

NATIONAL ENERGY TECHNOLOGY LABORATORY

Methane Hydrate Reservoir Code Comparison and Reservoir Simulation Sensitivity Analyses

Brian J. Anderson National Energy Technology Laboratory West Virginia University

This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in Gas Hydrates Under the RDS contract DE-AC26-04NT41817

Reservoir Simulator Comparison Study

<u>Goals</u>

- To exchange information regarding gas hydrate dissociation and physical properties enabling improvements in reservoir modeling
- To build confidence in all the leading simulators through exchange of ideas and cross-validation of simulator results on common datasets of escalating complexity; and
- To establish a depository of gas hydrate related experiment/production scenarios with the associated predictions of these established simulators that can be used for comparison purposes.

Progression of Problems 1-5

NATIONAL ENERGY TECHNOLOGY LABORATORY

West Virginia University. Department of Chemical Engineering

DOE-NETL Hydrate Program Peer Review, Pittsburgh, PA, August 27, 2008

Problem 6

History Matching

- Participants charged with matching the MDT test results – particularly the C2 test
 - Pressure response
 - Temperature response
 - Fluid flow rates
- Compared fit parameter sets for differences and agree on common inputs for Problem 7
- Anderson, B., et al. Analysis of Modular Dynamic Formation Test Results from the "Mount Elbert" Stratigraphic Test Well, Milne Point, Alaska. in Proceedings of the 6th International Conference on Gas Hydrates. 2008. Vancouver, British Columbia, Canada.

DOE-NETL Hydrate Program Peer Review, Pittsburgh, PA, August 27, 2008

Key Findings

- 1st Drawdown
 - in situ perm. 0.12 0.17 mD

Subsequent Flow Periods

- Wellbore storage necessary for reproducing pressure curves
 - Fluid segregation in this annular space plays a key role in the general shape of the recovery curves
 - No models explicitly represent open space overall fitted parameters may reflect this error
- Formation kinetics may affect the shape of the recovery curve

Problem 7 – Three production scenarios

- 3 different hydrate accumulation scenarios 50-yr production
 - Mt. Elbert-like formation
 - 2.5-3.0°C, S_H = 65%, P ~ 6.7 MPa
 - PBU L-Pad
 - 5.0-6.5°C, $S_H = 75\%$, P ~ 7.3-7.7 MPa, two hydrate zones
 - Down-dip formation
 - 10-12°C, $S_H = 75\%$, P ~ 8-9 MPa, two hydrate zones, near base of HSZ

Problem 7a: CMG STARS

NATIONAL ENERGY TECHNOLOGY LABORATORY

West Virginia University. Department of Chemical Engineering

Problem 7a: HydrateResSim

West Virginia University. Department of Chemical Engineering

DOE-NETL Hydrate Program Peer Review, Pittsburgh, PA, August 27, 2008

Problem 7b: CMG STARS

West Virginia University. Department of Chemical Engineering

Problem 7b: HydrateResSim

DOE-NETL Hydrate Program Peer Review, Pittsburgh, PA, August 27, 2008

Problem 7c: CMG STARS

Problem 7c: HydrateResSim

C-Unit Heterogeneity

DOE-NETL Hydrate Program Peer Review, Pittsburgh, PA, August 27, 2008

Effect of heterogeneity of permeability and porosity on production rates

West Virginia University Department of Chemical Engineering

DOE-NETL Hydrate Program Peer Review, Pittsburgh, PA, August 27, 2008

Affects of Reservoir Heterogeneity

NATIONAL ENERGY TECHNOLOGY LABORATORY

West Virginia University. Department of Chemical Engineering

16 DOE-NETL Hydrate Program Peer Review, Pittsburgh, PA, August 27, 2008

HydrateResSim Heterogeneity Results – Problem 7a

West Virginia University. Department of Chemical Engineering

DOE-NETL Hydrate Program Peer Review, Pittsburgh, PA, August 27, 2008

Sensitivity Analysis

A uniform reservoir consisting of two shale bounded hydrate layers is considered.

Discretization:

r direction-80 cells logarithmically distributed from $r_w=0.111$ to $r_{80}=450m$ z direction-70 cells (10 x various m,50 x 0.9 m, 10 x various m)

Reservoir properties:

Gas hydrate saturation 75%

Porosity 40%

Intrinsic permeability 1000 mD

Reservoir temperature, regional gradient 5.0-6.5°C

450 m

NATIONAL ENERGY TECHNOLOGY LABORATORY

West Virginia University

(18)

Sensitivity Analysis

- Reservoir parameters considered in this analysis are pressure, temperature, hydrate saturation, Bottom Hole pressure,
- porosity, permeability and free water saturation.
- A Plackett-Burman design of size 8 is considered.
- Eight design tests are conducted and the effects are shown in the plot.

Discount rate of 15% is incorporated

	Rankings							
Design	1	2	3	4	5	6	7	8
Parameters								
Pressure	6	7	5	7	7	6	7	4
Temp	3	2	2	1	1	2	2	1
S _H	1	3	4	4	4	4	5	5
Perm	7	5	6	5	5	5	4	3
BHP	2	1	1	2	2	1	1	2
Porosity	5	4	3	3	3	3	3	6
Free water	4	6	7	6	6	7	6	7

NATIONAL ENERGY TECHNOLOGY LABORATORY

West Virginia University. Department of Chemical Engineering

Sensitivity Analyses

NATIONAL ENERGY TECHNOLOGY LABORATORY

West Virginia University

DOE-NETL Hydrate Program Peer Review, Pittsburgh, PA, August 27, 2008

Preliminary Cash Flow at the Well

Comparison of 7a base case, heterogeneous 7a, 7b, and 7c reservoir conditions

Based on \$7/MCF wellhead price neglecting transportation costs

Includes well cost, **O&M**, royalties, taxes, lease costs

West Virginia University. Department of Chemical Engineering

Conclusions

- All of the participating simulators show remarkable agreement
 - Gas rates
 - Characteristic times
- As expected, warmer and deeper hydrates are likely more productive
 - 7a: 250 mcf/d, 7b: 8 mcf/d, 7c: 4.3 mmcf/d
- Still much to be learned from coupling the log data to reservoir simulations

NATIONAL ENERGY TECHNOLOGY LABORATORY

Thank You

This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in Gas Hydrates Under the RDS contract DE-AC26-04NT41817

