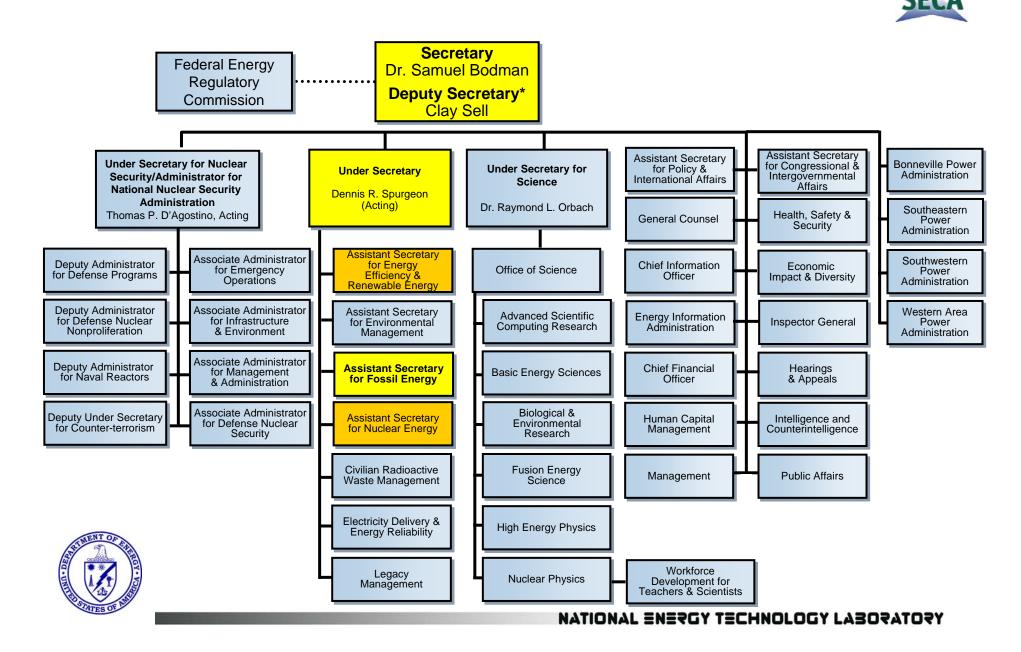
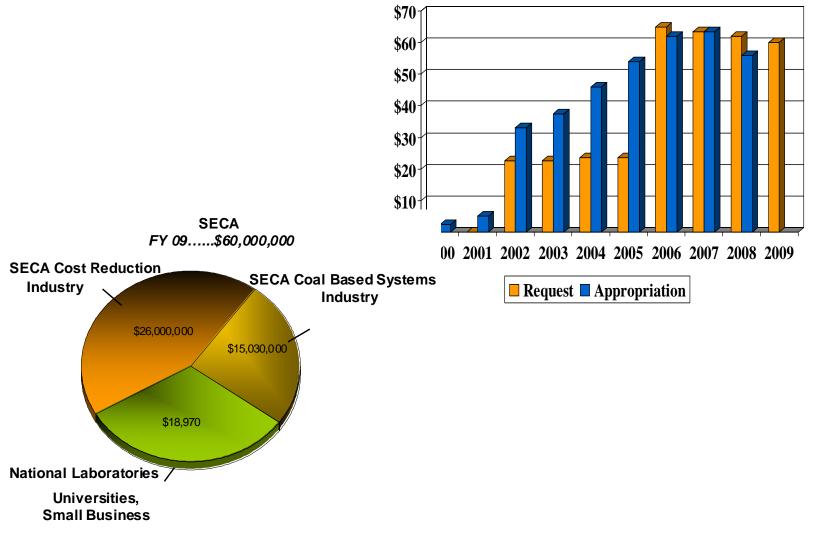


NATIONAL ENERGY TECHNOLOGY LABORATORY



9TH Annual SECA Workshop Clean Economic Energy in a Carbon Challenged World


Wayne A. Surdoval Technology Manger, Fuel Cells Strategic Center for Coal United States Department of Energy

Department of Energy

FY 08 Fossil Energy Fuel Cell Program seca (SECA)

3

DOE's Office of Fossil Energy Advanced (Coal) Power Systems Goals

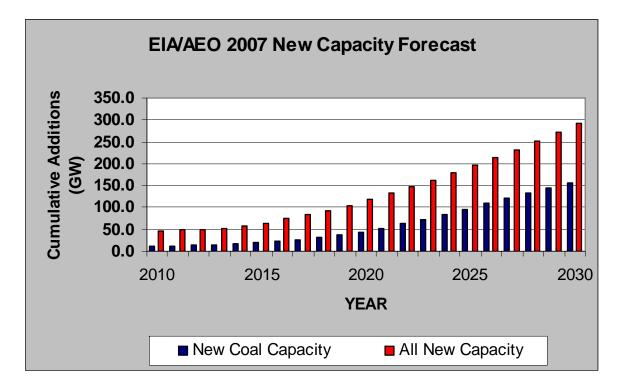
- 2010:
 - 45-50% Efficiency (HHV)
 - 99% SO₂ removal
 - NOx< 0.01 lb/MM Btu
 - 90% Hg removal
- 2012:
 - 90% CO₂ capture
 - <10% increase in COE with carbon sequestration
- 2015
 - Multi-product capability (e.g, power + H₂)
 - 60% efficiency (measured without carbon capture)

Solid State Energy Conversion Alliance SECA Goals

Stack Cost ~ \$100/kW stack

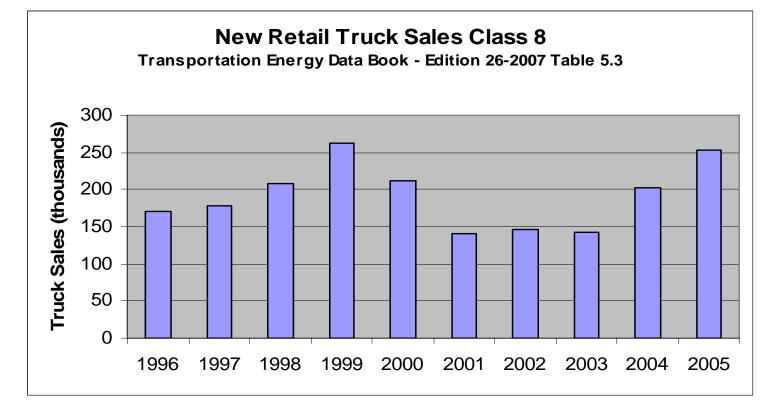
Capital Cost < 400/kW system

Maintain Economic Power Density with Increased Scale ~ 300mW/cm2


Ref: 2002

Mass customization – stacks used in multiple applications....large and small systems

How Big are the U.S. Markets? Coal


SECA Fuel Cells available for installation in 2018 New Coal Capacity, 2018 – 2030.....110 GW Average SECA Fuel Cell Production 9.2 GW/yr

EIA Annual Energy Outlook (AEO) for 2007 pp. 82-83

6

How Big are the U.S. Markets? Overnight Trucks

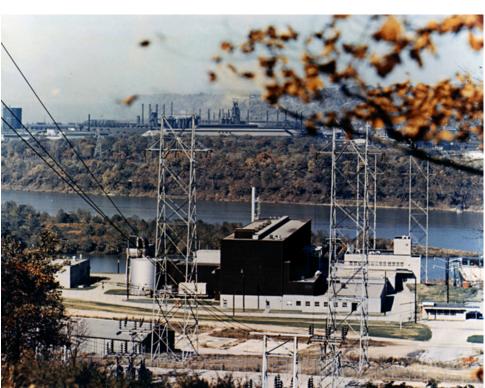
Average Size of a Truck APU – 5kW Average Annual Production – 200,000 units Average SECA Fuel Cell Production.... 1 GW/yr

SECA Fuel Cells in DOD Applications

• DOD Requirements

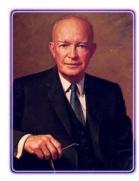
- Extend mission length
- Quiet
- Combined functions power, heat and water

– Volume and weight


- Operate with High Specific Energy Fuels Liquids
- DOE's power density targets (based on cost) minimize stack size and volume to diminishing returns. Specialized DOD designs will not increase gains.
- Further size and weight improvements Focus on the Balance of Plant

Atoms for Peace 1953

October 22, 1953: The Atomic Energy Commission announces that an AEC-owned demonstration power plant of 60 MW will be built at Shippingport, PA, jointly by Westinghouse Electric Corporation and Pittsburgh's Duquesne Light Company under the direction of the U.S. Navy/AEC Naval Reactors Branch.


9

The more important responsibility of this atomic energy agency would be to devise methods whereby this fissionable material would be allocated to serve the peaceful pursuits of mankind. Experts would be mobilized to apply atomic energy to the needs of agriculture, medicine and other peaceful activities. A special purpose would be to provide abundant electrical energy in the power-starved areas of the world.

Dwight D. Eisenhower, President of the United States of America,

to the 470th Plenary Meeting of the United Nations General Assembly Tuesday, 8 December 1953

Photograph of the Shippingport Atomic Power Station in Shippingport, Pennsylvania, the first full-scale nuclear power generating station in the United States which began operating in 1957.

Department of Energy
NATIONAL ENERGY TECHNOLOGY LABORATORY

Clean Coal Power Initiative

"More than half of the electricity generated in America today comes from coal. If we weren't blessed with this natural resource, we would face even greater [energy] shortages and higher prices today. Yet, coal presents an environmental challenge. So our plan funds research into new, clean coal technologies."

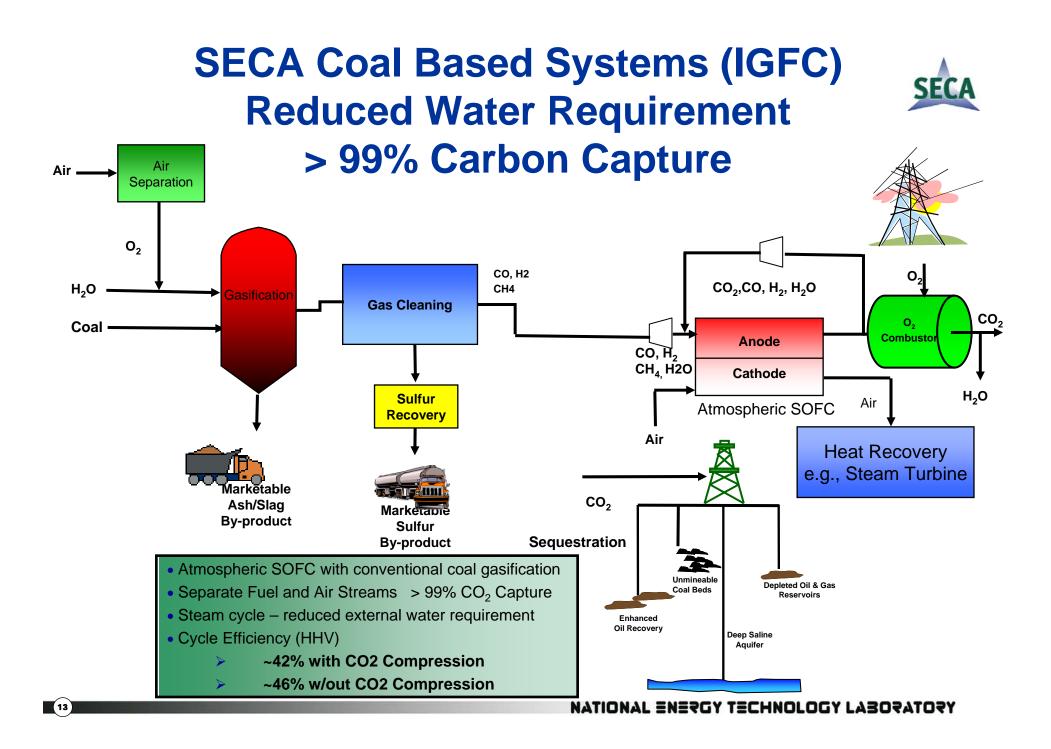
President George W. Bush

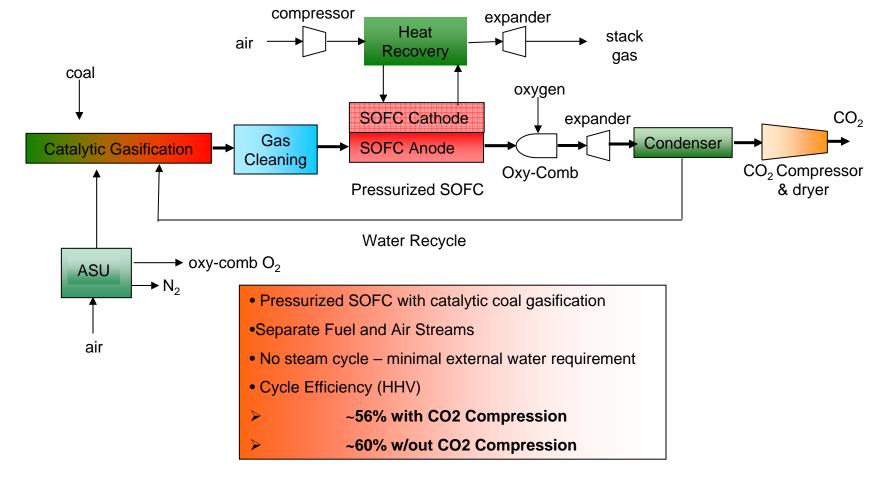

(10)

May 17, 2001

"...we're creating the National Climate Change Technology Initiative...to fund demonstration projects for cutting-edge technologies, such as fuel cells." *President George W. Bush*

June 11, 2001


Solid State Energy conversion Alliance (SECA)

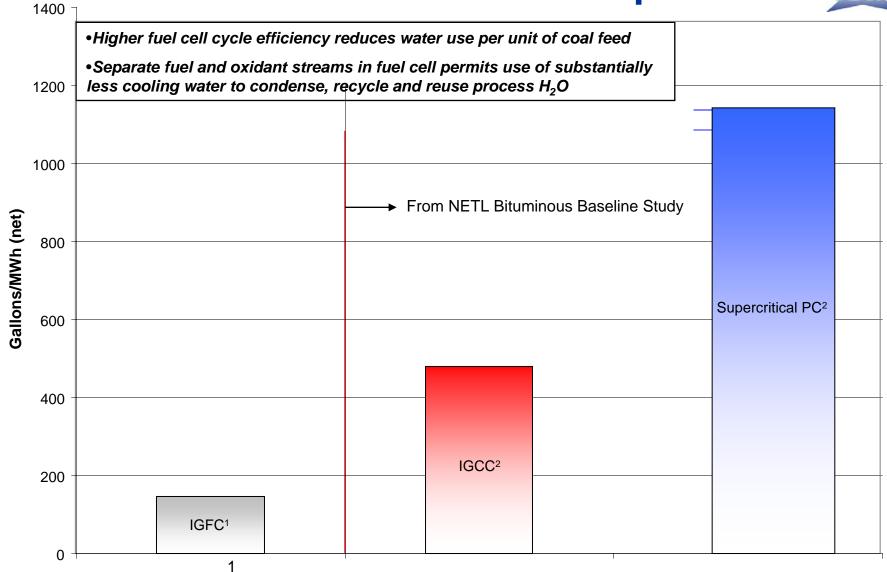

Impact of Efficiency on COE

Advanced Power Systems With CO2 Capture, Compression and Storage					
	PC Baseline	IGCC Baseline	l	IGFC Atmos.	IGFC Press.
Efficiency HHV (%)	27.2	32.5		42.8	57.3
Capital Cost \$/kW	2,870	2,390		1,991	1,667
Steam Cycle % Power	100	37		26	2
Cost-of-Electricity ¢/kW-hr	11.6	10.6		8.5	7.3

Advanced SECA Coal Based Systems Minimal Water Requirement > 99% Carbon Capture

(14)

Integrated Gasification Fuel Cell IGFC System Efficiencies

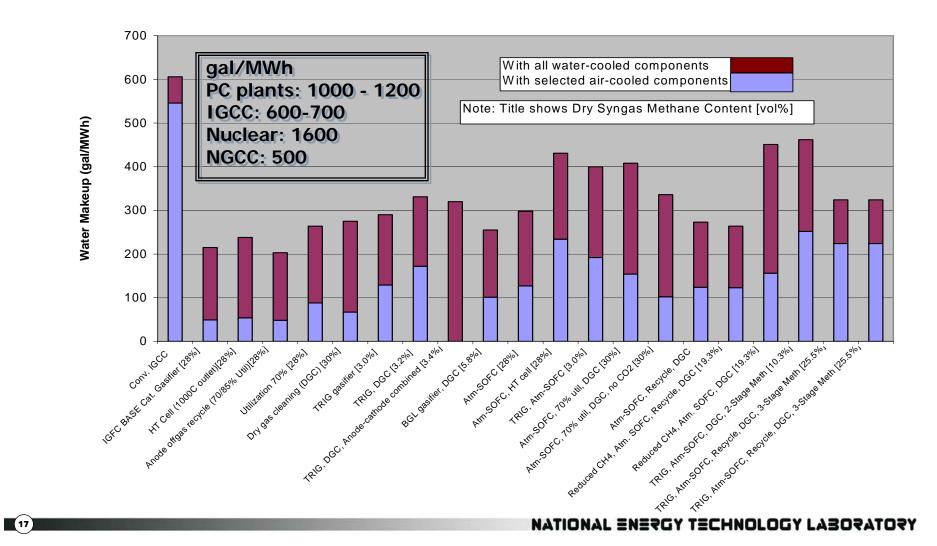


65.00 w CO2 compression w/o CO2 compression 60.00 Rectifier Eff Increased from 96% to 98% 55.00 Plant Eff (% HHV) 50.00 45.00 40.00 35.00 TRIG AMASOFC, Reside Dec. 35000 Mem 11 3901 TRIC AMSOFC, Reside Dac. 35000 Mem 25 5% Realized CHA. AM. SOFC. Readle DEC 19.3% TRIG. DGC. Mode cattode combined 13. Arian TRIG. AM. SOFC. DGC. 25000 Nem 10.3% AM-50FC. 10%-111. DEC. No CO2.30% Reduced CHA. AM. SOFC. DEC 119.3% Anote othes recice (1085%) UNIVERSION ANTSOFC, TOP-UN, DEC 190% LSFC BASE Cal. Gastler (78%) DN 985 ORANIA DECI 130401 30.00 BELDBAILET, DEC (D. Bel) ANT-SOFC. HT Call 28001 Unitation TOPS (28%) TRIG. AM-SOFC 3.0% AM'SOFC (28%)

(15)

TECHNOLOGY LABORATORY NATIONAL ENERGY

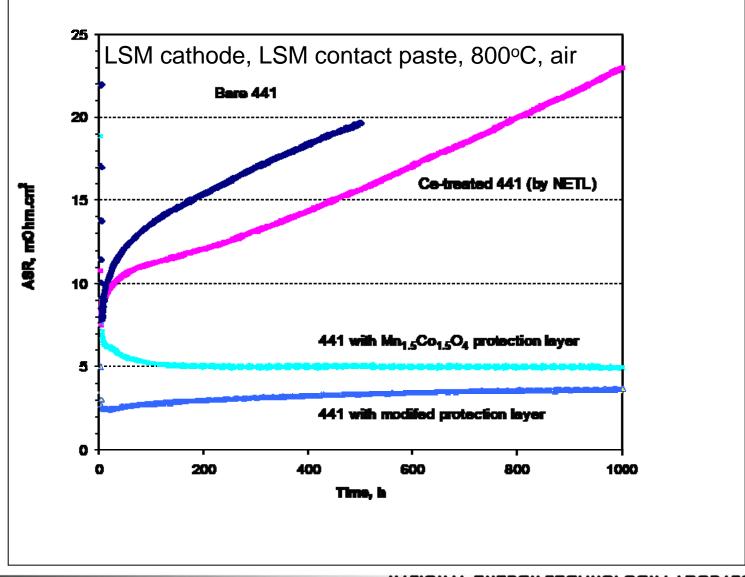
Raw Water Withdrawal Comparison



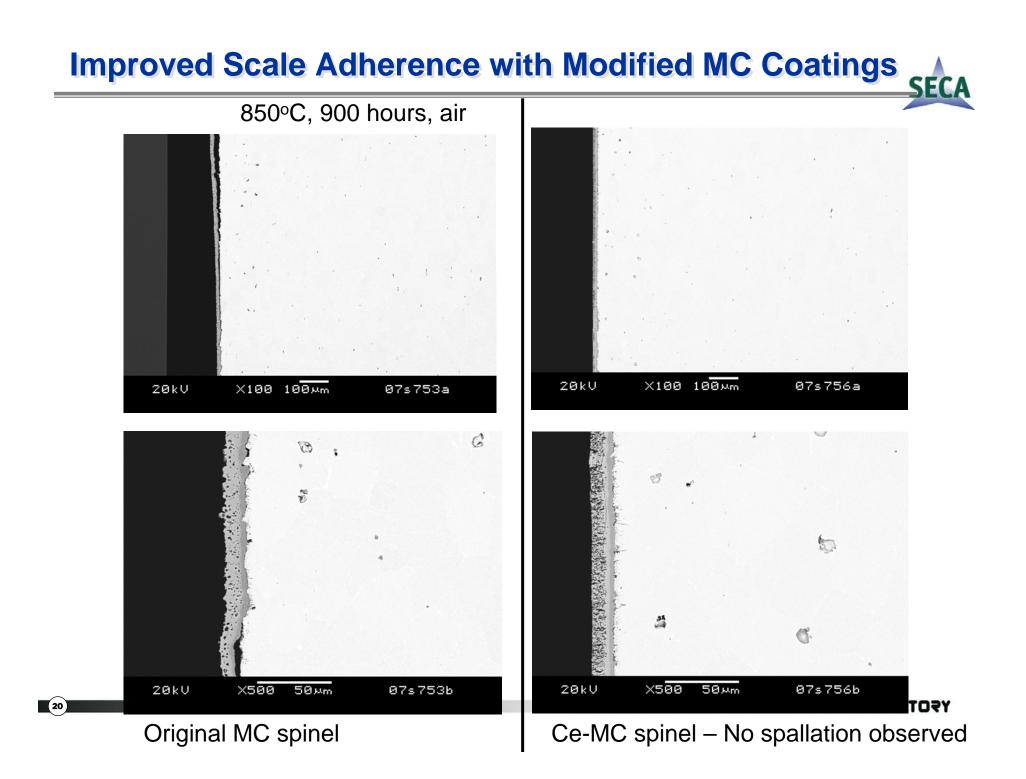
16

¹ System includes 100% carbon capture and CO_2 compression to 2,215 psia ² System includes 90% carbon capture and CO_2 compression to 2,215 psia

IGFC Plant Water Makeup



Current Priorities: SECA Core Technology Program



StabilityIn-Situ/Ex-Situ Correlation Impact of Potential Solid-State Understanding - Mechanism Integrated Cathode Studies Electrode to Interconnect Interface - Contact Materia1Structural Analysis• Design Basis -Material Data, Analysis & Failure Mode Design Tools - Engineering Design Transients- Control System Manufacturing Tolerances- Cost Thermal Profile and Gradients - Structure2Interconnect• Alloy - Composition - Cost Coatings Electrode to Interconnect Interface - Contact Materia2Anode / fuel processing• Purity Requirements - Fuel Characterize thermodynamics/kinetics - Contaminant Multi-component catalysts Carbon & Sulfur Strategy2Heat Exchangers/ High• Cost and reliability	1 Gas Seals	 Compliant Seal - Self-Healing Materials High Temperature Seal – Monolithic Structure
 Design Tools – Engineering Design Transients- Control System Manufacturing Tolerances- Cost Thermal Profile and Gradients – Structure Alloy – Composition – Cost Coatings Electrode to Interconnect Interface - Contact Materia Anode / fuel processing Purity Requirements - Fuel Characterize thermodynamics/kinetics - Contaminant Multi-component catalysts Carbon & Sulfur Strategy Heat Exchangers/ High Cost and reliability 		 Impact of Potential Solid-State Understanding - Mechanism Integrated Cathode Studies
 Coatings Electrode to Interconnect Interface - Contact Materia Anode / fuel processing Purity Requirements - Fuel Characterize thermodynamics/kinetics - Contaminant Multi-component catalysts Carbon & Sulfur Strategy Heat Exchangers/ High Cost and reliability 	1 Structural Analysis	 Transients- Control System Manufacturing Tolerances- Cost
fuel processing• Characterize thermodynamics/kinetics - Contaminant • Multi-component catalysts • Carbon & Sulfur Strategy2Heat Exchangers/ High• Cost and reliability	2 Interconnect	Coatings
		 Characterize thermodynamics/kinetics - Contaminants Multi-component catalysts
	2 Heat Exchangers/ High Temperature Blowers	Cost and reliability

Electrical Performance of Surface Treated 441 SECA

(19)

SECA Industry Teams FY 2001 – FY 2007 Complete

	Size	Efficiency	Degradation	Availability	Cost
Target	3 – 10 kW	35 (LHV)	4%/1,000 hrs	90%	
Aggregate Team Performance	3 – 7 kW	35.4 – 41 %	2%/1,000 hrs	97%	\$724 - \$775/kW

SECA Industry Teams & Major Subcontractors SECA Calgary Power Generation Williams International DELPHI United Technologies FuelCell Energy WorleyParsons \mathbb{W} **Nexant** SIEMENS STARK STATE COLLEGE VersaPower gti **Rolls-Royce** Systems

NATIONAL ENERGY TECHNOLOGY LABORATORY

00076 6-30-08 WAS

22

2008 SECA Core Technology & Innovative Concepts

23

NATIONAL ENERGY TECHNOLOGY LABORATORY

00076 6-30-08 WAS

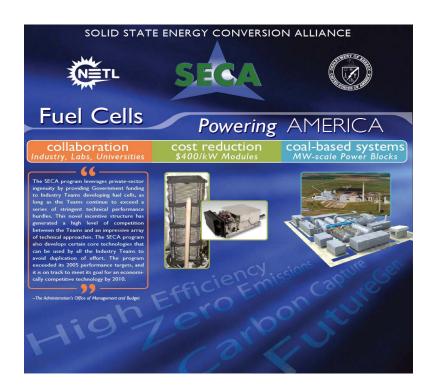
2008 Peer Review

/	Organization	Principal Investigator	Project Type	Score (0 – 5.0)
1	Fuel Cell Energy	Jody D. Doyon	Industry	4.49
2	Delphi Automotive Systems	Steven R. Shaffer	Industry	4.52
3	Santa Clara County	Caroline Judy	Congressional	2.82
4	Siemens Power Generation	Joseph F. Pierre	Industry	4.43
5	Siemens Power Generation	Joseph F. Pierre	Congressional	4.35
6	GE Global Research	Mathew Alinger	Advanced Research	4.19
7	Allegheny Technologies, Inc.	James Rakowski	Interconnects	4.64
8	Oak Ridge National Laboratory	Edgar Laura-Curzio	Material Properties	4.40
9	Pacific Northwest National Laboratory	Matt Chou	Seals	4.59
10	NETL Office of Research and Development	Randall Gemmen	Cathodes	4.52
11	Argonne National Laboratory	Paul Fuoss	Cathodes	4.49
12	Lawrence Berkeley National Laboratory	Steven J. Visco	Contaminants	4.78
13	Georgia Tech Research Corporation	Meilin Liu	Cathodes	4.59
14	University of Michigan	Suljo Linic	Contaminants	4.33
15	Pacific Northwest National Laboratory	Moe A. Khaleel	Modelling	4.53
16	NETL Office of Research and Development	David A. Berry	Fuel Processing	4.62
17	NETL Office of Research and Development	Randall Gemmen	Contaminants	4.60
18	Virginia Tech Polytechnic Institute	Jason Lai	Power Electronics	4.75

24)

For More Information About the DOE Officerca of Fossil Energy Fuel Cell Program

•NETL website:


-www.netl.doe.gov

Reference Shelf

CDs available from the website

- •FE Fuel Cell Program Annual Report _2007
- 8th Annual SECA Workshop Proceedings (Coming Soon)
- •Fuel Cell Handbook (7th ed.)

Wayne A. Surdoval Technology Manager, Fuel Cells National Energy Technology Laboratory U. S. Department of Energy (Tel) 412 386-6002 (Fax) 412 386-4516 wayne.surdoval@netl.doe.gov •Office of Fossil Energy website: -<u>ww.fe.doe.gov</u>

NATIONAL ENERGY TECHNOLOGY LABORATORY

25