

Electrode Optimization Studies and Cathode Surface Chemistry:

Determination of Key Correlations between

Surface Features and Electrochemical Performance

Paul Salvador

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213

SECA Review August 6, 2008 RDS-NETL-SECA: Briggs White and Wayne Surdoval

Multifunctional Electronic Materials Center

Thin Film Approach to Investigating Cathode Surface Chemistry

There <u>is</u> reason to believe that the <u>surface structure</u> of known backbones is <u>dynamic under load</u>.

There is <u>no reason</u> to believe that the ideal backbone will have the ideal <u>surface kinetics</u>.

Can we understand / engineer highly-active and stable surfaces?

There is <u>no reason</u> to believe that the ideal backbone will have the ideal <u>surface kinetics</u>.

There <u>is</u> reason to believe that the <u>surface structure</u> of known backbones is <u>dynamic under load</u>.

Can we understand / engineer highly-active and stable surfaces?

Orientation Mapping Of Internal Interfaces: NETL – Carnegie Mellon – NSF MRSEC

Statistical Information on Interfacial Crystallography

2D Traditional OIM

001

Have 3D Crystallography of Interfaces in all Cell Components **Can Determine Relative Surface / Interface Energies** 4

What happens during oxygen uptake?

LSM Surface Path

LSM Bulk Path

YSZ Surface Path

• Adsorption

- Mass of Material
- Surface Chemistry

• Surface Electronic Structure

- Electronic transfer
 - Consumption of holes
 - Fermi Level Changes
 - Surface chemistry
- Oxygen Vacancy Filling
 - Mass Change
 - Total charge density
 - Surface Chemistry

(Gravimetry) (Spectroscopy) (Kelvin Probe, STS, Normal Conductivity)

(Parallel Conductivity / Thermopower) (Kelvin Probe / STS) (Spectroscopy)

(Gravimetry) (Conductivity / Thermopower) (Spectroscopy)

"Ideal" Surface Science Sample

Control Microstructural Complexity and Surface Crystallography

Thin Film Samples Driving Surface Science

Films Allow for Surface / Microstructural Control

Important to synthesize each version of these.

Experimental Values of Interest that are in Dynamic Equilibrium

Collaborators

Surface Engineering / Characterization / TEM

B. Kavaipatti, L. Yan, S. Wang, R. Petrova Carnegie Mellon Detailed Structure and Surface Segregation vs

<u>Oxygen Activity</u> J. Eastman, D. Fong, P. Fuoss APS - ANL

<u>Surface Stability / Interface Stability</u>

L. Helmick, S. Seetharaman Carnegie Mellon

R. Gemman, K. Gerdes NETL <u>Detailed Structure and Surface Segregation vs</u>

<u>Electrochemical Activity</u> K.-C. Chang, D. J. Myers, J. D. Carter, H. You APS-ANL

B. Yildiz, MIT

Surface Chemistry J. Kitchin, Carnegie Mellon <u>Electrochemical Activity and Surface Chemistry</u> B. Ingram, T. Cruse, M. Krumpelt ANL

C. Matranga, NETL

<u>Electronic Structure</u> Salvador, Carnegie Mellon W. Harrison, Stanford C. Heske, UNLV and B. Yildiz, MIT Y. Mantz, NETL

CMU Work for Cathode Surface Science Project

- Growth of High-Quality Thin Film Samples
 - Perovskite / Perovskite Epitaxy and Surface Control
 - Perovskite / Fluorite Epitaxy and Surface Control
 - Generation of Surface-Modified Samples

• Surface Kinetics for Oxygen Uptake

- Electrical Conductivity Relaxation
- Piezoelectric Crystal Microbalance Gravimetry
- Kelvin Probe Spectroscopy
- Surface Thermodynamics of Oxygen Uptake
 - Piezoelectric Crystal Microbalance Gravimetry
 - Kelvin Probe Spectroscopy
- Electronic Structure
 - Kelvin Probe Spectroscopy
 - STM (MIT)
- Ex-situ Surface Characterization for Correlations
 Scanning Auger / XPS

Pulsed Laser Deposition Laser MBE / MBE

Advantages of PLD

- Targets made via standard methods.
- Stoichiometric transfer from target to film
- High-quality epitaxial films for complex oxides
- High-Quality Metal Films
- Simple, versatile, and relatively inexpensive
- House 6 targets at once

Pulsed Laser Deposition

Deposition Parameters

PRESSURE :	0.00001 - 0.2 Torr
TEMPERATURE:	RT - 950 °C
FLUENCE :	$1-8 \text{ J/cm}^2$
FREQUENCY :	1-10 Hz
COOLING:	0.00001- 300 Torr
Depositions ·	1-4 hrs Max

The Natural Starting Point Seems to be YSZ (100)

Ideal substrate to do electrochemistry Ideal Substrate to correlate to real SOFC cathodes Can we get surface engineered samples routinely?

(La,Sr)MnO₃ thin films on YSZ(100)

Perovskite / Fluorite Interface in ESSENTIAL in final ION TRANSFER But we need better growth

Focus on Epitaxial Films with Controlled Surfaces

(100)	(110)	(111)	
Surface	Surface	Surface	
Epitaxial	Epitaxial	Epitaxial	
Perovskite	Perovskite	Perovskite	
Cathode	Cathode	Cathode	
Single Crystal	Single Crystal	Single Crystal	
Perovskite	Perovskite	Perovskite	
Substrate	Substrate	Substrate	
(100)	(110)	(111)	

Single Crystal

- Many Available Commercial Substrates
 - SrTiO₃ (100), (111), (110)
 - Nb-doped SrTiO₃ (100), (110), (111)
 - LaAlO₃ (100)
 - NdGaO₃ (100), (110)
 - DyScO₃ (100)
 - LSAT (100)
- Can vary widely
 - Chemical elements in substrate
 - Strain state
 - Crystal Symmetry
 - Surface Morphology
 - Conductivity (e- / ion)
 - Dislocation content
- Generates IDEAL surfaces for investigation
- *How do film properties depend on substrate?*

Epitaxy along various Orientations Orientation Mapping / Surface Sensitivity

Electron Back-Scattered Diffraction used to Identify Local Orientations $La_{0.7}Sr_{0.3}MnO_3$ (50 nm) deposited on $SrTiO_3$ All scan areas > 20 x 20 micron²

All three low-index surfaces are obtained as epitaxial films

XRD: 60 nm LSMO and LSCO on STO(100) Perovskite – Perovskite Epitaxy

- Perovskite Perovskite Epitaxy is excellent for both film compositions
- Similar results are found for other orientations

AFM: 60 nm LSMO and LSCO on STO(100) Surface Features are Unit-Cell Smooth

- Surface Features are well defined
 - Films are atomically smooth
 - *Required for surface sensitive X-ray / STS*
 - Required for understanding overall surface response

• Similar results are found for other orientations

60 nm LSCO on STO(110) XRD and AFM

- Perovskite Perovskite Epitaxy is excellent for LSC in this orientation
- Similar results are found for other chemistries

Returning to Electrolyte Substrates: What Happens on YSZ (111)?

Ideal substrate to do electrochemistry Ideal Substrate to correlate to real SOFC cathodes Can we get surface engineered samples routinely?

XRD: 60 nm LSMO and LSCO on YSZ(111) Perovskite – Fluorite (electrolyte) Epitaxy

• Perovskite - Fluorite (YSZ) Epitaxy is same for both film compositions

• In-plane epitaxy leads to six degenerate variants: variant boundaries

AFM: 60 nm LSMO and LSCO on YSZ(111) Surface Features are Unit-Cell Smooth

LSCO

1: Height

5.0 µm

LSMO (110) Surface Epitaxial Perovskite Cathode Single Crystal Electrolyte 0.0 5.0 µm 0.0 1: Height rms roughness = 5.10 Arms roughness = 3.21 ASubstrate (111)

• Surface Features are well defined

- Films are unit-cell smooth
- slight increase for LSCO roughness, but still unit-cell smooth

Can we attain Surface Engineered Samples on YSZ (100)?

Insert a Buffer Layer of GDC to Change Mismatch and Chemistry Useful Heterostructure for LSCF Measurements

XRD: 100 nm LSCO on YSZ(100) and GDC(50 nm)-YSZ(100) Epitaxy on 100-oriented electrolyte obtained

• Perovskite - Fluorite (YSZ) (100) Epitaxy is found on GDC(100)

• In-plane epitaxy leads to four degenerate variants: variant boundaries

AFM: LSCO on YSZ(100) and GDC-Buffered YSZ(100) Epitaxial Surface Features are Unit-Cell Smooth

LSC on YSZ(100)

polycrystalline rms roughness = 6.0 A

LSC on GDC-buffered YSZ(100)

Multivariant epitaxy rms roughness = 2.67 A

- Surface Features are well defined
 - Films are unit-cell smooth
 - Good decrease for epitaxial LSCO films

Thin Film Samples Driving Surface Science

Reaction Occurs at Surface:

1/2 O ₂ (g)	+ 2e ⁻	\rightarrow	O ²⁻
pore	conductor		ion conductor

Films Allow for Surface / Microstructural Control

Surface	Surface	Surface		Surface		Surface		Surface
Epitaxial Perovskite Cathode	Epitaxial Perovskite Cathode	Epitaxial Perovskite Cathode		Epitaxial Perovskite Cathode		Epitaxial Perovskite Cathode		Polycrystal Perovskite Cathode
Single Crystal	Single Crystal	Single Crystal	:	Single Crystal		Single Crystal		
Perovskite	Perovskite	Perovskite		Electrolyte		Electrolyte		
Substrate	Substrate	Substrate		Substrate		Substrate		Substrate
(100)	(110)	(111)		(100)		(111)		
Sin	gle Crys	stal		Multi-	/8	ariant	I	⊃oly-Xtal

Single Crystal

Summary of Sample Preparation

• Growth of High-Quality Thin Films

- Perovskite / Perovskite Epitaxy and Surface Control Achieved
 - LSM and LSC (and LNO) deposited on many Perovskites
 - Cube-on-cube epitaxy on various orientations
 - Unit-cell roughness obtained
- Perovskite / Fluorite Epitaxy and Surface Control Achieved
 - LSM and LSC (110)[111] epitaxy on YSZ (111)[[11-2]
 - LSM and LSC (100)[011]epitaxy on GDC-YSZ (100)[010]
 - Unit-cell roughness obtained
 - 6 and 4 variants observed on (111) and (100) fluorites
- Samples Provided to Collaborators
 - Measured Surface Chemistry at APS
 - Measured Electronic Properties at MIT

Chemistry of (100) LSMO Surfaces

20 nm thickness La_{0.7}Sr_{0.3}MnO₃

Detailed Structure and Surface Segregation vs

<u>Oxygen Activity</u> J. Eastman, D. Fong, P. Fuoss APS - ANL **TXRF** Spectra Show Sr-Enhancement

Not a function of Strain / Substrate

Is a function of T and Pressure Reversible

How does THIS effect properties?

<u>Detailed Structure and Surface Segregation vs</u> <u>Electrochemical Activity</u> K.-C. Chang, D. J. Myers, J. D. Carter, H. You APS-ANL

B. Yildiz, MIT

Thickness Dependent Properties LSMO on Nb-Doped STO(100)

Thin Layers are fully strained (XRD) Thin layers can relax by point defect formation Films relax with thickness by dislocation formation Interface with substrate can affect fermi level location

> Scanning Tunneling Spectroscopy B. Yildiz et al., MIT

Thinner LSM films have insulating surfaces with large band gap (1.5 – 2.2 V) at ambient conditions.

Cathode thin film growth – Substrate choice and orientation

Mismatch Strain

Dislocations

Misfit Threading (relaxation) Threading (inherited)

Substrates have different lattice mismatches and Different dislocation densities

ECR part: La_{0.6}Sr_{0.4}CoO₃ (50nm film) on YSZ (111)

Background:

50 nm thick LSCO(110) on YSZ(111) Nanoparticle Infiltration Thickess

Pressure Range Corresponds

reducing regions for cathodes $(10^{-8} - 10^{-4} \text{ atm})$ film growth pressure ranges (.01 - 100 mTorr)

Steady State Values Provide a Reality Check and Allow us to Explore Bulk Changes

LSCO electrical properties Agree with Literature Observations

Bak et al., Ionics 7 (2001) 388; Mizusaki et al., J. Electrochem. Soc., 136 (1989) 2082.

• ECR can be measured using the vacuum arrangement

• Resistivity values are similar to those reported in literature

ECR Fitting / k_{chem} determination (50nm) $La_{0.6}Sr_{0.4}CoO_3$ (110) / YSZ (111)

- Data fits reasonably well to a single exponent
- Values are similar to those observed in literature (on different type samples)
- High-throughput / basic surface science experiments can be designed

Comparison to Literature

Film composition	This study Epitaxial Perovskite Cathode La _{0.6} Sr _{0.4} CoO ₃	Chen et al.* Epitaxial Perovskite Cathode La _{0.5} Sr _{0.5} CoO ₃
Substrate	YSZ(111) (LSC 110)	LaAlO ₃ (100) (LSC 100)
Pressure range	Low 100 to 200mTorr	High 380 to760Torr
K _{chem} at 650℃	1- 4 × 10 ⁻⁶ cm/s	≈ 1×10 ⁻⁶ cm/s

* X.Chen *et al./*Solid State Ionics 146(2002)405-413

How are microstructural / surface differences reflected in ECR? 36

Summary of ECR Measurements

- *High vacuum compatible experimental set-up completed*
 - Pressure can be changed from 0.01 mTorr to 100 mTorr for ECR
 - Van der Pauw or linear 4-probe possible
- Measurements at 650°C agree with order of magnitude in literature
 - (110)LSC films on (111)YSZ
 - $k_{chem} = 2-8 \ x \ 10^{-6} \ cm/s$
 - some differences with respect to trends for values at final P
- Future
- Measure different temperature / pressure ranges
- Measure LSC on perovskites / GDC-YSZ(100)
- Measure surface modified samples
- Combine with other work to generate understanding of surface

High-T Piezoelectric Crystal Microbalances

Diameter =0.55 inch; Thickness = 0.2 mm;

 $F_0 = 5.8$ MHz, Sensitivity +/- 3 Hz

GaPO₄ Piezoelectric Crystal Microbalances

GaPO₄ is Piezoelectric until > 900°C Has good temperature stability of Frequency

Analyzing PCM Data at 300 °C

Deconvoluting Temperature and Mass Change at 300 °C for LNO Films

Transient Measurements to Determine Surface Properties

• for thin film where $k_{chem} = A^* I_{film} = 0.003 \times 130 nm = 3.9 \times 10^{-8} cm/s$

Need to focus on extracting
 adsorption step from dissociation step

ECR-LaNiO₃/YSZ(100)-350°C

• for thin film where $k_{chem} = A^* I_{film} = 0.006 \times 130 nm = 7.8 \times 10^{-8} cm/s$

• This k_{chem} is in the same range as measured with PCM

 $> k_{chem}$ for La₂NiO_{4+x} ceramics at this temperature is 7x10⁻⁷cm/s (G .Kim et al Solid State Ionics 177(2006))

PCM Measurements

- Piezoelectric Crystal Microbalances
 - Good intermediate temperature stability
 - LaNiO₃ films on $GaPO_4$ measured at 350°C
 - k_{chem} is reasonable but no good literature comparison
 - LaNiO₃ films on ultrathin SrTiO₃ crystals measured on GaPO₄ PCMs
- Future
 - LaNiO₃ films on ultrathin SrTiO₃ crystals measured onGaPO₄ PCMs
 - *Temperature dependent measurements*
 - *High-temperature holder (collaboration with company)*
 - Measure LSM-LSC-LSF surface properties

Summary

- Providing Samples to Large-Scale Effort to Understand / Engineer Cathodes Surfaces for Improved Performance
- Effort focused on Thin Film / Engineered Surfaces Generate three classes of films with engineered microstructure / surface Epitaxial Single Crystal (100), (110), (111) Epitaxial Multi-variant (100), (110) Polycrystalline
- Initial Measurements to combine conductivity / mass / electronic structure ECR (110) LSCO has k_{chem} on in the range of 2-8 x 10⁻⁶ cm at 650°C k_{chem} affected by final pressure and oxidation/reduction
 - STS thin (strained) epitaxial LSM on STO layers are insulating thick (relaxed) epitaxial LSM on STO layers are conducting
 - PCMCan use polycrystalline films or Epitaxial film/substrate
Temperature compensation is essential
LNO has k_{chem} on the order of of 4-8 x 10⁻⁸ cm between 300 -350₄₅

Future Directions

- Growth of High-Quality Thin Film Samples
 - Perovskite / Perovskite Epitaxy and Surface Control
 - Perovskite / Fluorite Epitaxy and Surface Control
 - Generation of Surface-Modified Samples

• Surface Kinetics for Oxygen Uptake

- Electrical Conductivity Relaxation
- Piezoelectric Crystal Microbalance Gravimetry
- Kelvin Probe Spectroscopy
- Surface Thermodynamics of Oxygen Uptake
 - Piezoelectric Crystal Microbalance Gravimetry
 - Kelvin Probe Spectroscopy
- Electronic Structure
 - Kelvin Probe Spectroscopy
 - STM (MIT)
- Ex-situ Surface Characterization for Correlations
 Scanning Auger / XPS

Acknowledgements

SECA Program

- Briggs White and Wayne Surdoval

• RDS – NETL

Transmission Electron Microscopy

Argonne National Lab – Carnegie Mellon – SECA Delphi – Carnegie Mellon – SECA

Local Microstructural / Chemical / Phase Information

T.A. Cruse, B. J. Ingram, M. Krumpelt, S. Wang, and P.A. Salvador, in "TMS 2008 Annual Meeting Supplemental Proceedings Volume 1: Materials Processing and Properties," pp. 571-580 (2008).

Investigate Degradation of Cells

Overarching Goals

Put together a team of researchers to carry out Surface Science on SOFC Cathode Materials Generate in-situ / ex-situ correlations Generate a complete description of surfaces / oxygen interaction

Identify the surface sensitive parameter that dictates overall cathode performance: surface stoichiometry and orientation, electronic character, work function, cation-gas bonding, vacancy population, etc...

Objectives

(1) generate well-defined epitaxial, textured, and polycrystalline films having controlled surface chemistries

(2) generate experimental data on surface properties that indicate how the electrocatalytic activity of SOFC cathodes can be optimized to yield improved cathodes.

DyScO₃ Crystals

Ultra-high Quality Perovskite Crystals Ultra high Quality Surfaces No Overlapping Elements with Films Highly Insulating (Good for ECR / PCM)

Investigated Surface Chemistry at ANL using these Substrates

(La,Sr)MnO₃ thin films on NdGaO₃

Very-high Quality Perovskite Crystals No Overlapping Elements with Films Highly Insulating (Good for ECR / PCM) La_{0.7}Sr_{0.3}MnO₃ (54 nm) deposited on NdGaO₃(100)_P

Impedance vs Thickness and Temperature

2eV of effective activation energy indicates surface-limited oxygen reduction [1,2]

HT region for 100nm thick film indicates a change in the mechanism

Surface Limited Mechanism is Consistent with Fermi Level Conduction Mechanism

[1] E. P. Murray, T. Tsai, S. A. Barnett, Solid State Ionics **110**, 235 (1998).
[2] S. P. Jiang, J. G. Love, Y. Ramprakash, J. Power Sources **110**, 201 (2002).

Electronic Structure and Impedance are Correlated

Van der Pauw measurements Verifying that the Set-up works / Verifying the FILM uniformity

Let current =1 μ A, then test on the film sample, we get:

V34	I12	0.272592 mv
V34	- I12	-0.272245 mv
V34	I21	-0.272351 mv
V34	-I21	0.272439 mv
V12	I34	0.271918 mv
V12	-I34	-0.272635 mv
V12	I43	-0.272340 mv
V12	-I43	0.272138 mv
V13	I42	-0.276759 mv
V13	-I42	0.271322 mv
V13	I24	0.270765 mv
V13	-I24	-0.274452 mv
V31	I42	0.272788 mv
V31	-I42	-0.27231 mv
V31	I24	-0.274130 mv
V31	-I24	0.272271 mv
V14	I32	0.00mv
V32	I41	0.00mv

Thus, it is reasonable to do VDP measurement without switching.

LSCO conductivity change with temperature

K_{chem} dependency on final oxygen pressure

Activation energy (Q) determination

Mass Changes on Pressure Changes QCM is Sensitive to Mass Changes

- Changes in Pressure lead to reasonable changes in mass
- Initial variations have reasonable transients
- Can measure surface and bulk properties

Frequency Shifts occur on pressure changes: temperature or mass?

Initial Measurements on Single Crystal Sample

- Changes in Pressure lead to reasonable changes in mass
- Noise is a little higher with single crystal
- Procedure is promising for direct comparisons to APS work

Transient Measurements to Determine Surface Properties

Mass change vs. time when PO_2 change from 0.3 mtorr to 185 mtorr at 350°C

> transient measurement is not quite exponential, need more work

> for thin film where $k_{chem} = A^*I_{film} = 0.042 \text{ x } 130 \text{ nm} = 5.88 \text{ x} 10^{-7} \text{ cm/s}$

> k_{chem} for La₂NiO_{4+x} ceramics at this temperature is 7x10⁻⁷cm/s (G .Kim et al Solid State Ionics 177(2006))

PCM measurements can yield surface properties of Thin Films!

Determining Appropriateness of Measurements

- Oxygen vacancy in deposited LNO thin film
- ➤ Thin film weight from G-PCM measurement: 16x10⁻⁶g
- Thin film thickness 140nm
- > Total oxygen vacancy in this thin film if assuming it is $LaNiO_{2.5:}$

1.9x10¹⁶

- Measurement oxygen vacancy when PO₂ change from 0.3 mtorr to 185 mtorr
- ➤ Weight change from G-PCM measurement: 0.056x10⁻⁶g
- Corresponding oxygen vacancy loss:

2.1x10¹⁵

- Summary
- ➢ At 350°C, 1/10 possible oxygen vacancy change was observed in LNO film

Why Study Cathode Surfaces?

The oxygen reduction reaction is surface specific and is related to two and three phase boundaries in SOFCs.

We don't understand Surfaces OR Internal Interfaces!