indicate that the deleterious effect of S plays a dominant role in the failure of 
core internal components at high fluence. 

In contrast to Type 304 and 316 stainless steels, a low concentration of S of ≈0.001-0.002 wt.% 
does not necessarily render low-carbon Types 304L and 316L, or high-purity-grade steel resistant to 
IASCC.  This suggests that high concentration of C is beneficial in reducing the deleterious effect of S 
and that threshold S concentration to ensure good IASCC resistance is lower in a low-carbon steel than in 
a high-carbon steel. 

A comprehensive irradiation experiment in the BOR-60 Reactor is under progress to obtain a large 
number of tensile and disk specimens irradiated under PWR-like conditions at ≈325°C to 5, 10, and 
40 dpa.  Irradiation to ≈5 and ≈10 dpa has been completed. 

Tests performed on the materials irradiated in the Halden BWR reactor may also give some insight 
into potential mechanisms for IASCC that are also relevant to PWRs.  After exposure to the conditions of 
the SSRT test in BWR water, susceptibility to intergranular cracking in an inert environment was 
determined by rapid bending in air at 23°C.  Similar tests were also performed on hydrogen-charged 
specimens in vacuum.  Both types of bend fracture exhibited similar characteristics suggesting that in 
both cases the failures occurred due to hydrogen-induced intergranular failure.  However, steels that 
showed high susceptibility to IGSCC in 289°C water exhibited low susceptibility to intergranular 
cracking in the tests at 23°C air or vacuum, and vice versa.  This indicates that although intergranular 
cracking in 23°C is dominated by H-induced embrittlement of ordinary grain boundaries, other processes 
control IASCC in 289°C water.  On the basis of this investigation, and studies on binary Ni–S and crack-
tip microstructural characteristics of LWR core internal components reported in literature, an initial 
IASCC model has been proposed.   

The resistance of Ni alloys to environmentally assisted cracking in simulated LWR environments is 
being evaluated.  A crack growth test was completed on mill annealed (MA) Alloy 600 (Heat NX131031) 
specimen in high–purity water at 289 and 320°C under various environmental and loading conditions.  
The results from this test are compared with data obtained earlier on several other heats of Alloy 600.   

In a high–DO environment at 289°C, nearly all of the heats and heat treatment conditions that have 
been investigated show enhanced growth rates.  The growth rates for MA (Heat NX131031) are slightly 
higher than for the other heats of Alloy 600.  In contrast to the behavior in high–DO water, environmental 
enhancement of fatigue CGRs of Alloy 600 in low–DO water seems to depend on material condition, e.g., 
materials with high yield strength and/or low grain boundary coverage of carbides.   

The SCC crack growth rates of Heat NX131031 in high–DO water at 289°C are comparable to 
those in low–DO water at 320°C.  The results from the present study are compared with data obtained on 
several other heats of Alloy 600.  In a PWR environment, the CGR of Heat NX131031 corresponds to the 
53rd percentile of the distribution for the sample of heats of Alloy 600.  For example, Heat NX131031 
represents an average heat. 
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