

NATIONAL ENERGY TECHNOLOGY LABORATORY

Eric Grol

US Department of Energy National Energy Technology Laboratory

Dale Keairns and Dick Newby

Science Application International Corporation (SAIC) National Energy Technology Laboratory

August 6, 2008

Integrated Gasification Fuel Cell (IGFC) **System Studies**

Office of Systems, Analyses & Planning Systems Analysis Team

- Assessment of state-of-the-art and advanced technologies
 - Guide Research
 - Compare potential of advanced technologies to current SOA
 - Identify process conditions & performance targets
 - Inform policy & regulation
 - Unbiased assessments of technology options
 - Overall technical & environmental performance
 - Efficiency, resource use (feedstocks, water), emissions (stack & life-cycle)

CO₂ Emissions – Why is this relevant?

- Supreme Court ruled that carbon dioxide is classified as a pollutant under the 2007 Clean Air Act, therefore the U.S. Government has the authority to regulate CO₂ emissions
- Carbon capture and sequestration is an administration priority – NETL's role is to assist in the development of technologies that enable this goal

Water Use – Why is it important?

- USGS reports that power generation is second only to agriculture in total U.S. freshwater consumption¹
- Projected population shifts to western and southeastern U.S. will result in thermoelectric growth that exceeds the national average to 2030²
- Limited freshwater in these areas could be inadequate to meet projected power generation needs

^{1. &}quot;Estimate Use of Water in the United States in 1995," <u>http://www.usgs.gov/watuse/pdf1995/pdf/circular1200.pdf</u>

^{2. &}quot;Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements," http://www.netl.doe.gov/technologies/coalpower/ewr/pubs/2007%20Water%20Needs%20Analysis%20-%20Final%20REVISED%205-8-08.pdf

Energy Efficiency – Why is it Important?

- NETL Power Systems Goal → 45-50% net efficiency (coal HHV) by 2010 and 55-60% net efficiency (coal HHV) by 2015
- Energy Information Administration (EIA) Annual Energy Outlook (AEO) 2008 predicts¹:
 - 41% increase in energy produced by coal plants from 2006 to 2030
 - Percentage of nation's power generated by coal increases from 49% to 54%
- Coal costs have risen drastically since 2005
 - Increased efficiency lowers capital and operating costs

1. http://www.eia.doe.gov/fuelcoal.html

Historic Coal Prices¹

Since 2005, coal prices have at least doubled

NATIONAL ENERGY TECHNOLOGY LABORATORY

1. http://www.eia.doe.gov/cneaf/coal/page/coalnews/coalmar.html

System Integration Choices

(7)

Baseline IGFC Combined Cycle

Atmospheric SOFC with combined anode and cathode offgas

• Single pass SOFC

- Precombustion CO₂ capture (Selexol process)
- Waste heat recovery in subcritical steam cycle (1600psia/1100 °F)
- 43.3% system efficiency (coal HHV basis)

System Advancement Separated Anode and Cathode Offgas Streams

Air Separation Unit

9

- Separate anode, cathode offgas streams
- Recover residual anode fuel heating value in oxycombustor
 - No dilution of products with N_2
- Reaction products are CO₂ and H₂O, which can be condensed
- Eliminate requirement for precombustion CO₂ capture
- 44.2% system efficiency (coal HHV basis)
 - 1% improvement by separating anode, cathode offgas

IGFC Efficiency Comparison to PC, IGCC

10

IGFC Water Consumption Comparison to PC, IGCC

(11)

Effect of High Methane Syngas

Gasifier Selection

- Catalytic coal gasification concept produces high methane yields at low gasification temperature
- Concept of catalytic coal gasification to produce SNG is not new
 - Great Point Energy's bluegas[™] process

- Catalytic gasification concept to produce pipelinequality SNG from coal and other feedstocks
- Assumed for this analysis that SOFC can handle up to 25% CH₄

IGFC Combined Cycle with Catalytic Gasifier

Catalytic, low temperature steam gasification process

- Low temperature, catalytic gasifier (high cold gas efficiency)
- High methane syngas (reduced stack cooling load)
- Separate anode and cathode offgas (no precombustion CO₂ capture)
- Waste heat recovered in supercritical steam cycle
- 54.5% efficiency (coal HHV)

(14)

~10% efficiency improvement by using different gasifier

IGFC Efficiency Comparison to PC, IGCC

15

Catalytic Coal Gasification Concept

IGFC Water Use Comparison to PC, IGCC

16

Improved IGFC System

- SOFC with minimal overpotential loss (high efficiency)
- Humid gas cleaning system (maintains H₂O in vapor phase)
- High methane gasifier (catalytic coal gasification)
- Pressurized SOFC operation

- Voltage improved by pressurized operation
- High pressure anode offgas for expansion through turbine
 - Elimination of steam cycle, reduced water footprint

IGFC Combined Cycle with Catalytic Gasifier and Pressurized SOFC

- Low temperature, catalytic gasifier (high cold gas efficiency)
- High methane syngas (reduced stack cooling load)
- Separate anode and cathode offgas (no precombustion CO₂ capture)
- Pressurized SOFC

(18)

- Turbine expander after oxycombustion (18:1 PR)
- 58.6% efficiency (coal HHV)

IGFC Efficiency Comparison to PC, IGCC

(19)

IGFC Water Use Comparison to PC, IGCC

20

Conclusions

- Fuel cell power system is attractive with respect to carbon capture, water use, and efficiency
- System advances needed to achieve high efficiency cycles:
 - High methane syngas (catalytic gasifier)
 - Humid gas cleaning

- Achieve targeted SOFC performance
- Continued interaction between systems analysis group and research program